1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcachefs setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcachefs.h" 11 #include "alloc_background.h" 12 #include "alloc_foreground.h" 13 #include "bkey_sort.h" 14 #include "btree_cache.h" 15 #include "btree_gc.h" 16 #include "btree_journal_iter.h" 17 #include "btree_key_cache.h" 18 #include "btree_node_scan.h" 19 #include "btree_update_interior.h" 20 #include "btree_io.h" 21 #include "btree_write_buffer.h" 22 #include "buckets_waiting_for_journal.h" 23 #include "chardev.h" 24 #include "checksum.h" 25 #include "clock.h" 26 #include "compress.h" 27 #include "debug.h" 28 #include "disk_groups.h" 29 #include "ec.h" 30 #include "errcode.h" 31 #include "error.h" 32 #include "fs.h" 33 #include "fs-io.h" 34 #include "fs-io-buffered.h" 35 #include "fs-io-direct.h" 36 #include "fsck.h" 37 #include "inode.h" 38 #include "io_read.h" 39 #include "io_write.h" 40 #include "journal.h" 41 #include "journal_reclaim.h" 42 #include "journal_seq_blacklist.h" 43 #include "move.h" 44 #include "migrate.h" 45 #include "movinggc.h" 46 #include "nocow_locking.h" 47 #include "quota.h" 48 #include "rebalance.h" 49 #include "recovery.h" 50 #include "replicas.h" 51 #include "sb-clean.h" 52 #include "sb-counters.h" 53 #include "sb-errors.h" 54 #include "sb-members.h" 55 #include "snapshot.h" 56 #include "subvolume.h" 57 #include "super.h" 58 #include "super-io.h" 59 #include "sysfs.h" 60 #include "thread_with_file.h" 61 #include "trace.h" 62 63 #include <linux/backing-dev.h> 64 #include <linux/blkdev.h> 65 #include <linux/debugfs.h> 66 #include <linux/device.h> 67 #include <linux/idr.h> 68 #include <linux/module.h> 69 #include <linux/percpu.h> 70 #include <linux/random.h> 71 #include <linux/sysfs.h> 72 #include <crypto/hash.h> 73 74 MODULE_LICENSE("GPL"); 75 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 76 MODULE_DESCRIPTION("bcachefs filesystem"); 77 MODULE_SOFTDEP("pre: crc32c"); 78 MODULE_SOFTDEP("pre: crc64"); 79 MODULE_SOFTDEP("pre: sha256"); 80 MODULE_SOFTDEP("pre: chacha20"); 81 MODULE_SOFTDEP("pre: poly1305"); 82 MODULE_SOFTDEP("pre: xxhash"); 83 84 const char * const bch2_fs_flag_strs[] = { 85 #define x(n) #n, 86 BCH_FS_FLAGS() 87 #undef x 88 NULL 89 }; 90 91 __printf(2, 0) 92 static void bch2_print_maybe_redirect(struct stdio_redirect *stdio, const char *fmt, va_list args) 93 { 94 #ifdef __KERNEL__ 95 if (unlikely(stdio)) { 96 if (fmt[0] == KERN_SOH[0]) 97 fmt += 2; 98 99 bch2_stdio_redirect_vprintf(stdio, true, fmt, args); 100 return; 101 } 102 #endif 103 vprintk(fmt, args); 104 } 105 106 void bch2_print_opts(struct bch_opts *opts, const char *fmt, ...) 107 { 108 struct stdio_redirect *stdio = (void *)(unsigned long)opts->stdio; 109 110 va_list args; 111 va_start(args, fmt); 112 bch2_print_maybe_redirect(stdio, fmt, args); 113 va_end(args); 114 } 115 116 void __bch2_print(struct bch_fs *c, const char *fmt, ...) 117 { 118 struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c); 119 120 va_list args; 121 va_start(args, fmt); 122 bch2_print_maybe_redirect(stdio, fmt, args); 123 va_end(args); 124 } 125 126 #define KTYPE(type) \ 127 static const struct attribute_group type ## _group = { \ 128 .attrs = type ## _files \ 129 }; \ 130 \ 131 static const struct attribute_group *type ## _groups[] = { \ 132 &type ## _group, \ 133 NULL \ 134 }; \ 135 \ 136 static const struct kobj_type type ## _ktype = { \ 137 .release = type ## _release, \ 138 .sysfs_ops = &type ## _sysfs_ops, \ 139 .default_groups = type ## _groups \ 140 } 141 142 static void bch2_fs_release(struct kobject *); 143 static void bch2_dev_release(struct kobject *); 144 static void bch2_fs_counters_release(struct kobject *k) 145 { 146 } 147 148 static void bch2_fs_internal_release(struct kobject *k) 149 { 150 } 151 152 static void bch2_fs_opts_dir_release(struct kobject *k) 153 { 154 } 155 156 static void bch2_fs_time_stats_release(struct kobject *k) 157 { 158 } 159 160 KTYPE(bch2_fs); 161 KTYPE(bch2_fs_counters); 162 KTYPE(bch2_fs_internal); 163 KTYPE(bch2_fs_opts_dir); 164 KTYPE(bch2_fs_time_stats); 165 KTYPE(bch2_dev); 166 167 static struct kset *bcachefs_kset; 168 static LIST_HEAD(bch_fs_list); 169 static DEFINE_MUTEX(bch_fs_list_lock); 170 171 DECLARE_WAIT_QUEUE_HEAD(bch2_read_only_wait); 172 173 static void bch2_dev_free(struct bch_dev *); 174 static int bch2_dev_alloc(struct bch_fs *, unsigned); 175 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *); 176 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *); 177 178 struct bch_fs *bch2_dev_to_fs(dev_t dev) 179 { 180 struct bch_fs *c; 181 182 mutex_lock(&bch_fs_list_lock); 183 rcu_read_lock(); 184 185 list_for_each_entry(c, &bch_fs_list, list) 186 for_each_member_device_rcu(c, ca, NULL) 187 if (ca->disk_sb.bdev && ca->disk_sb.bdev->bd_dev == dev) { 188 closure_get(&c->cl); 189 goto found; 190 } 191 c = NULL; 192 found: 193 rcu_read_unlock(); 194 mutex_unlock(&bch_fs_list_lock); 195 196 return c; 197 } 198 199 static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid) 200 { 201 struct bch_fs *c; 202 203 lockdep_assert_held(&bch_fs_list_lock); 204 205 list_for_each_entry(c, &bch_fs_list, list) 206 if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid))) 207 return c; 208 209 return NULL; 210 } 211 212 struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid) 213 { 214 struct bch_fs *c; 215 216 mutex_lock(&bch_fs_list_lock); 217 c = __bch2_uuid_to_fs(uuid); 218 if (c) 219 closure_get(&c->cl); 220 mutex_unlock(&bch_fs_list_lock); 221 222 return c; 223 } 224 225 static void bch2_dev_usage_journal_reserve(struct bch_fs *c) 226 { 227 unsigned nr = 0, u64s = 228 ((sizeof(struct jset_entry_dev_usage) + 229 sizeof(struct jset_entry_dev_usage_type) * BCH_DATA_NR)) / 230 sizeof(u64); 231 232 rcu_read_lock(); 233 for_each_member_device_rcu(c, ca, NULL) 234 nr++; 235 rcu_read_unlock(); 236 237 bch2_journal_entry_res_resize(&c->journal, 238 &c->dev_usage_journal_res, u64s * nr); 239 } 240 241 /* Filesystem RO/RW: */ 242 243 /* 244 * For startup/shutdown of RW stuff, the dependencies are: 245 * 246 * - foreground writes depend on copygc and rebalance (to free up space) 247 * 248 * - copygc and rebalance depend on mark and sweep gc (they actually probably 249 * don't because they either reserve ahead of time or don't block if 250 * allocations fail, but allocations can require mark and sweep gc to run 251 * because of generation number wraparound) 252 * 253 * - all of the above depends on the allocator threads 254 * 255 * - allocator depends on the journal (when it rewrites prios and gens) 256 */ 257 258 static void __bch2_fs_read_only(struct bch_fs *c) 259 { 260 unsigned clean_passes = 0; 261 u64 seq = 0; 262 263 bch2_fs_ec_stop(c); 264 bch2_open_buckets_stop(c, NULL, true); 265 bch2_rebalance_stop(c); 266 bch2_copygc_stop(c); 267 bch2_gc_thread_stop(c); 268 bch2_fs_ec_flush(c); 269 270 bch_verbose(c, "flushing journal and stopping allocators, journal seq %llu", 271 journal_cur_seq(&c->journal)); 272 273 do { 274 clean_passes++; 275 276 if (bch2_btree_interior_updates_flush(c) || 277 bch2_journal_flush_all_pins(&c->journal) || 278 bch2_btree_flush_all_writes(c) || 279 seq != atomic64_read(&c->journal.seq)) { 280 seq = atomic64_read(&c->journal.seq); 281 clean_passes = 0; 282 } 283 } while (clean_passes < 2); 284 285 bch_verbose(c, "flushing journal and stopping allocators complete, journal seq %llu", 286 journal_cur_seq(&c->journal)); 287 288 if (test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags) && 289 !test_bit(BCH_FS_emergency_ro, &c->flags)) 290 set_bit(BCH_FS_clean_shutdown, &c->flags); 291 292 bch2_fs_journal_stop(&c->journal); 293 294 bch_info(c, "%sshutdown complete, journal seq %llu", 295 test_bit(BCH_FS_clean_shutdown, &c->flags) ? "" : "un", 296 c->journal.seq_ondisk); 297 298 /* 299 * After stopping journal: 300 */ 301 for_each_member_device(c, ca) 302 bch2_dev_allocator_remove(c, ca); 303 } 304 305 #ifndef BCH_WRITE_REF_DEBUG 306 static void bch2_writes_disabled(struct percpu_ref *writes) 307 { 308 struct bch_fs *c = container_of(writes, struct bch_fs, writes); 309 310 set_bit(BCH_FS_write_disable_complete, &c->flags); 311 wake_up(&bch2_read_only_wait); 312 } 313 #endif 314 315 void bch2_fs_read_only(struct bch_fs *c) 316 { 317 if (!test_bit(BCH_FS_rw, &c->flags)) { 318 bch2_journal_reclaim_stop(&c->journal); 319 return; 320 } 321 322 BUG_ON(test_bit(BCH_FS_write_disable_complete, &c->flags)); 323 324 bch_verbose(c, "going read-only"); 325 326 /* 327 * Block new foreground-end write operations from starting - any new 328 * writes will return -EROFS: 329 */ 330 set_bit(BCH_FS_going_ro, &c->flags); 331 #ifndef BCH_WRITE_REF_DEBUG 332 percpu_ref_kill(&c->writes); 333 #else 334 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) 335 bch2_write_ref_put(c, i); 336 #endif 337 338 /* 339 * If we're not doing an emergency shutdown, we want to wait on 340 * outstanding writes to complete so they don't see spurious errors due 341 * to shutting down the allocator: 342 * 343 * If we are doing an emergency shutdown outstanding writes may 344 * hang until we shutdown the allocator so we don't want to wait 345 * on outstanding writes before shutting everything down - but 346 * we do need to wait on them before returning and signalling 347 * that going RO is complete: 348 */ 349 wait_event(bch2_read_only_wait, 350 test_bit(BCH_FS_write_disable_complete, &c->flags) || 351 test_bit(BCH_FS_emergency_ro, &c->flags)); 352 353 bool writes_disabled = test_bit(BCH_FS_write_disable_complete, &c->flags); 354 if (writes_disabled) 355 bch_verbose(c, "finished waiting for writes to stop"); 356 357 __bch2_fs_read_only(c); 358 359 wait_event(bch2_read_only_wait, 360 test_bit(BCH_FS_write_disable_complete, &c->flags)); 361 362 if (!writes_disabled) 363 bch_verbose(c, "finished waiting for writes to stop"); 364 365 clear_bit(BCH_FS_write_disable_complete, &c->flags); 366 clear_bit(BCH_FS_going_ro, &c->flags); 367 clear_bit(BCH_FS_rw, &c->flags); 368 369 if (!bch2_journal_error(&c->journal) && 370 !test_bit(BCH_FS_error, &c->flags) && 371 !test_bit(BCH_FS_emergency_ro, &c->flags) && 372 test_bit(BCH_FS_started, &c->flags) && 373 test_bit(BCH_FS_clean_shutdown, &c->flags) && 374 c->recovery_pass_done >= BCH_RECOVERY_PASS_journal_replay) { 375 BUG_ON(c->journal.last_empty_seq != journal_cur_seq(&c->journal)); 376 BUG_ON(atomic_read(&c->btree_cache.dirty)); 377 BUG_ON(atomic_long_read(&c->btree_key_cache.nr_dirty)); 378 BUG_ON(c->btree_write_buffer.inc.keys.nr); 379 BUG_ON(c->btree_write_buffer.flushing.keys.nr); 380 381 bch_verbose(c, "marking filesystem clean"); 382 bch2_fs_mark_clean(c); 383 } else { 384 bch_verbose(c, "done going read-only, filesystem not clean"); 385 } 386 } 387 388 static void bch2_fs_read_only_work(struct work_struct *work) 389 { 390 struct bch_fs *c = 391 container_of(work, struct bch_fs, read_only_work); 392 393 down_write(&c->state_lock); 394 bch2_fs_read_only(c); 395 up_write(&c->state_lock); 396 } 397 398 static void bch2_fs_read_only_async(struct bch_fs *c) 399 { 400 queue_work(system_long_wq, &c->read_only_work); 401 } 402 403 bool bch2_fs_emergency_read_only(struct bch_fs *c) 404 { 405 bool ret = !test_and_set_bit(BCH_FS_emergency_ro, &c->flags); 406 407 bch2_journal_halt(&c->journal); 408 bch2_fs_read_only_async(c); 409 410 wake_up(&bch2_read_only_wait); 411 return ret; 412 } 413 414 static int bch2_fs_read_write_late(struct bch_fs *c) 415 { 416 int ret; 417 418 /* 419 * Data move operations can't run until after check_snapshots has 420 * completed, and bch2_snapshot_is_ancestor() is available. 421 * 422 * Ideally we'd start copygc/rebalance earlier instead of waiting for 423 * all of recovery/fsck to complete: 424 */ 425 ret = bch2_copygc_start(c); 426 if (ret) { 427 bch_err(c, "error starting copygc thread"); 428 return ret; 429 } 430 431 ret = bch2_rebalance_start(c); 432 if (ret) { 433 bch_err(c, "error starting rebalance thread"); 434 return ret; 435 } 436 437 return 0; 438 } 439 440 static int __bch2_fs_read_write(struct bch_fs *c, bool early) 441 { 442 int ret; 443 444 if (test_bit(BCH_FS_initial_gc_unfixed, &c->flags)) { 445 bch_err(c, "cannot go rw, unfixed btree errors"); 446 return -BCH_ERR_erofs_unfixed_errors; 447 } 448 449 if (test_bit(BCH_FS_rw, &c->flags)) 450 return 0; 451 452 bch_info(c, "going read-write"); 453 454 ret = bch2_sb_members_v2_init(c); 455 if (ret) 456 goto err; 457 458 ret = bch2_fs_mark_dirty(c); 459 if (ret) 460 goto err; 461 462 clear_bit(BCH_FS_clean_shutdown, &c->flags); 463 464 /* 465 * First journal write must be a flush write: after a clean shutdown we 466 * don't read the journal, so the first journal write may end up 467 * overwriting whatever was there previously, and there must always be 468 * at least one non-flush write in the journal or recovery will fail: 469 */ 470 set_bit(JOURNAL_NEED_FLUSH_WRITE, &c->journal.flags); 471 472 for_each_rw_member(c, ca) 473 bch2_dev_allocator_add(c, ca); 474 bch2_recalc_capacity(c); 475 476 set_bit(BCH_FS_rw, &c->flags); 477 set_bit(BCH_FS_was_rw, &c->flags); 478 479 #ifndef BCH_WRITE_REF_DEBUG 480 percpu_ref_reinit(&c->writes); 481 #else 482 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) { 483 BUG_ON(atomic_long_read(&c->writes[i])); 484 atomic_long_inc(&c->writes[i]); 485 } 486 #endif 487 488 ret = bch2_gc_thread_start(c); 489 if (ret) { 490 bch_err(c, "error starting gc thread"); 491 return ret; 492 } 493 494 ret = bch2_journal_reclaim_start(&c->journal); 495 if (ret) 496 goto err; 497 498 if (!early) { 499 ret = bch2_fs_read_write_late(c); 500 if (ret) 501 goto err; 502 } 503 504 bch2_do_discards(c); 505 bch2_do_invalidates(c); 506 bch2_do_stripe_deletes(c); 507 bch2_do_pending_node_rewrites(c); 508 return 0; 509 err: 510 if (test_bit(BCH_FS_rw, &c->flags)) 511 bch2_fs_read_only(c); 512 else 513 __bch2_fs_read_only(c); 514 return ret; 515 } 516 517 int bch2_fs_read_write(struct bch_fs *c) 518 { 519 if (c->opts.recovery_pass_last && 520 c->opts.recovery_pass_last < BCH_RECOVERY_PASS_journal_replay) 521 return -BCH_ERR_erofs_norecovery; 522 523 if (c->opts.nochanges) 524 return -BCH_ERR_erofs_nochanges; 525 526 return __bch2_fs_read_write(c, false); 527 } 528 529 int bch2_fs_read_write_early(struct bch_fs *c) 530 { 531 lockdep_assert_held(&c->state_lock); 532 533 return __bch2_fs_read_write(c, true); 534 } 535 536 /* Filesystem startup/shutdown: */ 537 538 static void __bch2_fs_free(struct bch_fs *c) 539 { 540 unsigned i; 541 542 for (i = 0; i < BCH_TIME_STAT_NR; i++) 543 bch2_time_stats_exit(&c->times[i]); 544 545 bch2_find_btree_nodes_exit(&c->found_btree_nodes); 546 bch2_free_pending_node_rewrites(c); 547 bch2_fs_allocator_background_exit(c); 548 bch2_fs_sb_errors_exit(c); 549 bch2_fs_counters_exit(c); 550 bch2_fs_snapshots_exit(c); 551 bch2_fs_quota_exit(c); 552 bch2_fs_fs_io_direct_exit(c); 553 bch2_fs_fs_io_buffered_exit(c); 554 bch2_fs_fsio_exit(c); 555 bch2_fs_ec_exit(c); 556 bch2_fs_encryption_exit(c); 557 bch2_fs_nocow_locking_exit(c); 558 bch2_fs_io_write_exit(c); 559 bch2_fs_io_read_exit(c); 560 bch2_fs_buckets_waiting_for_journal_exit(c); 561 bch2_fs_btree_interior_update_exit(c); 562 bch2_fs_btree_iter_exit(c); 563 bch2_fs_btree_key_cache_exit(&c->btree_key_cache); 564 bch2_fs_btree_cache_exit(c); 565 bch2_fs_replicas_exit(c); 566 bch2_fs_journal_exit(&c->journal); 567 bch2_io_clock_exit(&c->io_clock[WRITE]); 568 bch2_io_clock_exit(&c->io_clock[READ]); 569 bch2_fs_compress_exit(c); 570 bch2_journal_keys_put_initial(c); 571 bch2_find_btree_nodes_exit(&c->found_btree_nodes); 572 BUG_ON(atomic_read(&c->journal_keys.ref)); 573 bch2_fs_btree_write_buffer_exit(c); 574 percpu_free_rwsem(&c->mark_lock); 575 free_percpu(c->online_reserved); 576 577 darray_exit(&c->btree_roots_extra); 578 free_percpu(c->pcpu); 579 mempool_exit(&c->large_bkey_pool); 580 mempool_exit(&c->btree_bounce_pool); 581 bioset_exit(&c->btree_bio); 582 mempool_exit(&c->fill_iter); 583 #ifndef BCH_WRITE_REF_DEBUG 584 percpu_ref_exit(&c->writes); 585 #endif 586 kfree(rcu_dereference_protected(c->disk_groups, 1)); 587 kfree(c->journal_seq_blacklist_table); 588 kfree(c->unused_inode_hints); 589 590 if (c->write_ref_wq) 591 destroy_workqueue(c->write_ref_wq); 592 if (c->io_complete_wq) 593 destroy_workqueue(c->io_complete_wq); 594 if (c->copygc_wq) 595 destroy_workqueue(c->copygc_wq); 596 if (c->btree_io_complete_wq) 597 destroy_workqueue(c->btree_io_complete_wq); 598 if (c->btree_update_wq) 599 destroy_workqueue(c->btree_update_wq); 600 601 bch2_free_super(&c->disk_sb); 602 kvfree(c); 603 module_put(THIS_MODULE); 604 } 605 606 static void bch2_fs_release(struct kobject *kobj) 607 { 608 struct bch_fs *c = container_of(kobj, struct bch_fs, kobj); 609 610 __bch2_fs_free(c); 611 } 612 613 void __bch2_fs_stop(struct bch_fs *c) 614 { 615 bch_verbose(c, "shutting down"); 616 617 set_bit(BCH_FS_stopping, &c->flags); 618 619 cancel_work_sync(&c->journal_seq_blacklist_gc_work); 620 621 down_write(&c->state_lock); 622 bch2_fs_read_only(c); 623 up_write(&c->state_lock); 624 625 for_each_member_device(c, ca) 626 if (ca->kobj.state_in_sysfs && 627 ca->disk_sb.bdev) 628 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 629 630 if (c->kobj.state_in_sysfs) 631 kobject_del(&c->kobj); 632 633 bch2_fs_debug_exit(c); 634 bch2_fs_chardev_exit(c); 635 636 bch2_ro_ref_put(c); 637 wait_event(c->ro_ref_wait, !refcount_read(&c->ro_ref)); 638 639 kobject_put(&c->counters_kobj); 640 kobject_put(&c->time_stats); 641 kobject_put(&c->opts_dir); 642 kobject_put(&c->internal); 643 644 /* btree prefetch might have kicked off reads in the background: */ 645 bch2_btree_flush_all_reads(c); 646 647 for_each_member_device(c, ca) 648 cancel_work_sync(&ca->io_error_work); 649 650 cancel_work_sync(&c->read_only_work); 651 } 652 653 void bch2_fs_free(struct bch_fs *c) 654 { 655 unsigned i; 656 657 mutex_lock(&bch_fs_list_lock); 658 list_del(&c->list); 659 mutex_unlock(&bch_fs_list_lock); 660 661 closure_sync(&c->cl); 662 closure_debug_destroy(&c->cl); 663 664 for (i = 0; i < c->sb.nr_devices; i++) { 665 struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true); 666 667 if (ca) { 668 bch2_free_super(&ca->disk_sb); 669 bch2_dev_free(ca); 670 } 671 } 672 673 bch_verbose(c, "shutdown complete"); 674 675 kobject_put(&c->kobj); 676 } 677 678 void bch2_fs_stop(struct bch_fs *c) 679 { 680 __bch2_fs_stop(c); 681 bch2_fs_free(c); 682 } 683 684 static int bch2_fs_online(struct bch_fs *c) 685 { 686 int ret = 0; 687 688 lockdep_assert_held(&bch_fs_list_lock); 689 690 if (__bch2_uuid_to_fs(c->sb.uuid)) { 691 bch_err(c, "filesystem UUID already open"); 692 return -EINVAL; 693 } 694 695 ret = bch2_fs_chardev_init(c); 696 if (ret) { 697 bch_err(c, "error creating character device"); 698 return ret; 699 } 700 701 bch2_fs_debug_init(c); 702 703 ret = kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ?: 704 kobject_add(&c->internal, &c->kobj, "internal") ?: 705 kobject_add(&c->opts_dir, &c->kobj, "options") ?: 706 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT 707 kobject_add(&c->time_stats, &c->kobj, "time_stats") ?: 708 #endif 709 kobject_add(&c->counters_kobj, &c->kobj, "counters") ?: 710 bch2_opts_create_sysfs_files(&c->opts_dir); 711 if (ret) { 712 bch_err(c, "error creating sysfs objects"); 713 return ret; 714 } 715 716 down_write(&c->state_lock); 717 718 for_each_member_device(c, ca) { 719 ret = bch2_dev_sysfs_online(c, ca); 720 if (ret) { 721 bch_err(c, "error creating sysfs objects"); 722 percpu_ref_put(&ca->ref); 723 goto err; 724 } 725 } 726 727 BUG_ON(!list_empty(&c->list)); 728 list_add(&c->list, &bch_fs_list); 729 err: 730 up_write(&c->state_lock); 731 return ret; 732 } 733 734 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts) 735 { 736 struct bch_fs *c; 737 struct printbuf name = PRINTBUF; 738 unsigned i, iter_size; 739 int ret = 0; 740 741 c = kvmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO); 742 if (!c) { 743 c = ERR_PTR(-BCH_ERR_ENOMEM_fs_alloc); 744 goto out; 745 } 746 747 c->stdio = (void *)(unsigned long) opts.stdio; 748 749 __module_get(THIS_MODULE); 750 751 closure_init(&c->cl, NULL); 752 753 c->kobj.kset = bcachefs_kset; 754 kobject_init(&c->kobj, &bch2_fs_ktype); 755 kobject_init(&c->internal, &bch2_fs_internal_ktype); 756 kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype); 757 kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype); 758 kobject_init(&c->counters_kobj, &bch2_fs_counters_ktype); 759 760 c->minor = -1; 761 c->disk_sb.fs_sb = true; 762 763 init_rwsem(&c->state_lock); 764 mutex_init(&c->sb_lock); 765 mutex_init(&c->replicas_gc_lock); 766 mutex_init(&c->btree_root_lock); 767 INIT_WORK(&c->read_only_work, bch2_fs_read_only_work); 768 769 refcount_set(&c->ro_ref, 1); 770 init_waitqueue_head(&c->ro_ref_wait); 771 sema_init(&c->online_fsck_mutex, 1); 772 773 init_rwsem(&c->gc_lock); 774 mutex_init(&c->gc_gens_lock); 775 atomic_set(&c->journal_keys.ref, 1); 776 c->journal_keys.initial_ref_held = true; 777 778 for (i = 0; i < BCH_TIME_STAT_NR; i++) 779 bch2_time_stats_init(&c->times[i]); 780 781 bch2_fs_copygc_init(c); 782 bch2_fs_btree_key_cache_init_early(&c->btree_key_cache); 783 bch2_fs_btree_iter_init_early(c); 784 bch2_fs_btree_interior_update_init_early(c); 785 bch2_fs_allocator_background_init(c); 786 bch2_fs_allocator_foreground_init(c); 787 bch2_fs_rebalance_init(c); 788 bch2_fs_quota_init(c); 789 bch2_fs_ec_init_early(c); 790 bch2_fs_move_init(c); 791 bch2_fs_sb_errors_init_early(c); 792 793 INIT_LIST_HEAD(&c->list); 794 795 mutex_init(&c->usage_scratch_lock); 796 797 mutex_init(&c->bio_bounce_pages_lock); 798 mutex_init(&c->snapshot_table_lock); 799 init_rwsem(&c->snapshot_create_lock); 800 801 spin_lock_init(&c->btree_write_error_lock); 802 803 INIT_WORK(&c->journal_seq_blacklist_gc_work, 804 bch2_blacklist_entries_gc); 805 806 INIT_LIST_HEAD(&c->journal_iters); 807 808 INIT_LIST_HEAD(&c->fsck_error_msgs); 809 mutex_init(&c->fsck_error_msgs_lock); 810 811 seqcount_init(&c->gc_pos_lock); 812 813 seqcount_init(&c->usage_lock); 814 815 sema_init(&c->io_in_flight, 128); 816 817 INIT_LIST_HEAD(&c->vfs_inodes_list); 818 mutex_init(&c->vfs_inodes_lock); 819 820 c->copy_gc_enabled = 1; 821 c->rebalance.enabled = 1; 822 c->promote_whole_extents = true; 823 824 c->journal.flush_write_time = &c->times[BCH_TIME_journal_flush_write]; 825 c->journal.noflush_write_time = &c->times[BCH_TIME_journal_noflush_write]; 826 c->journal.flush_seq_time = &c->times[BCH_TIME_journal_flush_seq]; 827 828 bch2_fs_btree_cache_init_early(&c->btree_cache); 829 830 mutex_init(&c->sectors_available_lock); 831 832 ret = percpu_init_rwsem(&c->mark_lock); 833 if (ret) 834 goto err; 835 836 mutex_lock(&c->sb_lock); 837 ret = bch2_sb_to_fs(c, sb); 838 mutex_unlock(&c->sb_lock); 839 840 if (ret) 841 goto err; 842 843 pr_uuid(&name, c->sb.user_uuid.b); 844 ret = name.allocation_failure ? -BCH_ERR_ENOMEM_fs_name_alloc : 0; 845 if (ret) 846 goto err; 847 848 strscpy(c->name, name.buf, sizeof(c->name)); 849 printbuf_exit(&name); 850 851 /* Compat: */ 852 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && 853 !BCH_SB_JOURNAL_FLUSH_DELAY(sb)) 854 SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000); 855 856 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && 857 !BCH_SB_JOURNAL_RECLAIM_DELAY(sb)) 858 SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 100); 859 860 c->opts = bch2_opts_default; 861 ret = bch2_opts_from_sb(&c->opts, sb); 862 if (ret) 863 goto err; 864 865 bch2_opts_apply(&c->opts, opts); 866 867 c->btree_key_cache_btrees |= 1U << BTREE_ID_alloc; 868 if (c->opts.inodes_use_key_cache) 869 c->btree_key_cache_btrees |= 1U << BTREE_ID_inodes; 870 c->btree_key_cache_btrees |= 1U << BTREE_ID_logged_ops; 871 872 c->block_bits = ilog2(block_sectors(c)); 873 c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c); 874 875 if (bch2_fs_init_fault("fs_alloc")) { 876 bch_err(c, "fs_alloc fault injected"); 877 ret = -EFAULT; 878 goto err; 879 } 880 881 iter_size = sizeof(struct sort_iter) + 882 (btree_blocks(c) + 1) * 2 * 883 sizeof(struct sort_iter_set); 884 885 c->inode_shard_bits = ilog2(roundup_pow_of_two(num_possible_cpus())); 886 887 if (!(c->btree_update_wq = alloc_workqueue("bcachefs", 888 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_UNBOUND, 512)) || 889 !(c->btree_io_complete_wq = alloc_workqueue("bcachefs_btree_io", 890 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) || 891 !(c->copygc_wq = alloc_workqueue("bcachefs_copygc", 892 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) || 893 !(c->io_complete_wq = alloc_workqueue("bcachefs_io", 894 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 512)) || 895 !(c->write_ref_wq = alloc_workqueue("bcachefs_write_ref", 896 WQ_FREEZABLE, 0)) || 897 #ifndef BCH_WRITE_REF_DEBUG 898 percpu_ref_init(&c->writes, bch2_writes_disabled, 899 PERCPU_REF_INIT_DEAD, GFP_KERNEL) || 900 #endif 901 mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) || 902 bioset_init(&c->btree_bio, 1, 903 max(offsetof(struct btree_read_bio, bio), 904 offsetof(struct btree_write_bio, wbio.bio)), 905 BIOSET_NEED_BVECS) || 906 !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) || 907 !(c->online_reserved = alloc_percpu(u64)) || 908 mempool_init_kvmalloc_pool(&c->btree_bounce_pool, 1, 909 c->opts.btree_node_size) || 910 mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048) || 911 !(c->unused_inode_hints = kcalloc(1U << c->inode_shard_bits, 912 sizeof(u64), GFP_KERNEL))) { 913 ret = -BCH_ERR_ENOMEM_fs_other_alloc; 914 goto err; 915 } 916 917 ret = bch2_fs_counters_init(c) ?: 918 bch2_fs_sb_errors_init(c) ?: 919 bch2_io_clock_init(&c->io_clock[READ]) ?: 920 bch2_io_clock_init(&c->io_clock[WRITE]) ?: 921 bch2_fs_journal_init(&c->journal) ?: 922 bch2_fs_replicas_init(c) ?: 923 bch2_fs_btree_cache_init(c) ?: 924 bch2_fs_btree_key_cache_init(&c->btree_key_cache) ?: 925 bch2_fs_btree_iter_init(c) ?: 926 bch2_fs_btree_interior_update_init(c) ?: 927 bch2_fs_buckets_waiting_for_journal_init(c) ?: 928 bch2_fs_btree_write_buffer_init(c) ?: 929 bch2_fs_subvolumes_init(c) ?: 930 bch2_fs_io_read_init(c) ?: 931 bch2_fs_io_write_init(c) ?: 932 bch2_fs_nocow_locking_init(c) ?: 933 bch2_fs_encryption_init(c) ?: 934 bch2_fs_compress_init(c) ?: 935 bch2_fs_ec_init(c) ?: 936 bch2_fs_fsio_init(c) ?: 937 bch2_fs_fs_io_buffered_init(c) ?: 938 bch2_fs_fs_io_direct_init(c); 939 if (ret) 940 goto err; 941 942 for (i = 0; i < c->sb.nr_devices; i++) 943 if (bch2_dev_exists(c->disk_sb.sb, i) && 944 bch2_dev_alloc(c, i)) { 945 ret = -EEXIST; 946 goto err; 947 } 948 949 bch2_journal_entry_res_resize(&c->journal, 950 &c->btree_root_journal_res, 951 BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX)); 952 bch2_dev_usage_journal_reserve(c); 953 bch2_journal_entry_res_resize(&c->journal, 954 &c->clock_journal_res, 955 (sizeof(struct jset_entry_clock) / sizeof(u64)) * 2); 956 957 mutex_lock(&bch_fs_list_lock); 958 ret = bch2_fs_online(c); 959 mutex_unlock(&bch_fs_list_lock); 960 961 if (ret) 962 goto err; 963 out: 964 return c; 965 err: 966 bch2_fs_free(c); 967 c = ERR_PTR(ret); 968 goto out; 969 } 970 971 noinline_for_stack 972 static void print_mount_opts(struct bch_fs *c) 973 { 974 enum bch_opt_id i; 975 struct printbuf p = PRINTBUF; 976 bool first = true; 977 978 prt_str(&p, "mounting version "); 979 bch2_version_to_text(&p, c->sb.version); 980 981 if (c->opts.read_only) { 982 prt_str(&p, " opts="); 983 first = false; 984 prt_printf(&p, "ro"); 985 } 986 987 for (i = 0; i < bch2_opts_nr; i++) { 988 const struct bch_option *opt = &bch2_opt_table[i]; 989 u64 v = bch2_opt_get_by_id(&c->opts, i); 990 991 if (!(opt->flags & OPT_MOUNT)) 992 continue; 993 994 if (v == bch2_opt_get_by_id(&bch2_opts_default, i)) 995 continue; 996 997 prt_str(&p, first ? " opts=" : ","); 998 first = false; 999 bch2_opt_to_text(&p, c, c->disk_sb.sb, opt, v, OPT_SHOW_MOUNT_STYLE); 1000 } 1001 1002 bch_info(c, "%s", p.buf); 1003 printbuf_exit(&p); 1004 } 1005 1006 int bch2_fs_start(struct bch_fs *c) 1007 { 1008 time64_t now = ktime_get_real_seconds(); 1009 int ret; 1010 1011 print_mount_opts(c); 1012 1013 down_write(&c->state_lock); 1014 1015 BUG_ON(test_bit(BCH_FS_started, &c->flags)); 1016 1017 mutex_lock(&c->sb_lock); 1018 1019 ret = bch2_sb_members_v2_init(c); 1020 if (ret) { 1021 mutex_unlock(&c->sb_lock); 1022 goto err; 1023 } 1024 1025 for_each_online_member(c, ca) 1026 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = cpu_to_le64(now); 1027 1028 struct bch_sb_field_ext *ext = 1029 bch2_sb_field_get_minsize(&c->disk_sb, ext, sizeof(*ext) / sizeof(u64)); 1030 mutex_unlock(&c->sb_lock); 1031 1032 if (!ext) { 1033 bch_err(c, "insufficient space in superblock for sb_field_ext"); 1034 ret = -BCH_ERR_ENOSPC_sb; 1035 goto err; 1036 } 1037 1038 for_each_rw_member(c, ca) 1039 bch2_dev_allocator_add(c, ca); 1040 bch2_recalc_capacity(c); 1041 1042 ret = BCH_SB_INITIALIZED(c->disk_sb.sb) 1043 ? bch2_fs_recovery(c) 1044 : bch2_fs_initialize(c); 1045 if (ret) 1046 goto err; 1047 1048 ret = bch2_opts_check_may_set(c); 1049 if (ret) 1050 goto err; 1051 1052 if (bch2_fs_init_fault("fs_start")) { 1053 bch_err(c, "fs_start fault injected"); 1054 ret = -EINVAL; 1055 goto err; 1056 } 1057 1058 set_bit(BCH_FS_started, &c->flags); 1059 1060 if (c->opts.read_only) { 1061 bch2_fs_read_only(c); 1062 } else { 1063 ret = !test_bit(BCH_FS_rw, &c->flags) 1064 ? bch2_fs_read_write(c) 1065 : bch2_fs_read_write_late(c); 1066 if (ret) 1067 goto err; 1068 } 1069 1070 ret = 0; 1071 err: 1072 if (ret) 1073 bch_err_msg(c, ret, "starting filesystem"); 1074 else 1075 bch_verbose(c, "done starting filesystem"); 1076 up_write(&c->state_lock); 1077 return ret; 1078 } 1079 1080 static int bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c) 1081 { 1082 struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx); 1083 1084 if (le16_to_cpu(sb->block_size) != block_sectors(c)) 1085 return -BCH_ERR_mismatched_block_size; 1086 1087 if (le16_to_cpu(m.bucket_size) < 1088 BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb)) 1089 return -BCH_ERR_bucket_size_too_small; 1090 1091 return 0; 1092 } 1093 1094 static int bch2_dev_in_fs(struct bch_sb_handle *fs, 1095 struct bch_sb_handle *sb, 1096 struct bch_opts *opts) 1097 { 1098 if (fs == sb) 1099 return 0; 1100 1101 if (!uuid_equal(&fs->sb->uuid, &sb->sb->uuid)) 1102 return -BCH_ERR_device_not_a_member_of_filesystem; 1103 1104 if (!bch2_dev_exists(fs->sb, sb->sb->dev_idx)) 1105 return -BCH_ERR_device_has_been_removed; 1106 1107 if (fs->sb->block_size != sb->sb->block_size) 1108 return -BCH_ERR_mismatched_block_size; 1109 1110 if (le16_to_cpu(fs->sb->version) < bcachefs_metadata_version_member_seq || 1111 le16_to_cpu(sb->sb->version) < bcachefs_metadata_version_member_seq) 1112 return 0; 1113 1114 if (fs->sb->seq == sb->sb->seq && 1115 fs->sb->write_time != sb->sb->write_time) { 1116 struct printbuf buf = PRINTBUF; 1117 1118 prt_str(&buf, "Split brain detected between "); 1119 prt_bdevname(&buf, sb->bdev); 1120 prt_str(&buf, " and "); 1121 prt_bdevname(&buf, fs->bdev); 1122 prt_char(&buf, ':'); 1123 prt_newline(&buf); 1124 prt_printf(&buf, "seq=%llu but write_time different, got", le64_to_cpu(sb->sb->seq)); 1125 prt_newline(&buf); 1126 1127 prt_bdevname(&buf, fs->bdev); 1128 prt_char(&buf, ' '); 1129 bch2_prt_datetime(&buf, le64_to_cpu(fs->sb->write_time));; 1130 prt_newline(&buf); 1131 1132 prt_bdevname(&buf, sb->bdev); 1133 prt_char(&buf, ' '); 1134 bch2_prt_datetime(&buf, le64_to_cpu(sb->sb->write_time));; 1135 prt_newline(&buf); 1136 1137 if (!opts->no_splitbrain_check) 1138 prt_printf(&buf, "Not using older sb"); 1139 1140 pr_err("%s", buf.buf); 1141 printbuf_exit(&buf); 1142 1143 if (!opts->no_splitbrain_check) 1144 return -BCH_ERR_device_splitbrain; 1145 } 1146 1147 struct bch_member m = bch2_sb_member_get(fs->sb, sb->sb->dev_idx); 1148 u64 seq_from_fs = le64_to_cpu(m.seq); 1149 u64 seq_from_member = le64_to_cpu(sb->sb->seq); 1150 1151 if (seq_from_fs && seq_from_fs < seq_from_member) { 1152 struct printbuf buf = PRINTBUF; 1153 1154 prt_str(&buf, "Split brain detected between "); 1155 prt_bdevname(&buf, sb->bdev); 1156 prt_str(&buf, " and "); 1157 prt_bdevname(&buf, fs->bdev); 1158 prt_char(&buf, ':'); 1159 prt_newline(&buf); 1160 1161 prt_bdevname(&buf, fs->bdev); 1162 prt_str(&buf, " believes seq of "); 1163 prt_bdevname(&buf, sb->bdev); 1164 prt_printf(&buf, " to be %llu, but ", seq_from_fs); 1165 prt_bdevname(&buf, sb->bdev); 1166 prt_printf(&buf, " has %llu\n", seq_from_member); 1167 1168 if (!opts->no_splitbrain_check) { 1169 prt_str(&buf, "Not using "); 1170 prt_bdevname(&buf, sb->bdev); 1171 } 1172 1173 pr_err("%s", buf.buf); 1174 printbuf_exit(&buf); 1175 1176 if (!opts->no_splitbrain_check) 1177 return -BCH_ERR_device_splitbrain; 1178 } 1179 1180 return 0; 1181 } 1182 1183 /* Device startup/shutdown: */ 1184 1185 static void bch2_dev_release(struct kobject *kobj) 1186 { 1187 struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj); 1188 1189 kfree(ca); 1190 } 1191 1192 static void bch2_dev_free(struct bch_dev *ca) 1193 { 1194 cancel_work_sync(&ca->io_error_work); 1195 1196 if (ca->kobj.state_in_sysfs && 1197 ca->disk_sb.bdev) 1198 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 1199 1200 if (ca->kobj.state_in_sysfs) 1201 kobject_del(&ca->kobj); 1202 1203 bch2_free_super(&ca->disk_sb); 1204 bch2_dev_journal_exit(ca); 1205 1206 free_percpu(ca->io_done); 1207 bioset_exit(&ca->replica_set); 1208 bch2_dev_buckets_free(ca); 1209 free_page((unsigned long) ca->sb_read_scratch); 1210 1211 bch2_time_stats_quantiles_exit(&ca->io_latency[WRITE]); 1212 bch2_time_stats_quantiles_exit(&ca->io_latency[READ]); 1213 1214 percpu_ref_exit(&ca->io_ref); 1215 percpu_ref_exit(&ca->ref); 1216 kobject_put(&ca->kobj); 1217 } 1218 1219 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca) 1220 { 1221 1222 lockdep_assert_held(&c->state_lock); 1223 1224 if (percpu_ref_is_zero(&ca->io_ref)) 1225 return; 1226 1227 __bch2_dev_read_only(c, ca); 1228 1229 reinit_completion(&ca->io_ref_completion); 1230 percpu_ref_kill(&ca->io_ref); 1231 wait_for_completion(&ca->io_ref_completion); 1232 1233 if (ca->kobj.state_in_sysfs) { 1234 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 1235 sysfs_remove_link(&ca->kobj, "block"); 1236 } 1237 1238 bch2_free_super(&ca->disk_sb); 1239 bch2_dev_journal_exit(ca); 1240 } 1241 1242 static void bch2_dev_ref_complete(struct percpu_ref *ref) 1243 { 1244 struct bch_dev *ca = container_of(ref, struct bch_dev, ref); 1245 1246 complete(&ca->ref_completion); 1247 } 1248 1249 static void bch2_dev_io_ref_complete(struct percpu_ref *ref) 1250 { 1251 struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref); 1252 1253 complete(&ca->io_ref_completion); 1254 } 1255 1256 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca) 1257 { 1258 int ret; 1259 1260 if (!c->kobj.state_in_sysfs) 1261 return 0; 1262 1263 if (!ca->kobj.state_in_sysfs) { 1264 ret = kobject_add(&ca->kobj, &c->kobj, 1265 "dev-%u", ca->dev_idx); 1266 if (ret) 1267 return ret; 1268 } 1269 1270 if (ca->disk_sb.bdev) { 1271 struct kobject *block = bdev_kobj(ca->disk_sb.bdev); 1272 1273 ret = sysfs_create_link(block, &ca->kobj, "bcachefs"); 1274 if (ret) 1275 return ret; 1276 1277 ret = sysfs_create_link(&ca->kobj, block, "block"); 1278 if (ret) 1279 return ret; 1280 } 1281 1282 return 0; 1283 } 1284 1285 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c, 1286 struct bch_member *member) 1287 { 1288 struct bch_dev *ca; 1289 unsigned i; 1290 1291 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 1292 if (!ca) 1293 return NULL; 1294 1295 kobject_init(&ca->kobj, &bch2_dev_ktype); 1296 init_completion(&ca->ref_completion); 1297 init_completion(&ca->io_ref_completion); 1298 1299 init_rwsem(&ca->bucket_lock); 1300 1301 INIT_WORK(&ca->io_error_work, bch2_io_error_work); 1302 1303 bch2_time_stats_quantiles_init(&ca->io_latency[READ]); 1304 bch2_time_stats_quantiles_init(&ca->io_latency[WRITE]); 1305 1306 ca->mi = bch2_mi_to_cpu(member); 1307 1308 for (i = 0; i < ARRAY_SIZE(member->errors); i++) 1309 atomic64_set(&ca->errors[i], le64_to_cpu(member->errors[i])); 1310 1311 ca->uuid = member->uuid; 1312 1313 ca->nr_btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE, 1314 ca->mi.bucket_size / btree_sectors(c)); 1315 1316 if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete, 1317 0, GFP_KERNEL) || 1318 percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete, 1319 PERCPU_REF_INIT_DEAD, GFP_KERNEL) || 1320 !(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) || 1321 bch2_dev_buckets_alloc(c, ca) || 1322 bioset_init(&ca->replica_set, 4, 1323 offsetof(struct bch_write_bio, bio), 0) || 1324 !(ca->io_done = alloc_percpu(*ca->io_done))) 1325 goto err; 1326 1327 return ca; 1328 err: 1329 bch2_dev_free(ca); 1330 return NULL; 1331 } 1332 1333 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca, 1334 unsigned dev_idx) 1335 { 1336 ca->dev_idx = dev_idx; 1337 __set_bit(ca->dev_idx, ca->self.d); 1338 scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx); 1339 1340 ca->fs = c; 1341 rcu_assign_pointer(c->devs[ca->dev_idx], ca); 1342 1343 if (bch2_dev_sysfs_online(c, ca)) 1344 pr_warn("error creating sysfs objects"); 1345 } 1346 1347 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx) 1348 { 1349 struct bch_member member = bch2_sb_member_get(c->disk_sb.sb, dev_idx); 1350 struct bch_dev *ca = NULL; 1351 int ret = 0; 1352 1353 if (bch2_fs_init_fault("dev_alloc")) 1354 goto err; 1355 1356 ca = __bch2_dev_alloc(c, &member); 1357 if (!ca) 1358 goto err; 1359 1360 ca->fs = c; 1361 1362 bch2_dev_attach(c, ca, dev_idx); 1363 return ret; 1364 err: 1365 if (ca) 1366 bch2_dev_free(ca); 1367 return -BCH_ERR_ENOMEM_dev_alloc; 1368 } 1369 1370 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb) 1371 { 1372 unsigned ret; 1373 1374 if (bch2_dev_is_online(ca)) { 1375 bch_err(ca, "already have device online in slot %u", 1376 sb->sb->dev_idx); 1377 return -BCH_ERR_device_already_online; 1378 } 1379 1380 if (get_capacity(sb->bdev->bd_disk) < 1381 ca->mi.bucket_size * ca->mi.nbuckets) { 1382 bch_err(ca, "cannot online: device too small"); 1383 return -BCH_ERR_device_size_too_small; 1384 } 1385 1386 BUG_ON(!percpu_ref_is_zero(&ca->io_ref)); 1387 1388 ret = bch2_dev_journal_init(ca, sb->sb); 1389 if (ret) 1390 return ret; 1391 1392 /* Commit: */ 1393 ca->disk_sb = *sb; 1394 memset(sb, 0, sizeof(*sb)); 1395 1396 ca->dev = ca->disk_sb.bdev->bd_dev; 1397 1398 percpu_ref_reinit(&ca->io_ref); 1399 1400 return 0; 1401 } 1402 1403 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb) 1404 { 1405 struct bch_dev *ca; 1406 int ret; 1407 1408 lockdep_assert_held(&c->state_lock); 1409 1410 if (le64_to_cpu(sb->sb->seq) > 1411 le64_to_cpu(c->disk_sb.sb->seq)) 1412 bch2_sb_to_fs(c, sb->sb); 1413 1414 BUG_ON(sb->sb->dev_idx >= c->sb.nr_devices || 1415 !c->devs[sb->sb->dev_idx]); 1416 1417 ca = bch_dev_locked(c, sb->sb->dev_idx); 1418 1419 ret = __bch2_dev_attach_bdev(ca, sb); 1420 if (ret) 1421 return ret; 1422 1423 bch2_dev_sysfs_online(c, ca); 1424 1425 struct printbuf name = PRINTBUF; 1426 prt_bdevname(&name, ca->disk_sb.bdev); 1427 1428 if (c->sb.nr_devices == 1) 1429 strscpy(c->name, name.buf, sizeof(c->name)); 1430 strscpy(ca->name, name.buf, sizeof(ca->name)); 1431 1432 printbuf_exit(&name); 1433 1434 rebalance_wakeup(c); 1435 return 0; 1436 } 1437 1438 /* Device management: */ 1439 1440 /* 1441 * Note: this function is also used by the error paths - when a particular 1442 * device sees an error, we call it to determine whether we can just set the 1443 * device RO, or - if this function returns false - we'll set the whole 1444 * filesystem RO: 1445 * 1446 * XXX: maybe we should be more explicit about whether we're changing state 1447 * because we got an error or what have you? 1448 */ 1449 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca, 1450 enum bch_member_state new_state, int flags) 1451 { 1452 struct bch_devs_mask new_online_devs; 1453 int nr_rw = 0, required; 1454 1455 lockdep_assert_held(&c->state_lock); 1456 1457 switch (new_state) { 1458 case BCH_MEMBER_STATE_rw: 1459 return true; 1460 case BCH_MEMBER_STATE_ro: 1461 if (ca->mi.state != BCH_MEMBER_STATE_rw) 1462 return true; 1463 1464 /* do we have enough devices to write to? */ 1465 for_each_member_device(c, ca2) 1466 if (ca2 != ca) 1467 nr_rw += ca2->mi.state == BCH_MEMBER_STATE_rw; 1468 1469 required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED) 1470 ? c->opts.metadata_replicas 1471 : metadata_replicas_required(c), 1472 !(flags & BCH_FORCE_IF_DATA_DEGRADED) 1473 ? c->opts.data_replicas 1474 : data_replicas_required(c)); 1475 1476 return nr_rw >= required; 1477 case BCH_MEMBER_STATE_failed: 1478 case BCH_MEMBER_STATE_spare: 1479 if (ca->mi.state != BCH_MEMBER_STATE_rw && 1480 ca->mi.state != BCH_MEMBER_STATE_ro) 1481 return true; 1482 1483 /* do we have enough devices to read from? */ 1484 new_online_devs = bch2_online_devs(c); 1485 __clear_bit(ca->dev_idx, new_online_devs.d); 1486 1487 return bch2_have_enough_devs(c, new_online_devs, flags, false); 1488 default: 1489 BUG(); 1490 } 1491 } 1492 1493 static bool bch2_fs_may_start(struct bch_fs *c) 1494 { 1495 struct bch_dev *ca; 1496 unsigned i, flags = 0; 1497 1498 if (c->opts.very_degraded) 1499 flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST; 1500 1501 if (c->opts.degraded) 1502 flags |= BCH_FORCE_IF_DEGRADED; 1503 1504 if (!c->opts.degraded && 1505 !c->opts.very_degraded) { 1506 mutex_lock(&c->sb_lock); 1507 1508 for (i = 0; i < c->disk_sb.sb->nr_devices; i++) { 1509 if (!bch2_dev_exists(c->disk_sb.sb, i)) 1510 continue; 1511 1512 ca = bch_dev_locked(c, i); 1513 1514 if (!bch2_dev_is_online(ca) && 1515 (ca->mi.state == BCH_MEMBER_STATE_rw || 1516 ca->mi.state == BCH_MEMBER_STATE_ro)) { 1517 mutex_unlock(&c->sb_lock); 1518 return false; 1519 } 1520 } 1521 mutex_unlock(&c->sb_lock); 1522 } 1523 1524 return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true); 1525 } 1526 1527 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca) 1528 { 1529 /* 1530 * The allocator thread itself allocates btree nodes, so stop it first: 1531 */ 1532 bch2_dev_allocator_remove(c, ca); 1533 bch2_dev_journal_stop(&c->journal, ca); 1534 } 1535 1536 static void __bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca) 1537 { 1538 lockdep_assert_held(&c->state_lock); 1539 1540 BUG_ON(ca->mi.state != BCH_MEMBER_STATE_rw); 1541 1542 bch2_dev_allocator_add(c, ca); 1543 bch2_recalc_capacity(c); 1544 } 1545 1546 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, 1547 enum bch_member_state new_state, int flags) 1548 { 1549 struct bch_member *m; 1550 int ret = 0; 1551 1552 if (ca->mi.state == new_state) 1553 return 0; 1554 1555 if (!bch2_dev_state_allowed(c, ca, new_state, flags)) 1556 return -BCH_ERR_device_state_not_allowed; 1557 1558 if (new_state != BCH_MEMBER_STATE_rw) 1559 __bch2_dev_read_only(c, ca); 1560 1561 bch_notice(ca, "%s", bch2_member_states[new_state]); 1562 1563 mutex_lock(&c->sb_lock); 1564 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); 1565 SET_BCH_MEMBER_STATE(m, new_state); 1566 bch2_write_super(c); 1567 mutex_unlock(&c->sb_lock); 1568 1569 if (new_state == BCH_MEMBER_STATE_rw) 1570 __bch2_dev_read_write(c, ca); 1571 1572 rebalance_wakeup(c); 1573 1574 return ret; 1575 } 1576 1577 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, 1578 enum bch_member_state new_state, int flags) 1579 { 1580 int ret; 1581 1582 down_write(&c->state_lock); 1583 ret = __bch2_dev_set_state(c, ca, new_state, flags); 1584 up_write(&c->state_lock); 1585 1586 return ret; 1587 } 1588 1589 /* Device add/removal: */ 1590 1591 static int bch2_dev_remove_alloc(struct bch_fs *c, struct bch_dev *ca) 1592 { 1593 struct bpos start = POS(ca->dev_idx, 0); 1594 struct bpos end = POS(ca->dev_idx, U64_MAX); 1595 int ret; 1596 1597 /* 1598 * We clear the LRU and need_discard btrees first so that we don't race 1599 * with bch2_do_invalidates() and bch2_do_discards() 1600 */ 1601 ret = bch2_btree_delete_range(c, BTREE_ID_lru, start, end, 1602 BTREE_TRIGGER_NORUN, NULL) ?: 1603 bch2_btree_delete_range(c, BTREE_ID_need_discard, start, end, 1604 BTREE_TRIGGER_NORUN, NULL) ?: 1605 bch2_btree_delete_range(c, BTREE_ID_freespace, start, end, 1606 BTREE_TRIGGER_NORUN, NULL) ?: 1607 bch2_btree_delete_range(c, BTREE_ID_backpointers, start, end, 1608 BTREE_TRIGGER_NORUN, NULL) ?: 1609 bch2_btree_delete_range(c, BTREE_ID_alloc, start, end, 1610 BTREE_TRIGGER_NORUN, NULL) ?: 1611 bch2_btree_delete_range(c, BTREE_ID_bucket_gens, start, end, 1612 BTREE_TRIGGER_NORUN, NULL); 1613 bch_err_msg(c, ret, "removing dev alloc info"); 1614 return ret; 1615 } 1616 1617 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags) 1618 { 1619 struct bch_member *m; 1620 unsigned dev_idx = ca->dev_idx, data; 1621 int ret; 1622 1623 down_write(&c->state_lock); 1624 1625 /* 1626 * We consume a reference to ca->ref, regardless of whether we succeed 1627 * or fail: 1628 */ 1629 percpu_ref_put(&ca->ref); 1630 1631 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { 1632 bch_err(ca, "Cannot remove without losing data"); 1633 ret = -BCH_ERR_device_state_not_allowed; 1634 goto err; 1635 } 1636 1637 __bch2_dev_read_only(c, ca); 1638 1639 ret = bch2_dev_data_drop(c, ca->dev_idx, flags); 1640 bch_err_msg(ca, ret, "bch2_dev_data_drop()"); 1641 if (ret) 1642 goto err; 1643 1644 ret = bch2_dev_remove_alloc(c, ca); 1645 bch_err_msg(ca, ret, "bch2_dev_remove_alloc()"); 1646 if (ret) 1647 goto err; 1648 1649 ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx); 1650 bch_err_msg(ca, ret, "bch2_journal_flush_device_pins()"); 1651 if (ret) 1652 goto err; 1653 1654 ret = bch2_journal_flush(&c->journal); 1655 bch_err_msg(ca, ret, "bch2_journal_flush()"); 1656 if (ret) 1657 goto err; 1658 1659 ret = bch2_replicas_gc2(c); 1660 bch_err_msg(ca, ret, "bch2_replicas_gc2()"); 1661 if (ret) 1662 goto err; 1663 1664 data = bch2_dev_has_data(c, ca); 1665 if (data) { 1666 struct printbuf data_has = PRINTBUF; 1667 1668 prt_bitflags(&data_has, __bch2_data_types, data); 1669 bch_err(ca, "Remove failed, still has data (%s)", data_has.buf); 1670 printbuf_exit(&data_has); 1671 ret = -EBUSY; 1672 goto err; 1673 } 1674 1675 __bch2_dev_offline(c, ca); 1676 1677 mutex_lock(&c->sb_lock); 1678 rcu_assign_pointer(c->devs[ca->dev_idx], NULL); 1679 mutex_unlock(&c->sb_lock); 1680 1681 percpu_ref_kill(&ca->ref); 1682 wait_for_completion(&ca->ref_completion); 1683 1684 bch2_dev_free(ca); 1685 1686 /* 1687 * At this point the device object has been removed in-core, but the 1688 * on-disk journal might still refer to the device index via sb device 1689 * usage entries. Recovery fails if it sees usage information for an 1690 * invalid device. Flush journal pins to push the back of the journal 1691 * past now invalid device index references before we update the 1692 * superblock, but after the device object has been removed so any 1693 * further journal writes elide usage info for the device. 1694 */ 1695 bch2_journal_flush_all_pins(&c->journal); 1696 1697 /* 1698 * Free this device's slot in the bch_member array - all pointers to 1699 * this device must be gone: 1700 */ 1701 mutex_lock(&c->sb_lock); 1702 m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx); 1703 memset(&m->uuid, 0, sizeof(m->uuid)); 1704 1705 bch2_write_super(c); 1706 1707 mutex_unlock(&c->sb_lock); 1708 up_write(&c->state_lock); 1709 1710 bch2_dev_usage_journal_reserve(c); 1711 return 0; 1712 err: 1713 if (ca->mi.state == BCH_MEMBER_STATE_rw && 1714 !percpu_ref_is_zero(&ca->io_ref)) 1715 __bch2_dev_read_write(c, ca); 1716 up_write(&c->state_lock); 1717 return ret; 1718 } 1719 1720 /* Add new device to running filesystem: */ 1721 int bch2_dev_add(struct bch_fs *c, const char *path) 1722 { 1723 struct bch_opts opts = bch2_opts_empty(); 1724 struct bch_sb_handle sb; 1725 struct bch_dev *ca = NULL; 1726 struct bch_sb_field_members_v2 *mi; 1727 struct bch_member dev_mi; 1728 unsigned dev_idx, nr_devices, u64s; 1729 struct printbuf errbuf = PRINTBUF; 1730 struct printbuf label = PRINTBUF; 1731 int ret; 1732 1733 ret = bch2_read_super(path, &opts, &sb); 1734 bch_err_msg(c, ret, "reading super"); 1735 if (ret) 1736 goto err; 1737 1738 dev_mi = bch2_sb_member_get(sb.sb, sb.sb->dev_idx); 1739 1740 if (BCH_MEMBER_GROUP(&dev_mi)) { 1741 bch2_disk_path_to_text_sb(&label, sb.sb, BCH_MEMBER_GROUP(&dev_mi) - 1); 1742 if (label.allocation_failure) { 1743 ret = -ENOMEM; 1744 goto err; 1745 } 1746 } 1747 1748 ret = bch2_dev_may_add(sb.sb, c); 1749 if (ret) 1750 goto err; 1751 1752 ca = __bch2_dev_alloc(c, &dev_mi); 1753 if (!ca) { 1754 ret = -ENOMEM; 1755 goto err; 1756 } 1757 1758 bch2_dev_usage_init(ca); 1759 1760 ret = __bch2_dev_attach_bdev(ca, &sb); 1761 if (ret) 1762 goto err; 1763 1764 ret = bch2_dev_journal_alloc(ca); 1765 bch_err_msg(c, ret, "allocating journal"); 1766 if (ret) 1767 goto err; 1768 1769 down_write(&c->state_lock); 1770 mutex_lock(&c->sb_lock); 1771 1772 ret = bch2_sb_from_fs(c, ca); 1773 bch_err_msg(c, ret, "setting up new superblock"); 1774 if (ret) 1775 goto err_unlock; 1776 1777 if (dynamic_fault("bcachefs:add:no_slot")) 1778 goto no_slot; 1779 1780 for (dev_idx = 0; dev_idx < BCH_SB_MEMBERS_MAX; dev_idx++) 1781 if (!bch2_dev_exists(c->disk_sb.sb, dev_idx)) 1782 goto have_slot; 1783 no_slot: 1784 ret = -BCH_ERR_ENOSPC_sb_members; 1785 bch_err_msg(c, ret, "setting up new superblock"); 1786 goto err_unlock; 1787 1788 have_slot: 1789 nr_devices = max_t(unsigned, dev_idx + 1, c->sb.nr_devices); 1790 1791 mi = bch2_sb_field_get(c->disk_sb.sb, members_v2); 1792 u64s = DIV_ROUND_UP(sizeof(struct bch_sb_field_members_v2) + 1793 le16_to_cpu(mi->member_bytes) * nr_devices, sizeof(u64)); 1794 1795 mi = bch2_sb_field_resize(&c->disk_sb, members_v2, u64s); 1796 if (!mi) { 1797 ret = -BCH_ERR_ENOSPC_sb_members; 1798 bch_err_msg(c, ret, "setting up new superblock"); 1799 goto err_unlock; 1800 } 1801 struct bch_member *m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx); 1802 1803 /* success: */ 1804 1805 *m = dev_mi; 1806 m->last_mount = cpu_to_le64(ktime_get_real_seconds()); 1807 c->disk_sb.sb->nr_devices = nr_devices; 1808 1809 ca->disk_sb.sb->dev_idx = dev_idx; 1810 bch2_dev_attach(c, ca, dev_idx); 1811 1812 if (BCH_MEMBER_GROUP(&dev_mi)) { 1813 ret = __bch2_dev_group_set(c, ca, label.buf); 1814 bch_err_msg(c, ret, "creating new label"); 1815 if (ret) 1816 goto err_unlock; 1817 } 1818 1819 bch2_write_super(c); 1820 mutex_unlock(&c->sb_lock); 1821 1822 bch2_dev_usage_journal_reserve(c); 1823 1824 ret = bch2_trans_mark_dev_sb(c, ca); 1825 bch_err_msg(ca, ret, "marking new superblock"); 1826 if (ret) 1827 goto err_late; 1828 1829 ret = bch2_fs_freespace_init(c); 1830 bch_err_msg(ca, ret, "initializing free space"); 1831 if (ret) 1832 goto err_late; 1833 1834 ca->new_fs_bucket_idx = 0; 1835 1836 if (ca->mi.state == BCH_MEMBER_STATE_rw) 1837 __bch2_dev_read_write(c, ca); 1838 1839 up_write(&c->state_lock); 1840 return 0; 1841 1842 err_unlock: 1843 mutex_unlock(&c->sb_lock); 1844 up_write(&c->state_lock); 1845 err: 1846 if (ca) 1847 bch2_dev_free(ca); 1848 bch2_free_super(&sb); 1849 printbuf_exit(&label); 1850 printbuf_exit(&errbuf); 1851 bch_err_fn(c, ret); 1852 return ret; 1853 err_late: 1854 up_write(&c->state_lock); 1855 ca = NULL; 1856 goto err; 1857 } 1858 1859 /* Hot add existing device to running filesystem: */ 1860 int bch2_dev_online(struct bch_fs *c, const char *path) 1861 { 1862 struct bch_opts opts = bch2_opts_empty(); 1863 struct bch_sb_handle sb = { NULL }; 1864 struct bch_dev *ca; 1865 unsigned dev_idx; 1866 int ret; 1867 1868 down_write(&c->state_lock); 1869 1870 ret = bch2_read_super(path, &opts, &sb); 1871 if (ret) { 1872 up_write(&c->state_lock); 1873 return ret; 1874 } 1875 1876 dev_idx = sb.sb->dev_idx; 1877 1878 ret = bch2_dev_in_fs(&c->disk_sb, &sb, &c->opts); 1879 bch_err_msg(c, ret, "bringing %s online", path); 1880 if (ret) 1881 goto err; 1882 1883 ret = bch2_dev_attach_bdev(c, &sb); 1884 if (ret) 1885 goto err; 1886 1887 ca = bch_dev_locked(c, dev_idx); 1888 1889 ret = bch2_trans_mark_dev_sb(c, ca); 1890 bch_err_msg(c, ret, "bringing %s online: error from bch2_trans_mark_dev_sb", path); 1891 if (ret) 1892 goto err; 1893 1894 if (ca->mi.state == BCH_MEMBER_STATE_rw) 1895 __bch2_dev_read_write(c, ca); 1896 1897 if (!ca->mi.freespace_initialized) { 1898 ret = bch2_dev_freespace_init(c, ca, 0, ca->mi.nbuckets); 1899 bch_err_msg(ca, ret, "initializing free space"); 1900 if (ret) 1901 goto err; 1902 } 1903 1904 if (!ca->journal.nr) { 1905 ret = bch2_dev_journal_alloc(ca); 1906 bch_err_msg(ca, ret, "allocating journal"); 1907 if (ret) 1908 goto err; 1909 } 1910 1911 mutex_lock(&c->sb_lock); 1912 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = 1913 cpu_to_le64(ktime_get_real_seconds()); 1914 bch2_write_super(c); 1915 mutex_unlock(&c->sb_lock); 1916 1917 up_write(&c->state_lock); 1918 return 0; 1919 err: 1920 up_write(&c->state_lock); 1921 bch2_free_super(&sb); 1922 return ret; 1923 } 1924 1925 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags) 1926 { 1927 down_write(&c->state_lock); 1928 1929 if (!bch2_dev_is_online(ca)) { 1930 bch_err(ca, "Already offline"); 1931 up_write(&c->state_lock); 1932 return 0; 1933 } 1934 1935 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { 1936 bch_err(ca, "Cannot offline required disk"); 1937 up_write(&c->state_lock); 1938 return -BCH_ERR_device_state_not_allowed; 1939 } 1940 1941 __bch2_dev_offline(c, ca); 1942 1943 up_write(&c->state_lock); 1944 return 0; 1945 } 1946 1947 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets) 1948 { 1949 struct bch_member *m; 1950 u64 old_nbuckets; 1951 int ret = 0; 1952 1953 down_write(&c->state_lock); 1954 old_nbuckets = ca->mi.nbuckets; 1955 1956 if (nbuckets < ca->mi.nbuckets) { 1957 bch_err(ca, "Cannot shrink yet"); 1958 ret = -EINVAL; 1959 goto err; 1960 } 1961 1962 if (bch2_dev_is_online(ca) && 1963 get_capacity(ca->disk_sb.bdev->bd_disk) < 1964 ca->mi.bucket_size * nbuckets) { 1965 bch_err(ca, "New size larger than device"); 1966 ret = -BCH_ERR_device_size_too_small; 1967 goto err; 1968 } 1969 1970 ret = bch2_dev_buckets_resize(c, ca, nbuckets); 1971 bch_err_msg(ca, ret, "resizing buckets"); 1972 if (ret) 1973 goto err; 1974 1975 ret = bch2_trans_mark_dev_sb(c, ca); 1976 if (ret) 1977 goto err; 1978 1979 mutex_lock(&c->sb_lock); 1980 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); 1981 m->nbuckets = cpu_to_le64(nbuckets); 1982 1983 bch2_write_super(c); 1984 mutex_unlock(&c->sb_lock); 1985 1986 if (ca->mi.freespace_initialized) { 1987 ret = bch2_dev_freespace_init(c, ca, old_nbuckets, nbuckets); 1988 if (ret) 1989 goto err; 1990 1991 /* 1992 * XXX: this is all wrong transactionally - we'll be able to do 1993 * this correctly after the disk space accounting rewrite 1994 */ 1995 ca->usage_base->d[BCH_DATA_free].buckets += nbuckets - old_nbuckets; 1996 } 1997 1998 bch2_recalc_capacity(c); 1999 err: 2000 up_write(&c->state_lock); 2001 return ret; 2002 } 2003 2004 /* return with ref on ca->ref: */ 2005 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *name) 2006 { 2007 rcu_read_lock(); 2008 for_each_member_device_rcu(c, ca, NULL) 2009 if (!strcmp(name, ca->name)) { 2010 rcu_read_unlock(); 2011 return ca; 2012 } 2013 rcu_read_unlock(); 2014 return ERR_PTR(-BCH_ERR_ENOENT_dev_not_found); 2015 } 2016 2017 /* Filesystem open: */ 2018 2019 static inline int sb_cmp(struct bch_sb *l, struct bch_sb *r) 2020 { 2021 return cmp_int(le64_to_cpu(l->seq), le64_to_cpu(r->seq)) ?: 2022 cmp_int(le64_to_cpu(l->write_time), le64_to_cpu(r->write_time)); 2023 } 2024 2025 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices, 2026 struct bch_opts opts) 2027 { 2028 DARRAY(struct bch_sb_handle) sbs = { 0 }; 2029 struct bch_fs *c = NULL; 2030 struct bch_sb_handle *best = NULL; 2031 struct printbuf errbuf = PRINTBUF; 2032 int ret = 0; 2033 2034 if (!try_module_get(THIS_MODULE)) 2035 return ERR_PTR(-ENODEV); 2036 2037 if (!nr_devices) { 2038 ret = -EINVAL; 2039 goto err; 2040 } 2041 2042 ret = darray_make_room(&sbs, nr_devices); 2043 if (ret) 2044 goto err; 2045 2046 for (unsigned i = 0; i < nr_devices; i++) { 2047 struct bch_sb_handle sb = { NULL }; 2048 2049 ret = bch2_read_super(devices[i], &opts, &sb); 2050 if (ret) 2051 goto err; 2052 2053 BUG_ON(darray_push(&sbs, sb)); 2054 } 2055 2056 if (opts.nochanges && !opts.read_only) { 2057 ret = -BCH_ERR_erofs_nochanges; 2058 goto err_print; 2059 } 2060 2061 darray_for_each(sbs, sb) 2062 if (!best || sb_cmp(sb->sb, best->sb) > 0) 2063 best = sb; 2064 2065 darray_for_each_reverse(sbs, sb) { 2066 ret = bch2_dev_in_fs(best, sb, &opts); 2067 2068 if (ret == -BCH_ERR_device_has_been_removed || 2069 ret == -BCH_ERR_device_splitbrain) { 2070 bch2_free_super(sb); 2071 darray_remove_item(&sbs, sb); 2072 best -= best > sb; 2073 ret = 0; 2074 continue; 2075 } 2076 2077 if (ret) 2078 goto err_print; 2079 } 2080 2081 c = bch2_fs_alloc(best->sb, opts); 2082 ret = PTR_ERR_OR_ZERO(c); 2083 if (ret) 2084 goto err; 2085 2086 down_write(&c->state_lock); 2087 darray_for_each(sbs, sb) { 2088 ret = bch2_dev_attach_bdev(c, sb); 2089 if (ret) { 2090 up_write(&c->state_lock); 2091 goto err; 2092 } 2093 } 2094 up_write(&c->state_lock); 2095 2096 if (!bch2_fs_may_start(c)) { 2097 ret = -BCH_ERR_insufficient_devices_to_start; 2098 goto err_print; 2099 } 2100 2101 if (!c->opts.nostart) { 2102 ret = bch2_fs_start(c); 2103 if (ret) 2104 goto err; 2105 } 2106 out: 2107 darray_for_each(sbs, sb) 2108 bch2_free_super(sb); 2109 darray_exit(&sbs); 2110 printbuf_exit(&errbuf); 2111 module_put(THIS_MODULE); 2112 return c; 2113 err_print: 2114 pr_err("bch_fs_open err opening %s: %s", 2115 devices[0], bch2_err_str(ret)); 2116 err: 2117 if (!IS_ERR_OR_NULL(c)) 2118 bch2_fs_stop(c); 2119 c = ERR_PTR(ret); 2120 goto out; 2121 } 2122 2123 /* Global interfaces/init */ 2124 2125 static void bcachefs_exit(void) 2126 { 2127 bch2_debug_exit(); 2128 bch2_vfs_exit(); 2129 bch2_chardev_exit(); 2130 bch2_btree_key_cache_exit(); 2131 if (bcachefs_kset) 2132 kset_unregister(bcachefs_kset); 2133 } 2134 2135 static int __init bcachefs_init(void) 2136 { 2137 bch2_bkey_pack_test(); 2138 2139 if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) || 2140 bch2_btree_key_cache_init() || 2141 bch2_chardev_init() || 2142 bch2_vfs_init() || 2143 bch2_debug_init()) 2144 goto err; 2145 2146 return 0; 2147 err: 2148 bcachefs_exit(); 2149 return -ENOMEM; 2150 } 2151 2152 #define BCH_DEBUG_PARAM(name, description) \ 2153 bool bch2_##name; \ 2154 module_param_named(name, bch2_##name, bool, 0644); \ 2155 MODULE_PARM_DESC(name, description); 2156 BCH_DEBUG_PARAMS() 2157 #undef BCH_DEBUG_PARAM 2158 2159 __maybe_unused 2160 static unsigned bch2_metadata_version = bcachefs_metadata_version_current; 2161 module_param_named(version, bch2_metadata_version, uint, 0400); 2162 2163 module_exit(bcachefs_exit); 2164 module_init(bcachefs_init); 2165