1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcachefs setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcachefs.h" 11 #include "alloc_background.h" 12 #include "alloc_foreground.h" 13 #include "bkey_sort.h" 14 #include "btree_cache.h" 15 #include "btree_gc.h" 16 #include "btree_journal_iter.h" 17 #include "btree_key_cache.h" 18 #include "btree_node_scan.h" 19 #include "btree_update_interior.h" 20 #include "btree_io.h" 21 #include "btree_write_buffer.h" 22 #include "buckets_waiting_for_journal.h" 23 #include "chardev.h" 24 #include "checksum.h" 25 #include "clock.h" 26 #include "compress.h" 27 #include "debug.h" 28 #include "disk_accounting.h" 29 #include "disk_groups.h" 30 #include "ec.h" 31 #include "errcode.h" 32 #include "error.h" 33 #include "fs.h" 34 #include "fs-io.h" 35 #include "fs-io-buffered.h" 36 #include "fs-io-direct.h" 37 #include "fsck.h" 38 #include "inode.h" 39 #include "io_read.h" 40 #include "io_write.h" 41 #include "journal.h" 42 #include "journal_reclaim.h" 43 #include "journal_seq_blacklist.h" 44 #include "move.h" 45 #include "migrate.h" 46 #include "movinggc.h" 47 #include "nocow_locking.h" 48 #include "quota.h" 49 #include "rebalance.h" 50 #include "recovery.h" 51 #include "replicas.h" 52 #include "sb-clean.h" 53 #include "sb-counters.h" 54 #include "sb-errors.h" 55 #include "sb-members.h" 56 #include "snapshot.h" 57 #include "subvolume.h" 58 #include "super.h" 59 #include "super-io.h" 60 #include "sysfs.h" 61 #include "thread_with_file.h" 62 #include "trace.h" 63 64 #include <linux/backing-dev.h> 65 #include <linux/blkdev.h> 66 #include <linux/debugfs.h> 67 #include <linux/device.h> 68 #include <linux/idr.h> 69 #include <linux/module.h> 70 #include <linux/percpu.h> 71 #include <linux/random.h> 72 #include <linux/sysfs.h> 73 #include <crypto/hash.h> 74 75 MODULE_LICENSE("GPL"); 76 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 77 MODULE_DESCRIPTION("bcachefs filesystem"); 78 MODULE_SOFTDEP("pre: crc32c"); 79 MODULE_SOFTDEP("pre: crc64"); 80 MODULE_SOFTDEP("pre: sha256"); 81 MODULE_SOFTDEP("pre: chacha20"); 82 MODULE_SOFTDEP("pre: poly1305"); 83 MODULE_SOFTDEP("pre: xxhash"); 84 85 const char * const bch2_fs_flag_strs[] = { 86 #define x(n) #n, 87 BCH_FS_FLAGS() 88 #undef x 89 NULL 90 }; 91 92 void bch2_print_str(struct bch_fs *c, const char *str) 93 { 94 #ifdef __KERNEL__ 95 struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c); 96 97 if (unlikely(stdio)) { 98 bch2_stdio_redirect_printf(stdio, true, "%s", str); 99 return; 100 } 101 #endif 102 bch2_print_string_as_lines(KERN_ERR, str); 103 } 104 105 __printf(2, 0) 106 static void bch2_print_maybe_redirect(struct stdio_redirect *stdio, const char *fmt, va_list args) 107 { 108 #ifdef __KERNEL__ 109 if (unlikely(stdio)) { 110 if (fmt[0] == KERN_SOH[0]) 111 fmt += 2; 112 113 bch2_stdio_redirect_vprintf(stdio, true, fmt, args); 114 return; 115 } 116 #endif 117 vprintk(fmt, args); 118 } 119 120 void bch2_print_opts(struct bch_opts *opts, const char *fmt, ...) 121 { 122 struct stdio_redirect *stdio = (void *)(unsigned long)opts->stdio; 123 124 va_list args; 125 va_start(args, fmt); 126 bch2_print_maybe_redirect(stdio, fmt, args); 127 va_end(args); 128 } 129 130 void __bch2_print(struct bch_fs *c, const char *fmt, ...) 131 { 132 struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c); 133 134 va_list args; 135 va_start(args, fmt); 136 bch2_print_maybe_redirect(stdio, fmt, args); 137 va_end(args); 138 } 139 140 #define KTYPE(type) \ 141 static const struct attribute_group type ## _group = { \ 142 .attrs = type ## _files \ 143 }; \ 144 \ 145 static const struct attribute_group *type ## _groups[] = { \ 146 &type ## _group, \ 147 NULL \ 148 }; \ 149 \ 150 static const struct kobj_type type ## _ktype = { \ 151 .release = type ## _release, \ 152 .sysfs_ops = &type ## _sysfs_ops, \ 153 .default_groups = type ## _groups \ 154 } 155 156 static void bch2_fs_release(struct kobject *); 157 static void bch2_dev_release(struct kobject *); 158 static void bch2_fs_counters_release(struct kobject *k) 159 { 160 } 161 162 static void bch2_fs_internal_release(struct kobject *k) 163 { 164 } 165 166 static void bch2_fs_opts_dir_release(struct kobject *k) 167 { 168 } 169 170 static void bch2_fs_time_stats_release(struct kobject *k) 171 { 172 } 173 174 KTYPE(bch2_fs); 175 KTYPE(bch2_fs_counters); 176 KTYPE(bch2_fs_internal); 177 KTYPE(bch2_fs_opts_dir); 178 KTYPE(bch2_fs_time_stats); 179 KTYPE(bch2_dev); 180 181 static struct kset *bcachefs_kset; 182 static LIST_HEAD(bch_fs_list); 183 static DEFINE_MUTEX(bch_fs_list_lock); 184 185 DECLARE_WAIT_QUEUE_HEAD(bch2_read_only_wait); 186 187 static void bch2_dev_free(struct bch_dev *); 188 static int bch2_dev_alloc(struct bch_fs *, unsigned); 189 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *); 190 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *); 191 192 struct bch_fs *bch2_dev_to_fs(dev_t dev) 193 { 194 struct bch_fs *c; 195 196 mutex_lock(&bch_fs_list_lock); 197 rcu_read_lock(); 198 199 list_for_each_entry(c, &bch_fs_list, list) 200 for_each_member_device_rcu(c, ca, NULL) 201 if (ca->disk_sb.bdev && ca->disk_sb.bdev->bd_dev == dev) { 202 closure_get(&c->cl); 203 goto found; 204 } 205 c = NULL; 206 found: 207 rcu_read_unlock(); 208 mutex_unlock(&bch_fs_list_lock); 209 210 return c; 211 } 212 213 static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid) 214 { 215 struct bch_fs *c; 216 217 lockdep_assert_held(&bch_fs_list_lock); 218 219 list_for_each_entry(c, &bch_fs_list, list) 220 if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid))) 221 return c; 222 223 return NULL; 224 } 225 226 struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid) 227 { 228 struct bch_fs *c; 229 230 mutex_lock(&bch_fs_list_lock); 231 c = __bch2_uuid_to_fs(uuid); 232 if (c) 233 closure_get(&c->cl); 234 mutex_unlock(&bch_fs_list_lock); 235 236 return c; 237 } 238 239 /* Filesystem RO/RW: */ 240 241 /* 242 * For startup/shutdown of RW stuff, the dependencies are: 243 * 244 * - foreground writes depend on copygc and rebalance (to free up space) 245 * 246 * - copygc and rebalance depend on mark and sweep gc (they actually probably 247 * don't because they either reserve ahead of time or don't block if 248 * allocations fail, but allocations can require mark and sweep gc to run 249 * because of generation number wraparound) 250 * 251 * - all of the above depends on the allocator threads 252 * 253 * - allocator depends on the journal (when it rewrites prios and gens) 254 */ 255 256 static void __bch2_fs_read_only(struct bch_fs *c) 257 { 258 unsigned clean_passes = 0; 259 u64 seq = 0; 260 261 bch2_fs_ec_stop(c); 262 bch2_open_buckets_stop(c, NULL, true); 263 bch2_rebalance_stop(c); 264 bch2_copygc_stop(c); 265 bch2_fs_ec_flush(c); 266 267 bch_verbose(c, "flushing journal and stopping allocators, journal seq %llu", 268 journal_cur_seq(&c->journal)); 269 270 do { 271 clean_passes++; 272 273 if (bch2_btree_interior_updates_flush(c) || 274 bch2_journal_flush_all_pins(&c->journal) || 275 bch2_btree_flush_all_writes(c) || 276 seq != atomic64_read(&c->journal.seq)) { 277 seq = atomic64_read(&c->journal.seq); 278 clean_passes = 0; 279 } 280 } while (clean_passes < 2); 281 282 bch_verbose(c, "flushing journal and stopping allocators complete, journal seq %llu", 283 journal_cur_seq(&c->journal)); 284 285 if (test_bit(JOURNAL_replay_done, &c->journal.flags) && 286 !test_bit(BCH_FS_emergency_ro, &c->flags)) 287 set_bit(BCH_FS_clean_shutdown, &c->flags); 288 289 bch2_fs_journal_stop(&c->journal); 290 291 bch_info(c, "%sshutdown complete, journal seq %llu", 292 test_bit(BCH_FS_clean_shutdown, &c->flags) ? "" : "un", 293 c->journal.seq_ondisk); 294 295 /* 296 * After stopping journal: 297 */ 298 for_each_member_device(c, ca) 299 bch2_dev_allocator_remove(c, ca); 300 } 301 302 #ifndef BCH_WRITE_REF_DEBUG 303 static void bch2_writes_disabled(struct percpu_ref *writes) 304 { 305 struct bch_fs *c = container_of(writes, struct bch_fs, writes); 306 307 set_bit(BCH_FS_write_disable_complete, &c->flags); 308 wake_up(&bch2_read_only_wait); 309 } 310 #endif 311 312 void bch2_fs_read_only(struct bch_fs *c) 313 { 314 if (!test_bit(BCH_FS_rw, &c->flags)) { 315 bch2_journal_reclaim_stop(&c->journal); 316 return; 317 } 318 319 BUG_ON(test_bit(BCH_FS_write_disable_complete, &c->flags)); 320 321 bch_verbose(c, "going read-only"); 322 323 /* 324 * Block new foreground-end write operations from starting - any new 325 * writes will return -EROFS: 326 */ 327 set_bit(BCH_FS_going_ro, &c->flags); 328 #ifndef BCH_WRITE_REF_DEBUG 329 percpu_ref_kill(&c->writes); 330 #else 331 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) 332 bch2_write_ref_put(c, i); 333 #endif 334 335 /* 336 * If we're not doing an emergency shutdown, we want to wait on 337 * outstanding writes to complete so they don't see spurious errors due 338 * to shutting down the allocator: 339 * 340 * If we are doing an emergency shutdown outstanding writes may 341 * hang until we shutdown the allocator so we don't want to wait 342 * on outstanding writes before shutting everything down - but 343 * we do need to wait on them before returning and signalling 344 * that going RO is complete: 345 */ 346 wait_event(bch2_read_only_wait, 347 test_bit(BCH_FS_write_disable_complete, &c->flags) || 348 test_bit(BCH_FS_emergency_ro, &c->flags)); 349 350 bool writes_disabled = test_bit(BCH_FS_write_disable_complete, &c->flags); 351 if (writes_disabled) 352 bch_verbose(c, "finished waiting for writes to stop"); 353 354 __bch2_fs_read_only(c); 355 356 wait_event(bch2_read_only_wait, 357 test_bit(BCH_FS_write_disable_complete, &c->flags)); 358 359 if (!writes_disabled) 360 bch_verbose(c, "finished waiting for writes to stop"); 361 362 clear_bit(BCH_FS_write_disable_complete, &c->flags); 363 clear_bit(BCH_FS_going_ro, &c->flags); 364 clear_bit(BCH_FS_rw, &c->flags); 365 366 if (!bch2_journal_error(&c->journal) && 367 !test_bit(BCH_FS_error, &c->flags) && 368 !test_bit(BCH_FS_emergency_ro, &c->flags) && 369 test_bit(BCH_FS_started, &c->flags) && 370 test_bit(BCH_FS_clean_shutdown, &c->flags) && 371 c->recovery_pass_done >= BCH_RECOVERY_PASS_journal_replay) { 372 BUG_ON(c->journal.last_empty_seq != journal_cur_seq(&c->journal)); 373 BUG_ON(atomic_read(&c->btree_cache.dirty)); 374 BUG_ON(atomic_long_read(&c->btree_key_cache.nr_dirty)); 375 BUG_ON(c->btree_write_buffer.inc.keys.nr); 376 BUG_ON(c->btree_write_buffer.flushing.keys.nr); 377 bch2_verify_accounting_clean(c); 378 379 bch_verbose(c, "marking filesystem clean"); 380 bch2_fs_mark_clean(c); 381 } else { 382 bch_verbose(c, "done going read-only, filesystem not clean"); 383 } 384 } 385 386 static void bch2_fs_read_only_work(struct work_struct *work) 387 { 388 struct bch_fs *c = 389 container_of(work, struct bch_fs, read_only_work); 390 391 down_write(&c->state_lock); 392 bch2_fs_read_only(c); 393 up_write(&c->state_lock); 394 } 395 396 static void bch2_fs_read_only_async(struct bch_fs *c) 397 { 398 queue_work(system_long_wq, &c->read_only_work); 399 } 400 401 bool bch2_fs_emergency_read_only(struct bch_fs *c) 402 { 403 bool ret = !test_and_set_bit(BCH_FS_emergency_ro, &c->flags); 404 405 bch2_journal_halt(&c->journal); 406 bch2_fs_read_only_async(c); 407 408 wake_up(&bch2_read_only_wait); 409 return ret; 410 } 411 412 static int bch2_fs_read_write_late(struct bch_fs *c) 413 { 414 int ret; 415 416 /* 417 * Data move operations can't run until after check_snapshots has 418 * completed, and bch2_snapshot_is_ancestor() is available. 419 * 420 * Ideally we'd start copygc/rebalance earlier instead of waiting for 421 * all of recovery/fsck to complete: 422 */ 423 ret = bch2_copygc_start(c); 424 if (ret) { 425 bch_err(c, "error starting copygc thread"); 426 return ret; 427 } 428 429 ret = bch2_rebalance_start(c); 430 if (ret) { 431 bch_err(c, "error starting rebalance thread"); 432 return ret; 433 } 434 435 return 0; 436 } 437 438 static int __bch2_fs_read_write(struct bch_fs *c, bool early) 439 { 440 int ret; 441 442 if (test_bit(BCH_FS_initial_gc_unfixed, &c->flags)) { 443 bch_err(c, "cannot go rw, unfixed btree errors"); 444 return -BCH_ERR_erofs_unfixed_errors; 445 } 446 447 if (test_bit(BCH_FS_rw, &c->flags)) 448 return 0; 449 450 bch_info(c, "going read-write"); 451 452 ret = bch2_sb_members_v2_init(c); 453 if (ret) 454 goto err; 455 456 ret = bch2_fs_mark_dirty(c); 457 if (ret) 458 goto err; 459 460 clear_bit(BCH_FS_clean_shutdown, &c->flags); 461 462 /* 463 * First journal write must be a flush write: after a clean shutdown we 464 * don't read the journal, so the first journal write may end up 465 * overwriting whatever was there previously, and there must always be 466 * at least one non-flush write in the journal or recovery will fail: 467 */ 468 set_bit(JOURNAL_need_flush_write, &c->journal.flags); 469 set_bit(JOURNAL_running, &c->journal.flags); 470 471 for_each_rw_member(c, ca) 472 bch2_dev_allocator_add(c, ca); 473 bch2_recalc_capacity(c); 474 475 set_bit(BCH_FS_rw, &c->flags); 476 set_bit(BCH_FS_was_rw, &c->flags); 477 478 #ifndef BCH_WRITE_REF_DEBUG 479 percpu_ref_reinit(&c->writes); 480 #else 481 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) { 482 BUG_ON(atomic_long_read(&c->writes[i])); 483 atomic_long_inc(&c->writes[i]); 484 } 485 #endif 486 487 ret = bch2_journal_reclaim_start(&c->journal); 488 if (ret) 489 goto err; 490 491 if (!early) { 492 ret = bch2_fs_read_write_late(c); 493 if (ret) 494 goto err; 495 } 496 497 bch2_do_discards(c); 498 bch2_do_invalidates(c); 499 bch2_do_stripe_deletes(c); 500 bch2_do_pending_node_rewrites(c); 501 return 0; 502 err: 503 if (test_bit(BCH_FS_rw, &c->flags)) 504 bch2_fs_read_only(c); 505 else 506 __bch2_fs_read_only(c); 507 return ret; 508 } 509 510 int bch2_fs_read_write(struct bch_fs *c) 511 { 512 if (c->opts.recovery_pass_last && 513 c->opts.recovery_pass_last < BCH_RECOVERY_PASS_journal_replay) 514 return -BCH_ERR_erofs_norecovery; 515 516 if (c->opts.nochanges) 517 return -BCH_ERR_erofs_nochanges; 518 519 return __bch2_fs_read_write(c, false); 520 } 521 522 int bch2_fs_read_write_early(struct bch_fs *c) 523 { 524 lockdep_assert_held(&c->state_lock); 525 526 return __bch2_fs_read_write(c, true); 527 } 528 529 /* Filesystem startup/shutdown: */ 530 531 static void __bch2_fs_free(struct bch_fs *c) 532 { 533 for (unsigned i = 0; i < BCH_TIME_STAT_NR; i++) 534 bch2_time_stats_exit(&c->times[i]); 535 536 bch2_find_btree_nodes_exit(&c->found_btree_nodes); 537 bch2_free_pending_node_rewrites(c); 538 bch2_fs_accounting_exit(c); 539 bch2_fs_sb_errors_exit(c); 540 bch2_fs_counters_exit(c); 541 bch2_fs_snapshots_exit(c); 542 bch2_fs_quota_exit(c); 543 bch2_fs_fs_io_direct_exit(c); 544 bch2_fs_fs_io_buffered_exit(c); 545 bch2_fs_fsio_exit(c); 546 bch2_fs_ec_exit(c); 547 bch2_fs_encryption_exit(c); 548 bch2_fs_nocow_locking_exit(c); 549 bch2_fs_io_write_exit(c); 550 bch2_fs_io_read_exit(c); 551 bch2_fs_buckets_waiting_for_journal_exit(c); 552 bch2_fs_btree_interior_update_exit(c); 553 bch2_fs_btree_key_cache_exit(&c->btree_key_cache); 554 bch2_fs_btree_cache_exit(c); 555 bch2_fs_btree_iter_exit(c); 556 bch2_fs_replicas_exit(c); 557 bch2_fs_journal_exit(&c->journal); 558 bch2_io_clock_exit(&c->io_clock[WRITE]); 559 bch2_io_clock_exit(&c->io_clock[READ]); 560 bch2_fs_compress_exit(c); 561 bch2_journal_keys_put_initial(c); 562 bch2_find_btree_nodes_exit(&c->found_btree_nodes); 563 BUG_ON(atomic_read(&c->journal_keys.ref)); 564 bch2_fs_btree_write_buffer_exit(c); 565 percpu_free_rwsem(&c->mark_lock); 566 if (c->online_reserved) { 567 u64 v = percpu_u64_get(c->online_reserved); 568 WARN(v, "online_reserved not 0 at shutdown: %lli", v); 569 free_percpu(c->online_reserved); 570 } 571 572 darray_exit(&c->btree_roots_extra); 573 free_percpu(c->pcpu); 574 free_percpu(c->usage); 575 mempool_exit(&c->large_bkey_pool); 576 mempool_exit(&c->btree_bounce_pool); 577 bioset_exit(&c->btree_bio); 578 mempool_exit(&c->fill_iter); 579 #ifndef BCH_WRITE_REF_DEBUG 580 percpu_ref_exit(&c->writes); 581 #endif 582 kfree(rcu_dereference_protected(c->disk_groups, 1)); 583 kfree(c->journal_seq_blacklist_table); 584 kfree(c->unused_inode_hints); 585 586 if (c->write_ref_wq) 587 destroy_workqueue(c->write_ref_wq); 588 if (c->btree_write_submit_wq) 589 destroy_workqueue(c->btree_write_submit_wq); 590 if (c->btree_read_complete_wq) 591 destroy_workqueue(c->btree_read_complete_wq); 592 if (c->copygc_wq) 593 destroy_workqueue(c->copygc_wq); 594 if (c->btree_io_complete_wq) 595 destroy_workqueue(c->btree_io_complete_wq); 596 if (c->btree_update_wq) 597 destroy_workqueue(c->btree_update_wq); 598 599 bch2_free_super(&c->disk_sb); 600 kvfree(c); 601 module_put(THIS_MODULE); 602 } 603 604 static void bch2_fs_release(struct kobject *kobj) 605 { 606 struct bch_fs *c = container_of(kobj, struct bch_fs, kobj); 607 608 __bch2_fs_free(c); 609 } 610 611 void __bch2_fs_stop(struct bch_fs *c) 612 { 613 bch_verbose(c, "shutting down"); 614 615 set_bit(BCH_FS_stopping, &c->flags); 616 617 down_write(&c->state_lock); 618 bch2_fs_read_only(c); 619 up_write(&c->state_lock); 620 621 for_each_member_device(c, ca) 622 if (ca->kobj.state_in_sysfs && 623 ca->disk_sb.bdev) 624 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 625 626 if (c->kobj.state_in_sysfs) 627 kobject_del(&c->kobj); 628 629 bch2_fs_debug_exit(c); 630 bch2_fs_chardev_exit(c); 631 632 bch2_ro_ref_put(c); 633 wait_event(c->ro_ref_wait, !refcount_read(&c->ro_ref)); 634 635 kobject_put(&c->counters_kobj); 636 kobject_put(&c->time_stats); 637 kobject_put(&c->opts_dir); 638 kobject_put(&c->internal); 639 640 /* btree prefetch might have kicked off reads in the background: */ 641 bch2_btree_flush_all_reads(c); 642 643 for_each_member_device(c, ca) 644 cancel_work_sync(&ca->io_error_work); 645 646 cancel_work_sync(&c->read_only_work); 647 } 648 649 void bch2_fs_free(struct bch_fs *c) 650 { 651 unsigned i; 652 653 mutex_lock(&bch_fs_list_lock); 654 list_del(&c->list); 655 mutex_unlock(&bch_fs_list_lock); 656 657 closure_sync(&c->cl); 658 closure_debug_destroy(&c->cl); 659 660 for (i = 0; i < c->sb.nr_devices; i++) { 661 struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true); 662 663 if (ca) { 664 EBUG_ON(atomic_long_read(&ca->ref) != 1); 665 bch2_free_super(&ca->disk_sb); 666 bch2_dev_free(ca); 667 } 668 } 669 670 bch_verbose(c, "shutdown complete"); 671 672 kobject_put(&c->kobj); 673 } 674 675 void bch2_fs_stop(struct bch_fs *c) 676 { 677 __bch2_fs_stop(c); 678 bch2_fs_free(c); 679 } 680 681 static int bch2_fs_online(struct bch_fs *c) 682 { 683 int ret = 0; 684 685 lockdep_assert_held(&bch_fs_list_lock); 686 687 if (__bch2_uuid_to_fs(c->sb.uuid)) { 688 bch_err(c, "filesystem UUID already open"); 689 return -EINVAL; 690 } 691 692 ret = bch2_fs_chardev_init(c); 693 if (ret) { 694 bch_err(c, "error creating character device"); 695 return ret; 696 } 697 698 bch2_fs_debug_init(c); 699 700 ret = kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ?: 701 kobject_add(&c->internal, &c->kobj, "internal") ?: 702 kobject_add(&c->opts_dir, &c->kobj, "options") ?: 703 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT 704 kobject_add(&c->time_stats, &c->kobj, "time_stats") ?: 705 #endif 706 kobject_add(&c->counters_kobj, &c->kobj, "counters") ?: 707 bch2_opts_create_sysfs_files(&c->opts_dir); 708 if (ret) { 709 bch_err(c, "error creating sysfs objects"); 710 return ret; 711 } 712 713 down_write(&c->state_lock); 714 715 for_each_member_device(c, ca) { 716 ret = bch2_dev_sysfs_online(c, ca); 717 if (ret) { 718 bch_err(c, "error creating sysfs objects"); 719 bch2_dev_put(ca); 720 goto err; 721 } 722 } 723 724 BUG_ON(!list_empty(&c->list)); 725 list_add(&c->list, &bch_fs_list); 726 err: 727 up_write(&c->state_lock); 728 return ret; 729 } 730 731 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts) 732 { 733 struct bch_fs *c; 734 struct printbuf name = PRINTBUF; 735 unsigned i, iter_size; 736 int ret = 0; 737 738 c = kvmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO); 739 if (!c) { 740 c = ERR_PTR(-BCH_ERR_ENOMEM_fs_alloc); 741 goto out; 742 } 743 744 c->stdio = (void *)(unsigned long) opts.stdio; 745 746 __module_get(THIS_MODULE); 747 748 closure_init(&c->cl, NULL); 749 750 c->kobj.kset = bcachefs_kset; 751 kobject_init(&c->kobj, &bch2_fs_ktype); 752 kobject_init(&c->internal, &bch2_fs_internal_ktype); 753 kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype); 754 kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype); 755 kobject_init(&c->counters_kobj, &bch2_fs_counters_ktype); 756 757 c->minor = -1; 758 c->disk_sb.fs_sb = true; 759 760 init_rwsem(&c->state_lock); 761 mutex_init(&c->sb_lock); 762 mutex_init(&c->replicas_gc_lock); 763 mutex_init(&c->btree_root_lock); 764 INIT_WORK(&c->read_only_work, bch2_fs_read_only_work); 765 766 refcount_set(&c->ro_ref, 1); 767 init_waitqueue_head(&c->ro_ref_wait); 768 sema_init(&c->online_fsck_mutex, 1); 769 770 init_rwsem(&c->gc_lock); 771 mutex_init(&c->gc_gens_lock); 772 atomic_set(&c->journal_keys.ref, 1); 773 c->journal_keys.initial_ref_held = true; 774 775 for (i = 0; i < BCH_TIME_STAT_NR; i++) 776 bch2_time_stats_init(&c->times[i]); 777 778 bch2_fs_gc_init(c); 779 bch2_fs_copygc_init(c); 780 bch2_fs_btree_key_cache_init_early(&c->btree_key_cache); 781 bch2_fs_btree_iter_init_early(c); 782 bch2_fs_btree_interior_update_init_early(c); 783 bch2_fs_allocator_background_init(c); 784 bch2_fs_allocator_foreground_init(c); 785 bch2_fs_rebalance_init(c); 786 bch2_fs_quota_init(c); 787 bch2_fs_ec_init_early(c); 788 bch2_fs_move_init(c); 789 bch2_fs_sb_errors_init_early(c); 790 791 INIT_LIST_HEAD(&c->list); 792 793 mutex_init(&c->bio_bounce_pages_lock); 794 mutex_init(&c->snapshot_table_lock); 795 init_rwsem(&c->snapshot_create_lock); 796 797 spin_lock_init(&c->btree_write_error_lock); 798 799 INIT_LIST_HEAD(&c->journal_iters); 800 801 INIT_LIST_HEAD(&c->fsck_error_msgs); 802 mutex_init(&c->fsck_error_msgs_lock); 803 804 seqcount_init(&c->usage_lock); 805 806 sema_init(&c->io_in_flight, 128); 807 808 INIT_LIST_HEAD(&c->vfs_inodes_list); 809 mutex_init(&c->vfs_inodes_lock); 810 811 c->copy_gc_enabled = 1; 812 c->rebalance.enabled = 1; 813 c->promote_whole_extents = true; 814 815 c->journal.flush_write_time = &c->times[BCH_TIME_journal_flush_write]; 816 c->journal.noflush_write_time = &c->times[BCH_TIME_journal_noflush_write]; 817 c->journal.flush_seq_time = &c->times[BCH_TIME_journal_flush_seq]; 818 819 bch2_fs_btree_cache_init_early(&c->btree_cache); 820 821 mutex_init(&c->sectors_available_lock); 822 823 ret = percpu_init_rwsem(&c->mark_lock); 824 if (ret) 825 goto err; 826 827 mutex_lock(&c->sb_lock); 828 ret = bch2_sb_to_fs(c, sb); 829 mutex_unlock(&c->sb_lock); 830 831 if (ret) 832 goto err; 833 834 pr_uuid(&name, c->sb.user_uuid.b); 835 ret = name.allocation_failure ? -BCH_ERR_ENOMEM_fs_name_alloc : 0; 836 if (ret) 837 goto err; 838 839 strscpy(c->name, name.buf, sizeof(c->name)); 840 printbuf_exit(&name); 841 842 /* Compat: */ 843 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && 844 !BCH_SB_JOURNAL_FLUSH_DELAY(sb)) 845 SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000); 846 847 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && 848 !BCH_SB_JOURNAL_RECLAIM_DELAY(sb)) 849 SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 100); 850 851 c->opts = bch2_opts_default; 852 ret = bch2_opts_from_sb(&c->opts, sb); 853 if (ret) 854 goto err; 855 856 bch2_opts_apply(&c->opts, opts); 857 858 c->btree_key_cache_btrees |= 1U << BTREE_ID_alloc; 859 if (c->opts.inodes_use_key_cache) 860 c->btree_key_cache_btrees |= 1U << BTREE_ID_inodes; 861 c->btree_key_cache_btrees |= 1U << BTREE_ID_logged_ops; 862 863 c->block_bits = ilog2(block_sectors(c)); 864 c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c); 865 866 if (bch2_fs_init_fault("fs_alloc")) { 867 bch_err(c, "fs_alloc fault injected"); 868 ret = -EFAULT; 869 goto err; 870 } 871 872 iter_size = sizeof(struct sort_iter) + 873 (btree_blocks(c) + 1) * 2 * 874 sizeof(struct sort_iter_set); 875 876 c->inode_shard_bits = ilog2(roundup_pow_of_two(num_possible_cpus())); 877 878 if (!(c->btree_update_wq = alloc_workqueue("bcachefs", 879 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_UNBOUND, 512)) || 880 !(c->btree_io_complete_wq = alloc_workqueue("bcachefs_btree_io", 881 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) || 882 !(c->copygc_wq = alloc_workqueue("bcachefs_copygc", 883 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) || 884 !(c->btree_read_complete_wq = alloc_workqueue("bcachefs_btree_read_complete", 885 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 512)) || 886 !(c->btree_write_submit_wq = alloc_workqueue("bcachefs_btree_write_sumit", 887 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) || 888 !(c->write_ref_wq = alloc_workqueue("bcachefs_write_ref", 889 WQ_FREEZABLE, 0)) || 890 #ifndef BCH_WRITE_REF_DEBUG 891 percpu_ref_init(&c->writes, bch2_writes_disabled, 892 PERCPU_REF_INIT_DEAD, GFP_KERNEL) || 893 #endif 894 mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) || 895 bioset_init(&c->btree_bio, 1, 896 max(offsetof(struct btree_read_bio, bio), 897 offsetof(struct btree_write_bio, wbio.bio)), 898 BIOSET_NEED_BVECS) || 899 !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) || 900 !(c->usage = alloc_percpu(struct bch_fs_usage_base)) || 901 !(c->online_reserved = alloc_percpu(u64)) || 902 mempool_init_kvmalloc_pool(&c->btree_bounce_pool, 1, 903 c->opts.btree_node_size) || 904 mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048) || 905 !(c->unused_inode_hints = kcalloc(1U << c->inode_shard_bits, 906 sizeof(u64), GFP_KERNEL))) { 907 ret = -BCH_ERR_ENOMEM_fs_other_alloc; 908 goto err; 909 } 910 911 ret = bch2_fs_counters_init(c) ?: 912 bch2_fs_sb_errors_init(c) ?: 913 bch2_io_clock_init(&c->io_clock[READ]) ?: 914 bch2_io_clock_init(&c->io_clock[WRITE]) ?: 915 bch2_fs_journal_init(&c->journal) ?: 916 bch2_fs_btree_iter_init(c) ?: 917 bch2_fs_btree_cache_init(c) ?: 918 bch2_fs_btree_key_cache_init(&c->btree_key_cache) ?: 919 bch2_fs_btree_interior_update_init(c) ?: 920 bch2_fs_buckets_waiting_for_journal_init(c) ?: 921 bch2_fs_btree_write_buffer_init(c) ?: 922 bch2_fs_subvolumes_init(c) ?: 923 bch2_fs_io_read_init(c) ?: 924 bch2_fs_io_write_init(c) ?: 925 bch2_fs_nocow_locking_init(c) ?: 926 bch2_fs_encryption_init(c) ?: 927 bch2_fs_compress_init(c) ?: 928 bch2_fs_ec_init(c) ?: 929 bch2_fs_fsio_init(c) ?: 930 bch2_fs_fs_io_buffered_init(c) ?: 931 bch2_fs_fs_io_direct_init(c); 932 if (ret) 933 goto err; 934 935 for (i = 0; i < c->sb.nr_devices; i++) { 936 if (!bch2_member_exists(c->disk_sb.sb, i)) 937 continue; 938 ret = bch2_dev_alloc(c, i); 939 if (ret) 940 goto err; 941 } 942 943 bch2_journal_entry_res_resize(&c->journal, 944 &c->btree_root_journal_res, 945 BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX)); 946 bch2_journal_entry_res_resize(&c->journal, 947 &c->clock_journal_res, 948 (sizeof(struct jset_entry_clock) / sizeof(u64)) * 2); 949 950 mutex_lock(&bch_fs_list_lock); 951 ret = bch2_fs_online(c); 952 mutex_unlock(&bch_fs_list_lock); 953 954 if (ret) 955 goto err; 956 out: 957 return c; 958 err: 959 bch2_fs_free(c); 960 c = ERR_PTR(ret); 961 goto out; 962 } 963 964 noinline_for_stack 965 static void print_mount_opts(struct bch_fs *c) 966 { 967 enum bch_opt_id i; 968 struct printbuf p = PRINTBUF; 969 bool first = true; 970 971 prt_str(&p, "starting version "); 972 bch2_version_to_text(&p, c->sb.version); 973 974 if (c->opts.read_only) { 975 prt_str(&p, " opts="); 976 first = false; 977 prt_printf(&p, "ro"); 978 } 979 980 for (i = 0; i < bch2_opts_nr; i++) { 981 const struct bch_option *opt = &bch2_opt_table[i]; 982 u64 v = bch2_opt_get_by_id(&c->opts, i); 983 984 if (!(opt->flags & OPT_MOUNT)) 985 continue; 986 987 if (v == bch2_opt_get_by_id(&bch2_opts_default, i)) 988 continue; 989 990 prt_str(&p, first ? " opts=" : ","); 991 first = false; 992 bch2_opt_to_text(&p, c, c->disk_sb.sb, opt, v, OPT_SHOW_MOUNT_STYLE); 993 } 994 995 bch_info(c, "%s", p.buf); 996 printbuf_exit(&p); 997 } 998 999 int bch2_fs_start(struct bch_fs *c) 1000 { 1001 time64_t now = ktime_get_real_seconds(); 1002 int ret; 1003 1004 print_mount_opts(c); 1005 1006 down_write(&c->state_lock); 1007 1008 BUG_ON(test_bit(BCH_FS_started, &c->flags)); 1009 1010 mutex_lock(&c->sb_lock); 1011 1012 ret = bch2_sb_members_v2_init(c); 1013 if (ret) { 1014 mutex_unlock(&c->sb_lock); 1015 goto err; 1016 } 1017 1018 for_each_online_member(c, ca) 1019 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = cpu_to_le64(now); 1020 1021 struct bch_sb_field_ext *ext = 1022 bch2_sb_field_get_minsize(&c->disk_sb, ext, sizeof(*ext) / sizeof(u64)); 1023 mutex_unlock(&c->sb_lock); 1024 1025 if (!ext) { 1026 bch_err(c, "insufficient space in superblock for sb_field_ext"); 1027 ret = -BCH_ERR_ENOSPC_sb; 1028 goto err; 1029 } 1030 1031 for_each_rw_member(c, ca) 1032 bch2_dev_allocator_add(c, ca); 1033 bch2_recalc_capacity(c); 1034 1035 ret = BCH_SB_INITIALIZED(c->disk_sb.sb) 1036 ? bch2_fs_recovery(c) 1037 : bch2_fs_initialize(c); 1038 if (ret) 1039 goto err; 1040 1041 ret = bch2_opts_check_may_set(c); 1042 if (ret) 1043 goto err; 1044 1045 if (bch2_fs_init_fault("fs_start")) { 1046 bch_err(c, "fs_start fault injected"); 1047 ret = -EINVAL; 1048 goto err; 1049 } 1050 1051 set_bit(BCH_FS_started, &c->flags); 1052 1053 if (c->opts.read_only) { 1054 bch2_fs_read_only(c); 1055 } else { 1056 ret = !test_bit(BCH_FS_rw, &c->flags) 1057 ? bch2_fs_read_write(c) 1058 : bch2_fs_read_write_late(c); 1059 if (ret) 1060 goto err; 1061 } 1062 1063 ret = 0; 1064 err: 1065 if (ret) 1066 bch_err_msg(c, ret, "starting filesystem"); 1067 else 1068 bch_verbose(c, "done starting filesystem"); 1069 up_write(&c->state_lock); 1070 return ret; 1071 } 1072 1073 static int bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c) 1074 { 1075 struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx); 1076 1077 if (le16_to_cpu(sb->block_size) != block_sectors(c)) 1078 return -BCH_ERR_mismatched_block_size; 1079 1080 if (le16_to_cpu(m.bucket_size) < 1081 BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb)) 1082 return -BCH_ERR_bucket_size_too_small; 1083 1084 return 0; 1085 } 1086 1087 static int bch2_dev_in_fs(struct bch_sb_handle *fs, 1088 struct bch_sb_handle *sb, 1089 struct bch_opts *opts) 1090 { 1091 if (fs == sb) 1092 return 0; 1093 1094 if (!uuid_equal(&fs->sb->uuid, &sb->sb->uuid)) 1095 return -BCH_ERR_device_not_a_member_of_filesystem; 1096 1097 if (!bch2_member_exists(fs->sb, sb->sb->dev_idx)) 1098 return -BCH_ERR_device_has_been_removed; 1099 1100 if (fs->sb->block_size != sb->sb->block_size) 1101 return -BCH_ERR_mismatched_block_size; 1102 1103 if (le16_to_cpu(fs->sb->version) < bcachefs_metadata_version_member_seq || 1104 le16_to_cpu(sb->sb->version) < bcachefs_metadata_version_member_seq) 1105 return 0; 1106 1107 if (fs->sb->seq == sb->sb->seq && 1108 fs->sb->write_time != sb->sb->write_time) { 1109 struct printbuf buf = PRINTBUF; 1110 1111 prt_str(&buf, "Split brain detected between "); 1112 prt_bdevname(&buf, sb->bdev); 1113 prt_str(&buf, " and "); 1114 prt_bdevname(&buf, fs->bdev); 1115 prt_char(&buf, ':'); 1116 prt_newline(&buf); 1117 prt_printf(&buf, "seq=%llu but write_time different, got", le64_to_cpu(sb->sb->seq)); 1118 prt_newline(&buf); 1119 1120 prt_bdevname(&buf, fs->bdev); 1121 prt_char(&buf, ' '); 1122 bch2_prt_datetime(&buf, le64_to_cpu(fs->sb->write_time));; 1123 prt_newline(&buf); 1124 1125 prt_bdevname(&buf, sb->bdev); 1126 prt_char(&buf, ' '); 1127 bch2_prt_datetime(&buf, le64_to_cpu(sb->sb->write_time));; 1128 prt_newline(&buf); 1129 1130 if (!opts->no_splitbrain_check) 1131 prt_printf(&buf, "Not using older sb"); 1132 1133 pr_err("%s", buf.buf); 1134 printbuf_exit(&buf); 1135 1136 if (!opts->no_splitbrain_check) 1137 return -BCH_ERR_device_splitbrain; 1138 } 1139 1140 struct bch_member m = bch2_sb_member_get(fs->sb, sb->sb->dev_idx); 1141 u64 seq_from_fs = le64_to_cpu(m.seq); 1142 u64 seq_from_member = le64_to_cpu(sb->sb->seq); 1143 1144 if (seq_from_fs && seq_from_fs < seq_from_member) { 1145 struct printbuf buf = PRINTBUF; 1146 1147 prt_str(&buf, "Split brain detected between "); 1148 prt_bdevname(&buf, sb->bdev); 1149 prt_str(&buf, " and "); 1150 prt_bdevname(&buf, fs->bdev); 1151 prt_char(&buf, ':'); 1152 prt_newline(&buf); 1153 1154 prt_bdevname(&buf, fs->bdev); 1155 prt_str(&buf, " believes seq of "); 1156 prt_bdevname(&buf, sb->bdev); 1157 prt_printf(&buf, " to be %llu, but ", seq_from_fs); 1158 prt_bdevname(&buf, sb->bdev); 1159 prt_printf(&buf, " has %llu\n", seq_from_member); 1160 1161 if (!opts->no_splitbrain_check) { 1162 prt_str(&buf, "Not using "); 1163 prt_bdevname(&buf, sb->bdev); 1164 } 1165 1166 pr_err("%s", buf.buf); 1167 printbuf_exit(&buf); 1168 1169 if (!opts->no_splitbrain_check) 1170 return -BCH_ERR_device_splitbrain; 1171 } 1172 1173 return 0; 1174 } 1175 1176 /* Device startup/shutdown: */ 1177 1178 static void bch2_dev_release(struct kobject *kobj) 1179 { 1180 struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj); 1181 1182 kfree(ca); 1183 } 1184 1185 static void bch2_dev_free(struct bch_dev *ca) 1186 { 1187 cancel_work_sync(&ca->io_error_work); 1188 1189 if (ca->kobj.state_in_sysfs && 1190 ca->disk_sb.bdev) 1191 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 1192 1193 if (ca->kobj.state_in_sysfs) 1194 kobject_del(&ca->kobj); 1195 1196 kfree(ca->buckets_nouse); 1197 bch2_free_super(&ca->disk_sb); 1198 bch2_dev_allocator_background_exit(ca); 1199 bch2_dev_journal_exit(ca); 1200 1201 free_percpu(ca->io_done); 1202 bch2_dev_buckets_free(ca); 1203 free_page((unsigned long) ca->sb_read_scratch); 1204 1205 bch2_time_stats_quantiles_exit(&ca->io_latency[WRITE]); 1206 bch2_time_stats_quantiles_exit(&ca->io_latency[READ]); 1207 1208 percpu_ref_exit(&ca->io_ref); 1209 #ifndef CONFIG_BCACHEFS_DEBUG 1210 percpu_ref_exit(&ca->ref); 1211 #endif 1212 kobject_put(&ca->kobj); 1213 } 1214 1215 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca) 1216 { 1217 1218 lockdep_assert_held(&c->state_lock); 1219 1220 if (percpu_ref_is_zero(&ca->io_ref)) 1221 return; 1222 1223 __bch2_dev_read_only(c, ca); 1224 1225 reinit_completion(&ca->io_ref_completion); 1226 percpu_ref_kill(&ca->io_ref); 1227 wait_for_completion(&ca->io_ref_completion); 1228 1229 if (ca->kobj.state_in_sysfs) { 1230 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 1231 sysfs_remove_link(&ca->kobj, "block"); 1232 } 1233 1234 bch2_free_super(&ca->disk_sb); 1235 bch2_dev_journal_exit(ca); 1236 } 1237 1238 #ifndef CONFIG_BCACHEFS_DEBUG 1239 static void bch2_dev_ref_complete(struct percpu_ref *ref) 1240 { 1241 struct bch_dev *ca = container_of(ref, struct bch_dev, ref); 1242 1243 complete(&ca->ref_completion); 1244 } 1245 #endif 1246 1247 static void bch2_dev_io_ref_complete(struct percpu_ref *ref) 1248 { 1249 struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref); 1250 1251 complete(&ca->io_ref_completion); 1252 } 1253 1254 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca) 1255 { 1256 int ret; 1257 1258 if (!c->kobj.state_in_sysfs) 1259 return 0; 1260 1261 if (!ca->kobj.state_in_sysfs) { 1262 ret = kobject_add(&ca->kobj, &c->kobj, 1263 "dev-%u", ca->dev_idx); 1264 if (ret) 1265 return ret; 1266 } 1267 1268 if (ca->disk_sb.bdev) { 1269 struct kobject *block = bdev_kobj(ca->disk_sb.bdev); 1270 1271 ret = sysfs_create_link(block, &ca->kobj, "bcachefs"); 1272 if (ret) 1273 return ret; 1274 1275 ret = sysfs_create_link(&ca->kobj, block, "block"); 1276 if (ret) 1277 return ret; 1278 } 1279 1280 return 0; 1281 } 1282 1283 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c, 1284 struct bch_member *member) 1285 { 1286 struct bch_dev *ca; 1287 unsigned i; 1288 1289 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 1290 if (!ca) 1291 return NULL; 1292 1293 kobject_init(&ca->kobj, &bch2_dev_ktype); 1294 init_completion(&ca->ref_completion); 1295 init_completion(&ca->io_ref_completion); 1296 1297 init_rwsem(&ca->bucket_lock); 1298 1299 INIT_WORK(&ca->io_error_work, bch2_io_error_work); 1300 1301 bch2_time_stats_quantiles_init(&ca->io_latency[READ]); 1302 bch2_time_stats_quantiles_init(&ca->io_latency[WRITE]); 1303 1304 ca->mi = bch2_mi_to_cpu(member); 1305 1306 for (i = 0; i < ARRAY_SIZE(member->errors); i++) 1307 atomic64_set(&ca->errors[i], le64_to_cpu(member->errors[i])); 1308 1309 ca->uuid = member->uuid; 1310 1311 ca->nr_btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE, 1312 ca->mi.bucket_size / btree_sectors(c)); 1313 1314 #ifndef CONFIG_BCACHEFS_DEBUG 1315 if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete, 0, GFP_KERNEL)) 1316 goto err; 1317 #else 1318 atomic_long_set(&ca->ref, 1); 1319 #endif 1320 1321 bch2_dev_allocator_background_init(ca); 1322 1323 if (percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete, 1324 PERCPU_REF_INIT_DEAD, GFP_KERNEL) || 1325 !(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) || 1326 bch2_dev_buckets_alloc(c, ca) || 1327 !(ca->io_done = alloc_percpu(*ca->io_done))) 1328 goto err; 1329 1330 return ca; 1331 err: 1332 bch2_dev_free(ca); 1333 return NULL; 1334 } 1335 1336 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca, 1337 unsigned dev_idx) 1338 { 1339 ca->dev_idx = dev_idx; 1340 __set_bit(ca->dev_idx, ca->self.d); 1341 scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx); 1342 1343 ca->fs = c; 1344 rcu_assign_pointer(c->devs[ca->dev_idx], ca); 1345 1346 if (bch2_dev_sysfs_online(c, ca)) 1347 pr_warn("error creating sysfs objects"); 1348 } 1349 1350 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx) 1351 { 1352 struct bch_member member = bch2_sb_member_get(c->disk_sb.sb, dev_idx); 1353 struct bch_dev *ca = NULL; 1354 int ret = 0; 1355 1356 if (bch2_fs_init_fault("dev_alloc")) 1357 goto err; 1358 1359 ca = __bch2_dev_alloc(c, &member); 1360 if (!ca) 1361 goto err; 1362 1363 ca->fs = c; 1364 1365 bch2_dev_attach(c, ca, dev_idx); 1366 return ret; 1367 err: 1368 if (ca) 1369 bch2_dev_free(ca); 1370 return -BCH_ERR_ENOMEM_dev_alloc; 1371 } 1372 1373 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb) 1374 { 1375 unsigned ret; 1376 1377 if (bch2_dev_is_online(ca)) { 1378 bch_err(ca, "already have device online in slot %u", 1379 sb->sb->dev_idx); 1380 return -BCH_ERR_device_already_online; 1381 } 1382 1383 if (get_capacity(sb->bdev->bd_disk) < 1384 ca->mi.bucket_size * ca->mi.nbuckets) { 1385 bch_err(ca, "cannot online: device too small"); 1386 return -BCH_ERR_device_size_too_small; 1387 } 1388 1389 BUG_ON(!percpu_ref_is_zero(&ca->io_ref)); 1390 1391 ret = bch2_dev_journal_init(ca, sb->sb); 1392 if (ret) 1393 return ret; 1394 1395 /* Commit: */ 1396 ca->disk_sb = *sb; 1397 memset(sb, 0, sizeof(*sb)); 1398 1399 ca->dev = ca->disk_sb.bdev->bd_dev; 1400 1401 percpu_ref_reinit(&ca->io_ref); 1402 1403 return 0; 1404 } 1405 1406 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb) 1407 { 1408 struct bch_dev *ca; 1409 int ret; 1410 1411 lockdep_assert_held(&c->state_lock); 1412 1413 if (le64_to_cpu(sb->sb->seq) > 1414 le64_to_cpu(c->disk_sb.sb->seq)) 1415 bch2_sb_to_fs(c, sb->sb); 1416 1417 BUG_ON(!bch2_dev_exists(c, sb->sb->dev_idx)); 1418 1419 ca = bch2_dev_locked(c, sb->sb->dev_idx); 1420 1421 ret = __bch2_dev_attach_bdev(ca, sb); 1422 if (ret) 1423 return ret; 1424 1425 bch2_dev_sysfs_online(c, ca); 1426 1427 struct printbuf name = PRINTBUF; 1428 prt_bdevname(&name, ca->disk_sb.bdev); 1429 1430 if (c->sb.nr_devices == 1) 1431 strscpy(c->name, name.buf, sizeof(c->name)); 1432 strscpy(ca->name, name.buf, sizeof(ca->name)); 1433 1434 printbuf_exit(&name); 1435 1436 rebalance_wakeup(c); 1437 return 0; 1438 } 1439 1440 /* Device management: */ 1441 1442 /* 1443 * Note: this function is also used by the error paths - when a particular 1444 * device sees an error, we call it to determine whether we can just set the 1445 * device RO, or - if this function returns false - we'll set the whole 1446 * filesystem RO: 1447 * 1448 * XXX: maybe we should be more explicit about whether we're changing state 1449 * because we got an error or what have you? 1450 */ 1451 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca, 1452 enum bch_member_state new_state, int flags) 1453 { 1454 struct bch_devs_mask new_online_devs; 1455 int nr_rw = 0, required; 1456 1457 lockdep_assert_held(&c->state_lock); 1458 1459 switch (new_state) { 1460 case BCH_MEMBER_STATE_rw: 1461 return true; 1462 case BCH_MEMBER_STATE_ro: 1463 if (ca->mi.state != BCH_MEMBER_STATE_rw) 1464 return true; 1465 1466 /* do we have enough devices to write to? */ 1467 for_each_member_device(c, ca2) 1468 if (ca2 != ca) 1469 nr_rw += ca2->mi.state == BCH_MEMBER_STATE_rw; 1470 1471 required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED) 1472 ? c->opts.metadata_replicas 1473 : metadata_replicas_required(c), 1474 !(flags & BCH_FORCE_IF_DATA_DEGRADED) 1475 ? c->opts.data_replicas 1476 : data_replicas_required(c)); 1477 1478 return nr_rw >= required; 1479 case BCH_MEMBER_STATE_failed: 1480 case BCH_MEMBER_STATE_spare: 1481 if (ca->mi.state != BCH_MEMBER_STATE_rw && 1482 ca->mi.state != BCH_MEMBER_STATE_ro) 1483 return true; 1484 1485 /* do we have enough devices to read from? */ 1486 new_online_devs = bch2_online_devs(c); 1487 __clear_bit(ca->dev_idx, new_online_devs.d); 1488 1489 return bch2_have_enough_devs(c, new_online_devs, flags, false); 1490 default: 1491 BUG(); 1492 } 1493 } 1494 1495 static bool bch2_fs_may_start(struct bch_fs *c) 1496 { 1497 struct bch_dev *ca; 1498 unsigned i, flags = 0; 1499 1500 if (c->opts.very_degraded) 1501 flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST; 1502 1503 if (c->opts.degraded) 1504 flags |= BCH_FORCE_IF_DEGRADED; 1505 1506 if (!c->opts.degraded && 1507 !c->opts.very_degraded) { 1508 mutex_lock(&c->sb_lock); 1509 1510 for (i = 0; i < c->disk_sb.sb->nr_devices; i++) { 1511 if (!bch2_member_exists(c->disk_sb.sb, i)) 1512 continue; 1513 1514 ca = bch2_dev_locked(c, i); 1515 1516 if (!bch2_dev_is_online(ca) && 1517 (ca->mi.state == BCH_MEMBER_STATE_rw || 1518 ca->mi.state == BCH_MEMBER_STATE_ro)) { 1519 mutex_unlock(&c->sb_lock); 1520 return false; 1521 } 1522 } 1523 mutex_unlock(&c->sb_lock); 1524 } 1525 1526 return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true); 1527 } 1528 1529 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca) 1530 { 1531 /* 1532 * The allocator thread itself allocates btree nodes, so stop it first: 1533 */ 1534 bch2_dev_allocator_remove(c, ca); 1535 bch2_recalc_capacity(c); 1536 bch2_dev_journal_stop(&c->journal, ca); 1537 } 1538 1539 static void __bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca) 1540 { 1541 lockdep_assert_held(&c->state_lock); 1542 1543 BUG_ON(ca->mi.state != BCH_MEMBER_STATE_rw); 1544 1545 bch2_dev_allocator_add(c, ca); 1546 bch2_recalc_capacity(c); 1547 bch2_dev_do_discards(ca); 1548 } 1549 1550 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, 1551 enum bch_member_state new_state, int flags) 1552 { 1553 struct bch_member *m; 1554 int ret = 0; 1555 1556 if (ca->mi.state == new_state) 1557 return 0; 1558 1559 if (!bch2_dev_state_allowed(c, ca, new_state, flags)) 1560 return -BCH_ERR_device_state_not_allowed; 1561 1562 if (new_state != BCH_MEMBER_STATE_rw) 1563 __bch2_dev_read_only(c, ca); 1564 1565 bch_notice(ca, "%s", bch2_member_states[new_state]); 1566 1567 mutex_lock(&c->sb_lock); 1568 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); 1569 SET_BCH_MEMBER_STATE(m, new_state); 1570 bch2_write_super(c); 1571 mutex_unlock(&c->sb_lock); 1572 1573 if (new_state == BCH_MEMBER_STATE_rw) 1574 __bch2_dev_read_write(c, ca); 1575 1576 rebalance_wakeup(c); 1577 1578 return ret; 1579 } 1580 1581 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, 1582 enum bch_member_state new_state, int flags) 1583 { 1584 int ret; 1585 1586 down_write(&c->state_lock); 1587 ret = __bch2_dev_set_state(c, ca, new_state, flags); 1588 up_write(&c->state_lock); 1589 1590 return ret; 1591 } 1592 1593 /* Device add/removal: */ 1594 1595 static int bch2_dev_remove_alloc(struct bch_fs *c, struct bch_dev *ca) 1596 { 1597 struct bpos start = POS(ca->dev_idx, 0); 1598 struct bpos end = POS(ca->dev_idx, U64_MAX); 1599 int ret; 1600 1601 /* 1602 * We clear the LRU and need_discard btrees first so that we don't race 1603 * with bch2_do_invalidates() and bch2_do_discards() 1604 */ 1605 ret = bch2_btree_delete_range(c, BTREE_ID_lru, start, end, 1606 BTREE_TRIGGER_norun, NULL) ?: 1607 bch2_btree_delete_range(c, BTREE_ID_need_discard, start, end, 1608 BTREE_TRIGGER_norun, NULL) ?: 1609 bch2_btree_delete_range(c, BTREE_ID_freespace, start, end, 1610 BTREE_TRIGGER_norun, NULL) ?: 1611 bch2_btree_delete_range(c, BTREE_ID_backpointers, start, end, 1612 BTREE_TRIGGER_norun, NULL) ?: 1613 bch2_btree_delete_range(c, BTREE_ID_alloc, start, end, 1614 BTREE_TRIGGER_norun, NULL) ?: 1615 bch2_btree_delete_range(c, BTREE_ID_bucket_gens, start, end, 1616 BTREE_TRIGGER_norun, NULL) ?: 1617 bch2_dev_usage_remove(c, ca->dev_idx); 1618 bch_err_msg(c, ret, "removing dev alloc info"); 1619 return ret; 1620 } 1621 1622 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags) 1623 { 1624 struct bch_member *m; 1625 unsigned dev_idx = ca->dev_idx, data; 1626 int ret; 1627 1628 down_write(&c->state_lock); 1629 1630 /* 1631 * We consume a reference to ca->ref, regardless of whether we succeed 1632 * or fail: 1633 */ 1634 bch2_dev_put(ca); 1635 1636 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { 1637 bch_err(ca, "Cannot remove without losing data"); 1638 ret = -BCH_ERR_device_state_not_allowed; 1639 goto err; 1640 } 1641 1642 __bch2_dev_read_only(c, ca); 1643 1644 ret = bch2_dev_data_drop(c, ca->dev_idx, flags); 1645 bch_err_msg(ca, ret, "bch2_dev_data_drop()"); 1646 if (ret) 1647 goto err; 1648 1649 ret = bch2_dev_remove_alloc(c, ca); 1650 bch_err_msg(ca, ret, "bch2_dev_remove_alloc()"); 1651 if (ret) 1652 goto err; 1653 1654 /* 1655 * We need to flush the entire journal to get rid of keys that reference 1656 * the device being removed before removing the superblock entry 1657 */ 1658 bch2_journal_flush_all_pins(&c->journal); 1659 1660 /* 1661 * this is really just needed for the bch2_replicas_gc_(start|end) 1662 * calls, and could be cleaned up: 1663 */ 1664 ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx); 1665 bch_err_msg(ca, ret, "bch2_journal_flush_device_pins()"); 1666 if (ret) 1667 goto err; 1668 1669 ret = bch2_journal_flush(&c->journal); 1670 bch_err_msg(ca, ret, "bch2_journal_flush()"); 1671 if (ret) 1672 goto err; 1673 1674 ret = bch2_replicas_gc2(c); 1675 bch_err_msg(ca, ret, "bch2_replicas_gc2()"); 1676 if (ret) 1677 goto err; 1678 1679 data = bch2_dev_has_data(c, ca); 1680 if (data) { 1681 struct printbuf data_has = PRINTBUF; 1682 1683 prt_bitflags(&data_has, __bch2_data_types, data); 1684 bch_err(ca, "Remove failed, still has data (%s)", data_has.buf); 1685 printbuf_exit(&data_has); 1686 ret = -EBUSY; 1687 goto err; 1688 } 1689 1690 __bch2_dev_offline(c, ca); 1691 1692 mutex_lock(&c->sb_lock); 1693 rcu_assign_pointer(c->devs[ca->dev_idx], NULL); 1694 mutex_unlock(&c->sb_lock); 1695 1696 #ifndef CONFIG_BCACHEFS_DEBUG 1697 percpu_ref_kill(&ca->ref); 1698 #else 1699 ca->dying = true; 1700 bch2_dev_put(ca); 1701 #endif 1702 wait_for_completion(&ca->ref_completion); 1703 1704 bch2_dev_free(ca); 1705 1706 /* 1707 * Free this device's slot in the bch_member array - all pointers to 1708 * this device must be gone: 1709 */ 1710 mutex_lock(&c->sb_lock); 1711 m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx); 1712 memset(&m->uuid, 0, sizeof(m->uuid)); 1713 1714 bch2_write_super(c); 1715 1716 mutex_unlock(&c->sb_lock); 1717 up_write(&c->state_lock); 1718 return 0; 1719 err: 1720 if (ca->mi.state == BCH_MEMBER_STATE_rw && 1721 !percpu_ref_is_zero(&ca->io_ref)) 1722 __bch2_dev_read_write(c, ca); 1723 up_write(&c->state_lock); 1724 return ret; 1725 } 1726 1727 /* Add new device to running filesystem: */ 1728 int bch2_dev_add(struct bch_fs *c, const char *path) 1729 { 1730 struct bch_opts opts = bch2_opts_empty(); 1731 struct bch_sb_handle sb; 1732 struct bch_dev *ca = NULL; 1733 struct bch_sb_field_members_v2 *mi; 1734 struct bch_member dev_mi; 1735 unsigned dev_idx, nr_devices, u64s; 1736 struct printbuf errbuf = PRINTBUF; 1737 struct printbuf label = PRINTBUF; 1738 int ret; 1739 1740 ret = bch2_read_super(path, &opts, &sb); 1741 bch_err_msg(c, ret, "reading super"); 1742 if (ret) 1743 goto err; 1744 1745 dev_mi = bch2_sb_member_get(sb.sb, sb.sb->dev_idx); 1746 1747 if (BCH_MEMBER_GROUP(&dev_mi)) { 1748 bch2_disk_path_to_text_sb(&label, sb.sb, BCH_MEMBER_GROUP(&dev_mi) - 1); 1749 if (label.allocation_failure) { 1750 ret = -ENOMEM; 1751 goto err; 1752 } 1753 } 1754 1755 ret = bch2_dev_may_add(sb.sb, c); 1756 if (ret) 1757 goto err; 1758 1759 ca = __bch2_dev_alloc(c, &dev_mi); 1760 if (!ca) { 1761 ret = -ENOMEM; 1762 goto err; 1763 } 1764 1765 ret = __bch2_dev_attach_bdev(ca, &sb); 1766 if (ret) 1767 goto err; 1768 1769 ret = bch2_dev_journal_alloc(ca, true); 1770 bch_err_msg(c, ret, "allocating journal"); 1771 if (ret) 1772 goto err; 1773 1774 down_write(&c->state_lock); 1775 mutex_lock(&c->sb_lock); 1776 1777 ret = bch2_sb_from_fs(c, ca); 1778 bch_err_msg(c, ret, "setting up new superblock"); 1779 if (ret) 1780 goto err_unlock; 1781 1782 if (dynamic_fault("bcachefs:add:no_slot")) 1783 goto no_slot; 1784 1785 if (c->sb.nr_devices < BCH_SB_MEMBERS_MAX) { 1786 dev_idx = c->sb.nr_devices; 1787 goto have_slot; 1788 } 1789 1790 int best = -1; 1791 u64 best_last_mount = 0; 1792 for (dev_idx = 0; dev_idx < BCH_SB_MEMBERS_MAX; dev_idx++) { 1793 struct bch_member m = bch2_sb_member_get(c->disk_sb.sb, dev_idx); 1794 if (bch2_member_alive(&m)) 1795 continue; 1796 1797 u64 last_mount = le64_to_cpu(m.last_mount); 1798 if (best < 0 || last_mount < best_last_mount) { 1799 best = dev_idx; 1800 best_last_mount = last_mount; 1801 } 1802 } 1803 if (best >= 0) { 1804 dev_idx = best; 1805 goto have_slot; 1806 } 1807 no_slot: 1808 ret = -BCH_ERR_ENOSPC_sb_members; 1809 bch_err_msg(c, ret, "setting up new superblock"); 1810 goto err_unlock; 1811 1812 have_slot: 1813 nr_devices = max_t(unsigned, dev_idx + 1, c->sb.nr_devices); 1814 1815 mi = bch2_sb_field_get(c->disk_sb.sb, members_v2); 1816 u64s = DIV_ROUND_UP(sizeof(struct bch_sb_field_members_v2) + 1817 le16_to_cpu(mi->member_bytes) * nr_devices, sizeof(u64)); 1818 1819 mi = bch2_sb_field_resize(&c->disk_sb, members_v2, u64s); 1820 if (!mi) { 1821 ret = -BCH_ERR_ENOSPC_sb_members; 1822 bch_err_msg(c, ret, "setting up new superblock"); 1823 goto err_unlock; 1824 } 1825 struct bch_member *m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx); 1826 1827 /* success: */ 1828 1829 *m = dev_mi; 1830 m->last_mount = cpu_to_le64(ktime_get_real_seconds()); 1831 c->disk_sb.sb->nr_devices = nr_devices; 1832 1833 ca->disk_sb.sb->dev_idx = dev_idx; 1834 bch2_dev_attach(c, ca, dev_idx); 1835 1836 if (BCH_MEMBER_GROUP(&dev_mi)) { 1837 ret = __bch2_dev_group_set(c, ca, label.buf); 1838 bch_err_msg(c, ret, "creating new label"); 1839 if (ret) 1840 goto err_unlock; 1841 } 1842 1843 bch2_write_super(c); 1844 mutex_unlock(&c->sb_lock); 1845 1846 ret = bch2_dev_usage_init(ca, false); 1847 if (ret) 1848 goto err_late; 1849 1850 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional); 1851 bch_err_msg(ca, ret, "marking new superblock"); 1852 if (ret) 1853 goto err_late; 1854 1855 ret = bch2_fs_freespace_init(c); 1856 bch_err_msg(ca, ret, "initializing free space"); 1857 if (ret) 1858 goto err_late; 1859 1860 ca->new_fs_bucket_idx = 0; 1861 1862 if (ca->mi.state == BCH_MEMBER_STATE_rw) 1863 __bch2_dev_read_write(c, ca); 1864 1865 up_write(&c->state_lock); 1866 return 0; 1867 1868 err_unlock: 1869 mutex_unlock(&c->sb_lock); 1870 up_write(&c->state_lock); 1871 err: 1872 if (ca) 1873 bch2_dev_free(ca); 1874 bch2_free_super(&sb); 1875 printbuf_exit(&label); 1876 printbuf_exit(&errbuf); 1877 bch_err_fn(c, ret); 1878 return ret; 1879 err_late: 1880 up_write(&c->state_lock); 1881 ca = NULL; 1882 goto err; 1883 } 1884 1885 /* Hot add existing device to running filesystem: */ 1886 int bch2_dev_online(struct bch_fs *c, const char *path) 1887 { 1888 struct bch_opts opts = bch2_opts_empty(); 1889 struct bch_sb_handle sb = { NULL }; 1890 struct bch_dev *ca; 1891 unsigned dev_idx; 1892 int ret; 1893 1894 down_write(&c->state_lock); 1895 1896 ret = bch2_read_super(path, &opts, &sb); 1897 if (ret) { 1898 up_write(&c->state_lock); 1899 return ret; 1900 } 1901 1902 dev_idx = sb.sb->dev_idx; 1903 1904 ret = bch2_dev_in_fs(&c->disk_sb, &sb, &c->opts); 1905 bch_err_msg(c, ret, "bringing %s online", path); 1906 if (ret) 1907 goto err; 1908 1909 ret = bch2_dev_attach_bdev(c, &sb); 1910 if (ret) 1911 goto err; 1912 1913 ca = bch2_dev_locked(c, dev_idx); 1914 1915 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional); 1916 bch_err_msg(c, ret, "bringing %s online: error from bch2_trans_mark_dev_sb", path); 1917 if (ret) 1918 goto err; 1919 1920 if (ca->mi.state == BCH_MEMBER_STATE_rw) 1921 __bch2_dev_read_write(c, ca); 1922 1923 if (!ca->mi.freespace_initialized) { 1924 ret = bch2_dev_freespace_init(c, ca, 0, ca->mi.nbuckets); 1925 bch_err_msg(ca, ret, "initializing free space"); 1926 if (ret) 1927 goto err; 1928 } 1929 1930 if (!ca->journal.nr) { 1931 ret = bch2_dev_journal_alloc(ca, false); 1932 bch_err_msg(ca, ret, "allocating journal"); 1933 if (ret) 1934 goto err; 1935 } 1936 1937 mutex_lock(&c->sb_lock); 1938 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = 1939 cpu_to_le64(ktime_get_real_seconds()); 1940 bch2_write_super(c); 1941 mutex_unlock(&c->sb_lock); 1942 1943 up_write(&c->state_lock); 1944 return 0; 1945 err: 1946 up_write(&c->state_lock); 1947 bch2_free_super(&sb); 1948 return ret; 1949 } 1950 1951 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags) 1952 { 1953 down_write(&c->state_lock); 1954 1955 if (!bch2_dev_is_online(ca)) { 1956 bch_err(ca, "Already offline"); 1957 up_write(&c->state_lock); 1958 return 0; 1959 } 1960 1961 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { 1962 bch_err(ca, "Cannot offline required disk"); 1963 up_write(&c->state_lock); 1964 return -BCH_ERR_device_state_not_allowed; 1965 } 1966 1967 __bch2_dev_offline(c, ca); 1968 1969 up_write(&c->state_lock); 1970 return 0; 1971 } 1972 1973 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets) 1974 { 1975 struct bch_member *m; 1976 u64 old_nbuckets; 1977 int ret = 0; 1978 1979 down_write(&c->state_lock); 1980 old_nbuckets = ca->mi.nbuckets; 1981 1982 if (nbuckets < ca->mi.nbuckets) { 1983 bch_err(ca, "Cannot shrink yet"); 1984 ret = -EINVAL; 1985 goto err; 1986 } 1987 1988 if (nbuckets > BCH_MEMBER_NBUCKETS_MAX) { 1989 bch_err(ca, "New device size too big (%llu greater than max %u)", 1990 nbuckets, BCH_MEMBER_NBUCKETS_MAX); 1991 ret = -BCH_ERR_device_size_too_big; 1992 goto err; 1993 } 1994 1995 if (bch2_dev_is_online(ca) && 1996 get_capacity(ca->disk_sb.bdev->bd_disk) < 1997 ca->mi.bucket_size * nbuckets) { 1998 bch_err(ca, "New size larger than device"); 1999 ret = -BCH_ERR_device_size_too_small; 2000 goto err; 2001 } 2002 2003 ret = bch2_dev_buckets_resize(c, ca, nbuckets); 2004 bch_err_msg(ca, ret, "resizing buckets"); 2005 if (ret) 2006 goto err; 2007 2008 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional); 2009 if (ret) 2010 goto err; 2011 2012 mutex_lock(&c->sb_lock); 2013 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); 2014 m->nbuckets = cpu_to_le64(nbuckets); 2015 2016 bch2_write_super(c); 2017 mutex_unlock(&c->sb_lock); 2018 2019 if (ca->mi.freespace_initialized) { 2020 struct disk_accounting_pos acc = { 2021 .type = BCH_DISK_ACCOUNTING_dev_data_type, 2022 .dev_data_type.dev = ca->dev_idx, 2023 .dev_data_type.data_type = BCH_DATA_free, 2024 }; 2025 u64 v[3] = { nbuckets - old_nbuckets, 0, 0 }; 2026 2027 ret = bch2_trans_do(ca->fs, NULL, NULL, 0, 2028 bch2_disk_accounting_mod(trans, &acc, v, ARRAY_SIZE(v), false)) ?: 2029 bch2_dev_freespace_init(c, ca, old_nbuckets, nbuckets); 2030 if (ret) 2031 goto err; 2032 } 2033 2034 bch2_recalc_capacity(c); 2035 err: 2036 up_write(&c->state_lock); 2037 return ret; 2038 } 2039 2040 /* return with ref on ca->ref: */ 2041 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *name) 2042 { 2043 if (!strncmp(name, "/dev/", strlen("/dev/"))) 2044 name += strlen("/dev/"); 2045 2046 for_each_member_device(c, ca) 2047 if (!strcmp(name, ca->name)) 2048 return ca; 2049 return ERR_PTR(-BCH_ERR_ENOENT_dev_not_found); 2050 } 2051 2052 /* Filesystem open: */ 2053 2054 static inline int sb_cmp(struct bch_sb *l, struct bch_sb *r) 2055 { 2056 return cmp_int(le64_to_cpu(l->seq), le64_to_cpu(r->seq)) ?: 2057 cmp_int(le64_to_cpu(l->write_time), le64_to_cpu(r->write_time)); 2058 } 2059 2060 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices, 2061 struct bch_opts opts) 2062 { 2063 DARRAY(struct bch_sb_handle) sbs = { 0 }; 2064 struct bch_fs *c = NULL; 2065 struct bch_sb_handle *best = NULL; 2066 struct printbuf errbuf = PRINTBUF; 2067 int ret = 0; 2068 2069 if (!try_module_get(THIS_MODULE)) 2070 return ERR_PTR(-ENODEV); 2071 2072 if (!nr_devices) { 2073 ret = -EINVAL; 2074 goto err; 2075 } 2076 2077 ret = darray_make_room(&sbs, nr_devices); 2078 if (ret) 2079 goto err; 2080 2081 for (unsigned i = 0; i < nr_devices; i++) { 2082 struct bch_sb_handle sb = { NULL }; 2083 2084 ret = bch2_read_super(devices[i], &opts, &sb); 2085 if (ret) 2086 goto err; 2087 2088 BUG_ON(darray_push(&sbs, sb)); 2089 } 2090 2091 if (opts.nochanges && !opts.read_only) { 2092 ret = -BCH_ERR_erofs_nochanges; 2093 goto err_print; 2094 } 2095 2096 darray_for_each(sbs, sb) 2097 if (!best || sb_cmp(sb->sb, best->sb) > 0) 2098 best = sb; 2099 2100 darray_for_each_reverse(sbs, sb) { 2101 ret = bch2_dev_in_fs(best, sb, &opts); 2102 2103 if (ret == -BCH_ERR_device_has_been_removed || 2104 ret == -BCH_ERR_device_splitbrain) { 2105 bch2_free_super(sb); 2106 darray_remove_item(&sbs, sb); 2107 best -= best > sb; 2108 ret = 0; 2109 continue; 2110 } 2111 2112 if (ret) 2113 goto err_print; 2114 } 2115 2116 c = bch2_fs_alloc(best->sb, opts); 2117 ret = PTR_ERR_OR_ZERO(c); 2118 if (ret) 2119 goto err; 2120 2121 down_write(&c->state_lock); 2122 darray_for_each(sbs, sb) { 2123 ret = bch2_dev_attach_bdev(c, sb); 2124 if (ret) { 2125 up_write(&c->state_lock); 2126 goto err; 2127 } 2128 } 2129 up_write(&c->state_lock); 2130 2131 if (!bch2_fs_may_start(c)) { 2132 ret = -BCH_ERR_insufficient_devices_to_start; 2133 goto err_print; 2134 } 2135 2136 if (!c->opts.nostart) { 2137 ret = bch2_fs_start(c); 2138 if (ret) 2139 goto err; 2140 } 2141 out: 2142 darray_for_each(sbs, sb) 2143 bch2_free_super(sb); 2144 darray_exit(&sbs); 2145 printbuf_exit(&errbuf); 2146 module_put(THIS_MODULE); 2147 return c; 2148 err_print: 2149 pr_err("bch_fs_open err opening %s: %s", 2150 devices[0], bch2_err_str(ret)); 2151 err: 2152 if (!IS_ERR_OR_NULL(c)) 2153 bch2_fs_stop(c); 2154 c = ERR_PTR(ret); 2155 goto out; 2156 } 2157 2158 /* Global interfaces/init */ 2159 2160 static void bcachefs_exit(void) 2161 { 2162 bch2_debug_exit(); 2163 bch2_vfs_exit(); 2164 bch2_chardev_exit(); 2165 bch2_btree_key_cache_exit(); 2166 if (bcachefs_kset) 2167 kset_unregister(bcachefs_kset); 2168 } 2169 2170 static int __init bcachefs_init(void) 2171 { 2172 bch2_bkey_pack_test(); 2173 2174 if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) || 2175 bch2_btree_key_cache_init() || 2176 bch2_chardev_init() || 2177 bch2_vfs_init() || 2178 bch2_debug_init()) 2179 goto err; 2180 2181 return 0; 2182 err: 2183 bcachefs_exit(); 2184 return -ENOMEM; 2185 } 2186 2187 #define BCH_DEBUG_PARAM(name, description) \ 2188 bool bch2_##name; \ 2189 module_param_named(name, bch2_##name, bool, 0644); \ 2190 MODULE_PARM_DESC(name, description); 2191 BCH_DEBUG_PARAMS() 2192 #undef BCH_DEBUG_PARAM 2193 2194 __maybe_unused 2195 static unsigned bch2_metadata_version = bcachefs_metadata_version_current; 2196 module_param_named(version, bch2_metadata_version, uint, 0400); 2197 2198 module_exit(bcachefs_exit); 2199 module_init(bcachefs_init); 2200