1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcachefs setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcachefs.h" 11 #include "alloc_background.h" 12 #include "alloc_foreground.h" 13 #include "bkey_sort.h" 14 #include "btree_cache.h" 15 #include "btree_gc.h" 16 #include "btree_journal_iter.h" 17 #include "btree_key_cache.h" 18 #include "btree_node_scan.h" 19 #include "btree_update_interior.h" 20 #include "btree_io.h" 21 #include "btree_write_buffer.h" 22 #include "buckets_waiting_for_journal.h" 23 #include "chardev.h" 24 #include "checksum.h" 25 #include "clock.h" 26 #include "compress.h" 27 #include "debug.h" 28 #include "disk_accounting.h" 29 #include "disk_groups.h" 30 #include "ec.h" 31 #include "errcode.h" 32 #include "error.h" 33 #include "fs.h" 34 #include "fs-io.h" 35 #include "fs-io-buffered.h" 36 #include "fs-io-direct.h" 37 #include "fsck.h" 38 #include "inode.h" 39 #include "io_read.h" 40 #include "io_write.h" 41 #include "journal.h" 42 #include "journal_reclaim.h" 43 #include "journal_seq_blacklist.h" 44 #include "move.h" 45 #include "migrate.h" 46 #include "movinggc.h" 47 #include "nocow_locking.h" 48 #include "quota.h" 49 #include "rebalance.h" 50 #include "recovery.h" 51 #include "replicas.h" 52 #include "sb-clean.h" 53 #include "sb-counters.h" 54 #include "sb-errors.h" 55 #include "sb-members.h" 56 #include "snapshot.h" 57 #include "subvolume.h" 58 #include "super.h" 59 #include "super-io.h" 60 #include "sysfs.h" 61 #include "thread_with_file.h" 62 #include "trace.h" 63 64 #include <linux/backing-dev.h> 65 #include <linux/blkdev.h> 66 #include <linux/debugfs.h> 67 #include <linux/device.h> 68 #include <linux/idr.h> 69 #include <linux/module.h> 70 #include <linux/percpu.h> 71 #include <linux/random.h> 72 #include <linux/sysfs.h> 73 #include <crypto/hash.h> 74 75 MODULE_LICENSE("GPL"); 76 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 77 MODULE_DESCRIPTION("bcachefs filesystem"); 78 MODULE_SOFTDEP("pre: crc32c"); 79 MODULE_SOFTDEP("pre: crc64"); 80 MODULE_SOFTDEP("pre: sha256"); 81 MODULE_SOFTDEP("pre: chacha20"); 82 MODULE_SOFTDEP("pre: poly1305"); 83 MODULE_SOFTDEP("pre: xxhash"); 84 85 const char * const bch2_fs_flag_strs[] = { 86 #define x(n) #n, 87 BCH_FS_FLAGS() 88 #undef x 89 NULL 90 }; 91 92 void bch2_print_str(struct bch_fs *c, const char *str) 93 { 94 #ifdef __KERNEL__ 95 struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c); 96 97 if (unlikely(stdio)) { 98 bch2_stdio_redirect_printf(stdio, true, "%s", str); 99 return; 100 } 101 #endif 102 bch2_print_string_as_lines(KERN_ERR, str); 103 } 104 105 __printf(2, 0) 106 static void bch2_print_maybe_redirect(struct stdio_redirect *stdio, const char *fmt, va_list args) 107 { 108 #ifdef __KERNEL__ 109 if (unlikely(stdio)) { 110 if (fmt[0] == KERN_SOH[0]) 111 fmt += 2; 112 113 bch2_stdio_redirect_vprintf(stdio, true, fmt, args); 114 return; 115 } 116 #endif 117 vprintk(fmt, args); 118 } 119 120 void bch2_print_opts(struct bch_opts *opts, const char *fmt, ...) 121 { 122 struct stdio_redirect *stdio = (void *)(unsigned long)opts->stdio; 123 124 va_list args; 125 va_start(args, fmt); 126 bch2_print_maybe_redirect(stdio, fmt, args); 127 va_end(args); 128 } 129 130 void __bch2_print(struct bch_fs *c, const char *fmt, ...) 131 { 132 struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c); 133 134 va_list args; 135 va_start(args, fmt); 136 bch2_print_maybe_redirect(stdio, fmt, args); 137 va_end(args); 138 } 139 140 #define KTYPE(type) \ 141 static const struct attribute_group type ## _group = { \ 142 .attrs = type ## _files \ 143 }; \ 144 \ 145 static const struct attribute_group *type ## _groups[] = { \ 146 &type ## _group, \ 147 NULL \ 148 }; \ 149 \ 150 static const struct kobj_type type ## _ktype = { \ 151 .release = type ## _release, \ 152 .sysfs_ops = &type ## _sysfs_ops, \ 153 .default_groups = type ## _groups \ 154 } 155 156 static void bch2_fs_release(struct kobject *); 157 static void bch2_dev_release(struct kobject *); 158 static void bch2_fs_counters_release(struct kobject *k) 159 { 160 } 161 162 static void bch2_fs_internal_release(struct kobject *k) 163 { 164 } 165 166 static void bch2_fs_opts_dir_release(struct kobject *k) 167 { 168 } 169 170 static void bch2_fs_time_stats_release(struct kobject *k) 171 { 172 } 173 174 KTYPE(bch2_fs); 175 KTYPE(bch2_fs_counters); 176 KTYPE(bch2_fs_internal); 177 KTYPE(bch2_fs_opts_dir); 178 KTYPE(bch2_fs_time_stats); 179 KTYPE(bch2_dev); 180 181 static struct kset *bcachefs_kset; 182 static LIST_HEAD(bch_fs_list); 183 static DEFINE_MUTEX(bch_fs_list_lock); 184 185 DECLARE_WAIT_QUEUE_HEAD(bch2_read_only_wait); 186 187 static void bch2_dev_unlink(struct bch_dev *); 188 static void bch2_dev_free(struct bch_dev *); 189 static int bch2_dev_alloc(struct bch_fs *, unsigned); 190 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *); 191 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *); 192 193 struct bch_fs *bch2_dev_to_fs(dev_t dev) 194 { 195 struct bch_fs *c; 196 197 mutex_lock(&bch_fs_list_lock); 198 rcu_read_lock(); 199 200 list_for_each_entry(c, &bch_fs_list, list) 201 for_each_member_device_rcu(c, ca, NULL) 202 if (ca->disk_sb.bdev && ca->disk_sb.bdev->bd_dev == dev) { 203 closure_get(&c->cl); 204 goto found; 205 } 206 c = NULL; 207 found: 208 rcu_read_unlock(); 209 mutex_unlock(&bch_fs_list_lock); 210 211 return c; 212 } 213 214 static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid) 215 { 216 struct bch_fs *c; 217 218 lockdep_assert_held(&bch_fs_list_lock); 219 220 list_for_each_entry(c, &bch_fs_list, list) 221 if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid))) 222 return c; 223 224 return NULL; 225 } 226 227 struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid) 228 { 229 struct bch_fs *c; 230 231 mutex_lock(&bch_fs_list_lock); 232 c = __bch2_uuid_to_fs(uuid); 233 if (c) 234 closure_get(&c->cl); 235 mutex_unlock(&bch_fs_list_lock); 236 237 return c; 238 } 239 240 /* Filesystem RO/RW: */ 241 242 /* 243 * For startup/shutdown of RW stuff, the dependencies are: 244 * 245 * - foreground writes depend on copygc and rebalance (to free up space) 246 * 247 * - copygc and rebalance depend on mark and sweep gc (they actually probably 248 * don't because they either reserve ahead of time or don't block if 249 * allocations fail, but allocations can require mark and sweep gc to run 250 * because of generation number wraparound) 251 * 252 * - all of the above depends on the allocator threads 253 * 254 * - allocator depends on the journal (when it rewrites prios and gens) 255 */ 256 257 static void __bch2_fs_read_only(struct bch_fs *c) 258 { 259 unsigned clean_passes = 0; 260 u64 seq = 0; 261 262 bch2_fs_ec_stop(c); 263 bch2_open_buckets_stop(c, NULL, true); 264 bch2_rebalance_stop(c); 265 bch2_copygc_stop(c); 266 bch2_fs_ec_flush(c); 267 268 bch_verbose(c, "flushing journal and stopping allocators, journal seq %llu", 269 journal_cur_seq(&c->journal)); 270 271 do { 272 clean_passes++; 273 274 if (bch2_btree_interior_updates_flush(c) || 275 bch2_journal_flush_all_pins(&c->journal) || 276 bch2_btree_flush_all_writes(c) || 277 seq != atomic64_read(&c->journal.seq)) { 278 seq = atomic64_read(&c->journal.seq); 279 clean_passes = 0; 280 } 281 } while (clean_passes < 2); 282 283 bch_verbose(c, "flushing journal and stopping allocators complete, journal seq %llu", 284 journal_cur_seq(&c->journal)); 285 286 if (test_bit(JOURNAL_replay_done, &c->journal.flags) && 287 !test_bit(BCH_FS_emergency_ro, &c->flags)) 288 set_bit(BCH_FS_clean_shutdown, &c->flags); 289 290 bch2_fs_journal_stop(&c->journal); 291 292 bch_info(c, "%sshutdown complete, journal seq %llu", 293 test_bit(BCH_FS_clean_shutdown, &c->flags) ? "" : "un", 294 c->journal.seq_ondisk); 295 296 /* 297 * After stopping journal: 298 */ 299 for_each_member_device(c, ca) 300 bch2_dev_allocator_remove(c, ca); 301 } 302 303 #ifndef BCH_WRITE_REF_DEBUG 304 static void bch2_writes_disabled(struct percpu_ref *writes) 305 { 306 struct bch_fs *c = container_of(writes, struct bch_fs, writes); 307 308 set_bit(BCH_FS_write_disable_complete, &c->flags); 309 wake_up(&bch2_read_only_wait); 310 } 311 #endif 312 313 void bch2_fs_read_only(struct bch_fs *c) 314 { 315 if (!test_bit(BCH_FS_rw, &c->flags)) { 316 bch2_journal_reclaim_stop(&c->journal); 317 return; 318 } 319 320 BUG_ON(test_bit(BCH_FS_write_disable_complete, &c->flags)); 321 322 bch_verbose(c, "going read-only"); 323 324 /* 325 * Block new foreground-end write operations from starting - any new 326 * writes will return -EROFS: 327 */ 328 set_bit(BCH_FS_going_ro, &c->flags); 329 #ifndef BCH_WRITE_REF_DEBUG 330 percpu_ref_kill(&c->writes); 331 #else 332 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) 333 bch2_write_ref_put(c, i); 334 #endif 335 336 /* 337 * If we're not doing an emergency shutdown, we want to wait on 338 * outstanding writes to complete so they don't see spurious errors due 339 * to shutting down the allocator: 340 * 341 * If we are doing an emergency shutdown outstanding writes may 342 * hang until we shutdown the allocator so we don't want to wait 343 * on outstanding writes before shutting everything down - but 344 * we do need to wait on them before returning and signalling 345 * that going RO is complete: 346 */ 347 wait_event(bch2_read_only_wait, 348 test_bit(BCH_FS_write_disable_complete, &c->flags) || 349 test_bit(BCH_FS_emergency_ro, &c->flags)); 350 351 bool writes_disabled = test_bit(BCH_FS_write_disable_complete, &c->flags); 352 if (writes_disabled) 353 bch_verbose(c, "finished waiting for writes to stop"); 354 355 __bch2_fs_read_only(c); 356 357 wait_event(bch2_read_only_wait, 358 test_bit(BCH_FS_write_disable_complete, &c->flags)); 359 360 if (!writes_disabled) 361 bch_verbose(c, "finished waiting for writes to stop"); 362 363 clear_bit(BCH_FS_write_disable_complete, &c->flags); 364 clear_bit(BCH_FS_going_ro, &c->flags); 365 clear_bit(BCH_FS_rw, &c->flags); 366 367 if (!bch2_journal_error(&c->journal) && 368 !test_bit(BCH_FS_error, &c->flags) && 369 !test_bit(BCH_FS_emergency_ro, &c->flags) && 370 test_bit(BCH_FS_started, &c->flags) && 371 test_bit(BCH_FS_clean_shutdown, &c->flags) && 372 c->recovery_pass_done >= BCH_RECOVERY_PASS_journal_replay) { 373 BUG_ON(c->journal.last_empty_seq != journal_cur_seq(&c->journal)); 374 BUG_ON(atomic_long_read(&c->btree_cache.nr_dirty)); 375 BUG_ON(atomic_long_read(&c->btree_key_cache.nr_dirty)); 376 BUG_ON(c->btree_write_buffer.inc.keys.nr); 377 BUG_ON(c->btree_write_buffer.flushing.keys.nr); 378 bch2_verify_accounting_clean(c); 379 380 bch_verbose(c, "marking filesystem clean"); 381 bch2_fs_mark_clean(c); 382 } else { 383 bch_verbose(c, "done going read-only, filesystem not clean"); 384 } 385 } 386 387 static void bch2_fs_read_only_work(struct work_struct *work) 388 { 389 struct bch_fs *c = 390 container_of(work, struct bch_fs, read_only_work); 391 392 down_write(&c->state_lock); 393 bch2_fs_read_only(c); 394 up_write(&c->state_lock); 395 } 396 397 static void bch2_fs_read_only_async(struct bch_fs *c) 398 { 399 queue_work(system_long_wq, &c->read_only_work); 400 } 401 402 bool bch2_fs_emergency_read_only(struct bch_fs *c) 403 { 404 bool ret = !test_and_set_bit(BCH_FS_emergency_ro, &c->flags); 405 406 bch2_journal_halt(&c->journal); 407 bch2_fs_read_only_async(c); 408 409 wake_up(&bch2_read_only_wait); 410 return ret; 411 } 412 413 static int bch2_fs_read_write_late(struct bch_fs *c) 414 { 415 int ret; 416 417 /* 418 * Data move operations can't run until after check_snapshots has 419 * completed, and bch2_snapshot_is_ancestor() is available. 420 * 421 * Ideally we'd start copygc/rebalance earlier instead of waiting for 422 * all of recovery/fsck to complete: 423 */ 424 ret = bch2_copygc_start(c); 425 if (ret) { 426 bch_err(c, "error starting copygc thread"); 427 return ret; 428 } 429 430 ret = bch2_rebalance_start(c); 431 if (ret) { 432 bch_err(c, "error starting rebalance thread"); 433 return ret; 434 } 435 436 return 0; 437 } 438 439 static int __bch2_fs_read_write(struct bch_fs *c, bool early) 440 { 441 int ret; 442 443 if (test_bit(BCH_FS_initial_gc_unfixed, &c->flags)) { 444 bch_err(c, "cannot go rw, unfixed btree errors"); 445 return -BCH_ERR_erofs_unfixed_errors; 446 } 447 448 if (test_bit(BCH_FS_rw, &c->flags)) 449 return 0; 450 451 bch_info(c, "going read-write"); 452 453 ret = bch2_sb_members_v2_init(c); 454 if (ret) 455 goto err; 456 457 ret = bch2_fs_mark_dirty(c); 458 if (ret) 459 goto err; 460 461 clear_bit(BCH_FS_clean_shutdown, &c->flags); 462 463 /* 464 * First journal write must be a flush write: after a clean shutdown we 465 * don't read the journal, so the first journal write may end up 466 * overwriting whatever was there previously, and there must always be 467 * at least one non-flush write in the journal or recovery will fail: 468 */ 469 set_bit(JOURNAL_need_flush_write, &c->journal.flags); 470 set_bit(JOURNAL_running, &c->journal.flags); 471 472 for_each_rw_member(c, ca) 473 bch2_dev_allocator_add(c, ca); 474 bch2_recalc_capacity(c); 475 476 set_bit(BCH_FS_rw, &c->flags); 477 set_bit(BCH_FS_was_rw, &c->flags); 478 479 #ifndef BCH_WRITE_REF_DEBUG 480 percpu_ref_reinit(&c->writes); 481 #else 482 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) { 483 BUG_ON(atomic_long_read(&c->writes[i])); 484 atomic_long_inc(&c->writes[i]); 485 } 486 #endif 487 488 ret = bch2_journal_reclaim_start(&c->journal); 489 if (ret) 490 goto err; 491 492 if (!early) { 493 ret = bch2_fs_read_write_late(c); 494 if (ret) 495 goto err; 496 } 497 498 bch2_do_discards(c); 499 bch2_do_invalidates(c); 500 bch2_do_stripe_deletes(c); 501 bch2_do_pending_node_rewrites(c); 502 return 0; 503 err: 504 if (test_bit(BCH_FS_rw, &c->flags)) 505 bch2_fs_read_only(c); 506 else 507 __bch2_fs_read_only(c); 508 return ret; 509 } 510 511 int bch2_fs_read_write(struct bch_fs *c) 512 { 513 if (c->opts.recovery_pass_last && 514 c->opts.recovery_pass_last < BCH_RECOVERY_PASS_journal_replay) 515 return -BCH_ERR_erofs_norecovery; 516 517 if (c->opts.nochanges) 518 return -BCH_ERR_erofs_nochanges; 519 520 return __bch2_fs_read_write(c, false); 521 } 522 523 int bch2_fs_read_write_early(struct bch_fs *c) 524 { 525 lockdep_assert_held(&c->state_lock); 526 527 return __bch2_fs_read_write(c, true); 528 } 529 530 /* Filesystem startup/shutdown: */ 531 532 static void __bch2_fs_free(struct bch_fs *c) 533 { 534 for (unsigned i = 0; i < BCH_TIME_STAT_NR; i++) 535 bch2_time_stats_exit(&c->times[i]); 536 537 bch2_find_btree_nodes_exit(&c->found_btree_nodes); 538 bch2_free_pending_node_rewrites(c); 539 bch2_fs_accounting_exit(c); 540 bch2_fs_sb_errors_exit(c); 541 bch2_fs_counters_exit(c); 542 bch2_fs_snapshots_exit(c); 543 bch2_fs_quota_exit(c); 544 bch2_fs_fs_io_direct_exit(c); 545 bch2_fs_fs_io_buffered_exit(c); 546 bch2_fs_fsio_exit(c); 547 bch2_fs_vfs_exit(c); 548 bch2_fs_ec_exit(c); 549 bch2_fs_encryption_exit(c); 550 bch2_fs_nocow_locking_exit(c); 551 bch2_fs_io_write_exit(c); 552 bch2_fs_io_read_exit(c); 553 bch2_fs_buckets_waiting_for_journal_exit(c); 554 bch2_fs_btree_interior_update_exit(c); 555 bch2_fs_btree_key_cache_exit(&c->btree_key_cache); 556 bch2_fs_btree_cache_exit(c); 557 bch2_fs_btree_iter_exit(c); 558 bch2_fs_replicas_exit(c); 559 bch2_fs_journal_exit(&c->journal); 560 bch2_io_clock_exit(&c->io_clock[WRITE]); 561 bch2_io_clock_exit(&c->io_clock[READ]); 562 bch2_fs_compress_exit(c); 563 bch2_journal_keys_put_initial(c); 564 bch2_find_btree_nodes_exit(&c->found_btree_nodes); 565 BUG_ON(atomic_read(&c->journal_keys.ref)); 566 bch2_fs_btree_write_buffer_exit(c); 567 percpu_free_rwsem(&c->mark_lock); 568 if (c->online_reserved) { 569 u64 v = percpu_u64_get(c->online_reserved); 570 WARN(v, "online_reserved not 0 at shutdown: %lli", v); 571 free_percpu(c->online_reserved); 572 } 573 574 darray_exit(&c->btree_roots_extra); 575 free_percpu(c->pcpu); 576 free_percpu(c->usage); 577 mempool_exit(&c->large_bkey_pool); 578 mempool_exit(&c->btree_bounce_pool); 579 bioset_exit(&c->btree_bio); 580 mempool_exit(&c->fill_iter); 581 #ifndef BCH_WRITE_REF_DEBUG 582 percpu_ref_exit(&c->writes); 583 #endif 584 kfree(rcu_dereference_protected(c->disk_groups, 1)); 585 kfree(c->journal_seq_blacklist_table); 586 kfree(c->unused_inode_hints); 587 588 if (c->write_ref_wq) 589 destroy_workqueue(c->write_ref_wq); 590 if (c->btree_write_submit_wq) 591 destroy_workqueue(c->btree_write_submit_wq); 592 if (c->btree_read_complete_wq) 593 destroy_workqueue(c->btree_read_complete_wq); 594 if (c->copygc_wq) 595 destroy_workqueue(c->copygc_wq); 596 if (c->btree_io_complete_wq) 597 destroy_workqueue(c->btree_io_complete_wq); 598 if (c->btree_update_wq) 599 destroy_workqueue(c->btree_update_wq); 600 601 bch2_free_super(&c->disk_sb); 602 kvfree(c); 603 module_put(THIS_MODULE); 604 } 605 606 static void bch2_fs_release(struct kobject *kobj) 607 { 608 struct bch_fs *c = container_of(kobj, struct bch_fs, kobj); 609 610 __bch2_fs_free(c); 611 } 612 613 void __bch2_fs_stop(struct bch_fs *c) 614 { 615 bch_verbose(c, "shutting down"); 616 617 set_bit(BCH_FS_stopping, &c->flags); 618 619 down_write(&c->state_lock); 620 bch2_fs_read_only(c); 621 up_write(&c->state_lock); 622 623 for_each_member_device(c, ca) 624 bch2_dev_unlink(ca); 625 626 if (c->kobj.state_in_sysfs) 627 kobject_del(&c->kobj); 628 629 bch2_fs_debug_exit(c); 630 bch2_fs_chardev_exit(c); 631 632 bch2_ro_ref_put(c); 633 wait_event(c->ro_ref_wait, !refcount_read(&c->ro_ref)); 634 635 kobject_put(&c->counters_kobj); 636 kobject_put(&c->time_stats); 637 kobject_put(&c->opts_dir); 638 kobject_put(&c->internal); 639 640 /* btree prefetch might have kicked off reads in the background: */ 641 bch2_btree_flush_all_reads(c); 642 643 for_each_member_device(c, ca) 644 cancel_work_sync(&ca->io_error_work); 645 646 cancel_work_sync(&c->read_only_work); 647 } 648 649 void bch2_fs_free(struct bch_fs *c) 650 { 651 unsigned i; 652 653 mutex_lock(&bch_fs_list_lock); 654 list_del(&c->list); 655 mutex_unlock(&bch_fs_list_lock); 656 657 closure_sync(&c->cl); 658 closure_debug_destroy(&c->cl); 659 660 for (i = 0; i < c->sb.nr_devices; i++) { 661 struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true); 662 663 if (ca) { 664 EBUG_ON(atomic_long_read(&ca->ref) != 1); 665 bch2_free_super(&ca->disk_sb); 666 bch2_dev_free(ca); 667 } 668 } 669 670 bch_verbose(c, "shutdown complete"); 671 672 kobject_put(&c->kobj); 673 } 674 675 void bch2_fs_stop(struct bch_fs *c) 676 { 677 __bch2_fs_stop(c); 678 bch2_fs_free(c); 679 } 680 681 static int bch2_fs_online(struct bch_fs *c) 682 { 683 int ret = 0; 684 685 lockdep_assert_held(&bch_fs_list_lock); 686 687 if (__bch2_uuid_to_fs(c->sb.uuid)) { 688 bch_err(c, "filesystem UUID already open"); 689 return -EINVAL; 690 } 691 692 ret = bch2_fs_chardev_init(c); 693 if (ret) { 694 bch_err(c, "error creating character device"); 695 return ret; 696 } 697 698 bch2_fs_debug_init(c); 699 700 ret = kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ?: 701 kobject_add(&c->internal, &c->kobj, "internal") ?: 702 kobject_add(&c->opts_dir, &c->kobj, "options") ?: 703 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT 704 kobject_add(&c->time_stats, &c->kobj, "time_stats") ?: 705 #endif 706 kobject_add(&c->counters_kobj, &c->kobj, "counters") ?: 707 bch2_opts_create_sysfs_files(&c->opts_dir); 708 if (ret) { 709 bch_err(c, "error creating sysfs objects"); 710 return ret; 711 } 712 713 down_write(&c->state_lock); 714 715 for_each_member_device(c, ca) { 716 ret = bch2_dev_sysfs_online(c, ca); 717 if (ret) { 718 bch_err(c, "error creating sysfs objects"); 719 bch2_dev_put(ca); 720 goto err; 721 } 722 } 723 724 BUG_ON(!list_empty(&c->list)); 725 list_add(&c->list, &bch_fs_list); 726 err: 727 up_write(&c->state_lock); 728 return ret; 729 } 730 731 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts) 732 { 733 struct bch_fs *c; 734 struct printbuf name = PRINTBUF; 735 unsigned i, iter_size; 736 int ret = 0; 737 738 c = kvmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO); 739 if (!c) { 740 c = ERR_PTR(-BCH_ERR_ENOMEM_fs_alloc); 741 goto out; 742 } 743 744 c->stdio = (void *)(unsigned long) opts.stdio; 745 746 __module_get(THIS_MODULE); 747 748 closure_init(&c->cl, NULL); 749 750 c->kobj.kset = bcachefs_kset; 751 kobject_init(&c->kobj, &bch2_fs_ktype); 752 kobject_init(&c->internal, &bch2_fs_internal_ktype); 753 kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype); 754 kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype); 755 kobject_init(&c->counters_kobj, &bch2_fs_counters_ktype); 756 757 c->minor = -1; 758 c->disk_sb.fs_sb = true; 759 760 init_rwsem(&c->state_lock); 761 mutex_init(&c->sb_lock); 762 mutex_init(&c->replicas_gc_lock); 763 mutex_init(&c->btree_root_lock); 764 INIT_WORK(&c->read_only_work, bch2_fs_read_only_work); 765 766 refcount_set(&c->ro_ref, 1); 767 init_waitqueue_head(&c->ro_ref_wait); 768 sema_init(&c->online_fsck_mutex, 1); 769 770 init_rwsem(&c->gc_lock); 771 mutex_init(&c->gc_gens_lock); 772 atomic_set(&c->journal_keys.ref, 1); 773 c->journal_keys.initial_ref_held = true; 774 775 for (i = 0; i < BCH_TIME_STAT_NR; i++) 776 bch2_time_stats_init(&c->times[i]); 777 778 bch2_fs_gc_init(c); 779 bch2_fs_copygc_init(c); 780 bch2_fs_btree_key_cache_init_early(&c->btree_key_cache); 781 bch2_fs_btree_iter_init_early(c); 782 bch2_fs_btree_interior_update_init_early(c); 783 bch2_fs_allocator_background_init(c); 784 bch2_fs_allocator_foreground_init(c); 785 bch2_fs_rebalance_init(c); 786 bch2_fs_quota_init(c); 787 bch2_fs_ec_init_early(c); 788 bch2_fs_move_init(c); 789 bch2_fs_sb_errors_init_early(c); 790 791 INIT_LIST_HEAD(&c->list); 792 793 mutex_init(&c->bio_bounce_pages_lock); 794 mutex_init(&c->snapshot_table_lock); 795 init_rwsem(&c->snapshot_create_lock); 796 797 spin_lock_init(&c->btree_write_error_lock); 798 799 INIT_LIST_HEAD(&c->journal_iters); 800 801 INIT_LIST_HEAD(&c->fsck_error_msgs); 802 mutex_init(&c->fsck_error_msgs_lock); 803 804 seqcount_init(&c->usage_lock); 805 806 sema_init(&c->io_in_flight, 128); 807 808 INIT_LIST_HEAD(&c->vfs_inodes_list); 809 mutex_init(&c->vfs_inodes_lock); 810 811 c->copy_gc_enabled = 1; 812 c->rebalance.enabled = 1; 813 814 c->journal.flush_write_time = &c->times[BCH_TIME_journal_flush_write]; 815 c->journal.noflush_write_time = &c->times[BCH_TIME_journal_noflush_write]; 816 c->journal.flush_seq_time = &c->times[BCH_TIME_journal_flush_seq]; 817 818 bch2_fs_btree_cache_init_early(&c->btree_cache); 819 820 mutex_init(&c->sectors_available_lock); 821 822 ret = percpu_init_rwsem(&c->mark_lock); 823 if (ret) 824 goto err; 825 826 mutex_lock(&c->sb_lock); 827 ret = bch2_sb_to_fs(c, sb); 828 mutex_unlock(&c->sb_lock); 829 830 if (ret) 831 goto err; 832 833 pr_uuid(&name, c->sb.user_uuid.b); 834 ret = name.allocation_failure ? -BCH_ERR_ENOMEM_fs_name_alloc : 0; 835 if (ret) 836 goto err; 837 838 strscpy(c->name, name.buf, sizeof(c->name)); 839 printbuf_exit(&name); 840 841 /* Compat: */ 842 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && 843 !BCH_SB_JOURNAL_FLUSH_DELAY(sb)) 844 SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000); 845 846 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && 847 !BCH_SB_JOURNAL_RECLAIM_DELAY(sb)) 848 SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 100); 849 850 c->opts = bch2_opts_default; 851 ret = bch2_opts_from_sb(&c->opts, sb); 852 if (ret) 853 goto err; 854 855 bch2_opts_apply(&c->opts, opts); 856 857 c->btree_key_cache_btrees |= 1U << BTREE_ID_alloc; 858 if (c->opts.inodes_use_key_cache) 859 c->btree_key_cache_btrees |= 1U << BTREE_ID_inodes; 860 c->btree_key_cache_btrees |= 1U << BTREE_ID_logged_ops; 861 862 c->block_bits = ilog2(block_sectors(c)); 863 c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c); 864 865 if (bch2_fs_init_fault("fs_alloc")) { 866 bch_err(c, "fs_alloc fault injected"); 867 ret = -EFAULT; 868 goto err; 869 } 870 871 iter_size = sizeof(struct sort_iter) + 872 (btree_blocks(c) + 1) * 2 * 873 sizeof(struct sort_iter_set); 874 875 c->inode_shard_bits = ilog2(roundup_pow_of_two(num_possible_cpus())); 876 877 if (!(c->btree_update_wq = alloc_workqueue("bcachefs", 878 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_UNBOUND, 512)) || 879 !(c->btree_io_complete_wq = alloc_workqueue("bcachefs_btree_io", 880 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) || 881 !(c->copygc_wq = alloc_workqueue("bcachefs_copygc", 882 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) || 883 !(c->btree_read_complete_wq = alloc_workqueue("bcachefs_btree_read_complete", 884 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 512)) || 885 !(c->btree_write_submit_wq = alloc_workqueue("bcachefs_btree_write_sumit", 886 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) || 887 !(c->write_ref_wq = alloc_workqueue("bcachefs_write_ref", 888 WQ_FREEZABLE, 0)) || 889 #ifndef BCH_WRITE_REF_DEBUG 890 percpu_ref_init(&c->writes, bch2_writes_disabled, 891 PERCPU_REF_INIT_DEAD, GFP_KERNEL) || 892 #endif 893 mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) || 894 bioset_init(&c->btree_bio, 1, 895 max(offsetof(struct btree_read_bio, bio), 896 offsetof(struct btree_write_bio, wbio.bio)), 897 BIOSET_NEED_BVECS) || 898 !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) || 899 !(c->usage = alloc_percpu(struct bch_fs_usage_base)) || 900 !(c->online_reserved = alloc_percpu(u64)) || 901 mempool_init_kvmalloc_pool(&c->btree_bounce_pool, 1, 902 c->opts.btree_node_size) || 903 mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048) || 904 !(c->unused_inode_hints = kcalloc(1U << c->inode_shard_bits, 905 sizeof(u64), GFP_KERNEL))) { 906 ret = -BCH_ERR_ENOMEM_fs_other_alloc; 907 goto err; 908 } 909 910 ret = bch2_fs_counters_init(c) ?: 911 bch2_fs_sb_errors_init(c) ?: 912 bch2_io_clock_init(&c->io_clock[READ]) ?: 913 bch2_io_clock_init(&c->io_clock[WRITE]) ?: 914 bch2_fs_journal_init(&c->journal) ?: 915 bch2_fs_btree_iter_init(c) ?: 916 bch2_fs_btree_cache_init(c) ?: 917 bch2_fs_btree_key_cache_init(&c->btree_key_cache) ?: 918 bch2_fs_btree_interior_update_init(c) ?: 919 bch2_fs_buckets_waiting_for_journal_init(c) ?: 920 bch2_fs_btree_write_buffer_init(c) ?: 921 bch2_fs_subvolumes_init(c) ?: 922 bch2_fs_io_read_init(c) ?: 923 bch2_fs_io_write_init(c) ?: 924 bch2_fs_nocow_locking_init(c) ?: 925 bch2_fs_encryption_init(c) ?: 926 bch2_fs_compress_init(c) ?: 927 bch2_fs_ec_init(c) ?: 928 bch2_fs_vfs_init(c) ?: 929 bch2_fs_fsio_init(c) ?: 930 bch2_fs_fs_io_buffered_init(c) ?: 931 bch2_fs_fs_io_direct_init(c); 932 if (ret) 933 goto err; 934 935 for (i = 0; i < c->sb.nr_devices; i++) { 936 if (!bch2_member_exists(c->disk_sb.sb, i)) 937 continue; 938 ret = bch2_dev_alloc(c, i); 939 if (ret) 940 goto err; 941 } 942 943 bch2_journal_entry_res_resize(&c->journal, 944 &c->btree_root_journal_res, 945 BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX)); 946 bch2_journal_entry_res_resize(&c->journal, 947 &c->clock_journal_res, 948 (sizeof(struct jset_entry_clock) / sizeof(u64)) * 2); 949 950 mutex_lock(&bch_fs_list_lock); 951 ret = bch2_fs_online(c); 952 mutex_unlock(&bch_fs_list_lock); 953 954 if (ret) 955 goto err; 956 out: 957 return c; 958 err: 959 bch2_fs_free(c); 960 c = ERR_PTR(ret); 961 goto out; 962 } 963 964 noinline_for_stack 965 static void print_mount_opts(struct bch_fs *c) 966 { 967 enum bch_opt_id i; 968 struct printbuf p = PRINTBUF; 969 bool first = true; 970 971 prt_str(&p, "starting version "); 972 bch2_version_to_text(&p, c->sb.version); 973 974 if (c->opts.read_only) { 975 prt_str(&p, " opts="); 976 first = false; 977 prt_printf(&p, "ro"); 978 } 979 980 for (i = 0; i < bch2_opts_nr; i++) { 981 const struct bch_option *opt = &bch2_opt_table[i]; 982 u64 v = bch2_opt_get_by_id(&c->opts, i); 983 984 if (!(opt->flags & OPT_MOUNT)) 985 continue; 986 987 if (v == bch2_opt_get_by_id(&bch2_opts_default, i)) 988 continue; 989 990 prt_str(&p, first ? " opts=" : ","); 991 first = false; 992 bch2_opt_to_text(&p, c, c->disk_sb.sb, opt, v, OPT_SHOW_MOUNT_STYLE); 993 } 994 995 bch_info(c, "%s", p.buf); 996 printbuf_exit(&p); 997 } 998 999 int bch2_fs_start(struct bch_fs *c) 1000 { 1001 time64_t now = ktime_get_real_seconds(); 1002 int ret; 1003 1004 print_mount_opts(c); 1005 1006 down_write(&c->state_lock); 1007 1008 BUG_ON(test_bit(BCH_FS_started, &c->flags)); 1009 1010 mutex_lock(&c->sb_lock); 1011 1012 ret = bch2_sb_members_v2_init(c); 1013 if (ret) { 1014 mutex_unlock(&c->sb_lock); 1015 goto err; 1016 } 1017 1018 for_each_online_member(c, ca) 1019 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = cpu_to_le64(now); 1020 1021 struct bch_sb_field_ext *ext = 1022 bch2_sb_field_get_minsize(&c->disk_sb, ext, sizeof(*ext) / sizeof(u64)); 1023 mutex_unlock(&c->sb_lock); 1024 1025 if (!ext) { 1026 bch_err(c, "insufficient space in superblock for sb_field_ext"); 1027 ret = -BCH_ERR_ENOSPC_sb; 1028 goto err; 1029 } 1030 1031 for_each_rw_member(c, ca) 1032 bch2_dev_allocator_add(c, ca); 1033 bch2_recalc_capacity(c); 1034 1035 ret = BCH_SB_INITIALIZED(c->disk_sb.sb) 1036 ? bch2_fs_recovery(c) 1037 : bch2_fs_initialize(c); 1038 if (ret) 1039 goto err; 1040 1041 ret = bch2_opts_check_may_set(c); 1042 if (ret) 1043 goto err; 1044 1045 if (bch2_fs_init_fault("fs_start")) { 1046 bch_err(c, "fs_start fault injected"); 1047 ret = -EINVAL; 1048 goto err; 1049 } 1050 1051 set_bit(BCH_FS_started, &c->flags); 1052 1053 if (c->opts.read_only) { 1054 bch2_fs_read_only(c); 1055 } else { 1056 ret = !test_bit(BCH_FS_rw, &c->flags) 1057 ? bch2_fs_read_write(c) 1058 : bch2_fs_read_write_late(c); 1059 if (ret) 1060 goto err; 1061 } 1062 1063 ret = 0; 1064 err: 1065 if (ret) 1066 bch_err_msg(c, ret, "starting filesystem"); 1067 else 1068 bch_verbose(c, "done starting filesystem"); 1069 up_write(&c->state_lock); 1070 return ret; 1071 } 1072 1073 static int bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c) 1074 { 1075 struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx); 1076 1077 if (le16_to_cpu(sb->block_size) != block_sectors(c)) 1078 return -BCH_ERR_mismatched_block_size; 1079 1080 if (le16_to_cpu(m.bucket_size) < 1081 BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb)) 1082 return -BCH_ERR_bucket_size_too_small; 1083 1084 return 0; 1085 } 1086 1087 static int bch2_dev_in_fs(struct bch_sb_handle *fs, 1088 struct bch_sb_handle *sb, 1089 struct bch_opts *opts) 1090 { 1091 if (fs == sb) 1092 return 0; 1093 1094 if (!uuid_equal(&fs->sb->uuid, &sb->sb->uuid)) 1095 return -BCH_ERR_device_not_a_member_of_filesystem; 1096 1097 if (!bch2_member_exists(fs->sb, sb->sb->dev_idx)) 1098 return -BCH_ERR_device_has_been_removed; 1099 1100 if (fs->sb->block_size != sb->sb->block_size) 1101 return -BCH_ERR_mismatched_block_size; 1102 1103 if (le16_to_cpu(fs->sb->version) < bcachefs_metadata_version_member_seq || 1104 le16_to_cpu(sb->sb->version) < bcachefs_metadata_version_member_seq) 1105 return 0; 1106 1107 if (fs->sb->seq == sb->sb->seq && 1108 fs->sb->write_time != sb->sb->write_time) { 1109 struct printbuf buf = PRINTBUF; 1110 1111 prt_str(&buf, "Split brain detected between "); 1112 prt_bdevname(&buf, sb->bdev); 1113 prt_str(&buf, " and "); 1114 prt_bdevname(&buf, fs->bdev); 1115 prt_char(&buf, ':'); 1116 prt_newline(&buf); 1117 prt_printf(&buf, "seq=%llu but write_time different, got", le64_to_cpu(sb->sb->seq)); 1118 prt_newline(&buf); 1119 1120 prt_bdevname(&buf, fs->bdev); 1121 prt_char(&buf, ' '); 1122 bch2_prt_datetime(&buf, le64_to_cpu(fs->sb->write_time));; 1123 prt_newline(&buf); 1124 1125 prt_bdevname(&buf, sb->bdev); 1126 prt_char(&buf, ' '); 1127 bch2_prt_datetime(&buf, le64_to_cpu(sb->sb->write_time));; 1128 prt_newline(&buf); 1129 1130 if (!opts->no_splitbrain_check) 1131 prt_printf(&buf, "Not using older sb"); 1132 1133 pr_err("%s", buf.buf); 1134 printbuf_exit(&buf); 1135 1136 if (!opts->no_splitbrain_check) 1137 return -BCH_ERR_device_splitbrain; 1138 } 1139 1140 struct bch_member m = bch2_sb_member_get(fs->sb, sb->sb->dev_idx); 1141 u64 seq_from_fs = le64_to_cpu(m.seq); 1142 u64 seq_from_member = le64_to_cpu(sb->sb->seq); 1143 1144 if (seq_from_fs && seq_from_fs < seq_from_member) { 1145 struct printbuf buf = PRINTBUF; 1146 1147 prt_str(&buf, "Split brain detected between "); 1148 prt_bdevname(&buf, sb->bdev); 1149 prt_str(&buf, " and "); 1150 prt_bdevname(&buf, fs->bdev); 1151 prt_char(&buf, ':'); 1152 prt_newline(&buf); 1153 1154 prt_bdevname(&buf, fs->bdev); 1155 prt_str(&buf, " believes seq of "); 1156 prt_bdevname(&buf, sb->bdev); 1157 prt_printf(&buf, " to be %llu, but ", seq_from_fs); 1158 prt_bdevname(&buf, sb->bdev); 1159 prt_printf(&buf, " has %llu\n", seq_from_member); 1160 1161 if (!opts->no_splitbrain_check) { 1162 prt_str(&buf, "Not using "); 1163 prt_bdevname(&buf, sb->bdev); 1164 } 1165 1166 pr_err("%s", buf.buf); 1167 printbuf_exit(&buf); 1168 1169 if (!opts->no_splitbrain_check) 1170 return -BCH_ERR_device_splitbrain; 1171 } 1172 1173 return 0; 1174 } 1175 1176 /* Device startup/shutdown: */ 1177 1178 static void bch2_dev_release(struct kobject *kobj) 1179 { 1180 struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj); 1181 1182 kfree(ca); 1183 } 1184 1185 static void bch2_dev_free(struct bch_dev *ca) 1186 { 1187 cancel_work_sync(&ca->io_error_work); 1188 1189 bch2_dev_unlink(ca); 1190 1191 if (ca->kobj.state_in_sysfs) 1192 kobject_del(&ca->kobj); 1193 1194 bch2_free_super(&ca->disk_sb); 1195 bch2_dev_allocator_background_exit(ca); 1196 bch2_dev_journal_exit(ca); 1197 1198 free_percpu(ca->io_done); 1199 bch2_dev_buckets_free(ca); 1200 free_page((unsigned long) ca->sb_read_scratch); 1201 1202 bch2_time_stats_quantiles_exit(&ca->io_latency[WRITE]); 1203 bch2_time_stats_quantiles_exit(&ca->io_latency[READ]); 1204 1205 percpu_ref_exit(&ca->io_ref); 1206 #ifndef CONFIG_BCACHEFS_DEBUG 1207 percpu_ref_exit(&ca->ref); 1208 #endif 1209 kobject_put(&ca->kobj); 1210 } 1211 1212 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca) 1213 { 1214 1215 lockdep_assert_held(&c->state_lock); 1216 1217 if (percpu_ref_is_zero(&ca->io_ref)) 1218 return; 1219 1220 __bch2_dev_read_only(c, ca); 1221 1222 reinit_completion(&ca->io_ref_completion); 1223 percpu_ref_kill(&ca->io_ref); 1224 wait_for_completion(&ca->io_ref_completion); 1225 1226 bch2_dev_unlink(ca); 1227 1228 bch2_free_super(&ca->disk_sb); 1229 bch2_dev_journal_exit(ca); 1230 } 1231 1232 #ifndef CONFIG_BCACHEFS_DEBUG 1233 static void bch2_dev_ref_complete(struct percpu_ref *ref) 1234 { 1235 struct bch_dev *ca = container_of(ref, struct bch_dev, ref); 1236 1237 complete(&ca->ref_completion); 1238 } 1239 #endif 1240 1241 static void bch2_dev_io_ref_complete(struct percpu_ref *ref) 1242 { 1243 struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref); 1244 1245 complete(&ca->io_ref_completion); 1246 } 1247 1248 static void bch2_dev_unlink(struct bch_dev *ca) 1249 { 1250 struct kobject *b; 1251 1252 /* 1253 * This is racy w.r.t. the underlying block device being hot-removed, 1254 * which removes it from sysfs. 1255 * 1256 * It'd be lovely if we had a way to handle this race, but the sysfs 1257 * code doesn't appear to provide a good method and block/holder.c is 1258 * susceptible as well: 1259 */ 1260 if (ca->kobj.state_in_sysfs && 1261 ca->disk_sb.bdev && 1262 (b = bdev_kobj(ca->disk_sb.bdev))->state_in_sysfs) { 1263 sysfs_remove_link(b, "bcachefs"); 1264 sysfs_remove_link(&ca->kobj, "block"); 1265 } 1266 } 1267 1268 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca) 1269 { 1270 int ret; 1271 1272 if (!c->kobj.state_in_sysfs) 1273 return 0; 1274 1275 if (!ca->kobj.state_in_sysfs) { 1276 ret = kobject_add(&ca->kobj, &c->kobj, 1277 "dev-%u", ca->dev_idx); 1278 if (ret) 1279 return ret; 1280 } 1281 1282 if (ca->disk_sb.bdev) { 1283 struct kobject *block = bdev_kobj(ca->disk_sb.bdev); 1284 1285 ret = sysfs_create_link(block, &ca->kobj, "bcachefs"); 1286 if (ret) 1287 return ret; 1288 1289 ret = sysfs_create_link(&ca->kobj, block, "block"); 1290 if (ret) 1291 return ret; 1292 } 1293 1294 return 0; 1295 } 1296 1297 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c, 1298 struct bch_member *member) 1299 { 1300 struct bch_dev *ca; 1301 unsigned i; 1302 1303 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 1304 if (!ca) 1305 return NULL; 1306 1307 kobject_init(&ca->kobj, &bch2_dev_ktype); 1308 init_completion(&ca->ref_completion); 1309 init_completion(&ca->io_ref_completion); 1310 1311 init_rwsem(&ca->bucket_lock); 1312 1313 INIT_WORK(&ca->io_error_work, bch2_io_error_work); 1314 1315 bch2_time_stats_quantiles_init(&ca->io_latency[READ]); 1316 bch2_time_stats_quantiles_init(&ca->io_latency[WRITE]); 1317 1318 ca->mi = bch2_mi_to_cpu(member); 1319 1320 for (i = 0; i < ARRAY_SIZE(member->errors); i++) 1321 atomic64_set(&ca->errors[i], le64_to_cpu(member->errors[i])); 1322 1323 ca->uuid = member->uuid; 1324 1325 ca->nr_btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE, 1326 ca->mi.bucket_size / btree_sectors(c)); 1327 1328 #ifndef CONFIG_BCACHEFS_DEBUG 1329 if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete, 0, GFP_KERNEL)) 1330 goto err; 1331 #else 1332 atomic_long_set(&ca->ref, 1); 1333 #endif 1334 1335 bch2_dev_allocator_background_init(ca); 1336 1337 if (percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete, 1338 PERCPU_REF_INIT_DEAD, GFP_KERNEL) || 1339 !(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) || 1340 bch2_dev_buckets_alloc(c, ca) || 1341 !(ca->io_done = alloc_percpu(*ca->io_done))) 1342 goto err; 1343 1344 return ca; 1345 err: 1346 bch2_dev_free(ca); 1347 return NULL; 1348 } 1349 1350 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca, 1351 unsigned dev_idx) 1352 { 1353 ca->dev_idx = dev_idx; 1354 __set_bit(ca->dev_idx, ca->self.d); 1355 scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx); 1356 1357 ca->fs = c; 1358 rcu_assign_pointer(c->devs[ca->dev_idx], ca); 1359 1360 if (bch2_dev_sysfs_online(c, ca)) 1361 pr_warn("error creating sysfs objects"); 1362 } 1363 1364 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx) 1365 { 1366 struct bch_member member = bch2_sb_member_get(c->disk_sb.sb, dev_idx); 1367 struct bch_dev *ca = NULL; 1368 int ret = 0; 1369 1370 if (bch2_fs_init_fault("dev_alloc")) 1371 goto err; 1372 1373 ca = __bch2_dev_alloc(c, &member); 1374 if (!ca) 1375 goto err; 1376 1377 ca->fs = c; 1378 1379 bch2_dev_attach(c, ca, dev_idx); 1380 return ret; 1381 err: 1382 if (ca) 1383 bch2_dev_free(ca); 1384 return -BCH_ERR_ENOMEM_dev_alloc; 1385 } 1386 1387 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb) 1388 { 1389 unsigned ret; 1390 1391 if (bch2_dev_is_online(ca)) { 1392 bch_err(ca, "already have device online in slot %u", 1393 sb->sb->dev_idx); 1394 return -BCH_ERR_device_already_online; 1395 } 1396 1397 if (get_capacity(sb->bdev->bd_disk) < 1398 ca->mi.bucket_size * ca->mi.nbuckets) { 1399 bch_err(ca, "cannot online: device too small"); 1400 return -BCH_ERR_device_size_too_small; 1401 } 1402 1403 BUG_ON(!percpu_ref_is_zero(&ca->io_ref)); 1404 1405 ret = bch2_dev_journal_init(ca, sb->sb); 1406 if (ret) 1407 return ret; 1408 1409 /* Commit: */ 1410 ca->disk_sb = *sb; 1411 memset(sb, 0, sizeof(*sb)); 1412 1413 ca->dev = ca->disk_sb.bdev->bd_dev; 1414 1415 percpu_ref_reinit(&ca->io_ref); 1416 1417 return 0; 1418 } 1419 1420 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb) 1421 { 1422 struct bch_dev *ca; 1423 int ret; 1424 1425 lockdep_assert_held(&c->state_lock); 1426 1427 if (le64_to_cpu(sb->sb->seq) > 1428 le64_to_cpu(c->disk_sb.sb->seq)) 1429 bch2_sb_to_fs(c, sb->sb); 1430 1431 BUG_ON(!bch2_dev_exists(c, sb->sb->dev_idx)); 1432 1433 ca = bch2_dev_locked(c, sb->sb->dev_idx); 1434 1435 ret = __bch2_dev_attach_bdev(ca, sb); 1436 if (ret) 1437 return ret; 1438 1439 bch2_dev_sysfs_online(c, ca); 1440 1441 struct printbuf name = PRINTBUF; 1442 prt_bdevname(&name, ca->disk_sb.bdev); 1443 1444 if (c->sb.nr_devices == 1) 1445 strscpy(c->name, name.buf, sizeof(c->name)); 1446 strscpy(ca->name, name.buf, sizeof(ca->name)); 1447 1448 printbuf_exit(&name); 1449 1450 rebalance_wakeup(c); 1451 return 0; 1452 } 1453 1454 /* Device management: */ 1455 1456 /* 1457 * Note: this function is also used by the error paths - when a particular 1458 * device sees an error, we call it to determine whether we can just set the 1459 * device RO, or - if this function returns false - we'll set the whole 1460 * filesystem RO: 1461 * 1462 * XXX: maybe we should be more explicit about whether we're changing state 1463 * because we got an error or what have you? 1464 */ 1465 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca, 1466 enum bch_member_state new_state, int flags) 1467 { 1468 struct bch_devs_mask new_online_devs; 1469 int nr_rw = 0, required; 1470 1471 lockdep_assert_held(&c->state_lock); 1472 1473 switch (new_state) { 1474 case BCH_MEMBER_STATE_rw: 1475 return true; 1476 case BCH_MEMBER_STATE_ro: 1477 if (ca->mi.state != BCH_MEMBER_STATE_rw) 1478 return true; 1479 1480 /* do we have enough devices to write to? */ 1481 for_each_member_device(c, ca2) 1482 if (ca2 != ca) 1483 nr_rw += ca2->mi.state == BCH_MEMBER_STATE_rw; 1484 1485 required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED) 1486 ? c->opts.metadata_replicas 1487 : metadata_replicas_required(c), 1488 !(flags & BCH_FORCE_IF_DATA_DEGRADED) 1489 ? c->opts.data_replicas 1490 : data_replicas_required(c)); 1491 1492 return nr_rw >= required; 1493 case BCH_MEMBER_STATE_failed: 1494 case BCH_MEMBER_STATE_spare: 1495 if (ca->mi.state != BCH_MEMBER_STATE_rw && 1496 ca->mi.state != BCH_MEMBER_STATE_ro) 1497 return true; 1498 1499 /* do we have enough devices to read from? */ 1500 new_online_devs = bch2_online_devs(c); 1501 __clear_bit(ca->dev_idx, new_online_devs.d); 1502 1503 return bch2_have_enough_devs(c, new_online_devs, flags, false); 1504 default: 1505 BUG(); 1506 } 1507 } 1508 1509 static bool bch2_fs_may_start(struct bch_fs *c) 1510 { 1511 struct bch_dev *ca; 1512 unsigned i, flags = 0; 1513 1514 if (c->opts.very_degraded) 1515 flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST; 1516 1517 if (c->opts.degraded) 1518 flags |= BCH_FORCE_IF_DEGRADED; 1519 1520 if (!c->opts.degraded && 1521 !c->opts.very_degraded) { 1522 mutex_lock(&c->sb_lock); 1523 1524 for (i = 0; i < c->disk_sb.sb->nr_devices; i++) { 1525 if (!bch2_member_exists(c->disk_sb.sb, i)) 1526 continue; 1527 1528 ca = bch2_dev_locked(c, i); 1529 1530 if (!bch2_dev_is_online(ca) && 1531 (ca->mi.state == BCH_MEMBER_STATE_rw || 1532 ca->mi.state == BCH_MEMBER_STATE_ro)) { 1533 mutex_unlock(&c->sb_lock); 1534 return false; 1535 } 1536 } 1537 mutex_unlock(&c->sb_lock); 1538 } 1539 1540 return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true); 1541 } 1542 1543 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca) 1544 { 1545 /* 1546 * The allocator thread itself allocates btree nodes, so stop it first: 1547 */ 1548 bch2_dev_allocator_remove(c, ca); 1549 bch2_recalc_capacity(c); 1550 bch2_dev_journal_stop(&c->journal, ca); 1551 } 1552 1553 static void __bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca) 1554 { 1555 lockdep_assert_held(&c->state_lock); 1556 1557 BUG_ON(ca->mi.state != BCH_MEMBER_STATE_rw); 1558 1559 bch2_dev_allocator_add(c, ca); 1560 bch2_recalc_capacity(c); 1561 bch2_dev_do_discards(ca); 1562 } 1563 1564 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, 1565 enum bch_member_state new_state, int flags) 1566 { 1567 struct bch_member *m; 1568 int ret = 0; 1569 1570 if (ca->mi.state == new_state) 1571 return 0; 1572 1573 if (!bch2_dev_state_allowed(c, ca, new_state, flags)) 1574 return -BCH_ERR_device_state_not_allowed; 1575 1576 if (new_state != BCH_MEMBER_STATE_rw) 1577 __bch2_dev_read_only(c, ca); 1578 1579 bch_notice(ca, "%s", bch2_member_states[new_state]); 1580 1581 mutex_lock(&c->sb_lock); 1582 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); 1583 SET_BCH_MEMBER_STATE(m, new_state); 1584 bch2_write_super(c); 1585 mutex_unlock(&c->sb_lock); 1586 1587 if (new_state == BCH_MEMBER_STATE_rw) 1588 __bch2_dev_read_write(c, ca); 1589 1590 rebalance_wakeup(c); 1591 1592 return ret; 1593 } 1594 1595 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, 1596 enum bch_member_state new_state, int flags) 1597 { 1598 int ret; 1599 1600 down_write(&c->state_lock); 1601 ret = __bch2_dev_set_state(c, ca, new_state, flags); 1602 up_write(&c->state_lock); 1603 1604 return ret; 1605 } 1606 1607 /* Device add/removal: */ 1608 1609 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags) 1610 { 1611 struct bch_member *m; 1612 unsigned dev_idx = ca->dev_idx, data; 1613 int ret; 1614 1615 down_write(&c->state_lock); 1616 1617 /* 1618 * We consume a reference to ca->ref, regardless of whether we succeed 1619 * or fail: 1620 */ 1621 bch2_dev_put(ca); 1622 1623 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { 1624 bch_err(ca, "Cannot remove without losing data"); 1625 ret = -BCH_ERR_device_state_not_allowed; 1626 goto err; 1627 } 1628 1629 __bch2_dev_read_only(c, ca); 1630 1631 ret = bch2_dev_data_drop(c, ca->dev_idx, flags); 1632 bch_err_msg(ca, ret, "bch2_dev_data_drop()"); 1633 if (ret) 1634 goto err; 1635 1636 ret = bch2_dev_remove_alloc(c, ca); 1637 bch_err_msg(ca, ret, "bch2_dev_remove_alloc()"); 1638 if (ret) 1639 goto err; 1640 1641 /* 1642 * We need to flush the entire journal to get rid of keys that reference 1643 * the device being removed before removing the superblock entry 1644 */ 1645 bch2_journal_flush_all_pins(&c->journal); 1646 1647 /* 1648 * this is really just needed for the bch2_replicas_gc_(start|end) 1649 * calls, and could be cleaned up: 1650 */ 1651 ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx); 1652 bch_err_msg(ca, ret, "bch2_journal_flush_device_pins()"); 1653 if (ret) 1654 goto err; 1655 1656 ret = bch2_journal_flush(&c->journal); 1657 bch_err_msg(ca, ret, "bch2_journal_flush()"); 1658 if (ret) 1659 goto err; 1660 1661 ret = bch2_replicas_gc2(c); 1662 bch_err_msg(ca, ret, "bch2_replicas_gc2()"); 1663 if (ret) 1664 goto err; 1665 1666 data = bch2_dev_has_data(c, ca); 1667 if (data) { 1668 struct printbuf data_has = PRINTBUF; 1669 1670 prt_bitflags(&data_has, __bch2_data_types, data); 1671 bch_err(ca, "Remove failed, still has data (%s)", data_has.buf); 1672 printbuf_exit(&data_has); 1673 ret = -EBUSY; 1674 goto err; 1675 } 1676 1677 __bch2_dev_offline(c, ca); 1678 1679 mutex_lock(&c->sb_lock); 1680 rcu_assign_pointer(c->devs[ca->dev_idx], NULL); 1681 mutex_unlock(&c->sb_lock); 1682 1683 #ifndef CONFIG_BCACHEFS_DEBUG 1684 percpu_ref_kill(&ca->ref); 1685 #else 1686 ca->dying = true; 1687 bch2_dev_put(ca); 1688 #endif 1689 wait_for_completion(&ca->ref_completion); 1690 1691 bch2_dev_free(ca); 1692 1693 /* 1694 * Free this device's slot in the bch_member array - all pointers to 1695 * this device must be gone: 1696 */ 1697 mutex_lock(&c->sb_lock); 1698 m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx); 1699 memset(&m->uuid, 0, sizeof(m->uuid)); 1700 1701 bch2_write_super(c); 1702 1703 mutex_unlock(&c->sb_lock); 1704 up_write(&c->state_lock); 1705 return 0; 1706 err: 1707 if (ca->mi.state == BCH_MEMBER_STATE_rw && 1708 !percpu_ref_is_zero(&ca->io_ref)) 1709 __bch2_dev_read_write(c, ca); 1710 up_write(&c->state_lock); 1711 return ret; 1712 } 1713 1714 /* Add new device to running filesystem: */ 1715 int bch2_dev_add(struct bch_fs *c, const char *path) 1716 { 1717 struct bch_opts opts = bch2_opts_empty(); 1718 struct bch_sb_handle sb; 1719 struct bch_dev *ca = NULL; 1720 struct printbuf errbuf = PRINTBUF; 1721 struct printbuf label = PRINTBUF; 1722 int ret; 1723 1724 ret = bch2_read_super(path, &opts, &sb); 1725 bch_err_msg(c, ret, "reading super"); 1726 if (ret) 1727 goto err; 1728 1729 struct bch_member dev_mi = bch2_sb_member_get(sb.sb, sb.sb->dev_idx); 1730 1731 if (BCH_MEMBER_GROUP(&dev_mi)) { 1732 bch2_disk_path_to_text_sb(&label, sb.sb, BCH_MEMBER_GROUP(&dev_mi) - 1); 1733 if (label.allocation_failure) { 1734 ret = -ENOMEM; 1735 goto err; 1736 } 1737 } 1738 1739 ret = bch2_dev_may_add(sb.sb, c); 1740 if (ret) 1741 goto err; 1742 1743 ca = __bch2_dev_alloc(c, &dev_mi); 1744 if (!ca) { 1745 ret = -ENOMEM; 1746 goto err; 1747 } 1748 1749 ret = __bch2_dev_attach_bdev(ca, &sb); 1750 if (ret) 1751 goto err; 1752 1753 ret = bch2_dev_journal_alloc(ca, true); 1754 bch_err_msg(c, ret, "allocating journal"); 1755 if (ret) 1756 goto err; 1757 1758 down_write(&c->state_lock); 1759 mutex_lock(&c->sb_lock); 1760 1761 ret = bch2_sb_from_fs(c, ca); 1762 bch_err_msg(c, ret, "setting up new superblock"); 1763 if (ret) 1764 goto err_unlock; 1765 1766 if (dynamic_fault("bcachefs:add:no_slot")) 1767 goto err_unlock; 1768 1769 ret = bch2_sb_member_alloc(c); 1770 if (ret < 0) { 1771 bch_err_msg(c, ret, "setting up new superblock"); 1772 goto err_unlock; 1773 } 1774 unsigned dev_idx = ret; 1775 1776 /* success: */ 1777 1778 dev_mi.last_mount = cpu_to_le64(ktime_get_real_seconds()); 1779 *bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx) = dev_mi; 1780 1781 ca->disk_sb.sb->dev_idx = dev_idx; 1782 bch2_dev_attach(c, ca, dev_idx); 1783 1784 if (BCH_MEMBER_GROUP(&dev_mi)) { 1785 ret = __bch2_dev_group_set(c, ca, label.buf); 1786 bch_err_msg(c, ret, "creating new label"); 1787 if (ret) 1788 goto err_unlock; 1789 } 1790 1791 bch2_write_super(c); 1792 mutex_unlock(&c->sb_lock); 1793 1794 ret = bch2_dev_usage_init(ca, false); 1795 if (ret) 1796 goto err_late; 1797 1798 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional); 1799 bch_err_msg(ca, ret, "marking new superblock"); 1800 if (ret) 1801 goto err_late; 1802 1803 ret = bch2_fs_freespace_init(c); 1804 bch_err_msg(ca, ret, "initializing free space"); 1805 if (ret) 1806 goto err_late; 1807 1808 ca->new_fs_bucket_idx = 0; 1809 1810 if (ca->mi.state == BCH_MEMBER_STATE_rw) 1811 __bch2_dev_read_write(c, ca); 1812 1813 up_write(&c->state_lock); 1814 return 0; 1815 1816 err_unlock: 1817 mutex_unlock(&c->sb_lock); 1818 up_write(&c->state_lock); 1819 err: 1820 if (ca) 1821 bch2_dev_free(ca); 1822 bch2_free_super(&sb); 1823 printbuf_exit(&label); 1824 printbuf_exit(&errbuf); 1825 bch_err_fn(c, ret); 1826 return ret; 1827 err_late: 1828 up_write(&c->state_lock); 1829 ca = NULL; 1830 goto err; 1831 } 1832 1833 /* Hot add existing device to running filesystem: */ 1834 int bch2_dev_online(struct bch_fs *c, const char *path) 1835 { 1836 struct bch_opts opts = bch2_opts_empty(); 1837 struct bch_sb_handle sb = { NULL }; 1838 struct bch_dev *ca; 1839 unsigned dev_idx; 1840 int ret; 1841 1842 down_write(&c->state_lock); 1843 1844 ret = bch2_read_super(path, &opts, &sb); 1845 if (ret) { 1846 up_write(&c->state_lock); 1847 return ret; 1848 } 1849 1850 dev_idx = sb.sb->dev_idx; 1851 1852 ret = bch2_dev_in_fs(&c->disk_sb, &sb, &c->opts); 1853 bch_err_msg(c, ret, "bringing %s online", path); 1854 if (ret) 1855 goto err; 1856 1857 ret = bch2_dev_attach_bdev(c, &sb); 1858 if (ret) 1859 goto err; 1860 1861 ca = bch2_dev_locked(c, dev_idx); 1862 1863 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional); 1864 bch_err_msg(c, ret, "bringing %s online: error from bch2_trans_mark_dev_sb", path); 1865 if (ret) 1866 goto err; 1867 1868 if (ca->mi.state == BCH_MEMBER_STATE_rw) 1869 __bch2_dev_read_write(c, ca); 1870 1871 if (!ca->mi.freespace_initialized) { 1872 ret = bch2_dev_freespace_init(c, ca, 0, ca->mi.nbuckets); 1873 bch_err_msg(ca, ret, "initializing free space"); 1874 if (ret) 1875 goto err; 1876 } 1877 1878 if (!ca->journal.nr) { 1879 ret = bch2_dev_journal_alloc(ca, false); 1880 bch_err_msg(ca, ret, "allocating journal"); 1881 if (ret) 1882 goto err; 1883 } 1884 1885 mutex_lock(&c->sb_lock); 1886 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = 1887 cpu_to_le64(ktime_get_real_seconds()); 1888 bch2_write_super(c); 1889 mutex_unlock(&c->sb_lock); 1890 1891 up_write(&c->state_lock); 1892 return 0; 1893 err: 1894 up_write(&c->state_lock); 1895 bch2_free_super(&sb); 1896 return ret; 1897 } 1898 1899 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags) 1900 { 1901 down_write(&c->state_lock); 1902 1903 if (!bch2_dev_is_online(ca)) { 1904 bch_err(ca, "Already offline"); 1905 up_write(&c->state_lock); 1906 return 0; 1907 } 1908 1909 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { 1910 bch_err(ca, "Cannot offline required disk"); 1911 up_write(&c->state_lock); 1912 return -BCH_ERR_device_state_not_allowed; 1913 } 1914 1915 __bch2_dev_offline(c, ca); 1916 1917 up_write(&c->state_lock); 1918 return 0; 1919 } 1920 1921 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets) 1922 { 1923 struct bch_member *m; 1924 u64 old_nbuckets; 1925 int ret = 0; 1926 1927 down_write(&c->state_lock); 1928 old_nbuckets = ca->mi.nbuckets; 1929 1930 if (nbuckets < ca->mi.nbuckets) { 1931 bch_err(ca, "Cannot shrink yet"); 1932 ret = -EINVAL; 1933 goto err; 1934 } 1935 1936 if (nbuckets > BCH_MEMBER_NBUCKETS_MAX) { 1937 bch_err(ca, "New device size too big (%llu greater than max %u)", 1938 nbuckets, BCH_MEMBER_NBUCKETS_MAX); 1939 ret = -BCH_ERR_device_size_too_big; 1940 goto err; 1941 } 1942 1943 if (bch2_dev_is_online(ca) && 1944 get_capacity(ca->disk_sb.bdev->bd_disk) < 1945 ca->mi.bucket_size * nbuckets) { 1946 bch_err(ca, "New size larger than device"); 1947 ret = -BCH_ERR_device_size_too_small; 1948 goto err; 1949 } 1950 1951 ret = bch2_dev_buckets_resize(c, ca, nbuckets); 1952 bch_err_msg(ca, ret, "resizing buckets"); 1953 if (ret) 1954 goto err; 1955 1956 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional); 1957 if (ret) 1958 goto err; 1959 1960 mutex_lock(&c->sb_lock); 1961 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); 1962 m->nbuckets = cpu_to_le64(nbuckets); 1963 1964 bch2_write_super(c); 1965 mutex_unlock(&c->sb_lock); 1966 1967 if (ca->mi.freespace_initialized) { 1968 struct disk_accounting_pos acc = { 1969 .type = BCH_DISK_ACCOUNTING_dev_data_type, 1970 .dev_data_type.dev = ca->dev_idx, 1971 .dev_data_type.data_type = BCH_DATA_free, 1972 }; 1973 u64 v[3] = { nbuckets - old_nbuckets, 0, 0 }; 1974 1975 ret = bch2_trans_commit_do(ca->fs, NULL, NULL, 0, 1976 bch2_disk_accounting_mod(trans, &acc, v, ARRAY_SIZE(v), false)) ?: 1977 bch2_dev_freespace_init(c, ca, old_nbuckets, nbuckets); 1978 if (ret) 1979 goto err; 1980 } 1981 1982 bch2_recalc_capacity(c); 1983 err: 1984 up_write(&c->state_lock); 1985 return ret; 1986 } 1987 1988 /* return with ref on ca->ref: */ 1989 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *name) 1990 { 1991 if (!strncmp(name, "/dev/", strlen("/dev/"))) 1992 name += strlen("/dev/"); 1993 1994 for_each_member_device(c, ca) 1995 if (!strcmp(name, ca->name)) 1996 return ca; 1997 return ERR_PTR(-BCH_ERR_ENOENT_dev_not_found); 1998 } 1999 2000 /* Filesystem open: */ 2001 2002 static inline int sb_cmp(struct bch_sb *l, struct bch_sb *r) 2003 { 2004 return cmp_int(le64_to_cpu(l->seq), le64_to_cpu(r->seq)) ?: 2005 cmp_int(le64_to_cpu(l->write_time), le64_to_cpu(r->write_time)); 2006 } 2007 2008 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices, 2009 struct bch_opts opts) 2010 { 2011 DARRAY(struct bch_sb_handle) sbs = { 0 }; 2012 struct bch_fs *c = NULL; 2013 struct bch_sb_handle *best = NULL; 2014 struct printbuf errbuf = PRINTBUF; 2015 int ret = 0; 2016 2017 if (!try_module_get(THIS_MODULE)) 2018 return ERR_PTR(-ENODEV); 2019 2020 if (!nr_devices) { 2021 ret = -EINVAL; 2022 goto err; 2023 } 2024 2025 ret = darray_make_room(&sbs, nr_devices); 2026 if (ret) 2027 goto err; 2028 2029 for (unsigned i = 0; i < nr_devices; i++) { 2030 struct bch_sb_handle sb = { NULL }; 2031 2032 ret = bch2_read_super(devices[i], &opts, &sb); 2033 if (ret) 2034 goto err; 2035 2036 BUG_ON(darray_push(&sbs, sb)); 2037 } 2038 2039 if (opts.nochanges && !opts.read_only) { 2040 ret = -BCH_ERR_erofs_nochanges; 2041 goto err_print; 2042 } 2043 2044 darray_for_each(sbs, sb) 2045 if (!best || sb_cmp(sb->sb, best->sb) > 0) 2046 best = sb; 2047 2048 darray_for_each_reverse(sbs, sb) { 2049 ret = bch2_dev_in_fs(best, sb, &opts); 2050 2051 if (ret == -BCH_ERR_device_has_been_removed || 2052 ret == -BCH_ERR_device_splitbrain) { 2053 bch2_free_super(sb); 2054 darray_remove_item(&sbs, sb); 2055 best -= best > sb; 2056 ret = 0; 2057 continue; 2058 } 2059 2060 if (ret) 2061 goto err_print; 2062 } 2063 2064 c = bch2_fs_alloc(best->sb, opts); 2065 ret = PTR_ERR_OR_ZERO(c); 2066 if (ret) 2067 goto err; 2068 2069 down_write(&c->state_lock); 2070 darray_for_each(sbs, sb) { 2071 ret = bch2_dev_attach_bdev(c, sb); 2072 if (ret) { 2073 up_write(&c->state_lock); 2074 goto err; 2075 } 2076 } 2077 up_write(&c->state_lock); 2078 2079 if (!bch2_fs_may_start(c)) { 2080 ret = -BCH_ERR_insufficient_devices_to_start; 2081 goto err_print; 2082 } 2083 2084 if (!c->opts.nostart) { 2085 ret = bch2_fs_start(c); 2086 if (ret) 2087 goto err; 2088 } 2089 out: 2090 darray_for_each(sbs, sb) 2091 bch2_free_super(sb); 2092 darray_exit(&sbs); 2093 printbuf_exit(&errbuf); 2094 module_put(THIS_MODULE); 2095 return c; 2096 err_print: 2097 pr_err("bch_fs_open err opening %s: %s", 2098 devices[0], bch2_err_str(ret)); 2099 err: 2100 if (!IS_ERR_OR_NULL(c)) 2101 bch2_fs_stop(c); 2102 c = ERR_PTR(ret); 2103 goto out; 2104 } 2105 2106 /* Global interfaces/init */ 2107 2108 static void bcachefs_exit(void) 2109 { 2110 bch2_debug_exit(); 2111 bch2_vfs_exit(); 2112 bch2_chardev_exit(); 2113 bch2_btree_key_cache_exit(); 2114 if (bcachefs_kset) 2115 kset_unregister(bcachefs_kset); 2116 } 2117 2118 static int __init bcachefs_init(void) 2119 { 2120 bch2_bkey_pack_test(); 2121 2122 if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) || 2123 bch2_btree_key_cache_init() || 2124 bch2_chardev_init() || 2125 bch2_vfs_init() || 2126 bch2_debug_init()) 2127 goto err; 2128 2129 return 0; 2130 err: 2131 bcachefs_exit(); 2132 return -ENOMEM; 2133 } 2134 2135 #define BCH_DEBUG_PARAM(name, description) \ 2136 bool bch2_##name; \ 2137 module_param_named(name, bch2_##name, bool, 0644); \ 2138 MODULE_PARM_DESC(name, description); 2139 BCH_DEBUG_PARAMS() 2140 #undef BCH_DEBUG_PARAM 2141 2142 __maybe_unused 2143 static unsigned bch2_metadata_version = bcachefs_metadata_version_current; 2144 module_param_named(version, bch2_metadata_version, uint, 0400); 2145 2146 module_exit(bcachefs_exit); 2147 module_init(bcachefs_init); 2148