1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcachefs setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcachefs.h" 11 #include "alloc_background.h" 12 #include "alloc_foreground.h" 13 #include "bkey_sort.h" 14 #include "btree_cache.h" 15 #include "btree_gc.h" 16 #include "btree_journal_iter.h" 17 #include "btree_key_cache.h" 18 #include "btree_update_interior.h" 19 #include "btree_io.h" 20 #include "btree_write_buffer.h" 21 #include "buckets_waiting_for_journal.h" 22 #include "chardev.h" 23 #include "checksum.h" 24 #include "clock.h" 25 #include "compress.h" 26 #include "debug.h" 27 #include "disk_groups.h" 28 #include "ec.h" 29 #include "errcode.h" 30 #include "error.h" 31 #include "fs.h" 32 #include "fs-io.h" 33 #include "fs-io-buffered.h" 34 #include "fs-io-direct.h" 35 #include "fsck.h" 36 #include "inode.h" 37 #include "io_read.h" 38 #include "io_write.h" 39 #include "journal.h" 40 #include "journal_reclaim.h" 41 #include "journal_seq_blacklist.h" 42 #include "move.h" 43 #include "migrate.h" 44 #include "movinggc.h" 45 #include "nocow_locking.h" 46 #include "quota.h" 47 #include "rebalance.h" 48 #include "recovery.h" 49 #include "replicas.h" 50 #include "sb-clean.h" 51 #include "sb-counters.h" 52 #include "sb-errors.h" 53 #include "sb-members.h" 54 #include "snapshot.h" 55 #include "subvolume.h" 56 #include "super.h" 57 #include "super-io.h" 58 #include "sysfs.h" 59 #include "thread_with_file.h" 60 #include "trace.h" 61 62 #include <linux/backing-dev.h> 63 #include <linux/blkdev.h> 64 #include <linux/debugfs.h> 65 #include <linux/device.h> 66 #include <linux/idr.h> 67 #include <linux/module.h> 68 #include <linux/percpu.h> 69 #include <linux/random.h> 70 #include <linux/sysfs.h> 71 #include <crypto/hash.h> 72 73 MODULE_LICENSE("GPL"); 74 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 75 MODULE_DESCRIPTION("bcachefs filesystem"); 76 MODULE_SOFTDEP("pre: crc32c"); 77 MODULE_SOFTDEP("pre: crc64"); 78 MODULE_SOFTDEP("pre: sha256"); 79 MODULE_SOFTDEP("pre: chacha20"); 80 MODULE_SOFTDEP("pre: poly1305"); 81 MODULE_SOFTDEP("pre: xxhash"); 82 83 const char * const bch2_fs_flag_strs[] = { 84 #define x(n) #n, 85 BCH_FS_FLAGS() 86 #undef x 87 NULL 88 }; 89 90 void bch2_print_opts(struct bch_opts *opts, const char *fmt, ...) 91 { 92 struct stdio_redirect *stdio = (void *)(unsigned long)opts->stdio; 93 94 va_list args; 95 va_start(args, fmt); 96 if (likely(!stdio)) { 97 vprintk(fmt, args); 98 } else { 99 if (fmt[0] == KERN_SOH[0]) 100 fmt += 2; 101 102 bch2_stdio_redirect_vprintf(stdio, true, fmt, args); 103 } 104 va_end(args); 105 } 106 107 void __bch2_print(struct bch_fs *c, const char *fmt, ...) 108 { 109 struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c); 110 111 va_list args; 112 va_start(args, fmt); 113 if (likely(!stdio)) { 114 vprintk(fmt, args); 115 } else { 116 if (fmt[0] == KERN_SOH[0]) 117 fmt += 2; 118 119 bch2_stdio_redirect_vprintf(stdio, true, fmt, args); 120 } 121 va_end(args); 122 } 123 124 #define KTYPE(type) \ 125 static const struct attribute_group type ## _group = { \ 126 .attrs = type ## _files \ 127 }; \ 128 \ 129 static const struct attribute_group *type ## _groups[] = { \ 130 &type ## _group, \ 131 NULL \ 132 }; \ 133 \ 134 static const struct kobj_type type ## _ktype = { \ 135 .release = type ## _release, \ 136 .sysfs_ops = &type ## _sysfs_ops, \ 137 .default_groups = type ## _groups \ 138 } 139 140 static void bch2_fs_release(struct kobject *); 141 static void bch2_dev_release(struct kobject *); 142 static void bch2_fs_counters_release(struct kobject *k) 143 { 144 } 145 146 static void bch2_fs_internal_release(struct kobject *k) 147 { 148 } 149 150 static void bch2_fs_opts_dir_release(struct kobject *k) 151 { 152 } 153 154 static void bch2_fs_time_stats_release(struct kobject *k) 155 { 156 } 157 158 KTYPE(bch2_fs); 159 KTYPE(bch2_fs_counters); 160 KTYPE(bch2_fs_internal); 161 KTYPE(bch2_fs_opts_dir); 162 KTYPE(bch2_fs_time_stats); 163 KTYPE(bch2_dev); 164 165 static struct kset *bcachefs_kset; 166 static LIST_HEAD(bch_fs_list); 167 static DEFINE_MUTEX(bch_fs_list_lock); 168 169 DECLARE_WAIT_QUEUE_HEAD(bch2_read_only_wait); 170 171 static void bch2_dev_free(struct bch_dev *); 172 static int bch2_dev_alloc(struct bch_fs *, unsigned); 173 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *); 174 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *); 175 176 struct bch_fs *bch2_dev_to_fs(dev_t dev) 177 { 178 struct bch_fs *c; 179 180 mutex_lock(&bch_fs_list_lock); 181 rcu_read_lock(); 182 183 list_for_each_entry(c, &bch_fs_list, list) 184 for_each_member_device_rcu(c, ca, NULL) 185 if (ca->disk_sb.bdev && ca->disk_sb.bdev->bd_dev == dev) { 186 closure_get(&c->cl); 187 goto found; 188 } 189 c = NULL; 190 found: 191 rcu_read_unlock(); 192 mutex_unlock(&bch_fs_list_lock); 193 194 return c; 195 } 196 197 static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid) 198 { 199 struct bch_fs *c; 200 201 lockdep_assert_held(&bch_fs_list_lock); 202 203 list_for_each_entry(c, &bch_fs_list, list) 204 if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid))) 205 return c; 206 207 return NULL; 208 } 209 210 struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid) 211 { 212 struct bch_fs *c; 213 214 mutex_lock(&bch_fs_list_lock); 215 c = __bch2_uuid_to_fs(uuid); 216 if (c) 217 closure_get(&c->cl); 218 mutex_unlock(&bch_fs_list_lock); 219 220 return c; 221 } 222 223 static void bch2_dev_usage_journal_reserve(struct bch_fs *c) 224 { 225 unsigned nr = 0, u64s = 226 ((sizeof(struct jset_entry_dev_usage) + 227 sizeof(struct jset_entry_dev_usage_type) * BCH_DATA_NR)) / 228 sizeof(u64); 229 230 rcu_read_lock(); 231 for_each_member_device_rcu(c, ca, NULL) 232 nr++; 233 rcu_read_unlock(); 234 235 bch2_journal_entry_res_resize(&c->journal, 236 &c->dev_usage_journal_res, u64s * nr); 237 } 238 239 /* Filesystem RO/RW: */ 240 241 /* 242 * For startup/shutdown of RW stuff, the dependencies are: 243 * 244 * - foreground writes depend on copygc and rebalance (to free up space) 245 * 246 * - copygc and rebalance depend on mark and sweep gc (they actually probably 247 * don't because they either reserve ahead of time or don't block if 248 * allocations fail, but allocations can require mark and sweep gc to run 249 * because of generation number wraparound) 250 * 251 * - all of the above depends on the allocator threads 252 * 253 * - allocator depends on the journal (when it rewrites prios and gens) 254 */ 255 256 static void __bch2_fs_read_only(struct bch_fs *c) 257 { 258 unsigned clean_passes = 0; 259 u64 seq = 0; 260 261 bch2_fs_ec_stop(c); 262 bch2_open_buckets_stop(c, NULL, true); 263 bch2_rebalance_stop(c); 264 bch2_copygc_stop(c); 265 bch2_gc_thread_stop(c); 266 bch2_fs_ec_flush(c); 267 268 bch_verbose(c, "flushing journal and stopping allocators, journal seq %llu", 269 journal_cur_seq(&c->journal)); 270 271 do { 272 clean_passes++; 273 274 if (bch2_btree_interior_updates_flush(c) || 275 bch2_journal_flush_all_pins(&c->journal) || 276 bch2_btree_flush_all_writes(c) || 277 seq != atomic64_read(&c->journal.seq)) { 278 seq = atomic64_read(&c->journal.seq); 279 clean_passes = 0; 280 } 281 } while (clean_passes < 2); 282 283 bch_verbose(c, "flushing journal and stopping allocators complete, journal seq %llu", 284 journal_cur_seq(&c->journal)); 285 286 if (test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags) && 287 !test_bit(BCH_FS_emergency_ro, &c->flags)) 288 set_bit(BCH_FS_clean_shutdown, &c->flags); 289 bch2_fs_journal_stop(&c->journal); 290 291 /* 292 * After stopping journal: 293 */ 294 for_each_member_device(c, ca) 295 bch2_dev_allocator_remove(c, ca); 296 } 297 298 #ifndef BCH_WRITE_REF_DEBUG 299 static void bch2_writes_disabled(struct percpu_ref *writes) 300 { 301 struct bch_fs *c = container_of(writes, struct bch_fs, writes); 302 303 set_bit(BCH_FS_write_disable_complete, &c->flags); 304 wake_up(&bch2_read_only_wait); 305 } 306 #endif 307 308 void bch2_fs_read_only(struct bch_fs *c) 309 { 310 if (!test_bit(BCH_FS_rw, &c->flags)) { 311 bch2_journal_reclaim_stop(&c->journal); 312 return; 313 } 314 315 BUG_ON(test_bit(BCH_FS_write_disable_complete, &c->flags)); 316 317 bch_verbose(c, "going read-only"); 318 319 /* 320 * Block new foreground-end write operations from starting - any new 321 * writes will return -EROFS: 322 */ 323 set_bit(BCH_FS_going_ro, &c->flags); 324 #ifndef BCH_WRITE_REF_DEBUG 325 percpu_ref_kill(&c->writes); 326 #else 327 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) 328 bch2_write_ref_put(c, i); 329 #endif 330 331 /* 332 * If we're not doing an emergency shutdown, we want to wait on 333 * outstanding writes to complete so they don't see spurious errors due 334 * to shutting down the allocator: 335 * 336 * If we are doing an emergency shutdown outstanding writes may 337 * hang until we shutdown the allocator so we don't want to wait 338 * on outstanding writes before shutting everything down - but 339 * we do need to wait on them before returning and signalling 340 * that going RO is complete: 341 */ 342 wait_event(bch2_read_only_wait, 343 test_bit(BCH_FS_write_disable_complete, &c->flags) || 344 test_bit(BCH_FS_emergency_ro, &c->flags)); 345 346 bool writes_disabled = test_bit(BCH_FS_write_disable_complete, &c->flags); 347 if (writes_disabled) 348 bch_verbose(c, "finished waiting for writes to stop"); 349 350 __bch2_fs_read_only(c); 351 352 wait_event(bch2_read_only_wait, 353 test_bit(BCH_FS_write_disable_complete, &c->flags)); 354 355 if (!writes_disabled) 356 bch_verbose(c, "finished waiting for writes to stop"); 357 358 clear_bit(BCH_FS_write_disable_complete, &c->flags); 359 clear_bit(BCH_FS_going_ro, &c->flags); 360 clear_bit(BCH_FS_rw, &c->flags); 361 362 if (!bch2_journal_error(&c->journal) && 363 !test_bit(BCH_FS_error, &c->flags) && 364 !test_bit(BCH_FS_emergency_ro, &c->flags) && 365 test_bit(BCH_FS_started, &c->flags) && 366 test_bit(BCH_FS_clean_shutdown, &c->flags) && 367 !c->opts.norecovery) { 368 BUG_ON(c->journal.last_empty_seq != journal_cur_seq(&c->journal)); 369 BUG_ON(atomic_read(&c->btree_cache.dirty)); 370 BUG_ON(atomic_long_read(&c->btree_key_cache.nr_dirty)); 371 BUG_ON(c->btree_write_buffer.inc.keys.nr); 372 BUG_ON(c->btree_write_buffer.flushing.keys.nr); 373 374 bch_verbose(c, "marking filesystem clean"); 375 bch2_fs_mark_clean(c); 376 } else { 377 bch_verbose(c, "done going read-only, filesystem not clean"); 378 } 379 } 380 381 static void bch2_fs_read_only_work(struct work_struct *work) 382 { 383 struct bch_fs *c = 384 container_of(work, struct bch_fs, read_only_work); 385 386 down_write(&c->state_lock); 387 bch2_fs_read_only(c); 388 up_write(&c->state_lock); 389 } 390 391 static void bch2_fs_read_only_async(struct bch_fs *c) 392 { 393 queue_work(system_long_wq, &c->read_only_work); 394 } 395 396 bool bch2_fs_emergency_read_only(struct bch_fs *c) 397 { 398 bool ret = !test_and_set_bit(BCH_FS_emergency_ro, &c->flags); 399 400 bch2_journal_halt(&c->journal); 401 bch2_fs_read_only_async(c); 402 403 wake_up(&bch2_read_only_wait); 404 return ret; 405 } 406 407 static int bch2_fs_read_write_late(struct bch_fs *c) 408 { 409 int ret; 410 411 /* 412 * Data move operations can't run until after check_snapshots has 413 * completed, and bch2_snapshot_is_ancestor() is available. 414 * 415 * Ideally we'd start copygc/rebalance earlier instead of waiting for 416 * all of recovery/fsck to complete: 417 */ 418 ret = bch2_copygc_start(c); 419 if (ret) { 420 bch_err(c, "error starting copygc thread"); 421 return ret; 422 } 423 424 ret = bch2_rebalance_start(c); 425 if (ret) { 426 bch_err(c, "error starting rebalance thread"); 427 return ret; 428 } 429 430 return 0; 431 } 432 433 static int __bch2_fs_read_write(struct bch_fs *c, bool early) 434 { 435 int ret; 436 437 if (test_bit(BCH_FS_initial_gc_unfixed, &c->flags)) { 438 bch_err(c, "cannot go rw, unfixed btree errors"); 439 return -BCH_ERR_erofs_unfixed_errors; 440 } 441 442 if (test_bit(BCH_FS_rw, &c->flags)) 443 return 0; 444 445 bch_info(c, "going read-write"); 446 447 ret = bch2_sb_members_v2_init(c); 448 if (ret) 449 goto err; 450 451 ret = bch2_fs_mark_dirty(c); 452 if (ret) 453 goto err; 454 455 clear_bit(BCH_FS_clean_shutdown, &c->flags); 456 457 /* 458 * First journal write must be a flush write: after a clean shutdown we 459 * don't read the journal, so the first journal write may end up 460 * overwriting whatever was there previously, and there must always be 461 * at least one non-flush write in the journal or recovery will fail: 462 */ 463 set_bit(JOURNAL_NEED_FLUSH_WRITE, &c->journal.flags); 464 465 for_each_rw_member(c, ca) 466 bch2_dev_allocator_add(c, ca); 467 bch2_recalc_capacity(c); 468 469 set_bit(BCH_FS_rw, &c->flags); 470 set_bit(BCH_FS_was_rw, &c->flags); 471 472 #ifndef BCH_WRITE_REF_DEBUG 473 percpu_ref_reinit(&c->writes); 474 #else 475 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) { 476 BUG_ON(atomic_long_read(&c->writes[i])); 477 atomic_long_inc(&c->writes[i]); 478 } 479 #endif 480 481 ret = bch2_gc_thread_start(c); 482 if (ret) { 483 bch_err(c, "error starting gc thread"); 484 return ret; 485 } 486 487 ret = bch2_journal_reclaim_start(&c->journal); 488 if (ret) 489 goto err; 490 491 if (!early) { 492 ret = bch2_fs_read_write_late(c); 493 if (ret) 494 goto err; 495 } 496 497 bch2_do_discards(c); 498 bch2_do_invalidates(c); 499 bch2_do_stripe_deletes(c); 500 bch2_do_pending_node_rewrites(c); 501 return 0; 502 err: 503 if (test_bit(BCH_FS_rw, &c->flags)) 504 bch2_fs_read_only(c); 505 else 506 __bch2_fs_read_only(c); 507 return ret; 508 } 509 510 int bch2_fs_read_write(struct bch_fs *c) 511 { 512 if (c->opts.norecovery) 513 return -BCH_ERR_erofs_norecovery; 514 515 if (c->opts.nochanges) 516 return -BCH_ERR_erofs_nochanges; 517 518 return __bch2_fs_read_write(c, false); 519 } 520 521 int bch2_fs_read_write_early(struct bch_fs *c) 522 { 523 lockdep_assert_held(&c->state_lock); 524 525 return __bch2_fs_read_write(c, true); 526 } 527 528 /* Filesystem startup/shutdown: */ 529 530 static void __bch2_fs_free(struct bch_fs *c) 531 { 532 unsigned i; 533 534 for (i = 0; i < BCH_TIME_STAT_NR; i++) 535 bch2_time_stats_exit(&c->times[i]); 536 537 bch2_free_pending_node_rewrites(c); 538 bch2_fs_sb_errors_exit(c); 539 bch2_fs_counters_exit(c); 540 bch2_fs_snapshots_exit(c); 541 bch2_fs_quota_exit(c); 542 bch2_fs_fs_io_direct_exit(c); 543 bch2_fs_fs_io_buffered_exit(c); 544 bch2_fs_fsio_exit(c); 545 bch2_fs_ec_exit(c); 546 bch2_fs_encryption_exit(c); 547 bch2_fs_nocow_locking_exit(c); 548 bch2_fs_io_write_exit(c); 549 bch2_fs_io_read_exit(c); 550 bch2_fs_buckets_waiting_for_journal_exit(c); 551 bch2_fs_btree_interior_update_exit(c); 552 bch2_fs_btree_iter_exit(c); 553 bch2_fs_btree_key_cache_exit(&c->btree_key_cache); 554 bch2_fs_btree_cache_exit(c); 555 bch2_fs_replicas_exit(c); 556 bch2_fs_journal_exit(&c->journal); 557 bch2_io_clock_exit(&c->io_clock[WRITE]); 558 bch2_io_clock_exit(&c->io_clock[READ]); 559 bch2_fs_compress_exit(c); 560 bch2_journal_keys_put_initial(c); 561 BUG_ON(atomic_read(&c->journal_keys.ref)); 562 bch2_fs_btree_write_buffer_exit(c); 563 percpu_free_rwsem(&c->mark_lock); 564 free_percpu(c->online_reserved); 565 566 darray_exit(&c->btree_roots_extra); 567 free_percpu(c->pcpu); 568 mempool_exit(&c->large_bkey_pool); 569 mempool_exit(&c->btree_bounce_pool); 570 bioset_exit(&c->btree_bio); 571 mempool_exit(&c->fill_iter); 572 #ifndef BCH_WRITE_REF_DEBUG 573 percpu_ref_exit(&c->writes); 574 #endif 575 kfree(rcu_dereference_protected(c->disk_groups, 1)); 576 kfree(c->journal_seq_blacklist_table); 577 kfree(c->unused_inode_hints); 578 579 if (c->write_ref_wq) 580 destroy_workqueue(c->write_ref_wq); 581 if (c->io_complete_wq) 582 destroy_workqueue(c->io_complete_wq); 583 if (c->copygc_wq) 584 destroy_workqueue(c->copygc_wq); 585 if (c->btree_io_complete_wq) 586 destroy_workqueue(c->btree_io_complete_wq); 587 if (c->btree_update_wq) 588 destroy_workqueue(c->btree_update_wq); 589 590 bch2_free_super(&c->disk_sb); 591 kvfree(c); 592 module_put(THIS_MODULE); 593 } 594 595 static void bch2_fs_release(struct kobject *kobj) 596 { 597 struct bch_fs *c = container_of(kobj, struct bch_fs, kobj); 598 599 __bch2_fs_free(c); 600 } 601 602 void __bch2_fs_stop(struct bch_fs *c) 603 { 604 bch_verbose(c, "shutting down"); 605 606 set_bit(BCH_FS_stopping, &c->flags); 607 608 cancel_work_sync(&c->journal_seq_blacklist_gc_work); 609 610 down_write(&c->state_lock); 611 bch2_fs_read_only(c); 612 up_write(&c->state_lock); 613 614 for_each_member_device(c, ca) 615 if (ca->kobj.state_in_sysfs && 616 ca->disk_sb.bdev) 617 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 618 619 if (c->kobj.state_in_sysfs) 620 kobject_del(&c->kobj); 621 622 bch2_fs_debug_exit(c); 623 bch2_fs_chardev_exit(c); 624 625 bch2_ro_ref_put(c); 626 wait_event(c->ro_ref_wait, !refcount_read(&c->ro_ref)); 627 628 kobject_put(&c->counters_kobj); 629 kobject_put(&c->time_stats); 630 kobject_put(&c->opts_dir); 631 kobject_put(&c->internal); 632 633 /* btree prefetch might have kicked off reads in the background: */ 634 bch2_btree_flush_all_reads(c); 635 636 for_each_member_device(c, ca) 637 cancel_work_sync(&ca->io_error_work); 638 639 cancel_work_sync(&c->read_only_work); 640 } 641 642 void bch2_fs_free(struct bch_fs *c) 643 { 644 unsigned i; 645 646 mutex_lock(&bch_fs_list_lock); 647 list_del(&c->list); 648 mutex_unlock(&bch_fs_list_lock); 649 650 closure_sync(&c->cl); 651 closure_debug_destroy(&c->cl); 652 653 for (i = 0; i < c->sb.nr_devices; i++) { 654 struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true); 655 656 if (ca) { 657 bch2_free_super(&ca->disk_sb); 658 bch2_dev_free(ca); 659 } 660 } 661 662 bch_verbose(c, "shutdown complete"); 663 664 kobject_put(&c->kobj); 665 } 666 667 void bch2_fs_stop(struct bch_fs *c) 668 { 669 __bch2_fs_stop(c); 670 bch2_fs_free(c); 671 } 672 673 static int bch2_fs_online(struct bch_fs *c) 674 { 675 int ret = 0; 676 677 lockdep_assert_held(&bch_fs_list_lock); 678 679 if (__bch2_uuid_to_fs(c->sb.uuid)) { 680 bch_err(c, "filesystem UUID already open"); 681 return -EINVAL; 682 } 683 684 ret = bch2_fs_chardev_init(c); 685 if (ret) { 686 bch_err(c, "error creating character device"); 687 return ret; 688 } 689 690 bch2_fs_debug_init(c); 691 692 ret = kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ?: 693 kobject_add(&c->internal, &c->kobj, "internal") ?: 694 kobject_add(&c->opts_dir, &c->kobj, "options") ?: 695 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT 696 kobject_add(&c->time_stats, &c->kobj, "time_stats") ?: 697 #endif 698 kobject_add(&c->counters_kobj, &c->kobj, "counters") ?: 699 bch2_opts_create_sysfs_files(&c->opts_dir); 700 if (ret) { 701 bch_err(c, "error creating sysfs objects"); 702 return ret; 703 } 704 705 down_write(&c->state_lock); 706 707 for_each_member_device(c, ca) { 708 ret = bch2_dev_sysfs_online(c, ca); 709 if (ret) { 710 bch_err(c, "error creating sysfs objects"); 711 percpu_ref_put(&ca->ref); 712 goto err; 713 } 714 } 715 716 BUG_ON(!list_empty(&c->list)); 717 list_add(&c->list, &bch_fs_list); 718 err: 719 up_write(&c->state_lock); 720 return ret; 721 } 722 723 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts) 724 { 725 struct bch_fs *c; 726 struct printbuf name = PRINTBUF; 727 unsigned i, iter_size; 728 int ret = 0; 729 730 c = kvmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO); 731 if (!c) { 732 c = ERR_PTR(-BCH_ERR_ENOMEM_fs_alloc); 733 goto out; 734 } 735 736 c->stdio = (void *)(unsigned long) opts.stdio; 737 738 __module_get(THIS_MODULE); 739 740 closure_init(&c->cl, NULL); 741 742 c->kobj.kset = bcachefs_kset; 743 kobject_init(&c->kobj, &bch2_fs_ktype); 744 kobject_init(&c->internal, &bch2_fs_internal_ktype); 745 kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype); 746 kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype); 747 kobject_init(&c->counters_kobj, &bch2_fs_counters_ktype); 748 749 c->minor = -1; 750 c->disk_sb.fs_sb = true; 751 752 init_rwsem(&c->state_lock); 753 mutex_init(&c->sb_lock); 754 mutex_init(&c->replicas_gc_lock); 755 mutex_init(&c->btree_root_lock); 756 INIT_WORK(&c->read_only_work, bch2_fs_read_only_work); 757 758 refcount_set(&c->ro_ref, 1); 759 init_waitqueue_head(&c->ro_ref_wait); 760 sema_init(&c->online_fsck_mutex, 1); 761 762 init_rwsem(&c->gc_lock); 763 mutex_init(&c->gc_gens_lock); 764 atomic_set(&c->journal_keys.ref, 1); 765 c->journal_keys.initial_ref_held = true; 766 767 for (i = 0; i < BCH_TIME_STAT_NR; i++) 768 bch2_time_stats_init(&c->times[i]); 769 770 bch2_fs_copygc_init(c); 771 bch2_fs_btree_key_cache_init_early(&c->btree_key_cache); 772 bch2_fs_btree_iter_init_early(c); 773 bch2_fs_btree_interior_update_init_early(c); 774 bch2_fs_allocator_background_init(c); 775 bch2_fs_allocator_foreground_init(c); 776 bch2_fs_rebalance_init(c); 777 bch2_fs_quota_init(c); 778 bch2_fs_ec_init_early(c); 779 bch2_fs_move_init(c); 780 bch2_fs_sb_errors_init_early(c); 781 782 INIT_LIST_HEAD(&c->list); 783 784 mutex_init(&c->usage_scratch_lock); 785 786 mutex_init(&c->bio_bounce_pages_lock); 787 mutex_init(&c->snapshot_table_lock); 788 init_rwsem(&c->snapshot_create_lock); 789 790 spin_lock_init(&c->btree_write_error_lock); 791 792 INIT_WORK(&c->journal_seq_blacklist_gc_work, 793 bch2_blacklist_entries_gc); 794 795 INIT_LIST_HEAD(&c->journal_iters); 796 797 INIT_LIST_HEAD(&c->fsck_error_msgs); 798 mutex_init(&c->fsck_error_msgs_lock); 799 800 seqcount_init(&c->gc_pos_lock); 801 802 seqcount_init(&c->usage_lock); 803 804 sema_init(&c->io_in_flight, 128); 805 806 INIT_LIST_HEAD(&c->vfs_inodes_list); 807 mutex_init(&c->vfs_inodes_lock); 808 809 c->copy_gc_enabled = 1; 810 c->rebalance.enabled = 1; 811 c->promote_whole_extents = true; 812 813 c->journal.flush_write_time = &c->times[BCH_TIME_journal_flush_write]; 814 c->journal.noflush_write_time = &c->times[BCH_TIME_journal_noflush_write]; 815 c->journal.flush_seq_time = &c->times[BCH_TIME_journal_flush_seq]; 816 817 bch2_fs_btree_cache_init_early(&c->btree_cache); 818 819 mutex_init(&c->sectors_available_lock); 820 821 ret = percpu_init_rwsem(&c->mark_lock); 822 if (ret) 823 goto err; 824 825 mutex_lock(&c->sb_lock); 826 ret = bch2_sb_to_fs(c, sb); 827 mutex_unlock(&c->sb_lock); 828 829 if (ret) 830 goto err; 831 832 pr_uuid(&name, c->sb.user_uuid.b); 833 ret = name.allocation_failure ? -BCH_ERR_ENOMEM_fs_name_alloc : 0; 834 if (ret) 835 goto err; 836 837 strscpy(c->name, name.buf, sizeof(c->name)); 838 printbuf_exit(&name); 839 840 /* Compat: */ 841 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && 842 !BCH_SB_JOURNAL_FLUSH_DELAY(sb)) 843 SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000); 844 845 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && 846 !BCH_SB_JOURNAL_RECLAIM_DELAY(sb)) 847 SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 100); 848 849 c->opts = bch2_opts_default; 850 ret = bch2_opts_from_sb(&c->opts, sb); 851 if (ret) 852 goto err; 853 854 bch2_opts_apply(&c->opts, opts); 855 856 c->btree_key_cache_btrees |= 1U << BTREE_ID_alloc; 857 if (c->opts.inodes_use_key_cache) 858 c->btree_key_cache_btrees |= 1U << BTREE_ID_inodes; 859 c->btree_key_cache_btrees |= 1U << BTREE_ID_logged_ops; 860 861 c->block_bits = ilog2(block_sectors(c)); 862 c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c); 863 864 if (bch2_fs_init_fault("fs_alloc")) { 865 bch_err(c, "fs_alloc fault injected"); 866 ret = -EFAULT; 867 goto err; 868 } 869 870 iter_size = sizeof(struct sort_iter) + 871 (btree_blocks(c) + 1) * 2 * 872 sizeof(struct sort_iter_set); 873 874 c->inode_shard_bits = ilog2(roundup_pow_of_two(num_possible_cpus())); 875 876 if (!(c->btree_update_wq = alloc_workqueue("bcachefs", 877 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_UNBOUND, 512)) || 878 !(c->btree_io_complete_wq = alloc_workqueue("bcachefs_btree_io", 879 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) || 880 !(c->copygc_wq = alloc_workqueue("bcachefs_copygc", 881 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) || 882 !(c->io_complete_wq = alloc_workqueue("bcachefs_io", 883 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 512)) || 884 !(c->write_ref_wq = alloc_workqueue("bcachefs_write_ref", 885 WQ_FREEZABLE, 0)) || 886 #ifndef BCH_WRITE_REF_DEBUG 887 percpu_ref_init(&c->writes, bch2_writes_disabled, 888 PERCPU_REF_INIT_DEAD, GFP_KERNEL) || 889 #endif 890 mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) || 891 bioset_init(&c->btree_bio, 1, 892 max(offsetof(struct btree_read_bio, bio), 893 offsetof(struct btree_write_bio, wbio.bio)), 894 BIOSET_NEED_BVECS) || 895 !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) || 896 !(c->online_reserved = alloc_percpu(u64)) || 897 mempool_init_kvmalloc_pool(&c->btree_bounce_pool, 1, 898 c->opts.btree_node_size) || 899 mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048) || 900 !(c->unused_inode_hints = kcalloc(1U << c->inode_shard_bits, 901 sizeof(u64), GFP_KERNEL))) { 902 ret = -BCH_ERR_ENOMEM_fs_other_alloc; 903 goto err; 904 } 905 906 ret = bch2_fs_counters_init(c) ?: 907 bch2_fs_sb_errors_init(c) ?: 908 bch2_io_clock_init(&c->io_clock[READ]) ?: 909 bch2_io_clock_init(&c->io_clock[WRITE]) ?: 910 bch2_fs_journal_init(&c->journal) ?: 911 bch2_fs_replicas_init(c) ?: 912 bch2_fs_btree_cache_init(c) ?: 913 bch2_fs_btree_key_cache_init(&c->btree_key_cache) ?: 914 bch2_fs_btree_iter_init(c) ?: 915 bch2_fs_btree_interior_update_init(c) ?: 916 bch2_fs_buckets_waiting_for_journal_init(c) ?: 917 bch2_fs_btree_write_buffer_init(c) ?: 918 bch2_fs_subvolumes_init(c) ?: 919 bch2_fs_io_read_init(c) ?: 920 bch2_fs_io_write_init(c) ?: 921 bch2_fs_nocow_locking_init(c) ?: 922 bch2_fs_encryption_init(c) ?: 923 bch2_fs_compress_init(c) ?: 924 bch2_fs_ec_init(c) ?: 925 bch2_fs_fsio_init(c) ?: 926 bch2_fs_fs_io_buffered_init(c) ?: 927 bch2_fs_fs_io_direct_init(c); 928 if (ret) 929 goto err; 930 931 for (i = 0; i < c->sb.nr_devices; i++) 932 if (bch2_dev_exists(c->disk_sb.sb, i) && 933 bch2_dev_alloc(c, i)) { 934 ret = -EEXIST; 935 goto err; 936 } 937 938 bch2_journal_entry_res_resize(&c->journal, 939 &c->btree_root_journal_res, 940 BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX)); 941 bch2_dev_usage_journal_reserve(c); 942 bch2_journal_entry_res_resize(&c->journal, 943 &c->clock_journal_res, 944 (sizeof(struct jset_entry_clock) / sizeof(u64)) * 2); 945 946 mutex_lock(&bch_fs_list_lock); 947 ret = bch2_fs_online(c); 948 mutex_unlock(&bch_fs_list_lock); 949 950 if (ret) 951 goto err; 952 out: 953 return c; 954 err: 955 bch2_fs_free(c); 956 c = ERR_PTR(ret); 957 goto out; 958 } 959 960 noinline_for_stack 961 static void print_mount_opts(struct bch_fs *c) 962 { 963 enum bch_opt_id i; 964 struct printbuf p = PRINTBUF; 965 bool first = true; 966 967 prt_str(&p, "mounting version "); 968 bch2_version_to_text(&p, c->sb.version); 969 970 if (c->opts.read_only) { 971 prt_str(&p, " opts="); 972 first = false; 973 prt_printf(&p, "ro"); 974 } 975 976 for (i = 0; i < bch2_opts_nr; i++) { 977 const struct bch_option *opt = &bch2_opt_table[i]; 978 u64 v = bch2_opt_get_by_id(&c->opts, i); 979 980 if (!(opt->flags & OPT_MOUNT)) 981 continue; 982 983 if (v == bch2_opt_get_by_id(&bch2_opts_default, i)) 984 continue; 985 986 prt_str(&p, first ? " opts=" : ","); 987 first = false; 988 bch2_opt_to_text(&p, c, c->disk_sb.sb, opt, v, OPT_SHOW_MOUNT_STYLE); 989 } 990 991 bch_info(c, "%s", p.buf); 992 printbuf_exit(&p); 993 } 994 995 int bch2_fs_start(struct bch_fs *c) 996 { 997 time64_t now = ktime_get_real_seconds(); 998 int ret; 999 1000 print_mount_opts(c); 1001 1002 down_write(&c->state_lock); 1003 1004 BUG_ON(test_bit(BCH_FS_started, &c->flags)); 1005 1006 mutex_lock(&c->sb_lock); 1007 1008 ret = bch2_sb_members_v2_init(c); 1009 if (ret) { 1010 mutex_unlock(&c->sb_lock); 1011 goto err; 1012 } 1013 1014 for_each_online_member(c, ca) 1015 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = cpu_to_le64(now); 1016 1017 mutex_unlock(&c->sb_lock); 1018 1019 for_each_rw_member(c, ca) 1020 bch2_dev_allocator_add(c, ca); 1021 bch2_recalc_capacity(c); 1022 1023 ret = BCH_SB_INITIALIZED(c->disk_sb.sb) 1024 ? bch2_fs_recovery(c) 1025 : bch2_fs_initialize(c); 1026 if (ret) 1027 goto err; 1028 1029 ret = bch2_opts_check_may_set(c); 1030 if (ret) 1031 goto err; 1032 1033 if (bch2_fs_init_fault("fs_start")) { 1034 bch_err(c, "fs_start fault injected"); 1035 ret = -EINVAL; 1036 goto err; 1037 } 1038 1039 set_bit(BCH_FS_started, &c->flags); 1040 1041 if (c->opts.read_only) { 1042 bch2_fs_read_only(c); 1043 } else { 1044 ret = !test_bit(BCH_FS_rw, &c->flags) 1045 ? bch2_fs_read_write(c) 1046 : bch2_fs_read_write_late(c); 1047 if (ret) 1048 goto err; 1049 } 1050 1051 ret = 0; 1052 err: 1053 if (ret) 1054 bch_err_msg(c, ret, "starting filesystem"); 1055 else 1056 bch_verbose(c, "done starting filesystem"); 1057 up_write(&c->state_lock); 1058 return ret; 1059 } 1060 1061 static int bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c) 1062 { 1063 struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx); 1064 1065 if (le16_to_cpu(sb->block_size) != block_sectors(c)) 1066 return -BCH_ERR_mismatched_block_size; 1067 1068 if (le16_to_cpu(m.bucket_size) < 1069 BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb)) 1070 return -BCH_ERR_bucket_size_too_small; 1071 1072 return 0; 1073 } 1074 1075 static int bch2_dev_in_fs(struct bch_sb_handle *fs, 1076 struct bch_sb_handle *sb, 1077 struct bch_opts *opts) 1078 { 1079 if (fs == sb) 1080 return 0; 1081 1082 if (!uuid_equal(&fs->sb->uuid, &sb->sb->uuid)) 1083 return -BCH_ERR_device_not_a_member_of_filesystem; 1084 1085 if (!bch2_dev_exists(fs->sb, sb->sb->dev_idx)) 1086 return -BCH_ERR_device_has_been_removed; 1087 1088 if (fs->sb->block_size != sb->sb->block_size) 1089 return -BCH_ERR_mismatched_block_size; 1090 1091 if (le16_to_cpu(fs->sb->version) < bcachefs_metadata_version_member_seq || 1092 le16_to_cpu(sb->sb->version) < bcachefs_metadata_version_member_seq) 1093 return 0; 1094 1095 if (fs->sb->seq == sb->sb->seq && 1096 fs->sb->write_time != sb->sb->write_time) { 1097 struct printbuf buf = PRINTBUF; 1098 1099 prt_str(&buf, "Split brain detected between "); 1100 prt_bdevname(&buf, sb->bdev); 1101 prt_str(&buf, " and "); 1102 prt_bdevname(&buf, fs->bdev); 1103 prt_char(&buf, ':'); 1104 prt_newline(&buf); 1105 prt_printf(&buf, "seq=%llu but write_time different, got", le64_to_cpu(sb->sb->seq)); 1106 prt_newline(&buf); 1107 1108 prt_bdevname(&buf, fs->bdev); 1109 prt_char(&buf, ' '); 1110 bch2_prt_datetime(&buf, le64_to_cpu(fs->sb->write_time));; 1111 prt_newline(&buf); 1112 1113 prt_bdevname(&buf, sb->bdev); 1114 prt_char(&buf, ' '); 1115 bch2_prt_datetime(&buf, le64_to_cpu(sb->sb->write_time));; 1116 prt_newline(&buf); 1117 1118 if (!opts->no_splitbrain_check) 1119 prt_printf(&buf, "Not using older sb"); 1120 1121 pr_err("%s", buf.buf); 1122 printbuf_exit(&buf); 1123 1124 if (!opts->no_splitbrain_check) 1125 return -BCH_ERR_device_splitbrain; 1126 } 1127 1128 struct bch_member m = bch2_sb_member_get(fs->sb, sb->sb->dev_idx); 1129 u64 seq_from_fs = le64_to_cpu(m.seq); 1130 u64 seq_from_member = le64_to_cpu(sb->sb->seq); 1131 1132 if (seq_from_fs && seq_from_fs < seq_from_member) { 1133 struct printbuf buf = PRINTBUF; 1134 1135 prt_str(&buf, "Split brain detected between "); 1136 prt_bdevname(&buf, sb->bdev); 1137 prt_str(&buf, " and "); 1138 prt_bdevname(&buf, fs->bdev); 1139 prt_char(&buf, ':'); 1140 prt_newline(&buf); 1141 1142 prt_bdevname(&buf, fs->bdev); 1143 prt_str(&buf, " believes seq of "); 1144 prt_bdevname(&buf, sb->bdev); 1145 prt_printf(&buf, " to be %llu, but ", seq_from_fs); 1146 prt_bdevname(&buf, sb->bdev); 1147 prt_printf(&buf, " has %llu\n", seq_from_member); 1148 1149 if (!opts->no_splitbrain_check) { 1150 prt_str(&buf, "Not using "); 1151 prt_bdevname(&buf, sb->bdev); 1152 } 1153 1154 pr_err("%s", buf.buf); 1155 printbuf_exit(&buf); 1156 1157 if (!opts->no_splitbrain_check) 1158 return -BCH_ERR_device_splitbrain; 1159 } 1160 1161 return 0; 1162 } 1163 1164 /* Device startup/shutdown: */ 1165 1166 static void bch2_dev_release(struct kobject *kobj) 1167 { 1168 struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj); 1169 1170 kfree(ca); 1171 } 1172 1173 static void bch2_dev_free(struct bch_dev *ca) 1174 { 1175 cancel_work_sync(&ca->io_error_work); 1176 1177 if (ca->kobj.state_in_sysfs && 1178 ca->disk_sb.bdev) 1179 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 1180 1181 if (ca->kobj.state_in_sysfs) 1182 kobject_del(&ca->kobj); 1183 1184 bch2_free_super(&ca->disk_sb); 1185 bch2_dev_journal_exit(ca); 1186 1187 free_percpu(ca->io_done); 1188 bioset_exit(&ca->replica_set); 1189 bch2_dev_buckets_free(ca); 1190 free_page((unsigned long) ca->sb_read_scratch); 1191 1192 bch2_time_stats_quantiles_exit(&ca->io_latency[WRITE]); 1193 bch2_time_stats_quantiles_exit(&ca->io_latency[READ]); 1194 1195 percpu_ref_exit(&ca->io_ref); 1196 percpu_ref_exit(&ca->ref); 1197 kobject_put(&ca->kobj); 1198 } 1199 1200 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca) 1201 { 1202 1203 lockdep_assert_held(&c->state_lock); 1204 1205 if (percpu_ref_is_zero(&ca->io_ref)) 1206 return; 1207 1208 __bch2_dev_read_only(c, ca); 1209 1210 reinit_completion(&ca->io_ref_completion); 1211 percpu_ref_kill(&ca->io_ref); 1212 wait_for_completion(&ca->io_ref_completion); 1213 1214 if (ca->kobj.state_in_sysfs) { 1215 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 1216 sysfs_remove_link(&ca->kobj, "block"); 1217 } 1218 1219 bch2_free_super(&ca->disk_sb); 1220 bch2_dev_journal_exit(ca); 1221 } 1222 1223 static void bch2_dev_ref_complete(struct percpu_ref *ref) 1224 { 1225 struct bch_dev *ca = container_of(ref, struct bch_dev, ref); 1226 1227 complete(&ca->ref_completion); 1228 } 1229 1230 static void bch2_dev_io_ref_complete(struct percpu_ref *ref) 1231 { 1232 struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref); 1233 1234 complete(&ca->io_ref_completion); 1235 } 1236 1237 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca) 1238 { 1239 int ret; 1240 1241 if (!c->kobj.state_in_sysfs) 1242 return 0; 1243 1244 if (!ca->kobj.state_in_sysfs) { 1245 ret = kobject_add(&ca->kobj, &c->kobj, 1246 "dev-%u", ca->dev_idx); 1247 if (ret) 1248 return ret; 1249 } 1250 1251 if (ca->disk_sb.bdev) { 1252 struct kobject *block = bdev_kobj(ca->disk_sb.bdev); 1253 1254 ret = sysfs_create_link(block, &ca->kobj, "bcachefs"); 1255 if (ret) 1256 return ret; 1257 1258 ret = sysfs_create_link(&ca->kobj, block, "block"); 1259 if (ret) 1260 return ret; 1261 } 1262 1263 return 0; 1264 } 1265 1266 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c, 1267 struct bch_member *member) 1268 { 1269 struct bch_dev *ca; 1270 unsigned i; 1271 1272 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 1273 if (!ca) 1274 return NULL; 1275 1276 kobject_init(&ca->kobj, &bch2_dev_ktype); 1277 init_completion(&ca->ref_completion); 1278 init_completion(&ca->io_ref_completion); 1279 1280 init_rwsem(&ca->bucket_lock); 1281 1282 INIT_WORK(&ca->io_error_work, bch2_io_error_work); 1283 1284 bch2_time_stats_quantiles_init(&ca->io_latency[READ]); 1285 bch2_time_stats_quantiles_init(&ca->io_latency[WRITE]); 1286 1287 ca->mi = bch2_mi_to_cpu(member); 1288 1289 for (i = 0; i < ARRAY_SIZE(member->errors); i++) 1290 atomic64_set(&ca->errors[i], le64_to_cpu(member->errors[i])); 1291 1292 ca->uuid = member->uuid; 1293 1294 ca->nr_btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE, 1295 ca->mi.bucket_size / btree_sectors(c)); 1296 1297 if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete, 1298 0, GFP_KERNEL) || 1299 percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete, 1300 PERCPU_REF_INIT_DEAD, GFP_KERNEL) || 1301 !(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) || 1302 bch2_dev_buckets_alloc(c, ca) || 1303 bioset_init(&ca->replica_set, 4, 1304 offsetof(struct bch_write_bio, bio), 0) || 1305 !(ca->io_done = alloc_percpu(*ca->io_done))) 1306 goto err; 1307 1308 return ca; 1309 err: 1310 bch2_dev_free(ca); 1311 return NULL; 1312 } 1313 1314 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca, 1315 unsigned dev_idx) 1316 { 1317 ca->dev_idx = dev_idx; 1318 __set_bit(ca->dev_idx, ca->self.d); 1319 scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx); 1320 1321 ca->fs = c; 1322 rcu_assign_pointer(c->devs[ca->dev_idx], ca); 1323 1324 if (bch2_dev_sysfs_online(c, ca)) 1325 pr_warn("error creating sysfs objects"); 1326 } 1327 1328 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx) 1329 { 1330 struct bch_member member = bch2_sb_member_get(c->disk_sb.sb, dev_idx); 1331 struct bch_dev *ca = NULL; 1332 int ret = 0; 1333 1334 if (bch2_fs_init_fault("dev_alloc")) 1335 goto err; 1336 1337 ca = __bch2_dev_alloc(c, &member); 1338 if (!ca) 1339 goto err; 1340 1341 ca->fs = c; 1342 1343 bch2_dev_attach(c, ca, dev_idx); 1344 return ret; 1345 err: 1346 if (ca) 1347 bch2_dev_free(ca); 1348 return -BCH_ERR_ENOMEM_dev_alloc; 1349 } 1350 1351 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb) 1352 { 1353 unsigned ret; 1354 1355 if (bch2_dev_is_online(ca)) { 1356 bch_err(ca, "already have device online in slot %u", 1357 sb->sb->dev_idx); 1358 return -BCH_ERR_device_already_online; 1359 } 1360 1361 if (get_capacity(sb->bdev->bd_disk) < 1362 ca->mi.bucket_size * ca->mi.nbuckets) { 1363 bch_err(ca, "cannot online: device too small"); 1364 return -BCH_ERR_device_size_too_small; 1365 } 1366 1367 BUG_ON(!percpu_ref_is_zero(&ca->io_ref)); 1368 1369 ret = bch2_dev_journal_init(ca, sb->sb); 1370 if (ret) 1371 return ret; 1372 1373 /* Commit: */ 1374 ca->disk_sb = *sb; 1375 memset(sb, 0, sizeof(*sb)); 1376 1377 ca->dev = ca->disk_sb.bdev->bd_dev; 1378 1379 percpu_ref_reinit(&ca->io_ref); 1380 1381 return 0; 1382 } 1383 1384 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb) 1385 { 1386 struct bch_dev *ca; 1387 int ret; 1388 1389 lockdep_assert_held(&c->state_lock); 1390 1391 if (le64_to_cpu(sb->sb->seq) > 1392 le64_to_cpu(c->disk_sb.sb->seq)) 1393 bch2_sb_to_fs(c, sb->sb); 1394 1395 BUG_ON(sb->sb->dev_idx >= c->sb.nr_devices || 1396 !c->devs[sb->sb->dev_idx]); 1397 1398 ca = bch_dev_locked(c, sb->sb->dev_idx); 1399 1400 ret = __bch2_dev_attach_bdev(ca, sb); 1401 if (ret) 1402 return ret; 1403 1404 bch2_dev_sysfs_online(c, ca); 1405 1406 struct printbuf name = PRINTBUF; 1407 prt_bdevname(&name, ca->disk_sb.bdev); 1408 1409 if (c->sb.nr_devices == 1) 1410 strscpy(c->name, name.buf, sizeof(c->name)); 1411 strscpy(ca->name, name.buf, sizeof(ca->name)); 1412 1413 printbuf_exit(&name); 1414 1415 rebalance_wakeup(c); 1416 return 0; 1417 } 1418 1419 /* Device management: */ 1420 1421 /* 1422 * Note: this function is also used by the error paths - when a particular 1423 * device sees an error, we call it to determine whether we can just set the 1424 * device RO, or - if this function returns false - we'll set the whole 1425 * filesystem RO: 1426 * 1427 * XXX: maybe we should be more explicit about whether we're changing state 1428 * because we got an error or what have you? 1429 */ 1430 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca, 1431 enum bch_member_state new_state, int flags) 1432 { 1433 struct bch_devs_mask new_online_devs; 1434 int nr_rw = 0, required; 1435 1436 lockdep_assert_held(&c->state_lock); 1437 1438 switch (new_state) { 1439 case BCH_MEMBER_STATE_rw: 1440 return true; 1441 case BCH_MEMBER_STATE_ro: 1442 if (ca->mi.state != BCH_MEMBER_STATE_rw) 1443 return true; 1444 1445 /* do we have enough devices to write to? */ 1446 for_each_member_device(c, ca2) 1447 if (ca2 != ca) 1448 nr_rw += ca2->mi.state == BCH_MEMBER_STATE_rw; 1449 1450 required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED) 1451 ? c->opts.metadata_replicas 1452 : metadata_replicas_required(c), 1453 !(flags & BCH_FORCE_IF_DATA_DEGRADED) 1454 ? c->opts.data_replicas 1455 : data_replicas_required(c)); 1456 1457 return nr_rw >= required; 1458 case BCH_MEMBER_STATE_failed: 1459 case BCH_MEMBER_STATE_spare: 1460 if (ca->mi.state != BCH_MEMBER_STATE_rw && 1461 ca->mi.state != BCH_MEMBER_STATE_ro) 1462 return true; 1463 1464 /* do we have enough devices to read from? */ 1465 new_online_devs = bch2_online_devs(c); 1466 __clear_bit(ca->dev_idx, new_online_devs.d); 1467 1468 return bch2_have_enough_devs(c, new_online_devs, flags, false); 1469 default: 1470 BUG(); 1471 } 1472 } 1473 1474 static bool bch2_fs_may_start(struct bch_fs *c) 1475 { 1476 struct bch_dev *ca; 1477 unsigned i, flags = 0; 1478 1479 if (c->opts.very_degraded) 1480 flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST; 1481 1482 if (c->opts.degraded) 1483 flags |= BCH_FORCE_IF_DEGRADED; 1484 1485 if (!c->opts.degraded && 1486 !c->opts.very_degraded) { 1487 mutex_lock(&c->sb_lock); 1488 1489 for (i = 0; i < c->disk_sb.sb->nr_devices; i++) { 1490 if (!bch2_dev_exists(c->disk_sb.sb, i)) 1491 continue; 1492 1493 ca = bch_dev_locked(c, i); 1494 1495 if (!bch2_dev_is_online(ca) && 1496 (ca->mi.state == BCH_MEMBER_STATE_rw || 1497 ca->mi.state == BCH_MEMBER_STATE_ro)) { 1498 mutex_unlock(&c->sb_lock); 1499 return false; 1500 } 1501 } 1502 mutex_unlock(&c->sb_lock); 1503 } 1504 1505 return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true); 1506 } 1507 1508 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca) 1509 { 1510 /* 1511 * The allocator thread itself allocates btree nodes, so stop it first: 1512 */ 1513 bch2_dev_allocator_remove(c, ca); 1514 bch2_dev_journal_stop(&c->journal, ca); 1515 } 1516 1517 static void __bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca) 1518 { 1519 lockdep_assert_held(&c->state_lock); 1520 1521 BUG_ON(ca->mi.state != BCH_MEMBER_STATE_rw); 1522 1523 bch2_dev_allocator_add(c, ca); 1524 bch2_recalc_capacity(c); 1525 } 1526 1527 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, 1528 enum bch_member_state new_state, int flags) 1529 { 1530 struct bch_member *m; 1531 int ret = 0; 1532 1533 if (ca->mi.state == new_state) 1534 return 0; 1535 1536 if (!bch2_dev_state_allowed(c, ca, new_state, flags)) 1537 return -BCH_ERR_device_state_not_allowed; 1538 1539 if (new_state != BCH_MEMBER_STATE_rw) 1540 __bch2_dev_read_only(c, ca); 1541 1542 bch_notice(ca, "%s", bch2_member_states[new_state]); 1543 1544 mutex_lock(&c->sb_lock); 1545 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); 1546 SET_BCH_MEMBER_STATE(m, new_state); 1547 bch2_write_super(c); 1548 mutex_unlock(&c->sb_lock); 1549 1550 if (new_state == BCH_MEMBER_STATE_rw) 1551 __bch2_dev_read_write(c, ca); 1552 1553 rebalance_wakeup(c); 1554 1555 return ret; 1556 } 1557 1558 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, 1559 enum bch_member_state new_state, int flags) 1560 { 1561 int ret; 1562 1563 down_write(&c->state_lock); 1564 ret = __bch2_dev_set_state(c, ca, new_state, flags); 1565 up_write(&c->state_lock); 1566 1567 return ret; 1568 } 1569 1570 /* Device add/removal: */ 1571 1572 static int bch2_dev_remove_alloc(struct bch_fs *c, struct bch_dev *ca) 1573 { 1574 struct bpos start = POS(ca->dev_idx, 0); 1575 struct bpos end = POS(ca->dev_idx, U64_MAX); 1576 int ret; 1577 1578 /* 1579 * We clear the LRU and need_discard btrees first so that we don't race 1580 * with bch2_do_invalidates() and bch2_do_discards() 1581 */ 1582 ret = bch2_btree_delete_range(c, BTREE_ID_lru, start, end, 1583 BTREE_TRIGGER_NORUN, NULL) ?: 1584 bch2_btree_delete_range(c, BTREE_ID_need_discard, start, end, 1585 BTREE_TRIGGER_NORUN, NULL) ?: 1586 bch2_btree_delete_range(c, BTREE_ID_freespace, start, end, 1587 BTREE_TRIGGER_NORUN, NULL) ?: 1588 bch2_btree_delete_range(c, BTREE_ID_backpointers, start, end, 1589 BTREE_TRIGGER_NORUN, NULL) ?: 1590 bch2_btree_delete_range(c, BTREE_ID_alloc, start, end, 1591 BTREE_TRIGGER_NORUN, NULL) ?: 1592 bch2_btree_delete_range(c, BTREE_ID_bucket_gens, start, end, 1593 BTREE_TRIGGER_NORUN, NULL); 1594 bch_err_msg(c, ret, "removing dev alloc info"); 1595 return ret; 1596 } 1597 1598 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags) 1599 { 1600 struct bch_member *m; 1601 unsigned dev_idx = ca->dev_idx, data; 1602 int ret; 1603 1604 down_write(&c->state_lock); 1605 1606 /* 1607 * We consume a reference to ca->ref, regardless of whether we succeed 1608 * or fail: 1609 */ 1610 percpu_ref_put(&ca->ref); 1611 1612 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { 1613 bch_err(ca, "Cannot remove without losing data"); 1614 ret = -BCH_ERR_device_state_not_allowed; 1615 goto err; 1616 } 1617 1618 __bch2_dev_read_only(c, ca); 1619 1620 ret = bch2_dev_data_drop(c, ca->dev_idx, flags); 1621 bch_err_msg(ca, ret, "bch2_dev_data_drop()"); 1622 if (ret) 1623 goto err; 1624 1625 ret = bch2_dev_remove_alloc(c, ca); 1626 bch_err_msg(ca, ret, "bch2_dev_remove_alloc()"); 1627 if (ret) 1628 goto err; 1629 1630 ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx); 1631 bch_err_msg(ca, ret, "bch2_journal_flush_device_pins()"); 1632 if (ret) 1633 goto err; 1634 1635 ret = bch2_journal_flush(&c->journal); 1636 bch_err_msg(ca, ret, "bch2_journal_flush()"); 1637 if (ret) 1638 goto err; 1639 1640 ret = bch2_replicas_gc2(c); 1641 bch_err_msg(ca, ret, "bch2_replicas_gc2()"); 1642 if (ret) 1643 goto err; 1644 1645 data = bch2_dev_has_data(c, ca); 1646 if (data) { 1647 struct printbuf data_has = PRINTBUF; 1648 1649 prt_bitflags(&data_has, __bch2_data_types, data); 1650 bch_err(ca, "Remove failed, still has data (%s)", data_has.buf); 1651 printbuf_exit(&data_has); 1652 ret = -EBUSY; 1653 goto err; 1654 } 1655 1656 __bch2_dev_offline(c, ca); 1657 1658 mutex_lock(&c->sb_lock); 1659 rcu_assign_pointer(c->devs[ca->dev_idx], NULL); 1660 mutex_unlock(&c->sb_lock); 1661 1662 percpu_ref_kill(&ca->ref); 1663 wait_for_completion(&ca->ref_completion); 1664 1665 bch2_dev_free(ca); 1666 1667 /* 1668 * At this point the device object has been removed in-core, but the 1669 * on-disk journal might still refer to the device index via sb device 1670 * usage entries. Recovery fails if it sees usage information for an 1671 * invalid device. Flush journal pins to push the back of the journal 1672 * past now invalid device index references before we update the 1673 * superblock, but after the device object has been removed so any 1674 * further journal writes elide usage info for the device. 1675 */ 1676 bch2_journal_flush_all_pins(&c->journal); 1677 1678 /* 1679 * Free this device's slot in the bch_member array - all pointers to 1680 * this device must be gone: 1681 */ 1682 mutex_lock(&c->sb_lock); 1683 m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx); 1684 memset(&m->uuid, 0, sizeof(m->uuid)); 1685 1686 bch2_write_super(c); 1687 1688 mutex_unlock(&c->sb_lock); 1689 up_write(&c->state_lock); 1690 1691 bch2_dev_usage_journal_reserve(c); 1692 return 0; 1693 err: 1694 if (ca->mi.state == BCH_MEMBER_STATE_rw && 1695 !percpu_ref_is_zero(&ca->io_ref)) 1696 __bch2_dev_read_write(c, ca); 1697 up_write(&c->state_lock); 1698 return ret; 1699 } 1700 1701 /* Add new device to running filesystem: */ 1702 int bch2_dev_add(struct bch_fs *c, const char *path) 1703 { 1704 struct bch_opts opts = bch2_opts_empty(); 1705 struct bch_sb_handle sb; 1706 struct bch_dev *ca = NULL; 1707 struct bch_sb_field_members_v2 *mi; 1708 struct bch_member dev_mi; 1709 unsigned dev_idx, nr_devices, u64s; 1710 struct printbuf errbuf = PRINTBUF; 1711 struct printbuf label = PRINTBUF; 1712 int ret; 1713 1714 ret = bch2_read_super(path, &opts, &sb); 1715 bch_err_msg(c, ret, "reading super"); 1716 if (ret) 1717 goto err; 1718 1719 dev_mi = bch2_sb_member_get(sb.sb, sb.sb->dev_idx); 1720 1721 if (BCH_MEMBER_GROUP(&dev_mi)) { 1722 bch2_disk_path_to_text_sb(&label, sb.sb, BCH_MEMBER_GROUP(&dev_mi) - 1); 1723 if (label.allocation_failure) { 1724 ret = -ENOMEM; 1725 goto err; 1726 } 1727 } 1728 1729 ret = bch2_dev_may_add(sb.sb, c); 1730 if (ret) 1731 goto err; 1732 1733 ca = __bch2_dev_alloc(c, &dev_mi); 1734 if (!ca) { 1735 ret = -ENOMEM; 1736 goto err; 1737 } 1738 1739 bch2_dev_usage_init(ca); 1740 1741 ret = __bch2_dev_attach_bdev(ca, &sb); 1742 if (ret) 1743 goto err; 1744 1745 ret = bch2_dev_journal_alloc(ca); 1746 bch_err_msg(c, ret, "allocating journal"); 1747 if (ret) 1748 goto err; 1749 1750 down_write(&c->state_lock); 1751 mutex_lock(&c->sb_lock); 1752 1753 ret = bch2_sb_from_fs(c, ca); 1754 bch_err_msg(c, ret, "setting up new superblock"); 1755 if (ret) 1756 goto err_unlock; 1757 1758 if (dynamic_fault("bcachefs:add:no_slot")) 1759 goto no_slot; 1760 1761 for (dev_idx = 0; dev_idx < BCH_SB_MEMBERS_MAX; dev_idx++) 1762 if (!bch2_dev_exists(c->disk_sb.sb, dev_idx)) 1763 goto have_slot; 1764 no_slot: 1765 ret = -BCH_ERR_ENOSPC_sb_members; 1766 bch_err_msg(c, ret, "setting up new superblock"); 1767 goto err_unlock; 1768 1769 have_slot: 1770 nr_devices = max_t(unsigned, dev_idx + 1, c->sb.nr_devices); 1771 1772 mi = bch2_sb_field_get(c->disk_sb.sb, members_v2); 1773 u64s = DIV_ROUND_UP(sizeof(struct bch_sb_field_members_v2) + 1774 le16_to_cpu(mi->member_bytes) * nr_devices, sizeof(u64)); 1775 1776 mi = bch2_sb_field_resize(&c->disk_sb, members_v2, u64s); 1777 if (!mi) { 1778 ret = -BCH_ERR_ENOSPC_sb_members; 1779 bch_err_msg(c, ret, "setting up new superblock"); 1780 goto err_unlock; 1781 } 1782 struct bch_member *m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx); 1783 1784 /* success: */ 1785 1786 *m = dev_mi; 1787 m->last_mount = cpu_to_le64(ktime_get_real_seconds()); 1788 c->disk_sb.sb->nr_devices = nr_devices; 1789 1790 ca->disk_sb.sb->dev_idx = dev_idx; 1791 bch2_dev_attach(c, ca, dev_idx); 1792 1793 if (BCH_MEMBER_GROUP(&dev_mi)) { 1794 ret = __bch2_dev_group_set(c, ca, label.buf); 1795 bch_err_msg(c, ret, "creating new label"); 1796 if (ret) 1797 goto err_unlock; 1798 } 1799 1800 bch2_write_super(c); 1801 mutex_unlock(&c->sb_lock); 1802 1803 bch2_dev_usage_journal_reserve(c); 1804 1805 ret = bch2_trans_mark_dev_sb(c, ca); 1806 bch_err_msg(ca, ret, "marking new superblock"); 1807 if (ret) 1808 goto err_late; 1809 1810 ret = bch2_fs_freespace_init(c); 1811 bch_err_msg(ca, ret, "initializing free space"); 1812 if (ret) 1813 goto err_late; 1814 1815 ca->new_fs_bucket_idx = 0; 1816 1817 if (ca->mi.state == BCH_MEMBER_STATE_rw) 1818 __bch2_dev_read_write(c, ca); 1819 1820 up_write(&c->state_lock); 1821 return 0; 1822 1823 err_unlock: 1824 mutex_unlock(&c->sb_lock); 1825 up_write(&c->state_lock); 1826 err: 1827 if (ca) 1828 bch2_dev_free(ca); 1829 bch2_free_super(&sb); 1830 printbuf_exit(&label); 1831 printbuf_exit(&errbuf); 1832 bch_err_fn(c, ret); 1833 return ret; 1834 err_late: 1835 up_write(&c->state_lock); 1836 ca = NULL; 1837 goto err; 1838 } 1839 1840 /* Hot add existing device to running filesystem: */ 1841 int bch2_dev_online(struct bch_fs *c, const char *path) 1842 { 1843 struct bch_opts opts = bch2_opts_empty(); 1844 struct bch_sb_handle sb = { NULL }; 1845 struct bch_dev *ca; 1846 unsigned dev_idx; 1847 int ret; 1848 1849 down_write(&c->state_lock); 1850 1851 ret = bch2_read_super(path, &opts, &sb); 1852 if (ret) { 1853 up_write(&c->state_lock); 1854 return ret; 1855 } 1856 1857 dev_idx = sb.sb->dev_idx; 1858 1859 ret = bch2_dev_in_fs(&c->disk_sb, &sb, &c->opts); 1860 bch_err_msg(c, ret, "bringing %s online", path); 1861 if (ret) 1862 goto err; 1863 1864 ret = bch2_dev_attach_bdev(c, &sb); 1865 if (ret) 1866 goto err; 1867 1868 ca = bch_dev_locked(c, dev_idx); 1869 1870 ret = bch2_trans_mark_dev_sb(c, ca); 1871 bch_err_msg(c, ret, "bringing %s online: error from bch2_trans_mark_dev_sb", path); 1872 if (ret) 1873 goto err; 1874 1875 if (ca->mi.state == BCH_MEMBER_STATE_rw) 1876 __bch2_dev_read_write(c, ca); 1877 1878 if (!ca->mi.freespace_initialized) { 1879 ret = bch2_dev_freespace_init(c, ca, 0, ca->mi.nbuckets); 1880 bch_err_msg(ca, ret, "initializing free space"); 1881 if (ret) 1882 goto err; 1883 } 1884 1885 if (!ca->journal.nr) { 1886 ret = bch2_dev_journal_alloc(ca); 1887 bch_err_msg(ca, ret, "allocating journal"); 1888 if (ret) 1889 goto err; 1890 } 1891 1892 mutex_lock(&c->sb_lock); 1893 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = 1894 cpu_to_le64(ktime_get_real_seconds()); 1895 bch2_write_super(c); 1896 mutex_unlock(&c->sb_lock); 1897 1898 up_write(&c->state_lock); 1899 return 0; 1900 err: 1901 up_write(&c->state_lock); 1902 bch2_free_super(&sb); 1903 return ret; 1904 } 1905 1906 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags) 1907 { 1908 down_write(&c->state_lock); 1909 1910 if (!bch2_dev_is_online(ca)) { 1911 bch_err(ca, "Already offline"); 1912 up_write(&c->state_lock); 1913 return 0; 1914 } 1915 1916 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { 1917 bch_err(ca, "Cannot offline required disk"); 1918 up_write(&c->state_lock); 1919 return -BCH_ERR_device_state_not_allowed; 1920 } 1921 1922 __bch2_dev_offline(c, ca); 1923 1924 up_write(&c->state_lock); 1925 return 0; 1926 } 1927 1928 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets) 1929 { 1930 struct bch_member *m; 1931 u64 old_nbuckets; 1932 int ret = 0; 1933 1934 down_write(&c->state_lock); 1935 old_nbuckets = ca->mi.nbuckets; 1936 1937 if (nbuckets < ca->mi.nbuckets) { 1938 bch_err(ca, "Cannot shrink yet"); 1939 ret = -EINVAL; 1940 goto err; 1941 } 1942 1943 if (bch2_dev_is_online(ca) && 1944 get_capacity(ca->disk_sb.bdev->bd_disk) < 1945 ca->mi.bucket_size * nbuckets) { 1946 bch_err(ca, "New size larger than device"); 1947 ret = -BCH_ERR_device_size_too_small; 1948 goto err; 1949 } 1950 1951 ret = bch2_dev_buckets_resize(c, ca, nbuckets); 1952 bch_err_msg(ca, ret, "resizing buckets"); 1953 if (ret) 1954 goto err; 1955 1956 ret = bch2_trans_mark_dev_sb(c, ca); 1957 if (ret) 1958 goto err; 1959 1960 mutex_lock(&c->sb_lock); 1961 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); 1962 m->nbuckets = cpu_to_le64(nbuckets); 1963 1964 bch2_write_super(c); 1965 mutex_unlock(&c->sb_lock); 1966 1967 if (ca->mi.freespace_initialized) { 1968 ret = bch2_dev_freespace_init(c, ca, old_nbuckets, nbuckets); 1969 if (ret) 1970 goto err; 1971 1972 /* 1973 * XXX: this is all wrong transactionally - we'll be able to do 1974 * this correctly after the disk space accounting rewrite 1975 */ 1976 ca->usage_base->d[BCH_DATA_free].buckets += nbuckets - old_nbuckets; 1977 } 1978 1979 bch2_recalc_capacity(c); 1980 err: 1981 up_write(&c->state_lock); 1982 return ret; 1983 } 1984 1985 /* return with ref on ca->ref: */ 1986 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *name) 1987 { 1988 rcu_read_lock(); 1989 for_each_member_device_rcu(c, ca, NULL) 1990 if (!strcmp(name, ca->name)) { 1991 rcu_read_unlock(); 1992 return ca; 1993 } 1994 rcu_read_unlock(); 1995 return ERR_PTR(-BCH_ERR_ENOENT_dev_not_found); 1996 } 1997 1998 /* Filesystem open: */ 1999 2000 static inline int sb_cmp(struct bch_sb *l, struct bch_sb *r) 2001 { 2002 return cmp_int(le64_to_cpu(l->seq), le64_to_cpu(r->seq)) ?: 2003 cmp_int(le64_to_cpu(l->write_time), le64_to_cpu(r->write_time)); 2004 } 2005 2006 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices, 2007 struct bch_opts opts) 2008 { 2009 DARRAY(struct bch_sb_handle) sbs = { 0 }; 2010 struct bch_fs *c = NULL; 2011 struct bch_sb_handle *best = NULL; 2012 struct printbuf errbuf = PRINTBUF; 2013 int ret = 0; 2014 2015 if (!try_module_get(THIS_MODULE)) 2016 return ERR_PTR(-ENODEV); 2017 2018 if (!nr_devices) { 2019 ret = -EINVAL; 2020 goto err; 2021 } 2022 2023 ret = darray_make_room(&sbs, nr_devices); 2024 if (ret) 2025 goto err; 2026 2027 for (unsigned i = 0; i < nr_devices; i++) { 2028 struct bch_sb_handle sb = { NULL }; 2029 2030 ret = bch2_read_super(devices[i], &opts, &sb); 2031 if (ret) 2032 goto err; 2033 2034 BUG_ON(darray_push(&sbs, sb)); 2035 } 2036 2037 if (opts.nochanges && !opts.read_only) { 2038 ret = -BCH_ERR_erofs_nochanges; 2039 goto err_print; 2040 } 2041 2042 darray_for_each(sbs, sb) 2043 if (!best || sb_cmp(sb->sb, best->sb) > 0) 2044 best = sb; 2045 2046 darray_for_each_reverse(sbs, sb) { 2047 ret = bch2_dev_in_fs(best, sb, &opts); 2048 2049 if (ret == -BCH_ERR_device_has_been_removed || 2050 ret == -BCH_ERR_device_splitbrain) { 2051 bch2_free_super(sb); 2052 darray_remove_item(&sbs, sb); 2053 best -= best > sb; 2054 ret = 0; 2055 continue; 2056 } 2057 2058 if (ret) 2059 goto err_print; 2060 } 2061 2062 c = bch2_fs_alloc(best->sb, opts); 2063 ret = PTR_ERR_OR_ZERO(c); 2064 if (ret) 2065 goto err; 2066 2067 down_write(&c->state_lock); 2068 darray_for_each(sbs, sb) { 2069 ret = bch2_dev_attach_bdev(c, sb); 2070 if (ret) { 2071 up_write(&c->state_lock); 2072 goto err; 2073 } 2074 } 2075 up_write(&c->state_lock); 2076 2077 if (!bch2_fs_may_start(c)) { 2078 ret = -BCH_ERR_insufficient_devices_to_start; 2079 goto err_print; 2080 } 2081 2082 if (!c->opts.nostart) { 2083 ret = bch2_fs_start(c); 2084 if (ret) 2085 goto err; 2086 } 2087 out: 2088 darray_for_each(sbs, sb) 2089 bch2_free_super(sb); 2090 darray_exit(&sbs); 2091 printbuf_exit(&errbuf); 2092 module_put(THIS_MODULE); 2093 return c; 2094 err_print: 2095 pr_err("bch_fs_open err opening %s: %s", 2096 devices[0], bch2_err_str(ret)); 2097 err: 2098 if (!IS_ERR_OR_NULL(c)) 2099 bch2_fs_stop(c); 2100 c = ERR_PTR(ret); 2101 goto out; 2102 } 2103 2104 /* Global interfaces/init */ 2105 2106 static void bcachefs_exit(void) 2107 { 2108 bch2_debug_exit(); 2109 bch2_vfs_exit(); 2110 bch2_chardev_exit(); 2111 bch2_btree_key_cache_exit(); 2112 if (bcachefs_kset) 2113 kset_unregister(bcachefs_kset); 2114 } 2115 2116 static int __init bcachefs_init(void) 2117 { 2118 bch2_bkey_pack_test(); 2119 2120 if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) || 2121 bch2_btree_key_cache_init() || 2122 bch2_chardev_init() || 2123 bch2_vfs_init() || 2124 bch2_debug_init()) 2125 goto err; 2126 2127 return 0; 2128 err: 2129 bcachefs_exit(); 2130 return -ENOMEM; 2131 } 2132 2133 #define BCH_DEBUG_PARAM(name, description) \ 2134 bool bch2_##name; \ 2135 module_param_named(name, bch2_##name, bool, 0644); \ 2136 MODULE_PARM_DESC(name, description); 2137 BCH_DEBUG_PARAMS() 2138 #undef BCH_DEBUG_PARAM 2139 2140 __maybe_unused 2141 static unsigned bch2_metadata_version = bcachefs_metadata_version_current; 2142 module_param_named(version, bch2_metadata_version, uint, 0400); 2143 2144 module_exit(bcachefs_exit); 2145 module_init(bcachefs_init); 2146