xref: /linux/fs/bcachefs/super.c (revision 5c04a5b065e97dd331dba67da9896897fced3bee)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcachefs setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcachefs.h"
11 #include "alloc_background.h"
12 #include "alloc_foreground.h"
13 #include "bkey_sort.h"
14 #include "btree_cache.h"
15 #include "btree_gc.h"
16 #include "btree_journal_iter.h"
17 #include "btree_key_cache.h"
18 #include "btree_node_scan.h"
19 #include "btree_update_interior.h"
20 #include "btree_io.h"
21 #include "btree_write_buffer.h"
22 #include "buckets_waiting_for_journal.h"
23 #include "chardev.h"
24 #include "checksum.h"
25 #include "clock.h"
26 #include "compress.h"
27 #include "debug.h"
28 #include "disk_groups.h"
29 #include "ec.h"
30 #include "errcode.h"
31 #include "error.h"
32 #include "fs.h"
33 #include "fs-io.h"
34 #include "fs-io-buffered.h"
35 #include "fs-io-direct.h"
36 #include "fsck.h"
37 #include "inode.h"
38 #include "io_read.h"
39 #include "io_write.h"
40 #include "journal.h"
41 #include "journal_reclaim.h"
42 #include "journal_seq_blacklist.h"
43 #include "move.h"
44 #include "migrate.h"
45 #include "movinggc.h"
46 #include "nocow_locking.h"
47 #include "quota.h"
48 #include "rebalance.h"
49 #include "recovery.h"
50 #include "replicas.h"
51 #include "sb-clean.h"
52 #include "sb-counters.h"
53 #include "sb-errors.h"
54 #include "sb-members.h"
55 #include "snapshot.h"
56 #include "subvolume.h"
57 #include "super.h"
58 #include "super-io.h"
59 #include "sysfs.h"
60 #include "thread_with_file.h"
61 #include "trace.h"
62 
63 #include <linux/backing-dev.h>
64 #include <linux/blkdev.h>
65 #include <linux/debugfs.h>
66 #include <linux/device.h>
67 #include <linux/idr.h>
68 #include <linux/module.h>
69 #include <linux/percpu.h>
70 #include <linux/random.h>
71 #include <linux/sysfs.h>
72 #include <crypto/hash.h>
73 
74 MODULE_LICENSE("GPL");
75 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
76 MODULE_DESCRIPTION("bcachefs filesystem");
77 MODULE_SOFTDEP("pre: crc32c");
78 MODULE_SOFTDEP("pre: crc64");
79 MODULE_SOFTDEP("pre: sha256");
80 MODULE_SOFTDEP("pre: chacha20");
81 MODULE_SOFTDEP("pre: poly1305");
82 MODULE_SOFTDEP("pre: xxhash");
83 
84 const char * const bch2_fs_flag_strs[] = {
85 #define x(n)		#n,
86 	BCH_FS_FLAGS()
87 #undef x
88 	NULL
89 };
90 
91 __printf(2, 0)
92 static void bch2_print_maybe_redirect(struct stdio_redirect *stdio, const char *fmt, va_list args)
93 {
94 #ifdef __KERNEL__
95 	if (unlikely(stdio)) {
96 		if (fmt[0] == KERN_SOH[0])
97 			fmt += 2;
98 
99 		bch2_stdio_redirect_vprintf(stdio, true, fmt, args);
100 		return;
101 	}
102 #endif
103 	vprintk(fmt, args);
104 }
105 
106 void bch2_print_opts(struct bch_opts *opts, const char *fmt, ...)
107 {
108 	struct stdio_redirect *stdio = (void *)(unsigned long)opts->stdio;
109 
110 	va_list args;
111 	va_start(args, fmt);
112 	bch2_print_maybe_redirect(stdio, fmt, args);
113 	va_end(args);
114 }
115 
116 void __bch2_print(struct bch_fs *c, const char *fmt, ...)
117 {
118 	struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c);
119 
120 	va_list args;
121 	va_start(args, fmt);
122 	bch2_print_maybe_redirect(stdio, fmt, args);
123 	va_end(args);
124 }
125 
126 #define KTYPE(type)							\
127 static const struct attribute_group type ## _group = {			\
128 	.attrs = type ## _files						\
129 };									\
130 									\
131 static const struct attribute_group *type ## _groups[] = {		\
132 	&type ## _group,						\
133 	NULL								\
134 };									\
135 									\
136 static const struct kobj_type type ## _ktype = {			\
137 	.release	= type ## _release,				\
138 	.sysfs_ops	= &type ## _sysfs_ops,				\
139 	.default_groups = type ## _groups				\
140 }
141 
142 static void bch2_fs_release(struct kobject *);
143 static void bch2_dev_release(struct kobject *);
144 static void bch2_fs_counters_release(struct kobject *k)
145 {
146 }
147 
148 static void bch2_fs_internal_release(struct kobject *k)
149 {
150 }
151 
152 static void bch2_fs_opts_dir_release(struct kobject *k)
153 {
154 }
155 
156 static void bch2_fs_time_stats_release(struct kobject *k)
157 {
158 }
159 
160 KTYPE(bch2_fs);
161 KTYPE(bch2_fs_counters);
162 KTYPE(bch2_fs_internal);
163 KTYPE(bch2_fs_opts_dir);
164 KTYPE(bch2_fs_time_stats);
165 KTYPE(bch2_dev);
166 
167 static struct kset *bcachefs_kset;
168 static LIST_HEAD(bch_fs_list);
169 static DEFINE_MUTEX(bch_fs_list_lock);
170 
171 DECLARE_WAIT_QUEUE_HEAD(bch2_read_only_wait);
172 
173 static void bch2_dev_free(struct bch_dev *);
174 static int bch2_dev_alloc(struct bch_fs *, unsigned);
175 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *);
176 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *);
177 
178 struct bch_fs *bch2_dev_to_fs(dev_t dev)
179 {
180 	struct bch_fs *c;
181 
182 	mutex_lock(&bch_fs_list_lock);
183 	rcu_read_lock();
184 
185 	list_for_each_entry(c, &bch_fs_list, list)
186 		for_each_member_device_rcu(c, ca, NULL)
187 			if (ca->disk_sb.bdev && ca->disk_sb.bdev->bd_dev == dev) {
188 				closure_get(&c->cl);
189 				goto found;
190 			}
191 	c = NULL;
192 found:
193 	rcu_read_unlock();
194 	mutex_unlock(&bch_fs_list_lock);
195 
196 	return c;
197 }
198 
199 static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid)
200 {
201 	struct bch_fs *c;
202 
203 	lockdep_assert_held(&bch_fs_list_lock);
204 
205 	list_for_each_entry(c, &bch_fs_list, list)
206 		if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid)))
207 			return c;
208 
209 	return NULL;
210 }
211 
212 struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid)
213 {
214 	struct bch_fs *c;
215 
216 	mutex_lock(&bch_fs_list_lock);
217 	c = __bch2_uuid_to_fs(uuid);
218 	if (c)
219 		closure_get(&c->cl);
220 	mutex_unlock(&bch_fs_list_lock);
221 
222 	return c;
223 }
224 
225 static void bch2_dev_usage_journal_reserve(struct bch_fs *c)
226 {
227 	unsigned nr = 0, u64s =
228 		((sizeof(struct jset_entry_dev_usage) +
229 		  sizeof(struct jset_entry_dev_usage_type) * BCH_DATA_NR)) /
230 		sizeof(u64);
231 
232 	rcu_read_lock();
233 	for_each_member_device_rcu(c, ca, NULL)
234 		nr++;
235 	rcu_read_unlock();
236 
237 	bch2_journal_entry_res_resize(&c->journal,
238 			&c->dev_usage_journal_res, u64s * nr);
239 }
240 
241 /* Filesystem RO/RW: */
242 
243 /*
244  * For startup/shutdown of RW stuff, the dependencies are:
245  *
246  * - foreground writes depend on copygc and rebalance (to free up space)
247  *
248  * - copygc and rebalance depend on mark and sweep gc (they actually probably
249  *   don't because they either reserve ahead of time or don't block if
250  *   allocations fail, but allocations can require mark and sweep gc to run
251  *   because of generation number wraparound)
252  *
253  * - all of the above depends on the allocator threads
254  *
255  * - allocator depends on the journal (when it rewrites prios and gens)
256  */
257 
258 static void __bch2_fs_read_only(struct bch_fs *c)
259 {
260 	unsigned clean_passes = 0;
261 	u64 seq = 0;
262 
263 	bch2_fs_ec_stop(c);
264 	bch2_open_buckets_stop(c, NULL, true);
265 	bch2_rebalance_stop(c);
266 	bch2_copygc_stop(c);
267 	bch2_gc_thread_stop(c);
268 	bch2_fs_ec_flush(c);
269 
270 	bch_verbose(c, "flushing journal and stopping allocators, journal seq %llu",
271 		    journal_cur_seq(&c->journal));
272 
273 	do {
274 		clean_passes++;
275 
276 		if (bch2_btree_interior_updates_flush(c) ||
277 		    bch2_journal_flush_all_pins(&c->journal) ||
278 		    bch2_btree_flush_all_writes(c) ||
279 		    seq != atomic64_read(&c->journal.seq)) {
280 			seq = atomic64_read(&c->journal.seq);
281 			clean_passes = 0;
282 		}
283 	} while (clean_passes < 2);
284 
285 	bch_verbose(c, "flushing journal and stopping allocators complete, journal seq %llu",
286 		    journal_cur_seq(&c->journal));
287 
288 	if (test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags) &&
289 	    !test_bit(BCH_FS_emergency_ro, &c->flags))
290 		set_bit(BCH_FS_clean_shutdown, &c->flags);
291 	bch2_fs_journal_stop(&c->journal);
292 
293 	/*
294 	 * After stopping journal:
295 	 */
296 	for_each_member_device(c, ca)
297 		bch2_dev_allocator_remove(c, ca);
298 }
299 
300 #ifndef BCH_WRITE_REF_DEBUG
301 static void bch2_writes_disabled(struct percpu_ref *writes)
302 {
303 	struct bch_fs *c = container_of(writes, struct bch_fs, writes);
304 
305 	set_bit(BCH_FS_write_disable_complete, &c->flags);
306 	wake_up(&bch2_read_only_wait);
307 }
308 #endif
309 
310 void bch2_fs_read_only(struct bch_fs *c)
311 {
312 	if (!test_bit(BCH_FS_rw, &c->flags)) {
313 		bch2_journal_reclaim_stop(&c->journal);
314 		return;
315 	}
316 
317 	BUG_ON(test_bit(BCH_FS_write_disable_complete, &c->flags));
318 
319 	bch_verbose(c, "going read-only");
320 
321 	/*
322 	 * Block new foreground-end write operations from starting - any new
323 	 * writes will return -EROFS:
324 	 */
325 	set_bit(BCH_FS_going_ro, &c->flags);
326 #ifndef BCH_WRITE_REF_DEBUG
327 	percpu_ref_kill(&c->writes);
328 #else
329 	for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++)
330 		bch2_write_ref_put(c, i);
331 #endif
332 
333 	/*
334 	 * If we're not doing an emergency shutdown, we want to wait on
335 	 * outstanding writes to complete so they don't see spurious errors due
336 	 * to shutting down the allocator:
337 	 *
338 	 * If we are doing an emergency shutdown outstanding writes may
339 	 * hang until we shutdown the allocator so we don't want to wait
340 	 * on outstanding writes before shutting everything down - but
341 	 * we do need to wait on them before returning and signalling
342 	 * that going RO is complete:
343 	 */
344 	wait_event(bch2_read_only_wait,
345 		   test_bit(BCH_FS_write_disable_complete, &c->flags) ||
346 		   test_bit(BCH_FS_emergency_ro, &c->flags));
347 
348 	bool writes_disabled = test_bit(BCH_FS_write_disable_complete, &c->flags);
349 	if (writes_disabled)
350 		bch_verbose(c, "finished waiting for writes to stop");
351 
352 	__bch2_fs_read_only(c);
353 
354 	wait_event(bch2_read_only_wait,
355 		   test_bit(BCH_FS_write_disable_complete, &c->flags));
356 
357 	if (!writes_disabled)
358 		bch_verbose(c, "finished waiting for writes to stop");
359 
360 	clear_bit(BCH_FS_write_disable_complete, &c->flags);
361 	clear_bit(BCH_FS_going_ro, &c->flags);
362 	clear_bit(BCH_FS_rw, &c->flags);
363 
364 	if (!bch2_journal_error(&c->journal) &&
365 	    !test_bit(BCH_FS_error, &c->flags) &&
366 	    !test_bit(BCH_FS_emergency_ro, &c->flags) &&
367 	    test_bit(BCH_FS_started, &c->flags) &&
368 	    test_bit(BCH_FS_clean_shutdown, &c->flags) &&
369 	    c->recovery_pass_done >= BCH_RECOVERY_PASS_journal_replay) {
370 		BUG_ON(c->journal.last_empty_seq != journal_cur_seq(&c->journal));
371 		BUG_ON(atomic_read(&c->btree_cache.dirty));
372 		BUG_ON(atomic_long_read(&c->btree_key_cache.nr_dirty));
373 		BUG_ON(c->btree_write_buffer.inc.keys.nr);
374 		BUG_ON(c->btree_write_buffer.flushing.keys.nr);
375 
376 		bch_verbose(c, "marking filesystem clean");
377 		bch2_fs_mark_clean(c);
378 	} else {
379 		bch_verbose(c, "done going read-only, filesystem not clean");
380 	}
381 }
382 
383 static void bch2_fs_read_only_work(struct work_struct *work)
384 {
385 	struct bch_fs *c =
386 		container_of(work, struct bch_fs, read_only_work);
387 
388 	down_write(&c->state_lock);
389 	bch2_fs_read_only(c);
390 	up_write(&c->state_lock);
391 }
392 
393 static void bch2_fs_read_only_async(struct bch_fs *c)
394 {
395 	queue_work(system_long_wq, &c->read_only_work);
396 }
397 
398 bool bch2_fs_emergency_read_only(struct bch_fs *c)
399 {
400 	bool ret = !test_and_set_bit(BCH_FS_emergency_ro, &c->flags);
401 
402 	bch2_journal_halt(&c->journal);
403 	bch2_fs_read_only_async(c);
404 
405 	wake_up(&bch2_read_only_wait);
406 	return ret;
407 }
408 
409 static int bch2_fs_read_write_late(struct bch_fs *c)
410 {
411 	int ret;
412 
413 	/*
414 	 * Data move operations can't run until after check_snapshots has
415 	 * completed, and bch2_snapshot_is_ancestor() is available.
416 	 *
417 	 * Ideally we'd start copygc/rebalance earlier instead of waiting for
418 	 * all of recovery/fsck to complete:
419 	 */
420 	ret = bch2_copygc_start(c);
421 	if (ret) {
422 		bch_err(c, "error starting copygc thread");
423 		return ret;
424 	}
425 
426 	ret = bch2_rebalance_start(c);
427 	if (ret) {
428 		bch_err(c, "error starting rebalance thread");
429 		return ret;
430 	}
431 
432 	return 0;
433 }
434 
435 static int __bch2_fs_read_write(struct bch_fs *c, bool early)
436 {
437 	int ret;
438 
439 	if (test_bit(BCH_FS_initial_gc_unfixed, &c->flags)) {
440 		bch_err(c, "cannot go rw, unfixed btree errors");
441 		return -BCH_ERR_erofs_unfixed_errors;
442 	}
443 
444 	if (test_bit(BCH_FS_rw, &c->flags))
445 		return 0;
446 
447 	bch_info(c, "going read-write");
448 
449 	ret = bch2_sb_members_v2_init(c);
450 	if (ret)
451 		goto err;
452 
453 	ret = bch2_fs_mark_dirty(c);
454 	if (ret)
455 		goto err;
456 
457 	clear_bit(BCH_FS_clean_shutdown, &c->flags);
458 
459 	/*
460 	 * First journal write must be a flush write: after a clean shutdown we
461 	 * don't read the journal, so the first journal write may end up
462 	 * overwriting whatever was there previously, and there must always be
463 	 * at least one non-flush write in the journal or recovery will fail:
464 	 */
465 	set_bit(JOURNAL_NEED_FLUSH_WRITE, &c->journal.flags);
466 
467 	for_each_rw_member(c, ca)
468 		bch2_dev_allocator_add(c, ca);
469 	bch2_recalc_capacity(c);
470 
471 	set_bit(BCH_FS_rw, &c->flags);
472 	set_bit(BCH_FS_was_rw, &c->flags);
473 
474 #ifndef BCH_WRITE_REF_DEBUG
475 	percpu_ref_reinit(&c->writes);
476 #else
477 	for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) {
478 		BUG_ON(atomic_long_read(&c->writes[i]));
479 		atomic_long_inc(&c->writes[i]);
480 	}
481 #endif
482 
483 	ret = bch2_gc_thread_start(c);
484 	if (ret) {
485 		bch_err(c, "error starting gc thread");
486 		return ret;
487 	}
488 
489 	ret = bch2_journal_reclaim_start(&c->journal);
490 	if (ret)
491 		goto err;
492 
493 	if (!early) {
494 		ret = bch2_fs_read_write_late(c);
495 		if (ret)
496 			goto err;
497 	}
498 
499 	bch2_do_discards(c);
500 	bch2_do_invalidates(c);
501 	bch2_do_stripe_deletes(c);
502 	bch2_do_pending_node_rewrites(c);
503 	return 0;
504 err:
505 	if (test_bit(BCH_FS_rw, &c->flags))
506 		bch2_fs_read_only(c);
507 	else
508 		__bch2_fs_read_only(c);
509 	return ret;
510 }
511 
512 int bch2_fs_read_write(struct bch_fs *c)
513 {
514 	if (c->opts.recovery_pass_last &&
515 	    c->opts.recovery_pass_last < BCH_RECOVERY_PASS_journal_replay)
516 		return -BCH_ERR_erofs_norecovery;
517 
518 	if (c->opts.nochanges)
519 		return -BCH_ERR_erofs_nochanges;
520 
521 	return __bch2_fs_read_write(c, false);
522 }
523 
524 int bch2_fs_read_write_early(struct bch_fs *c)
525 {
526 	lockdep_assert_held(&c->state_lock);
527 
528 	return __bch2_fs_read_write(c, true);
529 }
530 
531 /* Filesystem startup/shutdown: */
532 
533 static void __bch2_fs_free(struct bch_fs *c)
534 {
535 	unsigned i;
536 
537 	for (i = 0; i < BCH_TIME_STAT_NR; i++)
538 		bch2_time_stats_exit(&c->times[i]);
539 
540 	bch2_find_btree_nodes_exit(&c->found_btree_nodes);
541 	bch2_free_pending_node_rewrites(c);
542 	bch2_fs_sb_errors_exit(c);
543 	bch2_fs_counters_exit(c);
544 	bch2_fs_snapshots_exit(c);
545 	bch2_fs_quota_exit(c);
546 	bch2_fs_fs_io_direct_exit(c);
547 	bch2_fs_fs_io_buffered_exit(c);
548 	bch2_fs_fsio_exit(c);
549 	bch2_fs_ec_exit(c);
550 	bch2_fs_encryption_exit(c);
551 	bch2_fs_nocow_locking_exit(c);
552 	bch2_fs_io_write_exit(c);
553 	bch2_fs_io_read_exit(c);
554 	bch2_fs_buckets_waiting_for_journal_exit(c);
555 	bch2_fs_btree_interior_update_exit(c);
556 	bch2_fs_btree_iter_exit(c);
557 	bch2_fs_btree_key_cache_exit(&c->btree_key_cache);
558 	bch2_fs_btree_cache_exit(c);
559 	bch2_fs_replicas_exit(c);
560 	bch2_fs_journal_exit(&c->journal);
561 	bch2_io_clock_exit(&c->io_clock[WRITE]);
562 	bch2_io_clock_exit(&c->io_clock[READ]);
563 	bch2_fs_compress_exit(c);
564 	bch2_journal_keys_put_initial(c);
565 	bch2_find_btree_nodes_exit(&c->found_btree_nodes);
566 	BUG_ON(atomic_read(&c->journal_keys.ref));
567 	bch2_fs_btree_write_buffer_exit(c);
568 	percpu_free_rwsem(&c->mark_lock);
569 	free_percpu(c->online_reserved);
570 
571 	darray_exit(&c->btree_roots_extra);
572 	free_percpu(c->pcpu);
573 	mempool_exit(&c->large_bkey_pool);
574 	mempool_exit(&c->btree_bounce_pool);
575 	bioset_exit(&c->btree_bio);
576 	mempool_exit(&c->fill_iter);
577 #ifndef BCH_WRITE_REF_DEBUG
578 	percpu_ref_exit(&c->writes);
579 #endif
580 	kfree(rcu_dereference_protected(c->disk_groups, 1));
581 	kfree(c->journal_seq_blacklist_table);
582 	kfree(c->unused_inode_hints);
583 
584 	if (c->write_ref_wq)
585 		destroy_workqueue(c->write_ref_wq);
586 	if (c->io_complete_wq)
587 		destroy_workqueue(c->io_complete_wq);
588 	if (c->copygc_wq)
589 		destroy_workqueue(c->copygc_wq);
590 	if (c->btree_io_complete_wq)
591 		destroy_workqueue(c->btree_io_complete_wq);
592 	if (c->btree_update_wq)
593 		destroy_workqueue(c->btree_update_wq);
594 
595 	bch2_free_super(&c->disk_sb);
596 	kvfree(c);
597 	module_put(THIS_MODULE);
598 }
599 
600 static void bch2_fs_release(struct kobject *kobj)
601 {
602 	struct bch_fs *c = container_of(kobj, struct bch_fs, kobj);
603 
604 	__bch2_fs_free(c);
605 }
606 
607 void __bch2_fs_stop(struct bch_fs *c)
608 {
609 	bch_verbose(c, "shutting down");
610 
611 	set_bit(BCH_FS_stopping, &c->flags);
612 
613 	cancel_work_sync(&c->journal_seq_blacklist_gc_work);
614 
615 	down_write(&c->state_lock);
616 	bch2_fs_read_only(c);
617 	up_write(&c->state_lock);
618 
619 	for_each_member_device(c, ca)
620 		if (ca->kobj.state_in_sysfs &&
621 		    ca->disk_sb.bdev)
622 			sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs");
623 
624 	if (c->kobj.state_in_sysfs)
625 		kobject_del(&c->kobj);
626 
627 	bch2_fs_debug_exit(c);
628 	bch2_fs_chardev_exit(c);
629 
630 	bch2_ro_ref_put(c);
631 	wait_event(c->ro_ref_wait, !refcount_read(&c->ro_ref));
632 
633 	kobject_put(&c->counters_kobj);
634 	kobject_put(&c->time_stats);
635 	kobject_put(&c->opts_dir);
636 	kobject_put(&c->internal);
637 
638 	/* btree prefetch might have kicked off reads in the background: */
639 	bch2_btree_flush_all_reads(c);
640 
641 	for_each_member_device(c, ca)
642 		cancel_work_sync(&ca->io_error_work);
643 
644 	cancel_work_sync(&c->read_only_work);
645 }
646 
647 void bch2_fs_free(struct bch_fs *c)
648 {
649 	unsigned i;
650 
651 	mutex_lock(&bch_fs_list_lock);
652 	list_del(&c->list);
653 	mutex_unlock(&bch_fs_list_lock);
654 
655 	closure_sync(&c->cl);
656 	closure_debug_destroy(&c->cl);
657 
658 	for (i = 0; i < c->sb.nr_devices; i++) {
659 		struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true);
660 
661 		if (ca) {
662 			bch2_free_super(&ca->disk_sb);
663 			bch2_dev_free(ca);
664 		}
665 	}
666 
667 	bch_verbose(c, "shutdown complete");
668 
669 	kobject_put(&c->kobj);
670 }
671 
672 void bch2_fs_stop(struct bch_fs *c)
673 {
674 	__bch2_fs_stop(c);
675 	bch2_fs_free(c);
676 }
677 
678 static int bch2_fs_online(struct bch_fs *c)
679 {
680 	int ret = 0;
681 
682 	lockdep_assert_held(&bch_fs_list_lock);
683 
684 	if (__bch2_uuid_to_fs(c->sb.uuid)) {
685 		bch_err(c, "filesystem UUID already open");
686 		return -EINVAL;
687 	}
688 
689 	ret = bch2_fs_chardev_init(c);
690 	if (ret) {
691 		bch_err(c, "error creating character device");
692 		return ret;
693 	}
694 
695 	bch2_fs_debug_init(c);
696 
697 	ret = kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ?:
698 	    kobject_add(&c->internal, &c->kobj, "internal") ?:
699 	    kobject_add(&c->opts_dir, &c->kobj, "options") ?:
700 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
701 	    kobject_add(&c->time_stats, &c->kobj, "time_stats") ?:
702 #endif
703 	    kobject_add(&c->counters_kobj, &c->kobj, "counters") ?:
704 	    bch2_opts_create_sysfs_files(&c->opts_dir);
705 	if (ret) {
706 		bch_err(c, "error creating sysfs objects");
707 		return ret;
708 	}
709 
710 	down_write(&c->state_lock);
711 
712 	for_each_member_device(c, ca) {
713 		ret = bch2_dev_sysfs_online(c, ca);
714 		if (ret) {
715 			bch_err(c, "error creating sysfs objects");
716 			percpu_ref_put(&ca->ref);
717 			goto err;
718 		}
719 	}
720 
721 	BUG_ON(!list_empty(&c->list));
722 	list_add(&c->list, &bch_fs_list);
723 err:
724 	up_write(&c->state_lock);
725 	return ret;
726 }
727 
728 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts)
729 {
730 	struct bch_fs *c;
731 	struct printbuf name = PRINTBUF;
732 	unsigned i, iter_size;
733 	int ret = 0;
734 
735 	c = kvmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO);
736 	if (!c) {
737 		c = ERR_PTR(-BCH_ERR_ENOMEM_fs_alloc);
738 		goto out;
739 	}
740 
741 	c->stdio = (void *)(unsigned long) opts.stdio;
742 
743 	__module_get(THIS_MODULE);
744 
745 	closure_init(&c->cl, NULL);
746 
747 	c->kobj.kset = bcachefs_kset;
748 	kobject_init(&c->kobj, &bch2_fs_ktype);
749 	kobject_init(&c->internal, &bch2_fs_internal_ktype);
750 	kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype);
751 	kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype);
752 	kobject_init(&c->counters_kobj, &bch2_fs_counters_ktype);
753 
754 	c->minor		= -1;
755 	c->disk_sb.fs_sb	= true;
756 
757 	init_rwsem(&c->state_lock);
758 	mutex_init(&c->sb_lock);
759 	mutex_init(&c->replicas_gc_lock);
760 	mutex_init(&c->btree_root_lock);
761 	INIT_WORK(&c->read_only_work, bch2_fs_read_only_work);
762 
763 	refcount_set(&c->ro_ref, 1);
764 	init_waitqueue_head(&c->ro_ref_wait);
765 	sema_init(&c->online_fsck_mutex, 1);
766 
767 	init_rwsem(&c->gc_lock);
768 	mutex_init(&c->gc_gens_lock);
769 	atomic_set(&c->journal_keys.ref, 1);
770 	c->journal_keys.initial_ref_held = true;
771 
772 	for (i = 0; i < BCH_TIME_STAT_NR; i++)
773 		bch2_time_stats_init(&c->times[i]);
774 
775 	bch2_fs_copygc_init(c);
776 	bch2_fs_btree_key_cache_init_early(&c->btree_key_cache);
777 	bch2_fs_btree_iter_init_early(c);
778 	bch2_fs_btree_interior_update_init_early(c);
779 	bch2_fs_allocator_background_init(c);
780 	bch2_fs_allocator_foreground_init(c);
781 	bch2_fs_rebalance_init(c);
782 	bch2_fs_quota_init(c);
783 	bch2_fs_ec_init_early(c);
784 	bch2_fs_move_init(c);
785 	bch2_fs_sb_errors_init_early(c);
786 
787 	INIT_LIST_HEAD(&c->list);
788 
789 	mutex_init(&c->usage_scratch_lock);
790 
791 	mutex_init(&c->bio_bounce_pages_lock);
792 	mutex_init(&c->snapshot_table_lock);
793 	init_rwsem(&c->snapshot_create_lock);
794 
795 	spin_lock_init(&c->btree_write_error_lock);
796 
797 	INIT_WORK(&c->journal_seq_blacklist_gc_work,
798 		  bch2_blacklist_entries_gc);
799 
800 	INIT_LIST_HEAD(&c->journal_iters);
801 
802 	INIT_LIST_HEAD(&c->fsck_error_msgs);
803 	mutex_init(&c->fsck_error_msgs_lock);
804 
805 	seqcount_init(&c->gc_pos_lock);
806 
807 	seqcount_init(&c->usage_lock);
808 
809 	sema_init(&c->io_in_flight, 128);
810 
811 	INIT_LIST_HEAD(&c->vfs_inodes_list);
812 	mutex_init(&c->vfs_inodes_lock);
813 
814 	c->copy_gc_enabled		= 1;
815 	c->rebalance.enabled		= 1;
816 	c->promote_whole_extents	= true;
817 
818 	c->journal.flush_write_time	= &c->times[BCH_TIME_journal_flush_write];
819 	c->journal.noflush_write_time	= &c->times[BCH_TIME_journal_noflush_write];
820 	c->journal.flush_seq_time	= &c->times[BCH_TIME_journal_flush_seq];
821 
822 	bch2_fs_btree_cache_init_early(&c->btree_cache);
823 
824 	mutex_init(&c->sectors_available_lock);
825 
826 	ret = percpu_init_rwsem(&c->mark_lock);
827 	if (ret)
828 		goto err;
829 
830 	mutex_lock(&c->sb_lock);
831 	ret = bch2_sb_to_fs(c, sb);
832 	mutex_unlock(&c->sb_lock);
833 
834 	if (ret)
835 		goto err;
836 
837 	pr_uuid(&name, c->sb.user_uuid.b);
838 	ret = name.allocation_failure ? -BCH_ERR_ENOMEM_fs_name_alloc : 0;
839 	if (ret)
840 		goto err;
841 
842 	strscpy(c->name, name.buf, sizeof(c->name));
843 	printbuf_exit(&name);
844 
845 	/* Compat: */
846 	if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 &&
847 	    !BCH_SB_JOURNAL_FLUSH_DELAY(sb))
848 		SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000);
849 
850 	if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 &&
851 	    !BCH_SB_JOURNAL_RECLAIM_DELAY(sb))
852 		SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 100);
853 
854 	c->opts = bch2_opts_default;
855 	ret = bch2_opts_from_sb(&c->opts, sb);
856 	if (ret)
857 		goto err;
858 
859 	bch2_opts_apply(&c->opts, opts);
860 
861 	c->btree_key_cache_btrees |= 1U << BTREE_ID_alloc;
862 	if (c->opts.inodes_use_key_cache)
863 		c->btree_key_cache_btrees |= 1U << BTREE_ID_inodes;
864 	c->btree_key_cache_btrees |= 1U << BTREE_ID_logged_ops;
865 
866 	c->block_bits		= ilog2(block_sectors(c));
867 	c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c);
868 
869 	if (bch2_fs_init_fault("fs_alloc")) {
870 		bch_err(c, "fs_alloc fault injected");
871 		ret = -EFAULT;
872 		goto err;
873 	}
874 
875 	iter_size = sizeof(struct sort_iter) +
876 		(btree_blocks(c) + 1) * 2 *
877 		sizeof(struct sort_iter_set);
878 
879 	c->inode_shard_bits = ilog2(roundup_pow_of_two(num_possible_cpus()));
880 
881 	if (!(c->btree_update_wq = alloc_workqueue("bcachefs",
882 				WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_UNBOUND, 512)) ||
883 	    !(c->btree_io_complete_wq = alloc_workqueue("bcachefs_btree_io",
884 				WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) ||
885 	    !(c->copygc_wq = alloc_workqueue("bcachefs_copygc",
886 				WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) ||
887 	    !(c->io_complete_wq = alloc_workqueue("bcachefs_io",
888 				WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 512)) ||
889 	    !(c->write_ref_wq = alloc_workqueue("bcachefs_write_ref",
890 				WQ_FREEZABLE, 0)) ||
891 #ifndef BCH_WRITE_REF_DEBUG
892 	    percpu_ref_init(&c->writes, bch2_writes_disabled,
893 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
894 #endif
895 	    mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
896 	    bioset_init(&c->btree_bio, 1,
897 			max(offsetof(struct btree_read_bio, bio),
898 			    offsetof(struct btree_write_bio, wbio.bio)),
899 			BIOSET_NEED_BVECS) ||
900 	    !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) ||
901 	    !(c->online_reserved = alloc_percpu(u64)) ||
902 	    mempool_init_kvmalloc_pool(&c->btree_bounce_pool, 1,
903 				       c->opts.btree_node_size) ||
904 	    mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048) ||
905 	    !(c->unused_inode_hints = kcalloc(1U << c->inode_shard_bits,
906 					      sizeof(u64), GFP_KERNEL))) {
907 		ret = -BCH_ERR_ENOMEM_fs_other_alloc;
908 		goto err;
909 	}
910 
911 	ret = bch2_fs_counters_init(c) ?:
912 	    bch2_fs_sb_errors_init(c) ?:
913 	    bch2_io_clock_init(&c->io_clock[READ]) ?:
914 	    bch2_io_clock_init(&c->io_clock[WRITE]) ?:
915 	    bch2_fs_journal_init(&c->journal) ?:
916 	    bch2_fs_replicas_init(c) ?:
917 	    bch2_fs_btree_cache_init(c) ?:
918 	    bch2_fs_btree_key_cache_init(&c->btree_key_cache) ?:
919 	    bch2_fs_btree_iter_init(c) ?:
920 	    bch2_fs_btree_interior_update_init(c) ?:
921 	    bch2_fs_buckets_waiting_for_journal_init(c) ?:
922 	    bch2_fs_btree_write_buffer_init(c) ?:
923 	    bch2_fs_subvolumes_init(c) ?:
924 	    bch2_fs_io_read_init(c) ?:
925 	    bch2_fs_io_write_init(c) ?:
926 	    bch2_fs_nocow_locking_init(c) ?:
927 	    bch2_fs_encryption_init(c) ?:
928 	    bch2_fs_compress_init(c) ?:
929 	    bch2_fs_ec_init(c) ?:
930 	    bch2_fs_fsio_init(c) ?:
931 	    bch2_fs_fs_io_buffered_init(c) ?:
932 	    bch2_fs_fs_io_direct_init(c);
933 	if (ret)
934 		goto err;
935 
936 	for (i = 0; i < c->sb.nr_devices; i++)
937 		if (bch2_dev_exists(c->disk_sb.sb, i) &&
938 		    bch2_dev_alloc(c, i)) {
939 			ret = -EEXIST;
940 			goto err;
941 		}
942 
943 	bch2_journal_entry_res_resize(&c->journal,
944 			&c->btree_root_journal_res,
945 			BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX));
946 	bch2_dev_usage_journal_reserve(c);
947 	bch2_journal_entry_res_resize(&c->journal,
948 			&c->clock_journal_res,
949 			(sizeof(struct jset_entry_clock) / sizeof(u64)) * 2);
950 
951 	mutex_lock(&bch_fs_list_lock);
952 	ret = bch2_fs_online(c);
953 	mutex_unlock(&bch_fs_list_lock);
954 
955 	if (ret)
956 		goto err;
957 out:
958 	return c;
959 err:
960 	bch2_fs_free(c);
961 	c = ERR_PTR(ret);
962 	goto out;
963 }
964 
965 noinline_for_stack
966 static void print_mount_opts(struct bch_fs *c)
967 {
968 	enum bch_opt_id i;
969 	struct printbuf p = PRINTBUF;
970 	bool first = true;
971 
972 	prt_str(&p, "mounting version ");
973 	bch2_version_to_text(&p, c->sb.version);
974 
975 	if (c->opts.read_only) {
976 		prt_str(&p, " opts=");
977 		first = false;
978 		prt_printf(&p, "ro");
979 	}
980 
981 	for (i = 0; i < bch2_opts_nr; i++) {
982 		const struct bch_option *opt = &bch2_opt_table[i];
983 		u64 v = bch2_opt_get_by_id(&c->opts, i);
984 
985 		if (!(opt->flags & OPT_MOUNT))
986 			continue;
987 
988 		if (v == bch2_opt_get_by_id(&bch2_opts_default, i))
989 			continue;
990 
991 		prt_str(&p, first ? " opts=" : ",");
992 		first = false;
993 		bch2_opt_to_text(&p, c, c->disk_sb.sb, opt, v, OPT_SHOW_MOUNT_STYLE);
994 	}
995 
996 	bch_info(c, "%s", p.buf);
997 	printbuf_exit(&p);
998 }
999 
1000 int bch2_fs_start(struct bch_fs *c)
1001 {
1002 	time64_t now = ktime_get_real_seconds();
1003 	int ret;
1004 
1005 	print_mount_opts(c);
1006 
1007 	down_write(&c->state_lock);
1008 
1009 	BUG_ON(test_bit(BCH_FS_started, &c->flags));
1010 
1011 	mutex_lock(&c->sb_lock);
1012 
1013 	ret = bch2_sb_members_v2_init(c);
1014 	if (ret) {
1015 		mutex_unlock(&c->sb_lock);
1016 		goto err;
1017 	}
1018 
1019 	for_each_online_member(c, ca)
1020 		bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = cpu_to_le64(now);
1021 
1022 	struct bch_sb_field_ext *ext =
1023 		bch2_sb_field_get_minsize(&c->disk_sb, ext, sizeof(*ext) / sizeof(u64));
1024 	mutex_unlock(&c->sb_lock);
1025 
1026 	if (!ext) {
1027 		bch_err(c, "insufficient space in superblock for sb_field_ext");
1028 		ret = -BCH_ERR_ENOSPC_sb;
1029 		goto err;
1030 	}
1031 
1032 	for_each_rw_member(c, ca)
1033 		bch2_dev_allocator_add(c, ca);
1034 	bch2_recalc_capacity(c);
1035 
1036 	ret = BCH_SB_INITIALIZED(c->disk_sb.sb)
1037 		? bch2_fs_recovery(c)
1038 		: bch2_fs_initialize(c);
1039 	if (ret)
1040 		goto err;
1041 
1042 	ret = bch2_opts_check_may_set(c);
1043 	if (ret)
1044 		goto err;
1045 
1046 	if (bch2_fs_init_fault("fs_start")) {
1047 		bch_err(c, "fs_start fault injected");
1048 		ret = -EINVAL;
1049 		goto err;
1050 	}
1051 
1052 	set_bit(BCH_FS_started, &c->flags);
1053 
1054 	if (c->opts.read_only) {
1055 		bch2_fs_read_only(c);
1056 	} else {
1057 		ret = !test_bit(BCH_FS_rw, &c->flags)
1058 			? bch2_fs_read_write(c)
1059 			: bch2_fs_read_write_late(c);
1060 		if (ret)
1061 			goto err;
1062 	}
1063 
1064 	ret = 0;
1065 err:
1066 	if (ret)
1067 		bch_err_msg(c, ret, "starting filesystem");
1068 	else
1069 		bch_verbose(c, "done starting filesystem");
1070 	up_write(&c->state_lock);
1071 	return ret;
1072 }
1073 
1074 static int bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c)
1075 {
1076 	struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx);
1077 
1078 	if (le16_to_cpu(sb->block_size) != block_sectors(c))
1079 		return -BCH_ERR_mismatched_block_size;
1080 
1081 	if (le16_to_cpu(m.bucket_size) <
1082 	    BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb))
1083 		return -BCH_ERR_bucket_size_too_small;
1084 
1085 	return 0;
1086 }
1087 
1088 static int bch2_dev_in_fs(struct bch_sb_handle *fs,
1089 			  struct bch_sb_handle *sb,
1090 			  struct bch_opts *opts)
1091 {
1092 	if (fs == sb)
1093 		return 0;
1094 
1095 	if (!uuid_equal(&fs->sb->uuid, &sb->sb->uuid))
1096 		return -BCH_ERR_device_not_a_member_of_filesystem;
1097 
1098 	if (!bch2_dev_exists(fs->sb, sb->sb->dev_idx))
1099 		return -BCH_ERR_device_has_been_removed;
1100 
1101 	if (fs->sb->block_size != sb->sb->block_size)
1102 		return -BCH_ERR_mismatched_block_size;
1103 
1104 	if (le16_to_cpu(fs->sb->version) < bcachefs_metadata_version_member_seq ||
1105 	    le16_to_cpu(sb->sb->version) < bcachefs_metadata_version_member_seq)
1106 		return 0;
1107 
1108 	if (fs->sb->seq == sb->sb->seq &&
1109 	    fs->sb->write_time != sb->sb->write_time) {
1110 		struct printbuf buf = PRINTBUF;
1111 
1112 		prt_str(&buf, "Split brain detected between ");
1113 		prt_bdevname(&buf, sb->bdev);
1114 		prt_str(&buf, " and ");
1115 		prt_bdevname(&buf, fs->bdev);
1116 		prt_char(&buf, ':');
1117 		prt_newline(&buf);
1118 		prt_printf(&buf, "seq=%llu but write_time different, got", le64_to_cpu(sb->sb->seq));
1119 		prt_newline(&buf);
1120 
1121 		prt_bdevname(&buf, fs->bdev);
1122 		prt_char(&buf, ' ');
1123 		bch2_prt_datetime(&buf, le64_to_cpu(fs->sb->write_time));;
1124 		prt_newline(&buf);
1125 
1126 		prt_bdevname(&buf, sb->bdev);
1127 		prt_char(&buf, ' ');
1128 		bch2_prt_datetime(&buf, le64_to_cpu(sb->sb->write_time));;
1129 		prt_newline(&buf);
1130 
1131 		if (!opts->no_splitbrain_check)
1132 			prt_printf(&buf, "Not using older sb");
1133 
1134 		pr_err("%s", buf.buf);
1135 		printbuf_exit(&buf);
1136 
1137 		if (!opts->no_splitbrain_check)
1138 			return -BCH_ERR_device_splitbrain;
1139 	}
1140 
1141 	struct bch_member m = bch2_sb_member_get(fs->sb, sb->sb->dev_idx);
1142 	u64 seq_from_fs		= le64_to_cpu(m.seq);
1143 	u64 seq_from_member	= le64_to_cpu(sb->sb->seq);
1144 
1145 	if (seq_from_fs && seq_from_fs < seq_from_member) {
1146 		struct printbuf buf = PRINTBUF;
1147 
1148 		prt_str(&buf, "Split brain detected between ");
1149 		prt_bdevname(&buf, sb->bdev);
1150 		prt_str(&buf, " and ");
1151 		prt_bdevname(&buf, fs->bdev);
1152 		prt_char(&buf, ':');
1153 		prt_newline(&buf);
1154 
1155 		prt_bdevname(&buf, fs->bdev);
1156 		prt_str(&buf, " believes seq of ");
1157 		prt_bdevname(&buf, sb->bdev);
1158 		prt_printf(&buf, " to be %llu, but ", seq_from_fs);
1159 		prt_bdevname(&buf, sb->bdev);
1160 		prt_printf(&buf, " has %llu\n", seq_from_member);
1161 
1162 		if (!opts->no_splitbrain_check) {
1163 			prt_str(&buf, "Not using ");
1164 			prt_bdevname(&buf, sb->bdev);
1165 		}
1166 
1167 		pr_err("%s", buf.buf);
1168 		printbuf_exit(&buf);
1169 
1170 		if (!opts->no_splitbrain_check)
1171 			return -BCH_ERR_device_splitbrain;
1172 	}
1173 
1174 	return 0;
1175 }
1176 
1177 /* Device startup/shutdown: */
1178 
1179 static void bch2_dev_release(struct kobject *kobj)
1180 {
1181 	struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj);
1182 
1183 	kfree(ca);
1184 }
1185 
1186 static void bch2_dev_free(struct bch_dev *ca)
1187 {
1188 	cancel_work_sync(&ca->io_error_work);
1189 
1190 	if (ca->kobj.state_in_sysfs &&
1191 	    ca->disk_sb.bdev)
1192 		sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs");
1193 
1194 	if (ca->kobj.state_in_sysfs)
1195 		kobject_del(&ca->kobj);
1196 
1197 	bch2_free_super(&ca->disk_sb);
1198 	bch2_dev_journal_exit(ca);
1199 
1200 	free_percpu(ca->io_done);
1201 	bioset_exit(&ca->replica_set);
1202 	bch2_dev_buckets_free(ca);
1203 	free_page((unsigned long) ca->sb_read_scratch);
1204 
1205 	bch2_time_stats_quantiles_exit(&ca->io_latency[WRITE]);
1206 	bch2_time_stats_quantiles_exit(&ca->io_latency[READ]);
1207 
1208 	percpu_ref_exit(&ca->io_ref);
1209 	percpu_ref_exit(&ca->ref);
1210 	kobject_put(&ca->kobj);
1211 }
1212 
1213 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca)
1214 {
1215 
1216 	lockdep_assert_held(&c->state_lock);
1217 
1218 	if (percpu_ref_is_zero(&ca->io_ref))
1219 		return;
1220 
1221 	__bch2_dev_read_only(c, ca);
1222 
1223 	reinit_completion(&ca->io_ref_completion);
1224 	percpu_ref_kill(&ca->io_ref);
1225 	wait_for_completion(&ca->io_ref_completion);
1226 
1227 	if (ca->kobj.state_in_sysfs) {
1228 		sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs");
1229 		sysfs_remove_link(&ca->kobj, "block");
1230 	}
1231 
1232 	bch2_free_super(&ca->disk_sb);
1233 	bch2_dev_journal_exit(ca);
1234 }
1235 
1236 static void bch2_dev_ref_complete(struct percpu_ref *ref)
1237 {
1238 	struct bch_dev *ca = container_of(ref, struct bch_dev, ref);
1239 
1240 	complete(&ca->ref_completion);
1241 }
1242 
1243 static void bch2_dev_io_ref_complete(struct percpu_ref *ref)
1244 {
1245 	struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref);
1246 
1247 	complete(&ca->io_ref_completion);
1248 }
1249 
1250 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca)
1251 {
1252 	int ret;
1253 
1254 	if (!c->kobj.state_in_sysfs)
1255 		return 0;
1256 
1257 	if (!ca->kobj.state_in_sysfs) {
1258 		ret = kobject_add(&ca->kobj, &c->kobj,
1259 				  "dev-%u", ca->dev_idx);
1260 		if (ret)
1261 			return ret;
1262 	}
1263 
1264 	if (ca->disk_sb.bdev) {
1265 		struct kobject *block = bdev_kobj(ca->disk_sb.bdev);
1266 
1267 		ret = sysfs_create_link(block, &ca->kobj, "bcachefs");
1268 		if (ret)
1269 			return ret;
1270 
1271 		ret = sysfs_create_link(&ca->kobj, block, "block");
1272 		if (ret)
1273 			return ret;
1274 	}
1275 
1276 	return 0;
1277 }
1278 
1279 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c,
1280 					struct bch_member *member)
1281 {
1282 	struct bch_dev *ca;
1283 	unsigned i;
1284 
1285 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1286 	if (!ca)
1287 		return NULL;
1288 
1289 	kobject_init(&ca->kobj, &bch2_dev_ktype);
1290 	init_completion(&ca->ref_completion);
1291 	init_completion(&ca->io_ref_completion);
1292 
1293 	init_rwsem(&ca->bucket_lock);
1294 
1295 	INIT_WORK(&ca->io_error_work, bch2_io_error_work);
1296 
1297 	bch2_time_stats_quantiles_init(&ca->io_latency[READ]);
1298 	bch2_time_stats_quantiles_init(&ca->io_latency[WRITE]);
1299 
1300 	ca->mi = bch2_mi_to_cpu(member);
1301 
1302 	for (i = 0; i < ARRAY_SIZE(member->errors); i++)
1303 		atomic64_set(&ca->errors[i], le64_to_cpu(member->errors[i]));
1304 
1305 	ca->uuid = member->uuid;
1306 
1307 	ca->nr_btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE,
1308 			     ca->mi.bucket_size / btree_sectors(c));
1309 
1310 	if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete,
1311 			    0, GFP_KERNEL) ||
1312 	    percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete,
1313 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
1314 	    !(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) ||
1315 	    bch2_dev_buckets_alloc(c, ca) ||
1316 	    bioset_init(&ca->replica_set, 4,
1317 			offsetof(struct bch_write_bio, bio), 0) ||
1318 	    !(ca->io_done	= alloc_percpu(*ca->io_done)))
1319 		goto err;
1320 
1321 	return ca;
1322 err:
1323 	bch2_dev_free(ca);
1324 	return NULL;
1325 }
1326 
1327 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca,
1328 			    unsigned dev_idx)
1329 {
1330 	ca->dev_idx = dev_idx;
1331 	__set_bit(ca->dev_idx, ca->self.d);
1332 	scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx);
1333 
1334 	ca->fs = c;
1335 	rcu_assign_pointer(c->devs[ca->dev_idx], ca);
1336 
1337 	if (bch2_dev_sysfs_online(c, ca))
1338 		pr_warn("error creating sysfs objects");
1339 }
1340 
1341 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx)
1342 {
1343 	struct bch_member member = bch2_sb_member_get(c->disk_sb.sb, dev_idx);
1344 	struct bch_dev *ca = NULL;
1345 	int ret = 0;
1346 
1347 	if (bch2_fs_init_fault("dev_alloc"))
1348 		goto err;
1349 
1350 	ca = __bch2_dev_alloc(c, &member);
1351 	if (!ca)
1352 		goto err;
1353 
1354 	ca->fs = c;
1355 
1356 	bch2_dev_attach(c, ca, dev_idx);
1357 	return ret;
1358 err:
1359 	if (ca)
1360 		bch2_dev_free(ca);
1361 	return -BCH_ERR_ENOMEM_dev_alloc;
1362 }
1363 
1364 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb)
1365 {
1366 	unsigned ret;
1367 
1368 	if (bch2_dev_is_online(ca)) {
1369 		bch_err(ca, "already have device online in slot %u",
1370 			sb->sb->dev_idx);
1371 		return -BCH_ERR_device_already_online;
1372 	}
1373 
1374 	if (get_capacity(sb->bdev->bd_disk) <
1375 	    ca->mi.bucket_size * ca->mi.nbuckets) {
1376 		bch_err(ca, "cannot online: device too small");
1377 		return -BCH_ERR_device_size_too_small;
1378 	}
1379 
1380 	BUG_ON(!percpu_ref_is_zero(&ca->io_ref));
1381 
1382 	ret = bch2_dev_journal_init(ca, sb->sb);
1383 	if (ret)
1384 		return ret;
1385 
1386 	/* Commit: */
1387 	ca->disk_sb = *sb;
1388 	memset(sb, 0, sizeof(*sb));
1389 
1390 	ca->dev = ca->disk_sb.bdev->bd_dev;
1391 
1392 	percpu_ref_reinit(&ca->io_ref);
1393 
1394 	return 0;
1395 }
1396 
1397 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb)
1398 {
1399 	struct bch_dev *ca;
1400 	int ret;
1401 
1402 	lockdep_assert_held(&c->state_lock);
1403 
1404 	if (le64_to_cpu(sb->sb->seq) >
1405 	    le64_to_cpu(c->disk_sb.sb->seq))
1406 		bch2_sb_to_fs(c, sb->sb);
1407 
1408 	BUG_ON(sb->sb->dev_idx >= c->sb.nr_devices ||
1409 	       !c->devs[sb->sb->dev_idx]);
1410 
1411 	ca = bch_dev_locked(c, sb->sb->dev_idx);
1412 
1413 	ret = __bch2_dev_attach_bdev(ca, sb);
1414 	if (ret)
1415 		return ret;
1416 
1417 	bch2_dev_sysfs_online(c, ca);
1418 
1419 	struct printbuf name = PRINTBUF;
1420 	prt_bdevname(&name, ca->disk_sb.bdev);
1421 
1422 	if (c->sb.nr_devices == 1)
1423 		strscpy(c->name, name.buf, sizeof(c->name));
1424 	strscpy(ca->name, name.buf, sizeof(ca->name));
1425 
1426 	printbuf_exit(&name);
1427 
1428 	rebalance_wakeup(c);
1429 	return 0;
1430 }
1431 
1432 /* Device management: */
1433 
1434 /*
1435  * Note: this function is also used by the error paths - when a particular
1436  * device sees an error, we call it to determine whether we can just set the
1437  * device RO, or - if this function returns false - we'll set the whole
1438  * filesystem RO:
1439  *
1440  * XXX: maybe we should be more explicit about whether we're changing state
1441  * because we got an error or what have you?
1442  */
1443 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca,
1444 			    enum bch_member_state new_state, int flags)
1445 {
1446 	struct bch_devs_mask new_online_devs;
1447 	int nr_rw = 0, required;
1448 
1449 	lockdep_assert_held(&c->state_lock);
1450 
1451 	switch (new_state) {
1452 	case BCH_MEMBER_STATE_rw:
1453 		return true;
1454 	case BCH_MEMBER_STATE_ro:
1455 		if (ca->mi.state != BCH_MEMBER_STATE_rw)
1456 			return true;
1457 
1458 		/* do we have enough devices to write to?  */
1459 		for_each_member_device(c, ca2)
1460 			if (ca2 != ca)
1461 				nr_rw += ca2->mi.state == BCH_MEMBER_STATE_rw;
1462 
1463 		required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED)
1464 			       ? c->opts.metadata_replicas
1465 			       : metadata_replicas_required(c),
1466 			       !(flags & BCH_FORCE_IF_DATA_DEGRADED)
1467 			       ? c->opts.data_replicas
1468 			       : data_replicas_required(c));
1469 
1470 		return nr_rw >= required;
1471 	case BCH_MEMBER_STATE_failed:
1472 	case BCH_MEMBER_STATE_spare:
1473 		if (ca->mi.state != BCH_MEMBER_STATE_rw &&
1474 		    ca->mi.state != BCH_MEMBER_STATE_ro)
1475 			return true;
1476 
1477 		/* do we have enough devices to read from?  */
1478 		new_online_devs = bch2_online_devs(c);
1479 		__clear_bit(ca->dev_idx, new_online_devs.d);
1480 
1481 		return bch2_have_enough_devs(c, new_online_devs, flags, false);
1482 	default:
1483 		BUG();
1484 	}
1485 }
1486 
1487 static bool bch2_fs_may_start(struct bch_fs *c)
1488 {
1489 	struct bch_dev *ca;
1490 	unsigned i, flags = 0;
1491 
1492 	if (c->opts.very_degraded)
1493 		flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST;
1494 
1495 	if (c->opts.degraded)
1496 		flags |= BCH_FORCE_IF_DEGRADED;
1497 
1498 	if (!c->opts.degraded &&
1499 	    !c->opts.very_degraded) {
1500 		mutex_lock(&c->sb_lock);
1501 
1502 		for (i = 0; i < c->disk_sb.sb->nr_devices; i++) {
1503 			if (!bch2_dev_exists(c->disk_sb.sb, i))
1504 				continue;
1505 
1506 			ca = bch_dev_locked(c, i);
1507 
1508 			if (!bch2_dev_is_online(ca) &&
1509 			    (ca->mi.state == BCH_MEMBER_STATE_rw ||
1510 			     ca->mi.state == BCH_MEMBER_STATE_ro)) {
1511 				mutex_unlock(&c->sb_lock);
1512 				return false;
1513 			}
1514 		}
1515 		mutex_unlock(&c->sb_lock);
1516 	}
1517 
1518 	return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true);
1519 }
1520 
1521 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca)
1522 {
1523 	/*
1524 	 * The allocator thread itself allocates btree nodes, so stop it first:
1525 	 */
1526 	bch2_dev_allocator_remove(c, ca);
1527 	bch2_dev_journal_stop(&c->journal, ca);
1528 }
1529 
1530 static void __bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca)
1531 {
1532 	lockdep_assert_held(&c->state_lock);
1533 
1534 	BUG_ON(ca->mi.state != BCH_MEMBER_STATE_rw);
1535 
1536 	bch2_dev_allocator_add(c, ca);
1537 	bch2_recalc_capacity(c);
1538 }
1539 
1540 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1541 			 enum bch_member_state new_state, int flags)
1542 {
1543 	struct bch_member *m;
1544 	int ret = 0;
1545 
1546 	if (ca->mi.state == new_state)
1547 		return 0;
1548 
1549 	if (!bch2_dev_state_allowed(c, ca, new_state, flags))
1550 		return -BCH_ERR_device_state_not_allowed;
1551 
1552 	if (new_state != BCH_MEMBER_STATE_rw)
1553 		__bch2_dev_read_only(c, ca);
1554 
1555 	bch_notice(ca, "%s", bch2_member_states[new_state]);
1556 
1557 	mutex_lock(&c->sb_lock);
1558 	m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
1559 	SET_BCH_MEMBER_STATE(m, new_state);
1560 	bch2_write_super(c);
1561 	mutex_unlock(&c->sb_lock);
1562 
1563 	if (new_state == BCH_MEMBER_STATE_rw)
1564 		__bch2_dev_read_write(c, ca);
1565 
1566 	rebalance_wakeup(c);
1567 
1568 	return ret;
1569 }
1570 
1571 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1572 		       enum bch_member_state new_state, int flags)
1573 {
1574 	int ret;
1575 
1576 	down_write(&c->state_lock);
1577 	ret = __bch2_dev_set_state(c, ca, new_state, flags);
1578 	up_write(&c->state_lock);
1579 
1580 	return ret;
1581 }
1582 
1583 /* Device add/removal: */
1584 
1585 static int bch2_dev_remove_alloc(struct bch_fs *c, struct bch_dev *ca)
1586 {
1587 	struct bpos start	= POS(ca->dev_idx, 0);
1588 	struct bpos end		= POS(ca->dev_idx, U64_MAX);
1589 	int ret;
1590 
1591 	/*
1592 	 * We clear the LRU and need_discard btrees first so that we don't race
1593 	 * with bch2_do_invalidates() and bch2_do_discards()
1594 	 */
1595 	ret =   bch2_btree_delete_range(c, BTREE_ID_lru, start, end,
1596 					BTREE_TRIGGER_NORUN, NULL) ?:
1597 		bch2_btree_delete_range(c, BTREE_ID_need_discard, start, end,
1598 					BTREE_TRIGGER_NORUN, NULL) ?:
1599 		bch2_btree_delete_range(c, BTREE_ID_freespace, start, end,
1600 					BTREE_TRIGGER_NORUN, NULL) ?:
1601 		bch2_btree_delete_range(c, BTREE_ID_backpointers, start, end,
1602 					BTREE_TRIGGER_NORUN, NULL) ?:
1603 		bch2_btree_delete_range(c, BTREE_ID_alloc, start, end,
1604 					BTREE_TRIGGER_NORUN, NULL) ?:
1605 		bch2_btree_delete_range(c, BTREE_ID_bucket_gens, start, end,
1606 					BTREE_TRIGGER_NORUN, NULL);
1607 	bch_err_msg(c, ret, "removing dev alloc info");
1608 	return ret;
1609 }
1610 
1611 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags)
1612 {
1613 	struct bch_member *m;
1614 	unsigned dev_idx = ca->dev_idx, data;
1615 	int ret;
1616 
1617 	down_write(&c->state_lock);
1618 
1619 	/*
1620 	 * We consume a reference to ca->ref, regardless of whether we succeed
1621 	 * or fail:
1622 	 */
1623 	percpu_ref_put(&ca->ref);
1624 
1625 	if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) {
1626 		bch_err(ca, "Cannot remove without losing data");
1627 		ret = -BCH_ERR_device_state_not_allowed;
1628 		goto err;
1629 	}
1630 
1631 	__bch2_dev_read_only(c, ca);
1632 
1633 	ret = bch2_dev_data_drop(c, ca->dev_idx, flags);
1634 	bch_err_msg(ca, ret, "bch2_dev_data_drop()");
1635 	if (ret)
1636 		goto err;
1637 
1638 	ret = bch2_dev_remove_alloc(c, ca);
1639 	bch_err_msg(ca, ret, "bch2_dev_remove_alloc()");
1640 	if (ret)
1641 		goto err;
1642 
1643 	ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx);
1644 	bch_err_msg(ca, ret, "bch2_journal_flush_device_pins()");
1645 	if (ret)
1646 		goto err;
1647 
1648 	ret = bch2_journal_flush(&c->journal);
1649 	bch_err_msg(ca, ret, "bch2_journal_flush()");
1650 	if (ret)
1651 		goto err;
1652 
1653 	ret = bch2_replicas_gc2(c);
1654 	bch_err_msg(ca, ret, "bch2_replicas_gc2()");
1655 	if (ret)
1656 		goto err;
1657 
1658 	data = bch2_dev_has_data(c, ca);
1659 	if (data) {
1660 		struct printbuf data_has = PRINTBUF;
1661 
1662 		prt_bitflags(&data_has, __bch2_data_types, data);
1663 		bch_err(ca, "Remove failed, still has data (%s)", data_has.buf);
1664 		printbuf_exit(&data_has);
1665 		ret = -EBUSY;
1666 		goto err;
1667 	}
1668 
1669 	__bch2_dev_offline(c, ca);
1670 
1671 	mutex_lock(&c->sb_lock);
1672 	rcu_assign_pointer(c->devs[ca->dev_idx], NULL);
1673 	mutex_unlock(&c->sb_lock);
1674 
1675 	percpu_ref_kill(&ca->ref);
1676 	wait_for_completion(&ca->ref_completion);
1677 
1678 	bch2_dev_free(ca);
1679 
1680 	/*
1681 	 * At this point the device object has been removed in-core, but the
1682 	 * on-disk journal might still refer to the device index via sb device
1683 	 * usage entries. Recovery fails if it sees usage information for an
1684 	 * invalid device. Flush journal pins to push the back of the journal
1685 	 * past now invalid device index references before we update the
1686 	 * superblock, but after the device object has been removed so any
1687 	 * further journal writes elide usage info for the device.
1688 	 */
1689 	bch2_journal_flush_all_pins(&c->journal);
1690 
1691 	/*
1692 	 * Free this device's slot in the bch_member array - all pointers to
1693 	 * this device must be gone:
1694 	 */
1695 	mutex_lock(&c->sb_lock);
1696 	m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx);
1697 	memset(&m->uuid, 0, sizeof(m->uuid));
1698 
1699 	bch2_write_super(c);
1700 
1701 	mutex_unlock(&c->sb_lock);
1702 	up_write(&c->state_lock);
1703 
1704 	bch2_dev_usage_journal_reserve(c);
1705 	return 0;
1706 err:
1707 	if (ca->mi.state == BCH_MEMBER_STATE_rw &&
1708 	    !percpu_ref_is_zero(&ca->io_ref))
1709 		__bch2_dev_read_write(c, ca);
1710 	up_write(&c->state_lock);
1711 	return ret;
1712 }
1713 
1714 /* Add new device to running filesystem: */
1715 int bch2_dev_add(struct bch_fs *c, const char *path)
1716 {
1717 	struct bch_opts opts = bch2_opts_empty();
1718 	struct bch_sb_handle sb;
1719 	struct bch_dev *ca = NULL;
1720 	struct bch_sb_field_members_v2 *mi;
1721 	struct bch_member dev_mi;
1722 	unsigned dev_idx, nr_devices, u64s;
1723 	struct printbuf errbuf = PRINTBUF;
1724 	struct printbuf label = PRINTBUF;
1725 	int ret;
1726 
1727 	ret = bch2_read_super(path, &opts, &sb);
1728 	bch_err_msg(c, ret, "reading super");
1729 	if (ret)
1730 		goto err;
1731 
1732 	dev_mi = bch2_sb_member_get(sb.sb, sb.sb->dev_idx);
1733 
1734 	if (BCH_MEMBER_GROUP(&dev_mi)) {
1735 		bch2_disk_path_to_text_sb(&label, sb.sb, BCH_MEMBER_GROUP(&dev_mi) - 1);
1736 		if (label.allocation_failure) {
1737 			ret = -ENOMEM;
1738 			goto err;
1739 		}
1740 	}
1741 
1742 	ret = bch2_dev_may_add(sb.sb, c);
1743 	if (ret)
1744 		goto err;
1745 
1746 	ca = __bch2_dev_alloc(c, &dev_mi);
1747 	if (!ca) {
1748 		ret = -ENOMEM;
1749 		goto err;
1750 	}
1751 
1752 	bch2_dev_usage_init(ca);
1753 
1754 	ret = __bch2_dev_attach_bdev(ca, &sb);
1755 	if (ret)
1756 		goto err;
1757 
1758 	ret = bch2_dev_journal_alloc(ca);
1759 	bch_err_msg(c, ret, "allocating journal");
1760 	if (ret)
1761 		goto err;
1762 
1763 	down_write(&c->state_lock);
1764 	mutex_lock(&c->sb_lock);
1765 
1766 	ret = bch2_sb_from_fs(c, ca);
1767 	bch_err_msg(c, ret, "setting up new superblock");
1768 	if (ret)
1769 		goto err_unlock;
1770 
1771 	if (dynamic_fault("bcachefs:add:no_slot"))
1772 		goto no_slot;
1773 
1774 	for (dev_idx = 0; dev_idx < BCH_SB_MEMBERS_MAX; dev_idx++)
1775 		if (!bch2_dev_exists(c->disk_sb.sb, dev_idx))
1776 			goto have_slot;
1777 no_slot:
1778 	ret = -BCH_ERR_ENOSPC_sb_members;
1779 	bch_err_msg(c, ret, "setting up new superblock");
1780 	goto err_unlock;
1781 
1782 have_slot:
1783 	nr_devices = max_t(unsigned, dev_idx + 1, c->sb.nr_devices);
1784 
1785 	mi = bch2_sb_field_get(c->disk_sb.sb, members_v2);
1786 	u64s = DIV_ROUND_UP(sizeof(struct bch_sb_field_members_v2) +
1787 			    le16_to_cpu(mi->member_bytes) * nr_devices, sizeof(u64));
1788 
1789 	mi = bch2_sb_field_resize(&c->disk_sb, members_v2, u64s);
1790 	if (!mi) {
1791 		ret = -BCH_ERR_ENOSPC_sb_members;
1792 		bch_err_msg(c, ret, "setting up new superblock");
1793 		goto err_unlock;
1794 	}
1795 	struct bch_member *m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx);
1796 
1797 	/* success: */
1798 
1799 	*m = dev_mi;
1800 	m->last_mount = cpu_to_le64(ktime_get_real_seconds());
1801 	c->disk_sb.sb->nr_devices	= nr_devices;
1802 
1803 	ca->disk_sb.sb->dev_idx	= dev_idx;
1804 	bch2_dev_attach(c, ca, dev_idx);
1805 
1806 	if (BCH_MEMBER_GROUP(&dev_mi)) {
1807 		ret = __bch2_dev_group_set(c, ca, label.buf);
1808 		bch_err_msg(c, ret, "creating new label");
1809 		if (ret)
1810 			goto err_unlock;
1811 	}
1812 
1813 	bch2_write_super(c);
1814 	mutex_unlock(&c->sb_lock);
1815 
1816 	bch2_dev_usage_journal_reserve(c);
1817 
1818 	ret = bch2_trans_mark_dev_sb(c, ca);
1819 	bch_err_msg(ca, ret, "marking new superblock");
1820 	if (ret)
1821 		goto err_late;
1822 
1823 	ret = bch2_fs_freespace_init(c);
1824 	bch_err_msg(ca, ret, "initializing free space");
1825 	if (ret)
1826 		goto err_late;
1827 
1828 	ca->new_fs_bucket_idx = 0;
1829 
1830 	if (ca->mi.state == BCH_MEMBER_STATE_rw)
1831 		__bch2_dev_read_write(c, ca);
1832 
1833 	up_write(&c->state_lock);
1834 	return 0;
1835 
1836 err_unlock:
1837 	mutex_unlock(&c->sb_lock);
1838 	up_write(&c->state_lock);
1839 err:
1840 	if (ca)
1841 		bch2_dev_free(ca);
1842 	bch2_free_super(&sb);
1843 	printbuf_exit(&label);
1844 	printbuf_exit(&errbuf);
1845 	bch_err_fn(c, ret);
1846 	return ret;
1847 err_late:
1848 	up_write(&c->state_lock);
1849 	ca = NULL;
1850 	goto err;
1851 }
1852 
1853 /* Hot add existing device to running filesystem: */
1854 int bch2_dev_online(struct bch_fs *c, const char *path)
1855 {
1856 	struct bch_opts opts = bch2_opts_empty();
1857 	struct bch_sb_handle sb = { NULL };
1858 	struct bch_dev *ca;
1859 	unsigned dev_idx;
1860 	int ret;
1861 
1862 	down_write(&c->state_lock);
1863 
1864 	ret = bch2_read_super(path, &opts, &sb);
1865 	if (ret) {
1866 		up_write(&c->state_lock);
1867 		return ret;
1868 	}
1869 
1870 	dev_idx = sb.sb->dev_idx;
1871 
1872 	ret = bch2_dev_in_fs(&c->disk_sb, &sb, &c->opts);
1873 	bch_err_msg(c, ret, "bringing %s online", path);
1874 	if (ret)
1875 		goto err;
1876 
1877 	ret = bch2_dev_attach_bdev(c, &sb);
1878 	if (ret)
1879 		goto err;
1880 
1881 	ca = bch_dev_locked(c, dev_idx);
1882 
1883 	ret = bch2_trans_mark_dev_sb(c, ca);
1884 	bch_err_msg(c, ret, "bringing %s online: error from bch2_trans_mark_dev_sb", path);
1885 	if (ret)
1886 		goto err;
1887 
1888 	if (ca->mi.state == BCH_MEMBER_STATE_rw)
1889 		__bch2_dev_read_write(c, ca);
1890 
1891 	if (!ca->mi.freespace_initialized) {
1892 		ret = bch2_dev_freespace_init(c, ca, 0, ca->mi.nbuckets);
1893 		bch_err_msg(ca, ret, "initializing free space");
1894 		if (ret)
1895 			goto err;
1896 	}
1897 
1898 	if (!ca->journal.nr) {
1899 		ret = bch2_dev_journal_alloc(ca);
1900 		bch_err_msg(ca, ret, "allocating journal");
1901 		if (ret)
1902 			goto err;
1903 	}
1904 
1905 	mutex_lock(&c->sb_lock);
1906 	bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount =
1907 		cpu_to_le64(ktime_get_real_seconds());
1908 	bch2_write_super(c);
1909 	mutex_unlock(&c->sb_lock);
1910 
1911 	up_write(&c->state_lock);
1912 	return 0;
1913 err:
1914 	up_write(&c->state_lock);
1915 	bch2_free_super(&sb);
1916 	return ret;
1917 }
1918 
1919 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags)
1920 {
1921 	down_write(&c->state_lock);
1922 
1923 	if (!bch2_dev_is_online(ca)) {
1924 		bch_err(ca, "Already offline");
1925 		up_write(&c->state_lock);
1926 		return 0;
1927 	}
1928 
1929 	if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) {
1930 		bch_err(ca, "Cannot offline required disk");
1931 		up_write(&c->state_lock);
1932 		return -BCH_ERR_device_state_not_allowed;
1933 	}
1934 
1935 	__bch2_dev_offline(c, ca);
1936 
1937 	up_write(&c->state_lock);
1938 	return 0;
1939 }
1940 
1941 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets)
1942 {
1943 	struct bch_member *m;
1944 	u64 old_nbuckets;
1945 	int ret = 0;
1946 
1947 	down_write(&c->state_lock);
1948 	old_nbuckets = ca->mi.nbuckets;
1949 
1950 	if (nbuckets < ca->mi.nbuckets) {
1951 		bch_err(ca, "Cannot shrink yet");
1952 		ret = -EINVAL;
1953 		goto err;
1954 	}
1955 
1956 	if (bch2_dev_is_online(ca) &&
1957 	    get_capacity(ca->disk_sb.bdev->bd_disk) <
1958 	    ca->mi.bucket_size * nbuckets) {
1959 		bch_err(ca, "New size larger than device");
1960 		ret = -BCH_ERR_device_size_too_small;
1961 		goto err;
1962 	}
1963 
1964 	ret = bch2_dev_buckets_resize(c, ca, nbuckets);
1965 	bch_err_msg(ca, ret, "resizing buckets");
1966 	if (ret)
1967 		goto err;
1968 
1969 	ret = bch2_trans_mark_dev_sb(c, ca);
1970 	if (ret)
1971 		goto err;
1972 
1973 	mutex_lock(&c->sb_lock);
1974 	m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
1975 	m->nbuckets = cpu_to_le64(nbuckets);
1976 
1977 	bch2_write_super(c);
1978 	mutex_unlock(&c->sb_lock);
1979 
1980 	if (ca->mi.freespace_initialized) {
1981 		ret = bch2_dev_freespace_init(c, ca, old_nbuckets, nbuckets);
1982 		if (ret)
1983 			goto err;
1984 
1985 		/*
1986 		 * XXX: this is all wrong transactionally - we'll be able to do
1987 		 * this correctly after the disk space accounting rewrite
1988 		 */
1989 		ca->usage_base->d[BCH_DATA_free].buckets += nbuckets - old_nbuckets;
1990 	}
1991 
1992 	bch2_recalc_capacity(c);
1993 err:
1994 	up_write(&c->state_lock);
1995 	return ret;
1996 }
1997 
1998 /* return with ref on ca->ref: */
1999 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *name)
2000 {
2001 	rcu_read_lock();
2002 	for_each_member_device_rcu(c, ca, NULL)
2003 		if (!strcmp(name, ca->name)) {
2004 			rcu_read_unlock();
2005 			return ca;
2006 		}
2007 	rcu_read_unlock();
2008 	return ERR_PTR(-BCH_ERR_ENOENT_dev_not_found);
2009 }
2010 
2011 /* Filesystem open: */
2012 
2013 static inline int sb_cmp(struct bch_sb *l, struct bch_sb *r)
2014 {
2015 	return  cmp_int(le64_to_cpu(l->seq), le64_to_cpu(r->seq)) ?:
2016 		cmp_int(le64_to_cpu(l->write_time), le64_to_cpu(r->write_time));
2017 }
2018 
2019 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices,
2020 			    struct bch_opts opts)
2021 {
2022 	DARRAY(struct bch_sb_handle) sbs = { 0 };
2023 	struct bch_fs *c = NULL;
2024 	struct bch_sb_handle *best = NULL;
2025 	struct printbuf errbuf = PRINTBUF;
2026 	int ret = 0;
2027 
2028 	if (!try_module_get(THIS_MODULE))
2029 		return ERR_PTR(-ENODEV);
2030 
2031 	if (!nr_devices) {
2032 		ret = -EINVAL;
2033 		goto err;
2034 	}
2035 
2036 	ret = darray_make_room(&sbs, nr_devices);
2037 	if (ret)
2038 		goto err;
2039 
2040 	for (unsigned i = 0; i < nr_devices; i++) {
2041 		struct bch_sb_handle sb = { NULL };
2042 
2043 		ret = bch2_read_super(devices[i], &opts, &sb);
2044 		if (ret)
2045 			goto err;
2046 
2047 		BUG_ON(darray_push(&sbs, sb));
2048 	}
2049 
2050 	if (opts.nochanges && !opts.read_only) {
2051 		ret = -BCH_ERR_erofs_nochanges;
2052 		goto err_print;
2053 	}
2054 
2055 	darray_for_each(sbs, sb)
2056 		if (!best || sb_cmp(sb->sb, best->sb) > 0)
2057 			best = sb;
2058 
2059 	darray_for_each_reverse(sbs, sb) {
2060 		ret = bch2_dev_in_fs(best, sb, &opts);
2061 
2062 		if (ret == -BCH_ERR_device_has_been_removed ||
2063 		    ret == -BCH_ERR_device_splitbrain) {
2064 			bch2_free_super(sb);
2065 			darray_remove_item(&sbs, sb);
2066 			best -= best > sb;
2067 			ret = 0;
2068 			continue;
2069 		}
2070 
2071 		if (ret)
2072 			goto err_print;
2073 	}
2074 
2075 	c = bch2_fs_alloc(best->sb, opts);
2076 	ret = PTR_ERR_OR_ZERO(c);
2077 	if (ret)
2078 		goto err;
2079 
2080 	down_write(&c->state_lock);
2081 	darray_for_each(sbs, sb) {
2082 		ret = bch2_dev_attach_bdev(c, sb);
2083 		if (ret) {
2084 			up_write(&c->state_lock);
2085 			goto err;
2086 		}
2087 	}
2088 	up_write(&c->state_lock);
2089 
2090 	if (!bch2_fs_may_start(c)) {
2091 		ret = -BCH_ERR_insufficient_devices_to_start;
2092 		goto err_print;
2093 	}
2094 
2095 	if (!c->opts.nostart) {
2096 		ret = bch2_fs_start(c);
2097 		if (ret)
2098 			goto err;
2099 	}
2100 out:
2101 	darray_for_each(sbs, sb)
2102 		bch2_free_super(sb);
2103 	darray_exit(&sbs);
2104 	printbuf_exit(&errbuf);
2105 	module_put(THIS_MODULE);
2106 	return c;
2107 err_print:
2108 	pr_err("bch_fs_open err opening %s: %s",
2109 	       devices[0], bch2_err_str(ret));
2110 err:
2111 	if (!IS_ERR_OR_NULL(c))
2112 		bch2_fs_stop(c);
2113 	c = ERR_PTR(ret);
2114 	goto out;
2115 }
2116 
2117 /* Global interfaces/init */
2118 
2119 static void bcachefs_exit(void)
2120 {
2121 	bch2_debug_exit();
2122 	bch2_vfs_exit();
2123 	bch2_chardev_exit();
2124 	bch2_btree_key_cache_exit();
2125 	if (bcachefs_kset)
2126 		kset_unregister(bcachefs_kset);
2127 }
2128 
2129 static int __init bcachefs_init(void)
2130 {
2131 	bch2_bkey_pack_test();
2132 
2133 	if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) ||
2134 	    bch2_btree_key_cache_init() ||
2135 	    bch2_chardev_init() ||
2136 	    bch2_vfs_init() ||
2137 	    bch2_debug_init())
2138 		goto err;
2139 
2140 	return 0;
2141 err:
2142 	bcachefs_exit();
2143 	return -ENOMEM;
2144 }
2145 
2146 #define BCH_DEBUG_PARAM(name, description)			\
2147 	bool bch2_##name;					\
2148 	module_param_named(name, bch2_##name, bool, 0644);	\
2149 	MODULE_PARM_DESC(name, description);
2150 BCH_DEBUG_PARAMS()
2151 #undef BCH_DEBUG_PARAM
2152 
2153 __maybe_unused
2154 static unsigned bch2_metadata_version = bcachefs_metadata_version_current;
2155 module_param_named(version, bch2_metadata_version, uint, 0400);
2156 
2157 module_exit(bcachefs_exit);
2158 module_init(bcachefs_init);
2159