1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcachefs setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcachefs.h" 11 #include "alloc_background.h" 12 #include "alloc_foreground.h" 13 #include "bkey_sort.h" 14 #include "btree_cache.h" 15 #include "btree_gc.h" 16 #include "btree_journal_iter.h" 17 #include "btree_key_cache.h" 18 #include "btree_node_scan.h" 19 #include "btree_update_interior.h" 20 #include "btree_io.h" 21 #include "btree_write_buffer.h" 22 #include "buckets_waiting_for_journal.h" 23 #include "chardev.h" 24 #include "checksum.h" 25 #include "clock.h" 26 #include "compress.h" 27 #include "debug.h" 28 #include "disk_groups.h" 29 #include "ec.h" 30 #include "errcode.h" 31 #include "error.h" 32 #include "fs.h" 33 #include "fs-io.h" 34 #include "fs-io-buffered.h" 35 #include "fs-io-direct.h" 36 #include "fsck.h" 37 #include "inode.h" 38 #include "io_read.h" 39 #include "io_write.h" 40 #include "journal.h" 41 #include "journal_reclaim.h" 42 #include "journal_seq_blacklist.h" 43 #include "move.h" 44 #include "migrate.h" 45 #include "movinggc.h" 46 #include "nocow_locking.h" 47 #include "quota.h" 48 #include "rebalance.h" 49 #include "recovery.h" 50 #include "replicas.h" 51 #include "sb-clean.h" 52 #include "sb-counters.h" 53 #include "sb-errors.h" 54 #include "sb-members.h" 55 #include "snapshot.h" 56 #include "subvolume.h" 57 #include "super.h" 58 #include "super-io.h" 59 #include "sysfs.h" 60 #include "thread_with_file.h" 61 #include "trace.h" 62 63 #include <linux/backing-dev.h> 64 #include <linux/blkdev.h> 65 #include <linux/debugfs.h> 66 #include <linux/device.h> 67 #include <linux/idr.h> 68 #include <linux/module.h> 69 #include <linux/percpu.h> 70 #include <linux/random.h> 71 #include <linux/sysfs.h> 72 #include <crypto/hash.h> 73 74 MODULE_LICENSE("GPL"); 75 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 76 MODULE_DESCRIPTION("bcachefs filesystem"); 77 MODULE_SOFTDEP("pre: crc32c"); 78 MODULE_SOFTDEP("pre: crc64"); 79 MODULE_SOFTDEP("pre: sha256"); 80 MODULE_SOFTDEP("pre: chacha20"); 81 MODULE_SOFTDEP("pre: poly1305"); 82 MODULE_SOFTDEP("pre: xxhash"); 83 84 const char * const bch2_fs_flag_strs[] = { 85 #define x(n) #n, 86 BCH_FS_FLAGS() 87 #undef x 88 NULL 89 }; 90 91 __printf(2, 0) 92 static void bch2_print_maybe_redirect(struct stdio_redirect *stdio, const char *fmt, va_list args) 93 { 94 #ifdef __KERNEL__ 95 if (unlikely(stdio)) { 96 if (fmt[0] == KERN_SOH[0]) 97 fmt += 2; 98 99 bch2_stdio_redirect_vprintf(stdio, true, fmt, args); 100 return; 101 } 102 #endif 103 vprintk(fmt, args); 104 } 105 106 void bch2_print_opts(struct bch_opts *opts, const char *fmt, ...) 107 { 108 struct stdio_redirect *stdio = (void *)(unsigned long)opts->stdio; 109 110 va_list args; 111 va_start(args, fmt); 112 bch2_print_maybe_redirect(stdio, fmt, args); 113 va_end(args); 114 } 115 116 void __bch2_print(struct bch_fs *c, const char *fmt, ...) 117 { 118 struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c); 119 120 va_list args; 121 va_start(args, fmt); 122 bch2_print_maybe_redirect(stdio, fmt, args); 123 va_end(args); 124 } 125 126 #define KTYPE(type) \ 127 static const struct attribute_group type ## _group = { \ 128 .attrs = type ## _files \ 129 }; \ 130 \ 131 static const struct attribute_group *type ## _groups[] = { \ 132 &type ## _group, \ 133 NULL \ 134 }; \ 135 \ 136 static const struct kobj_type type ## _ktype = { \ 137 .release = type ## _release, \ 138 .sysfs_ops = &type ## _sysfs_ops, \ 139 .default_groups = type ## _groups \ 140 } 141 142 static void bch2_fs_release(struct kobject *); 143 static void bch2_dev_release(struct kobject *); 144 static void bch2_fs_counters_release(struct kobject *k) 145 { 146 } 147 148 static void bch2_fs_internal_release(struct kobject *k) 149 { 150 } 151 152 static void bch2_fs_opts_dir_release(struct kobject *k) 153 { 154 } 155 156 static void bch2_fs_time_stats_release(struct kobject *k) 157 { 158 } 159 160 KTYPE(bch2_fs); 161 KTYPE(bch2_fs_counters); 162 KTYPE(bch2_fs_internal); 163 KTYPE(bch2_fs_opts_dir); 164 KTYPE(bch2_fs_time_stats); 165 KTYPE(bch2_dev); 166 167 static struct kset *bcachefs_kset; 168 static LIST_HEAD(bch_fs_list); 169 static DEFINE_MUTEX(bch_fs_list_lock); 170 171 DECLARE_WAIT_QUEUE_HEAD(bch2_read_only_wait); 172 173 static void bch2_dev_free(struct bch_dev *); 174 static int bch2_dev_alloc(struct bch_fs *, unsigned); 175 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *); 176 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *); 177 178 struct bch_fs *bch2_dev_to_fs(dev_t dev) 179 { 180 struct bch_fs *c; 181 182 mutex_lock(&bch_fs_list_lock); 183 rcu_read_lock(); 184 185 list_for_each_entry(c, &bch_fs_list, list) 186 for_each_member_device_rcu(c, ca, NULL) 187 if (ca->disk_sb.bdev && ca->disk_sb.bdev->bd_dev == dev) { 188 closure_get(&c->cl); 189 goto found; 190 } 191 c = NULL; 192 found: 193 rcu_read_unlock(); 194 mutex_unlock(&bch_fs_list_lock); 195 196 return c; 197 } 198 199 static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid) 200 { 201 struct bch_fs *c; 202 203 lockdep_assert_held(&bch_fs_list_lock); 204 205 list_for_each_entry(c, &bch_fs_list, list) 206 if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid))) 207 return c; 208 209 return NULL; 210 } 211 212 struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid) 213 { 214 struct bch_fs *c; 215 216 mutex_lock(&bch_fs_list_lock); 217 c = __bch2_uuid_to_fs(uuid); 218 if (c) 219 closure_get(&c->cl); 220 mutex_unlock(&bch_fs_list_lock); 221 222 return c; 223 } 224 225 static void bch2_dev_usage_journal_reserve(struct bch_fs *c) 226 { 227 unsigned nr = 0, u64s = 228 ((sizeof(struct jset_entry_dev_usage) + 229 sizeof(struct jset_entry_dev_usage_type) * BCH_DATA_NR)) / 230 sizeof(u64); 231 232 rcu_read_lock(); 233 for_each_member_device_rcu(c, ca, NULL) 234 nr++; 235 rcu_read_unlock(); 236 237 bch2_journal_entry_res_resize(&c->journal, 238 &c->dev_usage_journal_res, u64s * nr); 239 } 240 241 /* Filesystem RO/RW: */ 242 243 /* 244 * For startup/shutdown of RW stuff, the dependencies are: 245 * 246 * - foreground writes depend on copygc and rebalance (to free up space) 247 * 248 * - copygc and rebalance depend on mark and sweep gc (they actually probably 249 * don't because they either reserve ahead of time or don't block if 250 * allocations fail, but allocations can require mark and sweep gc to run 251 * because of generation number wraparound) 252 * 253 * - all of the above depends on the allocator threads 254 * 255 * - allocator depends on the journal (when it rewrites prios and gens) 256 */ 257 258 static void __bch2_fs_read_only(struct bch_fs *c) 259 { 260 unsigned clean_passes = 0; 261 u64 seq = 0; 262 263 bch2_fs_ec_stop(c); 264 bch2_open_buckets_stop(c, NULL, true); 265 bch2_rebalance_stop(c); 266 bch2_copygc_stop(c); 267 bch2_gc_thread_stop(c); 268 bch2_fs_ec_flush(c); 269 270 bch_verbose(c, "flushing journal and stopping allocators, journal seq %llu", 271 journal_cur_seq(&c->journal)); 272 273 do { 274 clean_passes++; 275 276 if (bch2_btree_interior_updates_flush(c) || 277 bch2_journal_flush_all_pins(&c->journal) || 278 bch2_btree_flush_all_writes(c) || 279 seq != atomic64_read(&c->journal.seq)) { 280 seq = atomic64_read(&c->journal.seq); 281 clean_passes = 0; 282 } 283 } while (clean_passes < 2); 284 285 bch_verbose(c, "flushing journal and stopping allocators complete, journal seq %llu", 286 journal_cur_seq(&c->journal)); 287 288 if (test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags) && 289 !test_bit(BCH_FS_emergency_ro, &c->flags)) 290 set_bit(BCH_FS_clean_shutdown, &c->flags); 291 bch2_fs_journal_stop(&c->journal); 292 293 /* 294 * After stopping journal: 295 */ 296 for_each_member_device(c, ca) 297 bch2_dev_allocator_remove(c, ca); 298 } 299 300 #ifndef BCH_WRITE_REF_DEBUG 301 static void bch2_writes_disabled(struct percpu_ref *writes) 302 { 303 struct bch_fs *c = container_of(writes, struct bch_fs, writes); 304 305 set_bit(BCH_FS_write_disable_complete, &c->flags); 306 wake_up(&bch2_read_only_wait); 307 } 308 #endif 309 310 void bch2_fs_read_only(struct bch_fs *c) 311 { 312 if (!test_bit(BCH_FS_rw, &c->flags)) { 313 bch2_journal_reclaim_stop(&c->journal); 314 return; 315 } 316 317 BUG_ON(test_bit(BCH_FS_write_disable_complete, &c->flags)); 318 319 bch_verbose(c, "going read-only"); 320 321 /* 322 * Block new foreground-end write operations from starting - any new 323 * writes will return -EROFS: 324 */ 325 set_bit(BCH_FS_going_ro, &c->flags); 326 #ifndef BCH_WRITE_REF_DEBUG 327 percpu_ref_kill(&c->writes); 328 #else 329 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) 330 bch2_write_ref_put(c, i); 331 #endif 332 333 /* 334 * If we're not doing an emergency shutdown, we want to wait on 335 * outstanding writes to complete so they don't see spurious errors due 336 * to shutting down the allocator: 337 * 338 * If we are doing an emergency shutdown outstanding writes may 339 * hang until we shutdown the allocator so we don't want to wait 340 * on outstanding writes before shutting everything down - but 341 * we do need to wait on them before returning and signalling 342 * that going RO is complete: 343 */ 344 wait_event(bch2_read_only_wait, 345 test_bit(BCH_FS_write_disable_complete, &c->flags) || 346 test_bit(BCH_FS_emergency_ro, &c->flags)); 347 348 bool writes_disabled = test_bit(BCH_FS_write_disable_complete, &c->flags); 349 if (writes_disabled) 350 bch_verbose(c, "finished waiting for writes to stop"); 351 352 __bch2_fs_read_only(c); 353 354 wait_event(bch2_read_only_wait, 355 test_bit(BCH_FS_write_disable_complete, &c->flags)); 356 357 if (!writes_disabled) 358 bch_verbose(c, "finished waiting for writes to stop"); 359 360 clear_bit(BCH_FS_write_disable_complete, &c->flags); 361 clear_bit(BCH_FS_going_ro, &c->flags); 362 clear_bit(BCH_FS_rw, &c->flags); 363 364 if (!bch2_journal_error(&c->journal) && 365 !test_bit(BCH_FS_error, &c->flags) && 366 !test_bit(BCH_FS_emergency_ro, &c->flags) && 367 test_bit(BCH_FS_started, &c->flags) && 368 test_bit(BCH_FS_clean_shutdown, &c->flags) && 369 c->recovery_pass_done >= BCH_RECOVERY_PASS_journal_replay) { 370 BUG_ON(c->journal.last_empty_seq != journal_cur_seq(&c->journal)); 371 BUG_ON(atomic_read(&c->btree_cache.dirty)); 372 BUG_ON(atomic_long_read(&c->btree_key_cache.nr_dirty)); 373 BUG_ON(c->btree_write_buffer.inc.keys.nr); 374 BUG_ON(c->btree_write_buffer.flushing.keys.nr); 375 376 bch_verbose(c, "marking filesystem clean"); 377 bch2_fs_mark_clean(c); 378 } else { 379 bch_verbose(c, "done going read-only, filesystem not clean"); 380 } 381 } 382 383 static void bch2_fs_read_only_work(struct work_struct *work) 384 { 385 struct bch_fs *c = 386 container_of(work, struct bch_fs, read_only_work); 387 388 down_write(&c->state_lock); 389 bch2_fs_read_only(c); 390 up_write(&c->state_lock); 391 } 392 393 static void bch2_fs_read_only_async(struct bch_fs *c) 394 { 395 queue_work(system_long_wq, &c->read_only_work); 396 } 397 398 bool bch2_fs_emergency_read_only(struct bch_fs *c) 399 { 400 bool ret = !test_and_set_bit(BCH_FS_emergency_ro, &c->flags); 401 402 bch2_journal_halt(&c->journal); 403 bch2_fs_read_only_async(c); 404 405 wake_up(&bch2_read_only_wait); 406 return ret; 407 } 408 409 static int bch2_fs_read_write_late(struct bch_fs *c) 410 { 411 int ret; 412 413 /* 414 * Data move operations can't run until after check_snapshots has 415 * completed, and bch2_snapshot_is_ancestor() is available. 416 * 417 * Ideally we'd start copygc/rebalance earlier instead of waiting for 418 * all of recovery/fsck to complete: 419 */ 420 ret = bch2_copygc_start(c); 421 if (ret) { 422 bch_err(c, "error starting copygc thread"); 423 return ret; 424 } 425 426 ret = bch2_rebalance_start(c); 427 if (ret) { 428 bch_err(c, "error starting rebalance thread"); 429 return ret; 430 } 431 432 return 0; 433 } 434 435 static int __bch2_fs_read_write(struct bch_fs *c, bool early) 436 { 437 int ret; 438 439 if (test_bit(BCH_FS_initial_gc_unfixed, &c->flags)) { 440 bch_err(c, "cannot go rw, unfixed btree errors"); 441 return -BCH_ERR_erofs_unfixed_errors; 442 } 443 444 if (test_bit(BCH_FS_rw, &c->flags)) 445 return 0; 446 447 bch_info(c, "going read-write"); 448 449 ret = bch2_sb_members_v2_init(c); 450 if (ret) 451 goto err; 452 453 ret = bch2_fs_mark_dirty(c); 454 if (ret) 455 goto err; 456 457 clear_bit(BCH_FS_clean_shutdown, &c->flags); 458 459 /* 460 * First journal write must be a flush write: after a clean shutdown we 461 * don't read the journal, so the first journal write may end up 462 * overwriting whatever was there previously, and there must always be 463 * at least one non-flush write in the journal or recovery will fail: 464 */ 465 set_bit(JOURNAL_NEED_FLUSH_WRITE, &c->journal.flags); 466 467 for_each_rw_member(c, ca) 468 bch2_dev_allocator_add(c, ca); 469 bch2_recalc_capacity(c); 470 471 set_bit(BCH_FS_rw, &c->flags); 472 set_bit(BCH_FS_was_rw, &c->flags); 473 474 #ifndef BCH_WRITE_REF_DEBUG 475 percpu_ref_reinit(&c->writes); 476 #else 477 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) { 478 BUG_ON(atomic_long_read(&c->writes[i])); 479 atomic_long_inc(&c->writes[i]); 480 } 481 #endif 482 483 ret = bch2_gc_thread_start(c); 484 if (ret) { 485 bch_err(c, "error starting gc thread"); 486 return ret; 487 } 488 489 ret = bch2_journal_reclaim_start(&c->journal); 490 if (ret) 491 goto err; 492 493 if (!early) { 494 ret = bch2_fs_read_write_late(c); 495 if (ret) 496 goto err; 497 } 498 499 bch2_do_discards(c); 500 bch2_do_invalidates(c); 501 bch2_do_stripe_deletes(c); 502 bch2_do_pending_node_rewrites(c); 503 return 0; 504 err: 505 if (test_bit(BCH_FS_rw, &c->flags)) 506 bch2_fs_read_only(c); 507 else 508 __bch2_fs_read_only(c); 509 return ret; 510 } 511 512 int bch2_fs_read_write(struct bch_fs *c) 513 { 514 if (c->opts.recovery_pass_last && 515 c->opts.recovery_pass_last < BCH_RECOVERY_PASS_journal_replay) 516 return -BCH_ERR_erofs_norecovery; 517 518 if (c->opts.nochanges) 519 return -BCH_ERR_erofs_nochanges; 520 521 return __bch2_fs_read_write(c, false); 522 } 523 524 int bch2_fs_read_write_early(struct bch_fs *c) 525 { 526 lockdep_assert_held(&c->state_lock); 527 528 return __bch2_fs_read_write(c, true); 529 } 530 531 /* Filesystem startup/shutdown: */ 532 533 static void __bch2_fs_free(struct bch_fs *c) 534 { 535 unsigned i; 536 537 for (i = 0; i < BCH_TIME_STAT_NR; i++) 538 bch2_time_stats_exit(&c->times[i]); 539 540 bch2_find_btree_nodes_exit(&c->found_btree_nodes); 541 bch2_free_pending_node_rewrites(c); 542 bch2_fs_sb_errors_exit(c); 543 bch2_fs_counters_exit(c); 544 bch2_fs_snapshots_exit(c); 545 bch2_fs_quota_exit(c); 546 bch2_fs_fs_io_direct_exit(c); 547 bch2_fs_fs_io_buffered_exit(c); 548 bch2_fs_fsio_exit(c); 549 bch2_fs_ec_exit(c); 550 bch2_fs_encryption_exit(c); 551 bch2_fs_nocow_locking_exit(c); 552 bch2_fs_io_write_exit(c); 553 bch2_fs_io_read_exit(c); 554 bch2_fs_buckets_waiting_for_journal_exit(c); 555 bch2_fs_btree_interior_update_exit(c); 556 bch2_fs_btree_iter_exit(c); 557 bch2_fs_btree_key_cache_exit(&c->btree_key_cache); 558 bch2_fs_btree_cache_exit(c); 559 bch2_fs_replicas_exit(c); 560 bch2_fs_journal_exit(&c->journal); 561 bch2_io_clock_exit(&c->io_clock[WRITE]); 562 bch2_io_clock_exit(&c->io_clock[READ]); 563 bch2_fs_compress_exit(c); 564 bch2_journal_keys_put_initial(c); 565 bch2_find_btree_nodes_exit(&c->found_btree_nodes); 566 BUG_ON(atomic_read(&c->journal_keys.ref)); 567 bch2_fs_btree_write_buffer_exit(c); 568 percpu_free_rwsem(&c->mark_lock); 569 free_percpu(c->online_reserved); 570 571 darray_exit(&c->btree_roots_extra); 572 free_percpu(c->pcpu); 573 mempool_exit(&c->large_bkey_pool); 574 mempool_exit(&c->btree_bounce_pool); 575 bioset_exit(&c->btree_bio); 576 mempool_exit(&c->fill_iter); 577 #ifndef BCH_WRITE_REF_DEBUG 578 percpu_ref_exit(&c->writes); 579 #endif 580 kfree(rcu_dereference_protected(c->disk_groups, 1)); 581 kfree(c->journal_seq_blacklist_table); 582 kfree(c->unused_inode_hints); 583 584 if (c->write_ref_wq) 585 destroy_workqueue(c->write_ref_wq); 586 if (c->io_complete_wq) 587 destroy_workqueue(c->io_complete_wq); 588 if (c->copygc_wq) 589 destroy_workqueue(c->copygc_wq); 590 if (c->btree_io_complete_wq) 591 destroy_workqueue(c->btree_io_complete_wq); 592 if (c->btree_update_wq) 593 destroy_workqueue(c->btree_update_wq); 594 595 bch2_free_super(&c->disk_sb); 596 kvfree(c); 597 module_put(THIS_MODULE); 598 } 599 600 static void bch2_fs_release(struct kobject *kobj) 601 { 602 struct bch_fs *c = container_of(kobj, struct bch_fs, kobj); 603 604 __bch2_fs_free(c); 605 } 606 607 void __bch2_fs_stop(struct bch_fs *c) 608 { 609 bch_verbose(c, "shutting down"); 610 611 set_bit(BCH_FS_stopping, &c->flags); 612 613 cancel_work_sync(&c->journal_seq_blacklist_gc_work); 614 615 down_write(&c->state_lock); 616 bch2_fs_read_only(c); 617 up_write(&c->state_lock); 618 619 for_each_member_device(c, ca) 620 if (ca->kobj.state_in_sysfs && 621 ca->disk_sb.bdev) 622 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 623 624 if (c->kobj.state_in_sysfs) 625 kobject_del(&c->kobj); 626 627 bch2_fs_debug_exit(c); 628 bch2_fs_chardev_exit(c); 629 630 bch2_ro_ref_put(c); 631 wait_event(c->ro_ref_wait, !refcount_read(&c->ro_ref)); 632 633 kobject_put(&c->counters_kobj); 634 kobject_put(&c->time_stats); 635 kobject_put(&c->opts_dir); 636 kobject_put(&c->internal); 637 638 /* btree prefetch might have kicked off reads in the background: */ 639 bch2_btree_flush_all_reads(c); 640 641 for_each_member_device(c, ca) 642 cancel_work_sync(&ca->io_error_work); 643 644 cancel_work_sync(&c->read_only_work); 645 } 646 647 void bch2_fs_free(struct bch_fs *c) 648 { 649 unsigned i; 650 651 mutex_lock(&bch_fs_list_lock); 652 list_del(&c->list); 653 mutex_unlock(&bch_fs_list_lock); 654 655 closure_sync(&c->cl); 656 closure_debug_destroy(&c->cl); 657 658 for (i = 0; i < c->sb.nr_devices; i++) { 659 struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true); 660 661 if (ca) { 662 bch2_free_super(&ca->disk_sb); 663 bch2_dev_free(ca); 664 } 665 } 666 667 bch_verbose(c, "shutdown complete"); 668 669 kobject_put(&c->kobj); 670 } 671 672 void bch2_fs_stop(struct bch_fs *c) 673 { 674 __bch2_fs_stop(c); 675 bch2_fs_free(c); 676 } 677 678 static int bch2_fs_online(struct bch_fs *c) 679 { 680 int ret = 0; 681 682 lockdep_assert_held(&bch_fs_list_lock); 683 684 if (__bch2_uuid_to_fs(c->sb.uuid)) { 685 bch_err(c, "filesystem UUID already open"); 686 return -EINVAL; 687 } 688 689 ret = bch2_fs_chardev_init(c); 690 if (ret) { 691 bch_err(c, "error creating character device"); 692 return ret; 693 } 694 695 bch2_fs_debug_init(c); 696 697 ret = kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ?: 698 kobject_add(&c->internal, &c->kobj, "internal") ?: 699 kobject_add(&c->opts_dir, &c->kobj, "options") ?: 700 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT 701 kobject_add(&c->time_stats, &c->kobj, "time_stats") ?: 702 #endif 703 kobject_add(&c->counters_kobj, &c->kobj, "counters") ?: 704 bch2_opts_create_sysfs_files(&c->opts_dir); 705 if (ret) { 706 bch_err(c, "error creating sysfs objects"); 707 return ret; 708 } 709 710 down_write(&c->state_lock); 711 712 for_each_member_device(c, ca) { 713 ret = bch2_dev_sysfs_online(c, ca); 714 if (ret) { 715 bch_err(c, "error creating sysfs objects"); 716 percpu_ref_put(&ca->ref); 717 goto err; 718 } 719 } 720 721 BUG_ON(!list_empty(&c->list)); 722 list_add(&c->list, &bch_fs_list); 723 err: 724 up_write(&c->state_lock); 725 return ret; 726 } 727 728 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts) 729 { 730 struct bch_fs *c; 731 struct printbuf name = PRINTBUF; 732 unsigned i, iter_size; 733 int ret = 0; 734 735 c = kvmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO); 736 if (!c) { 737 c = ERR_PTR(-BCH_ERR_ENOMEM_fs_alloc); 738 goto out; 739 } 740 741 c->stdio = (void *)(unsigned long) opts.stdio; 742 743 __module_get(THIS_MODULE); 744 745 closure_init(&c->cl, NULL); 746 747 c->kobj.kset = bcachefs_kset; 748 kobject_init(&c->kobj, &bch2_fs_ktype); 749 kobject_init(&c->internal, &bch2_fs_internal_ktype); 750 kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype); 751 kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype); 752 kobject_init(&c->counters_kobj, &bch2_fs_counters_ktype); 753 754 c->minor = -1; 755 c->disk_sb.fs_sb = true; 756 757 init_rwsem(&c->state_lock); 758 mutex_init(&c->sb_lock); 759 mutex_init(&c->replicas_gc_lock); 760 mutex_init(&c->btree_root_lock); 761 INIT_WORK(&c->read_only_work, bch2_fs_read_only_work); 762 763 refcount_set(&c->ro_ref, 1); 764 init_waitqueue_head(&c->ro_ref_wait); 765 sema_init(&c->online_fsck_mutex, 1); 766 767 init_rwsem(&c->gc_lock); 768 mutex_init(&c->gc_gens_lock); 769 atomic_set(&c->journal_keys.ref, 1); 770 c->journal_keys.initial_ref_held = true; 771 772 for (i = 0; i < BCH_TIME_STAT_NR; i++) 773 bch2_time_stats_init(&c->times[i]); 774 775 bch2_fs_copygc_init(c); 776 bch2_fs_btree_key_cache_init_early(&c->btree_key_cache); 777 bch2_fs_btree_iter_init_early(c); 778 bch2_fs_btree_interior_update_init_early(c); 779 bch2_fs_allocator_background_init(c); 780 bch2_fs_allocator_foreground_init(c); 781 bch2_fs_rebalance_init(c); 782 bch2_fs_quota_init(c); 783 bch2_fs_ec_init_early(c); 784 bch2_fs_move_init(c); 785 bch2_fs_sb_errors_init_early(c); 786 787 INIT_LIST_HEAD(&c->list); 788 789 mutex_init(&c->usage_scratch_lock); 790 791 mutex_init(&c->bio_bounce_pages_lock); 792 mutex_init(&c->snapshot_table_lock); 793 init_rwsem(&c->snapshot_create_lock); 794 795 spin_lock_init(&c->btree_write_error_lock); 796 797 INIT_WORK(&c->journal_seq_blacklist_gc_work, 798 bch2_blacklist_entries_gc); 799 800 INIT_LIST_HEAD(&c->journal_iters); 801 802 INIT_LIST_HEAD(&c->fsck_error_msgs); 803 mutex_init(&c->fsck_error_msgs_lock); 804 805 seqcount_init(&c->gc_pos_lock); 806 807 seqcount_init(&c->usage_lock); 808 809 sema_init(&c->io_in_flight, 128); 810 811 INIT_LIST_HEAD(&c->vfs_inodes_list); 812 mutex_init(&c->vfs_inodes_lock); 813 814 c->copy_gc_enabled = 1; 815 c->rebalance.enabled = 1; 816 c->promote_whole_extents = true; 817 818 c->journal.flush_write_time = &c->times[BCH_TIME_journal_flush_write]; 819 c->journal.noflush_write_time = &c->times[BCH_TIME_journal_noflush_write]; 820 c->journal.flush_seq_time = &c->times[BCH_TIME_journal_flush_seq]; 821 822 bch2_fs_btree_cache_init_early(&c->btree_cache); 823 824 mutex_init(&c->sectors_available_lock); 825 826 ret = percpu_init_rwsem(&c->mark_lock); 827 if (ret) 828 goto err; 829 830 mutex_lock(&c->sb_lock); 831 ret = bch2_sb_to_fs(c, sb); 832 mutex_unlock(&c->sb_lock); 833 834 if (ret) 835 goto err; 836 837 pr_uuid(&name, c->sb.user_uuid.b); 838 ret = name.allocation_failure ? -BCH_ERR_ENOMEM_fs_name_alloc : 0; 839 if (ret) 840 goto err; 841 842 strscpy(c->name, name.buf, sizeof(c->name)); 843 printbuf_exit(&name); 844 845 /* Compat: */ 846 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && 847 !BCH_SB_JOURNAL_FLUSH_DELAY(sb)) 848 SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000); 849 850 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && 851 !BCH_SB_JOURNAL_RECLAIM_DELAY(sb)) 852 SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 100); 853 854 c->opts = bch2_opts_default; 855 ret = bch2_opts_from_sb(&c->opts, sb); 856 if (ret) 857 goto err; 858 859 bch2_opts_apply(&c->opts, opts); 860 861 c->btree_key_cache_btrees |= 1U << BTREE_ID_alloc; 862 if (c->opts.inodes_use_key_cache) 863 c->btree_key_cache_btrees |= 1U << BTREE_ID_inodes; 864 c->btree_key_cache_btrees |= 1U << BTREE_ID_logged_ops; 865 866 c->block_bits = ilog2(block_sectors(c)); 867 c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c); 868 869 if (bch2_fs_init_fault("fs_alloc")) { 870 bch_err(c, "fs_alloc fault injected"); 871 ret = -EFAULT; 872 goto err; 873 } 874 875 iter_size = sizeof(struct sort_iter) + 876 (btree_blocks(c) + 1) * 2 * 877 sizeof(struct sort_iter_set); 878 879 c->inode_shard_bits = ilog2(roundup_pow_of_two(num_possible_cpus())); 880 881 if (!(c->btree_update_wq = alloc_workqueue("bcachefs", 882 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_UNBOUND, 512)) || 883 !(c->btree_io_complete_wq = alloc_workqueue("bcachefs_btree_io", 884 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) || 885 !(c->copygc_wq = alloc_workqueue("bcachefs_copygc", 886 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) || 887 !(c->io_complete_wq = alloc_workqueue("bcachefs_io", 888 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 512)) || 889 !(c->write_ref_wq = alloc_workqueue("bcachefs_write_ref", 890 WQ_FREEZABLE, 0)) || 891 #ifndef BCH_WRITE_REF_DEBUG 892 percpu_ref_init(&c->writes, bch2_writes_disabled, 893 PERCPU_REF_INIT_DEAD, GFP_KERNEL) || 894 #endif 895 mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) || 896 bioset_init(&c->btree_bio, 1, 897 max(offsetof(struct btree_read_bio, bio), 898 offsetof(struct btree_write_bio, wbio.bio)), 899 BIOSET_NEED_BVECS) || 900 !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) || 901 !(c->online_reserved = alloc_percpu(u64)) || 902 mempool_init_kvmalloc_pool(&c->btree_bounce_pool, 1, 903 c->opts.btree_node_size) || 904 mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048) || 905 !(c->unused_inode_hints = kcalloc(1U << c->inode_shard_bits, 906 sizeof(u64), GFP_KERNEL))) { 907 ret = -BCH_ERR_ENOMEM_fs_other_alloc; 908 goto err; 909 } 910 911 ret = bch2_fs_counters_init(c) ?: 912 bch2_fs_sb_errors_init(c) ?: 913 bch2_io_clock_init(&c->io_clock[READ]) ?: 914 bch2_io_clock_init(&c->io_clock[WRITE]) ?: 915 bch2_fs_journal_init(&c->journal) ?: 916 bch2_fs_replicas_init(c) ?: 917 bch2_fs_btree_cache_init(c) ?: 918 bch2_fs_btree_key_cache_init(&c->btree_key_cache) ?: 919 bch2_fs_btree_iter_init(c) ?: 920 bch2_fs_btree_interior_update_init(c) ?: 921 bch2_fs_buckets_waiting_for_journal_init(c) ?: 922 bch2_fs_btree_write_buffer_init(c) ?: 923 bch2_fs_subvolumes_init(c) ?: 924 bch2_fs_io_read_init(c) ?: 925 bch2_fs_io_write_init(c) ?: 926 bch2_fs_nocow_locking_init(c) ?: 927 bch2_fs_encryption_init(c) ?: 928 bch2_fs_compress_init(c) ?: 929 bch2_fs_ec_init(c) ?: 930 bch2_fs_fsio_init(c) ?: 931 bch2_fs_fs_io_buffered_init(c) ?: 932 bch2_fs_fs_io_direct_init(c); 933 if (ret) 934 goto err; 935 936 for (i = 0; i < c->sb.nr_devices; i++) 937 if (bch2_dev_exists(c->disk_sb.sb, i) && 938 bch2_dev_alloc(c, i)) { 939 ret = -EEXIST; 940 goto err; 941 } 942 943 bch2_journal_entry_res_resize(&c->journal, 944 &c->btree_root_journal_res, 945 BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX)); 946 bch2_dev_usage_journal_reserve(c); 947 bch2_journal_entry_res_resize(&c->journal, 948 &c->clock_journal_res, 949 (sizeof(struct jset_entry_clock) / sizeof(u64)) * 2); 950 951 mutex_lock(&bch_fs_list_lock); 952 ret = bch2_fs_online(c); 953 mutex_unlock(&bch_fs_list_lock); 954 955 if (ret) 956 goto err; 957 out: 958 return c; 959 err: 960 bch2_fs_free(c); 961 c = ERR_PTR(ret); 962 goto out; 963 } 964 965 noinline_for_stack 966 static void print_mount_opts(struct bch_fs *c) 967 { 968 enum bch_opt_id i; 969 struct printbuf p = PRINTBUF; 970 bool first = true; 971 972 prt_str(&p, "mounting version "); 973 bch2_version_to_text(&p, c->sb.version); 974 975 if (c->opts.read_only) { 976 prt_str(&p, " opts="); 977 first = false; 978 prt_printf(&p, "ro"); 979 } 980 981 for (i = 0; i < bch2_opts_nr; i++) { 982 const struct bch_option *opt = &bch2_opt_table[i]; 983 u64 v = bch2_opt_get_by_id(&c->opts, i); 984 985 if (!(opt->flags & OPT_MOUNT)) 986 continue; 987 988 if (v == bch2_opt_get_by_id(&bch2_opts_default, i)) 989 continue; 990 991 prt_str(&p, first ? " opts=" : ","); 992 first = false; 993 bch2_opt_to_text(&p, c, c->disk_sb.sb, opt, v, OPT_SHOW_MOUNT_STYLE); 994 } 995 996 bch_info(c, "%s", p.buf); 997 printbuf_exit(&p); 998 } 999 1000 int bch2_fs_start(struct bch_fs *c) 1001 { 1002 time64_t now = ktime_get_real_seconds(); 1003 int ret; 1004 1005 print_mount_opts(c); 1006 1007 down_write(&c->state_lock); 1008 1009 BUG_ON(test_bit(BCH_FS_started, &c->flags)); 1010 1011 mutex_lock(&c->sb_lock); 1012 1013 ret = bch2_sb_members_v2_init(c); 1014 if (ret) { 1015 mutex_unlock(&c->sb_lock); 1016 goto err; 1017 } 1018 1019 for_each_online_member(c, ca) 1020 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = cpu_to_le64(now); 1021 1022 struct bch_sb_field_ext *ext = 1023 bch2_sb_field_get_minsize(&c->disk_sb, ext, sizeof(*ext) / sizeof(u64)); 1024 mutex_unlock(&c->sb_lock); 1025 1026 if (!ext) { 1027 bch_err(c, "insufficient space in superblock for sb_field_ext"); 1028 ret = -BCH_ERR_ENOSPC_sb; 1029 goto err; 1030 } 1031 1032 for_each_rw_member(c, ca) 1033 bch2_dev_allocator_add(c, ca); 1034 bch2_recalc_capacity(c); 1035 1036 ret = BCH_SB_INITIALIZED(c->disk_sb.sb) 1037 ? bch2_fs_recovery(c) 1038 : bch2_fs_initialize(c); 1039 if (ret) 1040 goto err; 1041 1042 ret = bch2_opts_check_may_set(c); 1043 if (ret) 1044 goto err; 1045 1046 if (bch2_fs_init_fault("fs_start")) { 1047 bch_err(c, "fs_start fault injected"); 1048 ret = -EINVAL; 1049 goto err; 1050 } 1051 1052 set_bit(BCH_FS_started, &c->flags); 1053 1054 if (c->opts.read_only) { 1055 bch2_fs_read_only(c); 1056 } else { 1057 ret = !test_bit(BCH_FS_rw, &c->flags) 1058 ? bch2_fs_read_write(c) 1059 : bch2_fs_read_write_late(c); 1060 if (ret) 1061 goto err; 1062 } 1063 1064 ret = 0; 1065 err: 1066 if (ret) 1067 bch_err_msg(c, ret, "starting filesystem"); 1068 else 1069 bch_verbose(c, "done starting filesystem"); 1070 up_write(&c->state_lock); 1071 return ret; 1072 } 1073 1074 static int bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c) 1075 { 1076 struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx); 1077 1078 if (le16_to_cpu(sb->block_size) != block_sectors(c)) 1079 return -BCH_ERR_mismatched_block_size; 1080 1081 if (le16_to_cpu(m.bucket_size) < 1082 BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb)) 1083 return -BCH_ERR_bucket_size_too_small; 1084 1085 return 0; 1086 } 1087 1088 static int bch2_dev_in_fs(struct bch_sb_handle *fs, 1089 struct bch_sb_handle *sb, 1090 struct bch_opts *opts) 1091 { 1092 if (fs == sb) 1093 return 0; 1094 1095 if (!uuid_equal(&fs->sb->uuid, &sb->sb->uuid)) 1096 return -BCH_ERR_device_not_a_member_of_filesystem; 1097 1098 if (!bch2_dev_exists(fs->sb, sb->sb->dev_idx)) 1099 return -BCH_ERR_device_has_been_removed; 1100 1101 if (fs->sb->block_size != sb->sb->block_size) 1102 return -BCH_ERR_mismatched_block_size; 1103 1104 if (le16_to_cpu(fs->sb->version) < bcachefs_metadata_version_member_seq || 1105 le16_to_cpu(sb->sb->version) < bcachefs_metadata_version_member_seq) 1106 return 0; 1107 1108 if (fs->sb->seq == sb->sb->seq && 1109 fs->sb->write_time != sb->sb->write_time) { 1110 struct printbuf buf = PRINTBUF; 1111 1112 prt_str(&buf, "Split brain detected between "); 1113 prt_bdevname(&buf, sb->bdev); 1114 prt_str(&buf, " and "); 1115 prt_bdevname(&buf, fs->bdev); 1116 prt_char(&buf, ':'); 1117 prt_newline(&buf); 1118 prt_printf(&buf, "seq=%llu but write_time different, got", le64_to_cpu(sb->sb->seq)); 1119 prt_newline(&buf); 1120 1121 prt_bdevname(&buf, fs->bdev); 1122 prt_char(&buf, ' '); 1123 bch2_prt_datetime(&buf, le64_to_cpu(fs->sb->write_time));; 1124 prt_newline(&buf); 1125 1126 prt_bdevname(&buf, sb->bdev); 1127 prt_char(&buf, ' '); 1128 bch2_prt_datetime(&buf, le64_to_cpu(sb->sb->write_time));; 1129 prt_newline(&buf); 1130 1131 if (!opts->no_splitbrain_check) 1132 prt_printf(&buf, "Not using older sb"); 1133 1134 pr_err("%s", buf.buf); 1135 printbuf_exit(&buf); 1136 1137 if (!opts->no_splitbrain_check) 1138 return -BCH_ERR_device_splitbrain; 1139 } 1140 1141 struct bch_member m = bch2_sb_member_get(fs->sb, sb->sb->dev_idx); 1142 u64 seq_from_fs = le64_to_cpu(m.seq); 1143 u64 seq_from_member = le64_to_cpu(sb->sb->seq); 1144 1145 if (seq_from_fs && seq_from_fs < seq_from_member) { 1146 struct printbuf buf = PRINTBUF; 1147 1148 prt_str(&buf, "Split brain detected between "); 1149 prt_bdevname(&buf, sb->bdev); 1150 prt_str(&buf, " and "); 1151 prt_bdevname(&buf, fs->bdev); 1152 prt_char(&buf, ':'); 1153 prt_newline(&buf); 1154 1155 prt_bdevname(&buf, fs->bdev); 1156 prt_str(&buf, " believes seq of "); 1157 prt_bdevname(&buf, sb->bdev); 1158 prt_printf(&buf, " to be %llu, but ", seq_from_fs); 1159 prt_bdevname(&buf, sb->bdev); 1160 prt_printf(&buf, " has %llu\n", seq_from_member); 1161 1162 if (!opts->no_splitbrain_check) { 1163 prt_str(&buf, "Not using "); 1164 prt_bdevname(&buf, sb->bdev); 1165 } 1166 1167 pr_err("%s", buf.buf); 1168 printbuf_exit(&buf); 1169 1170 if (!opts->no_splitbrain_check) 1171 return -BCH_ERR_device_splitbrain; 1172 } 1173 1174 return 0; 1175 } 1176 1177 /* Device startup/shutdown: */ 1178 1179 static void bch2_dev_release(struct kobject *kobj) 1180 { 1181 struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj); 1182 1183 kfree(ca); 1184 } 1185 1186 static void bch2_dev_free(struct bch_dev *ca) 1187 { 1188 cancel_work_sync(&ca->io_error_work); 1189 1190 if (ca->kobj.state_in_sysfs && 1191 ca->disk_sb.bdev) 1192 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 1193 1194 if (ca->kobj.state_in_sysfs) 1195 kobject_del(&ca->kobj); 1196 1197 bch2_free_super(&ca->disk_sb); 1198 bch2_dev_journal_exit(ca); 1199 1200 free_percpu(ca->io_done); 1201 bioset_exit(&ca->replica_set); 1202 bch2_dev_buckets_free(ca); 1203 free_page((unsigned long) ca->sb_read_scratch); 1204 1205 bch2_time_stats_quantiles_exit(&ca->io_latency[WRITE]); 1206 bch2_time_stats_quantiles_exit(&ca->io_latency[READ]); 1207 1208 percpu_ref_exit(&ca->io_ref); 1209 percpu_ref_exit(&ca->ref); 1210 kobject_put(&ca->kobj); 1211 } 1212 1213 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca) 1214 { 1215 1216 lockdep_assert_held(&c->state_lock); 1217 1218 if (percpu_ref_is_zero(&ca->io_ref)) 1219 return; 1220 1221 __bch2_dev_read_only(c, ca); 1222 1223 reinit_completion(&ca->io_ref_completion); 1224 percpu_ref_kill(&ca->io_ref); 1225 wait_for_completion(&ca->io_ref_completion); 1226 1227 if (ca->kobj.state_in_sysfs) { 1228 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 1229 sysfs_remove_link(&ca->kobj, "block"); 1230 } 1231 1232 bch2_free_super(&ca->disk_sb); 1233 bch2_dev_journal_exit(ca); 1234 } 1235 1236 static void bch2_dev_ref_complete(struct percpu_ref *ref) 1237 { 1238 struct bch_dev *ca = container_of(ref, struct bch_dev, ref); 1239 1240 complete(&ca->ref_completion); 1241 } 1242 1243 static void bch2_dev_io_ref_complete(struct percpu_ref *ref) 1244 { 1245 struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref); 1246 1247 complete(&ca->io_ref_completion); 1248 } 1249 1250 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca) 1251 { 1252 int ret; 1253 1254 if (!c->kobj.state_in_sysfs) 1255 return 0; 1256 1257 if (!ca->kobj.state_in_sysfs) { 1258 ret = kobject_add(&ca->kobj, &c->kobj, 1259 "dev-%u", ca->dev_idx); 1260 if (ret) 1261 return ret; 1262 } 1263 1264 if (ca->disk_sb.bdev) { 1265 struct kobject *block = bdev_kobj(ca->disk_sb.bdev); 1266 1267 ret = sysfs_create_link(block, &ca->kobj, "bcachefs"); 1268 if (ret) 1269 return ret; 1270 1271 ret = sysfs_create_link(&ca->kobj, block, "block"); 1272 if (ret) 1273 return ret; 1274 } 1275 1276 return 0; 1277 } 1278 1279 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c, 1280 struct bch_member *member) 1281 { 1282 struct bch_dev *ca; 1283 unsigned i; 1284 1285 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 1286 if (!ca) 1287 return NULL; 1288 1289 kobject_init(&ca->kobj, &bch2_dev_ktype); 1290 init_completion(&ca->ref_completion); 1291 init_completion(&ca->io_ref_completion); 1292 1293 init_rwsem(&ca->bucket_lock); 1294 1295 INIT_WORK(&ca->io_error_work, bch2_io_error_work); 1296 1297 bch2_time_stats_quantiles_init(&ca->io_latency[READ]); 1298 bch2_time_stats_quantiles_init(&ca->io_latency[WRITE]); 1299 1300 ca->mi = bch2_mi_to_cpu(member); 1301 1302 for (i = 0; i < ARRAY_SIZE(member->errors); i++) 1303 atomic64_set(&ca->errors[i], le64_to_cpu(member->errors[i])); 1304 1305 ca->uuid = member->uuid; 1306 1307 ca->nr_btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE, 1308 ca->mi.bucket_size / btree_sectors(c)); 1309 1310 if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete, 1311 0, GFP_KERNEL) || 1312 percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete, 1313 PERCPU_REF_INIT_DEAD, GFP_KERNEL) || 1314 !(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) || 1315 bch2_dev_buckets_alloc(c, ca) || 1316 bioset_init(&ca->replica_set, 4, 1317 offsetof(struct bch_write_bio, bio), 0) || 1318 !(ca->io_done = alloc_percpu(*ca->io_done))) 1319 goto err; 1320 1321 return ca; 1322 err: 1323 bch2_dev_free(ca); 1324 return NULL; 1325 } 1326 1327 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca, 1328 unsigned dev_idx) 1329 { 1330 ca->dev_idx = dev_idx; 1331 __set_bit(ca->dev_idx, ca->self.d); 1332 scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx); 1333 1334 ca->fs = c; 1335 rcu_assign_pointer(c->devs[ca->dev_idx], ca); 1336 1337 if (bch2_dev_sysfs_online(c, ca)) 1338 pr_warn("error creating sysfs objects"); 1339 } 1340 1341 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx) 1342 { 1343 struct bch_member member = bch2_sb_member_get(c->disk_sb.sb, dev_idx); 1344 struct bch_dev *ca = NULL; 1345 int ret = 0; 1346 1347 if (bch2_fs_init_fault("dev_alloc")) 1348 goto err; 1349 1350 ca = __bch2_dev_alloc(c, &member); 1351 if (!ca) 1352 goto err; 1353 1354 ca->fs = c; 1355 1356 bch2_dev_attach(c, ca, dev_idx); 1357 return ret; 1358 err: 1359 if (ca) 1360 bch2_dev_free(ca); 1361 return -BCH_ERR_ENOMEM_dev_alloc; 1362 } 1363 1364 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb) 1365 { 1366 unsigned ret; 1367 1368 if (bch2_dev_is_online(ca)) { 1369 bch_err(ca, "already have device online in slot %u", 1370 sb->sb->dev_idx); 1371 return -BCH_ERR_device_already_online; 1372 } 1373 1374 if (get_capacity(sb->bdev->bd_disk) < 1375 ca->mi.bucket_size * ca->mi.nbuckets) { 1376 bch_err(ca, "cannot online: device too small"); 1377 return -BCH_ERR_device_size_too_small; 1378 } 1379 1380 BUG_ON(!percpu_ref_is_zero(&ca->io_ref)); 1381 1382 ret = bch2_dev_journal_init(ca, sb->sb); 1383 if (ret) 1384 return ret; 1385 1386 /* Commit: */ 1387 ca->disk_sb = *sb; 1388 memset(sb, 0, sizeof(*sb)); 1389 1390 ca->dev = ca->disk_sb.bdev->bd_dev; 1391 1392 percpu_ref_reinit(&ca->io_ref); 1393 1394 return 0; 1395 } 1396 1397 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb) 1398 { 1399 struct bch_dev *ca; 1400 int ret; 1401 1402 lockdep_assert_held(&c->state_lock); 1403 1404 if (le64_to_cpu(sb->sb->seq) > 1405 le64_to_cpu(c->disk_sb.sb->seq)) 1406 bch2_sb_to_fs(c, sb->sb); 1407 1408 BUG_ON(sb->sb->dev_idx >= c->sb.nr_devices || 1409 !c->devs[sb->sb->dev_idx]); 1410 1411 ca = bch_dev_locked(c, sb->sb->dev_idx); 1412 1413 ret = __bch2_dev_attach_bdev(ca, sb); 1414 if (ret) 1415 return ret; 1416 1417 bch2_dev_sysfs_online(c, ca); 1418 1419 struct printbuf name = PRINTBUF; 1420 prt_bdevname(&name, ca->disk_sb.bdev); 1421 1422 if (c->sb.nr_devices == 1) 1423 strscpy(c->name, name.buf, sizeof(c->name)); 1424 strscpy(ca->name, name.buf, sizeof(ca->name)); 1425 1426 printbuf_exit(&name); 1427 1428 rebalance_wakeup(c); 1429 return 0; 1430 } 1431 1432 /* Device management: */ 1433 1434 /* 1435 * Note: this function is also used by the error paths - when a particular 1436 * device sees an error, we call it to determine whether we can just set the 1437 * device RO, or - if this function returns false - we'll set the whole 1438 * filesystem RO: 1439 * 1440 * XXX: maybe we should be more explicit about whether we're changing state 1441 * because we got an error or what have you? 1442 */ 1443 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca, 1444 enum bch_member_state new_state, int flags) 1445 { 1446 struct bch_devs_mask new_online_devs; 1447 int nr_rw = 0, required; 1448 1449 lockdep_assert_held(&c->state_lock); 1450 1451 switch (new_state) { 1452 case BCH_MEMBER_STATE_rw: 1453 return true; 1454 case BCH_MEMBER_STATE_ro: 1455 if (ca->mi.state != BCH_MEMBER_STATE_rw) 1456 return true; 1457 1458 /* do we have enough devices to write to? */ 1459 for_each_member_device(c, ca2) 1460 if (ca2 != ca) 1461 nr_rw += ca2->mi.state == BCH_MEMBER_STATE_rw; 1462 1463 required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED) 1464 ? c->opts.metadata_replicas 1465 : metadata_replicas_required(c), 1466 !(flags & BCH_FORCE_IF_DATA_DEGRADED) 1467 ? c->opts.data_replicas 1468 : data_replicas_required(c)); 1469 1470 return nr_rw >= required; 1471 case BCH_MEMBER_STATE_failed: 1472 case BCH_MEMBER_STATE_spare: 1473 if (ca->mi.state != BCH_MEMBER_STATE_rw && 1474 ca->mi.state != BCH_MEMBER_STATE_ro) 1475 return true; 1476 1477 /* do we have enough devices to read from? */ 1478 new_online_devs = bch2_online_devs(c); 1479 __clear_bit(ca->dev_idx, new_online_devs.d); 1480 1481 return bch2_have_enough_devs(c, new_online_devs, flags, false); 1482 default: 1483 BUG(); 1484 } 1485 } 1486 1487 static bool bch2_fs_may_start(struct bch_fs *c) 1488 { 1489 struct bch_dev *ca; 1490 unsigned i, flags = 0; 1491 1492 if (c->opts.very_degraded) 1493 flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST; 1494 1495 if (c->opts.degraded) 1496 flags |= BCH_FORCE_IF_DEGRADED; 1497 1498 if (!c->opts.degraded && 1499 !c->opts.very_degraded) { 1500 mutex_lock(&c->sb_lock); 1501 1502 for (i = 0; i < c->disk_sb.sb->nr_devices; i++) { 1503 if (!bch2_dev_exists(c->disk_sb.sb, i)) 1504 continue; 1505 1506 ca = bch_dev_locked(c, i); 1507 1508 if (!bch2_dev_is_online(ca) && 1509 (ca->mi.state == BCH_MEMBER_STATE_rw || 1510 ca->mi.state == BCH_MEMBER_STATE_ro)) { 1511 mutex_unlock(&c->sb_lock); 1512 return false; 1513 } 1514 } 1515 mutex_unlock(&c->sb_lock); 1516 } 1517 1518 return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true); 1519 } 1520 1521 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca) 1522 { 1523 /* 1524 * The allocator thread itself allocates btree nodes, so stop it first: 1525 */ 1526 bch2_dev_allocator_remove(c, ca); 1527 bch2_dev_journal_stop(&c->journal, ca); 1528 } 1529 1530 static void __bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca) 1531 { 1532 lockdep_assert_held(&c->state_lock); 1533 1534 BUG_ON(ca->mi.state != BCH_MEMBER_STATE_rw); 1535 1536 bch2_dev_allocator_add(c, ca); 1537 bch2_recalc_capacity(c); 1538 } 1539 1540 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, 1541 enum bch_member_state new_state, int flags) 1542 { 1543 struct bch_member *m; 1544 int ret = 0; 1545 1546 if (ca->mi.state == new_state) 1547 return 0; 1548 1549 if (!bch2_dev_state_allowed(c, ca, new_state, flags)) 1550 return -BCH_ERR_device_state_not_allowed; 1551 1552 if (new_state != BCH_MEMBER_STATE_rw) 1553 __bch2_dev_read_only(c, ca); 1554 1555 bch_notice(ca, "%s", bch2_member_states[new_state]); 1556 1557 mutex_lock(&c->sb_lock); 1558 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); 1559 SET_BCH_MEMBER_STATE(m, new_state); 1560 bch2_write_super(c); 1561 mutex_unlock(&c->sb_lock); 1562 1563 if (new_state == BCH_MEMBER_STATE_rw) 1564 __bch2_dev_read_write(c, ca); 1565 1566 rebalance_wakeup(c); 1567 1568 return ret; 1569 } 1570 1571 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, 1572 enum bch_member_state new_state, int flags) 1573 { 1574 int ret; 1575 1576 down_write(&c->state_lock); 1577 ret = __bch2_dev_set_state(c, ca, new_state, flags); 1578 up_write(&c->state_lock); 1579 1580 return ret; 1581 } 1582 1583 /* Device add/removal: */ 1584 1585 static int bch2_dev_remove_alloc(struct bch_fs *c, struct bch_dev *ca) 1586 { 1587 struct bpos start = POS(ca->dev_idx, 0); 1588 struct bpos end = POS(ca->dev_idx, U64_MAX); 1589 int ret; 1590 1591 /* 1592 * We clear the LRU and need_discard btrees first so that we don't race 1593 * with bch2_do_invalidates() and bch2_do_discards() 1594 */ 1595 ret = bch2_btree_delete_range(c, BTREE_ID_lru, start, end, 1596 BTREE_TRIGGER_NORUN, NULL) ?: 1597 bch2_btree_delete_range(c, BTREE_ID_need_discard, start, end, 1598 BTREE_TRIGGER_NORUN, NULL) ?: 1599 bch2_btree_delete_range(c, BTREE_ID_freespace, start, end, 1600 BTREE_TRIGGER_NORUN, NULL) ?: 1601 bch2_btree_delete_range(c, BTREE_ID_backpointers, start, end, 1602 BTREE_TRIGGER_NORUN, NULL) ?: 1603 bch2_btree_delete_range(c, BTREE_ID_alloc, start, end, 1604 BTREE_TRIGGER_NORUN, NULL) ?: 1605 bch2_btree_delete_range(c, BTREE_ID_bucket_gens, start, end, 1606 BTREE_TRIGGER_NORUN, NULL); 1607 bch_err_msg(c, ret, "removing dev alloc info"); 1608 return ret; 1609 } 1610 1611 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags) 1612 { 1613 struct bch_member *m; 1614 unsigned dev_idx = ca->dev_idx, data; 1615 int ret; 1616 1617 down_write(&c->state_lock); 1618 1619 /* 1620 * We consume a reference to ca->ref, regardless of whether we succeed 1621 * or fail: 1622 */ 1623 percpu_ref_put(&ca->ref); 1624 1625 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { 1626 bch_err(ca, "Cannot remove without losing data"); 1627 ret = -BCH_ERR_device_state_not_allowed; 1628 goto err; 1629 } 1630 1631 __bch2_dev_read_only(c, ca); 1632 1633 ret = bch2_dev_data_drop(c, ca->dev_idx, flags); 1634 bch_err_msg(ca, ret, "bch2_dev_data_drop()"); 1635 if (ret) 1636 goto err; 1637 1638 ret = bch2_dev_remove_alloc(c, ca); 1639 bch_err_msg(ca, ret, "bch2_dev_remove_alloc()"); 1640 if (ret) 1641 goto err; 1642 1643 ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx); 1644 bch_err_msg(ca, ret, "bch2_journal_flush_device_pins()"); 1645 if (ret) 1646 goto err; 1647 1648 ret = bch2_journal_flush(&c->journal); 1649 bch_err_msg(ca, ret, "bch2_journal_flush()"); 1650 if (ret) 1651 goto err; 1652 1653 ret = bch2_replicas_gc2(c); 1654 bch_err_msg(ca, ret, "bch2_replicas_gc2()"); 1655 if (ret) 1656 goto err; 1657 1658 data = bch2_dev_has_data(c, ca); 1659 if (data) { 1660 struct printbuf data_has = PRINTBUF; 1661 1662 prt_bitflags(&data_has, __bch2_data_types, data); 1663 bch_err(ca, "Remove failed, still has data (%s)", data_has.buf); 1664 printbuf_exit(&data_has); 1665 ret = -EBUSY; 1666 goto err; 1667 } 1668 1669 __bch2_dev_offline(c, ca); 1670 1671 mutex_lock(&c->sb_lock); 1672 rcu_assign_pointer(c->devs[ca->dev_idx], NULL); 1673 mutex_unlock(&c->sb_lock); 1674 1675 percpu_ref_kill(&ca->ref); 1676 wait_for_completion(&ca->ref_completion); 1677 1678 bch2_dev_free(ca); 1679 1680 /* 1681 * At this point the device object has been removed in-core, but the 1682 * on-disk journal might still refer to the device index via sb device 1683 * usage entries. Recovery fails if it sees usage information for an 1684 * invalid device. Flush journal pins to push the back of the journal 1685 * past now invalid device index references before we update the 1686 * superblock, but after the device object has been removed so any 1687 * further journal writes elide usage info for the device. 1688 */ 1689 bch2_journal_flush_all_pins(&c->journal); 1690 1691 /* 1692 * Free this device's slot in the bch_member array - all pointers to 1693 * this device must be gone: 1694 */ 1695 mutex_lock(&c->sb_lock); 1696 m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx); 1697 memset(&m->uuid, 0, sizeof(m->uuid)); 1698 1699 bch2_write_super(c); 1700 1701 mutex_unlock(&c->sb_lock); 1702 up_write(&c->state_lock); 1703 1704 bch2_dev_usage_journal_reserve(c); 1705 return 0; 1706 err: 1707 if (ca->mi.state == BCH_MEMBER_STATE_rw && 1708 !percpu_ref_is_zero(&ca->io_ref)) 1709 __bch2_dev_read_write(c, ca); 1710 up_write(&c->state_lock); 1711 return ret; 1712 } 1713 1714 /* Add new device to running filesystem: */ 1715 int bch2_dev_add(struct bch_fs *c, const char *path) 1716 { 1717 struct bch_opts opts = bch2_opts_empty(); 1718 struct bch_sb_handle sb; 1719 struct bch_dev *ca = NULL; 1720 struct bch_sb_field_members_v2 *mi; 1721 struct bch_member dev_mi; 1722 unsigned dev_idx, nr_devices, u64s; 1723 struct printbuf errbuf = PRINTBUF; 1724 struct printbuf label = PRINTBUF; 1725 int ret; 1726 1727 ret = bch2_read_super(path, &opts, &sb); 1728 bch_err_msg(c, ret, "reading super"); 1729 if (ret) 1730 goto err; 1731 1732 dev_mi = bch2_sb_member_get(sb.sb, sb.sb->dev_idx); 1733 1734 if (BCH_MEMBER_GROUP(&dev_mi)) { 1735 bch2_disk_path_to_text_sb(&label, sb.sb, BCH_MEMBER_GROUP(&dev_mi) - 1); 1736 if (label.allocation_failure) { 1737 ret = -ENOMEM; 1738 goto err; 1739 } 1740 } 1741 1742 ret = bch2_dev_may_add(sb.sb, c); 1743 if (ret) 1744 goto err; 1745 1746 ca = __bch2_dev_alloc(c, &dev_mi); 1747 if (!ca) { 1748 ret = -ENOMEM; 1749 goto err; 1750 } 1751 1752 bch2_dev_usage_init(ca); 1753 1754 ret = __bch2_dev_attach_bdev(ca, &sb); 1755 if (ret) 1756 goto err; 1757 1758 ret = bch2_dev_journal_alloc(ca); 1759 bch_err_msg(c, ret, "allocating journal"); 1760 if (ret) 1761 goto err; 1762 1763 down_write(&c->state_lock); 1764 mutex_lock(&c->sb_lock); 1765 1766 ret = bch2_sb_from_fs(c, ca); 1767 bch_err_msg(c, ret, "setting up new superblock"); 1768 if (ret) 1769 goto err_unlock; 1770 1771 if (dynamic_fault("bcachefs:add:no_slot")) 1772 goto no_slot; 1773 1774 for (dev_idx = 0; dev_idx < BCH_SB_MEMBERS_MAX; dev_idx++) 1775 if (!bch2_dev_exists(c->disk_sb.sb, dev_idx)) 1776 goto have_slot; 1777 no_slot: 1778 ret = -BCH_ERR_ENOSPC_sb_members; 1779 bch_err_msg(c, ret, "setting up new superblock"); 1780 goto err_unlock; 1781 1782 have_slot: 1783 nr_devices = max_t(unsigned, dev_idx + 1, c->sb.nr_devices); 1784 1785 mi = bch2_sb_field_get(c->disk_sb.sb, members_v2); 1786 u64s = DIV_ROUND_UP(sizeof(struct bch_sb_field_members_v2) + 1787 le16_to_cpu(mi->member_bytes) * nr_devices, sizeof(u64)); 1788 1789 mi = bch2_sb_field_resize(&c->disk_sb, members_v2, u64s); 1790 if (!mi) { 1791 ret = -BCH_ERR_ENOSPC_sb_members; 1792 bch_err_msg(c, ret, "setting up new superblock"); 1793 goto err_unlock; 1794 } 1795 struct bch_member *m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx); 1796 1797 /* success: */ 1798 1799 *m = dev_mi; 1800 m->last_mount = cpu_to_le64(ktime_get_real_seconds()); 1801 c->disk_sb.sb->nr_devices = nr_devices; 1802 1803 ca->disk_sb.sb->dev_idx = dev_idx; 1804 bch2_dev_attach(c, ca, dev_idx); 1805 1806 if (BCH_MEMBER_GROUP(&dev_mi)) { 1807 ret = __bch2_dev_group_set(c, ca, label.buf); 1808 bch_err_msg(c, ret, "creating new label"); 1809 if (ret) 1810 goto err_unlock; 1811 } 1812 1813 bch2_write_super(c); 1814 mutex_unlock(&c->sb_lock); 1815 1816 bch2_dev_usage_journal_reserve(c); 1817 1818 ret = bch2_trans_mark_dev_sb(c, ca); 1819 bch_err_msg(ca, ret, "marking new superblock"); 1820 if (ret) 1821 goto err_late; 1822 1823 ret = bch2_fs_freespace_init(c); 1824 bch_err_msg(ca, ret, "initializing free space"); 1825 if (ret) 1826 goto err_late; 1827 1828 ca->new_fs_bucket_idx = 0; 1829 1830 if (ca->mi.state == BCH_MEMBER_STATE_rw) 1831 __bch2_dev_read_write(c, ca); 1832 1833 up_write(&c->state_lock); 1834 return 0; 1835 1836 err_unlock: 1837 mutex_unlock(&c->sb_lock); 1838 up_write(&c->state_lock); 1839 err: 1840 if (ca) 1841 bch2_dev_free(ca); 1842 bch2_free_super(&sb); 1843 printbuf_exit(&label); 1844 printbuf_exit(&errbuf); 1845 bch_err_fn(c, ret); 1846 return ret; 1847 err_late: 1848 up_write(&c->state_lock); 1849 ca = NULL; 1850 goto err; 1851 } 1852 1853 /* Hot add existing device to running filesystem: */ 1854 int bch2_dev_online(struct bch_fs *c, const char *path) 1855 { 1856 struct bch_opts opts = bch2_opts_empty(); 1857 struct bch_sb_handle sb = { NULL }; 1858 struct bch_dev *ca; 1859 unsigned dev_idx; 1860 int ret; 1861 1862 down_write(&c->state_lock); 1863 1864 ret = bch2_read_super(path, &opts, &sb); 1865 if (ret) { 1866 up_write(&c->state_lock); 1867 return ret; 1868 } 1869 1870 dev_idx = sb.sb->dev_idx; 1871 1872 ret = bch2_dev_in_fs(&c->disk_sb, &sb, &c->opts); 1873 bch_err_msg(c, ret, "bringing %s online", path); 1874 if (ret) 1875 goto err; 1876 1877 ret = bch2_dev_attach_bdev(c, &sb); 1878 if (ret) 1879 goto err; 1880 1881 ca = bch_dev_locked(c, dev_idx); 1882 1883 ret = bch2_trans_mark_dev_sb(c, ca); 1884 bch_err_msg(c, ret, "bringing %s online: error from bch2_trans_mark_dev_sb", path); 1885 if (ret) 1886 goto err; 1887 1888 if (ca->mi.state == BCH_MEMBER_STATE_rw) 1889 __bch2_dev_read_write(c, ca); 1890 1891 if (!ca->mi.freespace_initialized) { 1892 ret = bch2_dev_freespace_init(c, ca, 0, ca->mi.nbuckets); 1893 bch_err_msg(ca, ret, "initializing free space"); 1894 if (ret) 1895 goto err; 1896 } 1897 1898 if (!ca->journal.nr) { 1899 ret = bch2_dev_journal_alloc(ca); 1900 bch_err_msg(ca, ret, "allocating journal"); 1901 if (ret) 1902 goto err; 1903 } 1904 1905 mutex_lock(&c->sb_lock); 1906 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = 1907 cpu_to_le64(ktime_get_real_seconds()); 1908 bch2_write_super(c); 1909 mutex_unlock(&c->sb_lock); 1910 1911 up_write(&c->state_lock); 1912 return 0; 1913 err: 1914 up_write(&c->state_lock); 1915 bch2_free_super(&sb); 1916 return ret; 1917 } 1918 1919 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags) 1920 { 1921 down_write(&c->state_lock); 1922 1923 if (!bch2_dev_is_online(ca)) { 1924 bch_err(ca, "Already offline"); 1925 up_write(&c->state_lock); 1926 return 0; 1927 } 1928 1929 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { 1930 bch_err(ca, "Cannot offline required disk"); 1931 up_write(&c->state_lock); 1932 return -BCH_ERR_device_state_not_allowed; 1933 } 1934 1935 __bch2_dev_offline(c, ca); 1936 1937 up_write(&c->state_lock); 1938 return 0; 1939 } 1940 1941 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets) 1942 { 1943 struct bch_member *m; 1944 u64 old_nbuckets; 1945 int ret = 0; 1946 1947 down_write(&c->state_lock); 1948 old_nbuckets = ca->mi.nbuckets; 1949 1950 if (nbuckets < ca->mi.nbuckets) { 1951 bch_err(ca, "Cannot shrink yet"); 1952 ret = -EINVAL; 1953 goto err; 1954 } 1955 1956 if (bch2_dev_is_online(ca) && 1957 get_capacity(ca->disk_sb.bdev->bd_disk) < 1958 ca->mi.bucket_size * nbuckets) { 1959 bch_err(ca, "New size larger than device"); 1960 ret = -BCH_ERR_device_size_too_small; 1961 goto err; 1962 } 1963 1964 ret = bch2_dev_buckets_resize(c, ca, nbuckets); 1965 bch_err_msg(ca, ret, "resizing buckets"); 1966 if (ret) 1967 goto err; 1968 1969 ret = bch2_trans_mark_dev_sb(c, ca); 1970 if (ret) 1971 goto err; 1972 1973 mutex_lock(&c->sb_lock); 1974 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); 1975 m->nbuckets = cpu_to_le64(nbuckets); 1976 1977 bch2_write_super(c); 1978 mutex_unlock(&c->sb_lock); 1979 1980 if (ca->mi.freespace_initialized) { 1981 ret = bch2_dev_freespace_init(c, ca, old_nbuckets, nbuckets); 1982 if (ret) 1983 goto err; 1984 1985 /* 1986 * XXX: this is all wrong transactionally - we'll be able to do 1987 * this correctly after the disk space accounting rewrite 1988 */ 1989 ca->usage_base->d[BCH_DATA_free].buckets += nbuckets - old_nbuckets; 1990 } 1991 1992 bch2_recalc_capacity(c); 1993 err: 1994 up_write(&c->state_lock); 1995 return ret; 1996 } 1997 1998 /* return with ref on ca->ref: */ 1999 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *name) 2000 { 2001 rcu_read_lock(); 2002 for_each_member_device_rcu(c, ca, NULL) 2003 if (!strcmp(name, ca->name)) { 2004 rcu_read_unlock(); 2005 return ca; 2006 } 2007 rcu_read_unlock(); 2008 return ERR_PTR(-BCH_ERR_ENOENT_dev_not_found); 2009 } 2010 2011 /* Filesystem open: */ 2012 2013 static inline int sb_cmp(struct bch_sb *l, struct bch_sb *r) 2014 { 2015 return cmp_int(le64_to_cpu(l->seq), le64_to_cpu(r->seq)) ?: 2016 cmp_int(le64_to_cpu(l->write_time), le64_to_cpu(r->write_time)); 2017 } 2018 2019 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices, 2020 struct bch_opts opts) 2021 { 2022 DARRAY(struct bch_sb_handle) sbs = { 0 }; 2023 struct bch_fs *c = NULL; 2024 struct bch_sb_handle *best = NULL; 2025 struct printbuf errbuf = PRINTBUF; 2026 int ret = 0; 2027 2028 if (!try_module_get(THIS_MODULE)) 2029 return ERR_PTR(-ENODEV); 2030 2031 if (!nr_devices) { 2032 ret = -EINVAL; 2033 goto err; 2034 } 2035 2036 ret = darray_make_room(&sbs, nr_devices); 2037 if (ret) 2038 goto err; 2039 2040 for (unsigned i = 0; i < nr_devices; i++) { 2041 struct bch_sb_handle sb = { NULL }; 2042 2043 ret = bch2_read_super(devices[i], &opts, &sb); 2044 if (ret) 2045 goto err; 2046 2047 BUG_ON(darray_push(&sbs, sb)); 2048 } 2049 2050 if (opts.nochanges && !opts.read_only) { 2051 ret = -BCH_ERR_erofs_nochanges; 2052 goto err_print; 2053 } 2054 2055 darray_for_each(sbs, sb) 2056 if (!best || sb_cmp(sb->sb, best->sb) > 0) 2057 best = sb; 2058 2059 darray_for_each_reverse(sbs, sb) { 2060 ret = bch2_dev_in_fs(best, sb, &opts); 2061 2062 if (ret == -BCH_ERR_device_has_been_removed || 2063 ret == -BCH_ERR_device_splitbrain) { 2064 bch2_free_super(sb); 2065 darray_remove_item(&sbs, sb); 2066 best -= best > sb; 2067 ret = 0; 2068 continue; 2069 } 2070 2071 if (ret) 2072 goto err_print; 2073 } 2074 2075 c = bch2_fs_alloc(best->sb, opts); 2076 ret = PTR_ERR_OR_ZERO(c); 2077 if (ret) 2078 goto err; 2079 2080 down_write(&c->state_lock); 2081 darray_for_each(sbs, sb) { 2082 ret = bch2_dev_attach_bdev(c, sb); 2083 if (ret) { 2084 up_write(&c->state_lock); 2085 goto err; 2086 } 2087 } 2088 up_write(&c->state_lock); 2089 2090 if (!bch2_fs_may_start(c)) { 2091 ret = -BCH_ERR_insufficient_devices_to_start; 2092 goto err_print; 2093 } 2094 2095 if (!c->opts.nostart) { 2096 ret = bch2_fs_start(c); 2097 if (ret) 2098 goto err; 2099 } 2100 out: 2101 darray_for_each(sbs, sb) 2102 bch2_free_super(sb); 2103 darray_exit(&sbs); 2104 printbuf_exit(&errbuf); 2105 module_put(THIS_MODULE); 2106 return c; 2107 err_print: 2108 pr_err("bch_fs_open err opening %s: %s", 2109 devices[0], bch2_err_str(ret)); 2110 err: 2111 if (!IS_ERR_OR_NULL(c)) 2112 bch2_fs_stop(c); 2113 c = ERR_PTR(ret); 2114 goto out; 2115 } 2116 2117 /* Global interfaces/init */ 2118 2119 static void bcachefs_exit(void) 2120 { 2121 bch2_debug_exit(); 2122 bch2_vfs_exit(); 2123 bch2_chardev_exit(); 2124 bch2_btree_key_cache_exit(); 2125 if (bcachefs_kset) 2126 kset_unregister(bcachefs_kset); 2127 } 2128 2129 static int __init bcachefs_init(void) 2130 { 2131 bch2_bkey_pack_test(); 2132 2133 if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) || 2134 bch2_btree_key_cache_init() || 2135 bch2_chardev_init() || 2136 bch2_vfs_init() || 2137 bch2_debug_init()) 2138 goto err; 2139 2140 return 0; 2141 err: 2142 bcachefs_exit(); 2143 return -ENOMEM; 2144 } 2145 2146 #define BCH_DEBUG_PARAM(name, description) \ 2147 bool bch2_##name; \ 2148 module_param_named(name, bch2_##name, bool, 0644); \ 2149 MODULE_PARM_DESC(name, description); 2150 BCH_DEBUG_PARAMS() 2151 #undef BCH_DEBUG_PARAM 2152 2153 __maybe_unused 2154 static unsigned bch2_metadata_version = bcachefs_metadata_version_current; 2155 module_param_named(version, bch2_metadata_version, uint, 0400); 2156 2157 module_exit(bcachefs_exit); 2158 module_init(bcachefs_init); 2159