1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcachefs setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcachefs.h" 11 #include "alloc_background.h" 12 #include "alloc_foreground.h" 13 #include "bkey_sort.h" 14 #include "btree_cache.h" 15 #include "btree_gc.h" 16 #include "btree_journal_iter.h" 17 #include "btree_key_cache.h" 18 #include "btree_node_scan.h" 19 #include "btree_update_interior.h" 20 #include "btree_io.h" 21 #include "btree_write_buffer.h" 22 #include "buckets_waiting_for_journal.h" 23 #include "chardev.h" 24 #include "checksum.h" 25 #include "clock.h" 26 #include "compress.h" 27 #include "debug.h" 28 #include "disk_groups.h" 29 #include "ec.h" 30 #include "errcode.h" 31 #include "error.h" 32 #include "fs.h" 33 #include "fs-io.h" 34 #include "fs-io-buffered.h" 35 #include "fs-io-direct.h" 36 #include "fsck.h" 37 #include "inode.h" 38 #include "io_read.h" 39 #include "io_write.h" 40 #include "journal.h" 41 #include "journal_reclaim.h" 42 #include "journal_seq_blacklist.h" 43 #include "move.h" 44 #include "migrate.h" 45 #include "movinggc.h" 46 #include "nocow_locking.h" 47 #include "quota.h" 48 #include "rebalance.h" 49 #include "recovery.h" 50 #include "replicas.h" 51 #include "sb-clean.h" 52 #include "sb-counters.h" 53 #include "sb-errors.h" 54 #include "sb-members.h" 55 #include "snapshot.h" 56 #include "subvolume.h" 57 #include "super.h" 58 #include "super-io.h" 59 #include "sysfs.h" 60 #include "thread_with_file.h" 61 #include "trace.h" 62 63 #include <linux/backing-dev.h> 64 #include <linux/blkdev.h> 65 #include <linux/debugfs.h> 66 #include <linux/device.h> 67 #include <linux/idr.h> 68 #include <linux/module.h> 69 #include <linux/percpu.h> 70 #include <linux/random.h> 71 #include <linux/sysfs.h> 72 #include <crypto/hash.h> 73 74 MODULE_LICENSE("GPL"); 75 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 76 MODULE_DESCRIPTION("bcachefs filesystem"); 77 MODULE_SOFTDEP("pre: crc32c"); 78 MODULE_SOFTDEP("pre: crc64"); 79 MODULE_SOFTDEP("pre: sha256"); 80 MODULE_SOFTDEP("pre: chacha20"); 81 MODULE_SOFTDEP("pre: poly1305"); 82 MODULE_SOFTDEP("pre: xxhash"); 83 84 const char * const bch2_fs_flag_strs[] = { 85 #define x(n) #n, 86 BCH_FS_FLAGS() 87 #undef x 88 NULL 89 }; 90 91 __printf(2, 0) 92 static void bch2_print_maybe_redirect(struct stdio_redirect *stdio, const char *fmt, va_list args) 93 { 94 #ifdef __KERNEL__ 95 if (unlikely(stdio)) { 96 if (fmt[0] == KERN_SOH[0]) 97 fmt += 2; 98 99 bch2_stdio_redirect_vprintf(stdio, true, fmt, args); 100 return; 101 } 102 #endif 103 vprintk(fmt, args); 104 } 105 106 void bch2_print_opts(struct bch_opts *opts, const char *fmt, ...) 107 { 108 struct stdio_redirect *stdio = (void *)(unsigned long)opts->stdio; 109 110 va_list args; 111 va_start(args, fmt); 112 bch2_print_maybe_redirect(stdio, fmt, args); 113 va_end(args); 114 } 115 116 void __bch2_print(struct bch_fs *c, const char *fmt, ...) 117 { 118 struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c); 119 120 va_list args; 121 va_start(args, fmt); 122 bch2_print_maybe_redirect(stdio, fmt, args); 123 va_end(args); 124 } 125 126 #define KTYPE(type) \ 127 static const struct attribute_group type ## _group = { \ 128 .attrs = type ## _files \ 129 }; \ 130 \ 131 static const struct attribute_group *type ## _groups[] = { \ 132 &type ## _group, \ 133 NULL \ 134 }; \ 135 \ 136 static const struct kobj_type type ## _ktype = { \ 137 .release = type ## _release, \ 138 .sysfs_ops = &type ## _sysfs_ops, \ 139 .default_groups = type ## _groups \ 140 } 141 142 static void bch2_fs_release(struct kobject *); 143 static void bch2_dev_release(struct kobject *); 144 static void bch2_fs_counters_release(struct kobject *k) 145 { 146 } 147 148 static void bch2_fs_internal_release(struct kobject *k) 149 { 150 } 151 152 static void bch2_fs_opts_dir_release(struct kobject *k) 153 { 154 } 155 156 static void bch2_fs_time_stats_release(struct kobject *k) 157 { 158 } 159 160 KTYPE(bch2_fs); 161 KTYPE(bch2_fs_counters); 162 KTYPE(bch2_fs_internal); 163 KTYPE(bch2_fs_opts_dir); 164 KTYPE(bch2_fs_time_stats); 165 KTYPE(bch2_dev); 166 167 static struct kset *bcachefs_kset; 168 static LIST_HEAD(bch_fs_list); 169 static DEFINE_MUTEX(bch_fs_list_lock); 170 171 DECLARE_WAIT_QUEUE_HEAD(bch2_read_only_wait); 172 173 static void bch2_dev_free(struct bch_dev *); 174 static int bch2_dev_alloc(struct bch_fs *, unsigned); 175 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *); 176 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *); 177 178 struct bch_fs *bch2_dev_to_fs(dev_t dev) 179 { 180 struct bch_fs *c; 181 182 mutex_lock(&bch_fs_list_lock); 183 rcu_read_lock(); 184 185 list_for_each_entry(c, &bch_fs_list, list) 186 for_each_member_device_rcu(c, ca, NULL) 187 if (ca->disk_sb.bdev && ca->disk_sb.bdev->bd_dev == dev) { 188 closure_get(&c->cl); 189 goto found; 190 } 191 c = NULL; 192 found: 193 rcu_read_unlock(); 194 mutex_unlock(&bch_fs_list_lock); 195 196 return c; 197 } 198 199 static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid) 200 { 201 struct bch_fs *c; 202 203 lockdep_assert_held(&bch_fs_list_lock); 204 205 list_for_each_entry(c, &bch_fs_list, list) 206 if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid))) 207 return c; 208 209 return NULL; 210 } 211 212 struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid) 213 { 214 struct bch_fs *c; 215 216 mutex_lock(&bch_fs_list_lock); 217 c = __bch2_uuid_to_fs(uuid); 218 if (c) 219 closure_get(&c->cl); 220 mutex_unlock(&bch_fs_list_lock); 221 222 return c; 223 } 224 225 static void bch2_dev_usage_journal_reserve(struct bch_fs *c) 226 { 227 unsigned nr = 0, u64s = 228 ((sizeof(struct jset_entry_dev_usage) + 229 sizeof(struct jset_entry_dev_usage_type) * BCH_DATA_NR)) / 230 sizeof(u64); 231 232 rcu_read_lock(); 233 for_each_member_device_rcu(c, ca, NULL) 234 nr++; 235 rcu_read_unlock(); 236 237 bch2_journal_entry_res_resize(&c->journal, 238 &c->dev_usage_journal_res, u64s * nr); 239 } 240 241 /* Filesystem RO/RW: */ 242 243 /* 244 * For startup/shutdown of RW stuff, the dependencies are: 245 * 246 * - foreground writes depend on copygc and rebalance (to free up space) 247 * 248 * - copygc and rebalance depend on mark and sweep gc (they actually probably 249 * don't because they either reserve ahead of time or don't block if 250 * allocations fail, but allocations can require mark and sweep gc to run 251 * because of generation number wraparound) 252 * 253 * - all of the above depends on the allocator threads 254 * 255 * - allocator depends on the journal (when it rewrites prios and gens) 256 */ 257 258 static void __bch2_fs_read_only(struct bch_fs *c) 259 { 260 unsigned clean_passes = 0; 261 u64 seq = 0; 262 263 bch2_fs_ec_stop(c); 264 bch2_open_buckets_stop(c, NULL, true); 265 bch2_rebalance_stop(c); 266 bch2_copygc_stop(c); 267 bch2_fs_ec_flush(c); 268 269 bch_verbose(c, "flushing journal and stopping allocators, journal seq %llu", 270 journal_cur_seq(&c->journal)); 271 272 do { 273 clean_passes++; 274 275 if (bch2_btree_interior_updates_flush(c) || 276 bch2_journal_flush_all_pins(&c->journal) || 277 bch2_btree_flush_all_writes(c) || 278 seq != atomic64_read(&c->journal.seq)) { 279 seq = atomic64_read(&c->journal.seq); 280 clean_passes = 0; 281 } 282 } while (clean_passes < 2); 283 284 bch_verbose(c, "flushing journal and stopping allocators complete, journal seq %llu", 285 journal_cur_seq(&c->journal)); 286 287 if (test_bit(JOURNAL_replay_done, &c->journal.flags) && 288 !test_bit(BCH_FS_emergency_ro, &c->flags)) 289 set_bit(BCH_FS_clean_shutdown, &c->flags); 290 291 bch2_fs_journal_stop(&c->journal); 292 293 bch_info(c, "%sshutdown complete, journal seq %llu", 294 test_bit(BCH_FS_clean_shutdown, &c->flags) ? "" : "un", 295 c->journal.seq_ondisk); 296 297 /* 298 * After stopping journal: 299 */ 300 for_each_member_device(c, ca) 301 bch2_dev_allocator_remove(c, ca); 302 } 303 304 #ifndef BCH_WRITE_REF_DEBUG 305 static void bch2_writes_disabled(struct percpu_ref *writes) 306 { 307 struct bch_fs *c = container_of(writes, struct bch_fs, writes); 308 309 set_bit(BCH_FS_write_disable_complete, &c->flags); 310 wake_up(&bch2_read_only_wait); 311 } 312 #endif 313 314 void bch2_fs_read_only(struct bch_fs *c) 315 { 316 if (!test_bit(BCH_FS_rw, &c->flags)) { 317 bch2_journal_reclaim_stop(&c->journal); 318 return; 319 } 320 321 BUG_ON(test_bit(BCH_FS_write_disable_complete, &c->flags)); 322 323 bch_verbose(c, "going read-only"); 324 325 /* 326 * Block new foreground-end write operations from starting - any new 327 * writes will return -EROFS: 328 */ 329 set_bit(BCH_FS_going_ro, &c->flags); 330 #ifndef BCH_WRITE_REF_DEBUG 331 percpu_ref_kill(&c->writes); 332 #else 333 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) 334 bch2_write_ref_put(c, i); 335 #endif 336 337 /* 338 * If we're not doing an emergency shutdown, we want to wait on 339 * outstanding writes to complete so they don't see spurious errors due 340 * to shutting down the allocator: 341 * 342 * If we are doing an emergency shutdown outstanding writes may 343 * hang until we shutdown the allocator so we don't want to wait 344 * on outstanding writes before shutting everything down - but 345 * we do need to wait on them before returning and signalling 346 * that going RO is complete: 347 */ 348 wait_event(bch2_read_only_wait, 349 test_bit(BCH_FS_write_disable_complete, &c->flags) || 350 test_bit(BCH_FS_emergency_ro, &c->flags)); 351 352 bool writes_disabled = test_bit(BCH_FS_write_disable_complete, &c->flags); 353 if (writes_disabled) 354 bch_verbose(c, "finished waiting for writes to stop"); 355 356 __bch2_fs_read_only(c); 357 358 wait_event(bch2_read_only_wait, 359 test_bit(BCH_FS_write_disable_complete, &c->flags)); 360 361 if (!writes_disabled) 362 bch_verbose(c, "finished waiting for writes to stop"); 363 364 clear_bit(BCH_FS_write_disable_complete, &c->flags); 365 clear_bit(BCH_FS_going_ro, &c->flags); 366 clear_bit(BCH_FS_rw, &c->flags); 367 368 if (!bch2_journal_error(&c->journal) && 369 !test_bit(BCH_FS_error, &c->flags) && 370 !test_bit(BCH_FS_emergency_ro, &c->flags) && 371 test_bit(BCH_FS_started, &c->flags) && 372 test_bit(BCH_FS_clean_shutdown, &c->flags) && 373 c->recovery_pass_done >= BCH_RECOVERY_PASS_journal_replay) { 374 BUG_ON(c->journal.last_empty_seq != journal_cur_seq(&c->journal)); 375 BUG_ON(atomic_read(&c->btree_cache.dirty)); 376 BUG_ON(atomic_long_read(&c->btree_key_cache.nr_dirty)); 377 BUG_ON(c->btree_write_buffer.inc.keys.nr); 378 BUG_ON(c->btree_write_buffer.flushing.keys.nr); 379 380 bch_verbose(c, "marking filesystem clean"); 381 bch2_fs_mark_clean(c); 382 } else { 383 bch_verbose(c, "done going read-only, filesystem not clean"); 384 } 385 } 386 387 static void bch2_fs_read_only_work(struct work_struct *work) 388 { 389 struct bch_fs *c = 390 container_of(work, struct bch_fs, read_only_work); 391 392 down_write(&c->state_lock); 393 bch2_fs_read_only(c); 394 up_write(&c->state_lock); 395 } 396 397 static void bch2_fs_read_only_async(struct bch_fs *c) 398 { 399 queue_work(system_long_wq, &c->read_only_work); 400 } 401 402 bool bch2_fs_emergency_read_only(struct bch_fs *c) 403 { 404 bool ret = !test_and_set_bit(BCH_FS_emergency_ro, &c->flags); 405 406 bch2_journal_halt(&c->journal); 407 bch2_fs_read_only_async(c); 408 409 wake_up(&bch2_read_only_wait); 410 return ret; 411 } 412 413 static int bch2_fs_read_write_late(struct bch_fs *c) 414 { 415 int ret; 416 417 /* 418 * Data move operations can't run until after check_snapshots has 419 * completed, and bch2_snapshot_is_ancestor() is available. 420 * 421 * Ideally we'd start copygc/rebalance earlier instead of waiting for 422 * all of recovery/fsck to complete: 423 */ 424 ret = bch2_copygc_start(c); 425 if (ret) { 426 bch_err(c, "error starting copygc thread"); 427 return ret; 428 } 429 430 ret = bch2_rebalance_start(c); 431 if (ret) { 432 bch_err(c, "error starting rebalance thread"); 433 return ret; 434 } 435 436 return 0; 437 } 438 439 static int __bch2_fs_read_write(struct bch_fs *c, bool early) 440 { 441 int ret; 442 443 if (test_bit(BCH_FS_initial_gc_unfixed, &c->flags)) { 444 bch_err(c, "cannot go rw, unfixed btree errors"); 445 return -BCH_ERR_erofs_unfixed_errors; 446 } 447 448 if (test_bit(BCH_FS_rw, &c->flags)) 449 return 0; 450 451 bch_info(c, "going read-write"); 452 453 ret = bch2_sb_members_v2_init(c); 454 if (ret) 455 goto err; 456 457 ret = bch2_fs_mark_dirty(c); 458 if (ret) 459 goto err; 460 461 clear_bit(BCH_FS_clean_shutdown, &c->flags); 462 463 /* 464 * First journal write must be a flush write: after a clean shutdown we 465 * don't read the journal, so the first journal write may end up 466 * overwriting whatever was there previously, and there must always be 467 * at least one non-flush write in the journal or recovery will fail: 468 */ 469 set_bit(JOURNAL_need_flush_write, &c->journal.flags); 470 set_bit(JOURNAL_running, &c->journal.flags); 471 472 for_each_rw_member(c, ca) 473 bch2_dev_allocator_add(c, ca); 474 bch2_recalc_capacity(c); 475 476 set_bit(BCH_FS_rw, &c->flags); 477 set_bit(BCH_FS_was_rw, &c->flags); 478 479 #ifndef BCH_WRITE_REF_DEBUG 480 percpu_ref_reinit(&c->writes); 481 #else 482 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) { 483 BUG_ON(atomic_long_read(&c->writes[i])); 484 atomic_long_inc(&c->writes[i]); 485 } 486 #endif 487 488 ret = bch2_journal_reclaim_start(&c->journal); 489 if (ret) 490 goto err; 491 492 if (!early) { 493 ret = bch2_fs_read_write_late(c); 494 if (ret) 495 goto err; 496 } 497 498 bch2_do_discards(c); 499 bch2_do_invalidates(c); 500 bch2_do_stripe_deletes(c); 501 bch2_do_pending_node_rewrites(c); 502 return 0; 503 err: 504 if (test_bit(BCH_FS_rw, &c->flags)) 505 bch2_fs_read_only(c); 506 else 507 __bch2_fs_read_only(c); 508 return ret; 509 } 510 511 int bch2_fs_read_write(struct bch_fs *c) 512 { 513 if (c->opts.recovery_pass_last && 514 c->opts.recovery_pass_last < BCH_RECOVERY_PASS_journal_replay) 515 return -BCH_ERR_erofs_norecovery; 516 517 if (c->opts.nochanges) 518 return -BCH_ERR_erofs_nochanges; 519 520 return __bch2_fs_read_write(c, false); 521 } 522 523 int bch2_fs_read_write_early(struct bch_fs *c) 524 { 525 lockdep_assert_held(&c->state_lock); 526 527 return __bch2_fs_read_write(c, true); 528 } 529 530 /* Filesystem startup/shutdown: */ 531 532 static void __bch2_fs_free(struct bch_fs *c) 533 { 534 for (unsigned i = 0; i < BCH_TIME_STAT_NR; i++) 535 bch2_time_stats_exit(&c->times[i]); 536 537 bch2_find_btree_nodes_exit(&c->found_btree_nodes); 538 bch2_free_pending_node_rewrites(c); 539 bch2_fs_sb_errors_exit(c); 540 bch2_fs_counters_exit(c); 541 bch2_fs_snapshots_exit(c); 542 bch2_fs_quota_exit(c); 543 bch2_fs_fs_io_direct_exit(c); 544 bch2_fs_fs_io_buffered_exit(c); 545 bch2_fs_fsio_exit(c); 546 bch2_fs_ec_exit(c); 547 bch2_fs_encryption_exit(c); 548 bch2_fs_nocow_locking_exit(c); 549 bch2_fs_io_write_exit(c); 550 bch2_fs_io_read_exit(c); 551 bch2_fs_buckets_waiting_for_journal_exit(c); 552 bch2_fs_btree_interior_update_exit(c); 553 bch2_fs_btree_key_cache_exit(&c->btree_key_cache); 554 bch2_fs_btree_cache_exit(c); 555 bch2_fs_btree_iter_exit(c); 556 bch2_fs_replicas_exit(c); 557 bch2_fs_journal_exit(&c->journal); 558 bch2_io_clock_exit(&c->io_clock[WRITE]); 559 bch2_io_clock_exit(&c->io_clock[READ]); 560 bch2_fs_compress_exit(c); 561 bch2_journal_keys_put_initial(c); 562 bch2_find_btree_nodes_exit(&c->found_btree_nodes); 563 BUG_ON(atomic_read(&c->journal_keys.ref)); 564 bch2_fs_btree_write_buffer_exit(c); 565 percpu_free_rwsem(&c->mark_lock); 566 if (c->online_reserved) { 567 u64 v = percpu_u64_get(c->online_reserved); 568 WARN(v, "online_reserved not 0 at shutdown: %lli", v); 569 free_percpu(c->online_reserved); 570 } 571 572 darray_exit(&c->btree_roots_extra); 573 free_percpu(c->pcpu); 574 mempool_exit(&c->large_bkey_pool); 575 mempool_exit(&c->btree_bounce_pool); 576 bioset_exit(&c->btree_bio); 577 mempool_exit(&c->fill_iter); 578 #ifndef BCH_WRITE_REF_DEBUG 579 percpu_ref_exit(&c->writes); 580 #endif 581 kfree(rcu_dereference_protected(c->disk_groups, 1)); 582 kfree(c->journal_seq_blacklist_table); 583 kfree(c->unused_inode_hints); 584 585 if (c->write_ref_wq) 586 destroy_workqueue(c->write_ref_wq); 587 if (c->btree_write_submit_wq) 588 destroy_workqueue(c->btree_write_submit_wq); 589 if (c->btree_read_complete_wq) 590 destroy_workqueue(c->btree_read_complete_wq); 591 if (c->copygc_wq) 592 destroy_workqueue(c->copygc_wq); 593 if (c->btree_io_complete_wq) 594 destroy_workqueue(c->btree_io_complete_wq); 595 if (c->btree_update_wq) 596 destroy_workqueue(c->btree_update_wq); 597 598 bch2_free_super(&c->disk_sb); 599 kvfree(c); 600 module_put(THIS_MODULE); 601 } 602 603 static void bch2_fs_release(struct kobject *kobj) 604 { 605 struct bch_fs *c = container_of(kobj, struct bch_fs, kobj); 606 607 __bch2_fs_free(c); 608 } 609 610 void __bch2_fs_stop(struct bch_fs *c) 611 { 612 bch_verbose(c, "shutting down"); 613 614 set_bit(BCH_FS_stopping, &c->flags); 615 616 down_write(&c->state_lock); 617 bch2_fs_read_only(c); 618 up_write(&c->state_lock); 619 620 for_each_member_device(c, ca) 621 if (ca->kobj.state_in_sysfs && 622 ca->disk_sb.bdev) 623 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 624 625 if (c->kobj.state_in_sysfs) 626 kobject_del(&c->kobj); 627 628 bch2_fs_debug_exit(c); 629 bch2_fs_chardev_exit(c); 630 631 bch2_ro_ref_put(c); 632 wait_event(c->ro_ref_wait, !refcount_read(&c->ro_ref)); 633 634 kobject_put(&c->counters_kobj); 635 kobject_put(&c->time_stats); 636 kobject_put(&c->opts_dir); 637 kobject_put(&c->internal); 638 639 /* btree prefetch might have kicked off reads in the background: */ 640 bch2_btree_flush_all_reads(c); 641 642 for_each_member_device(c, ca) 643 cancel_work_sync(&ca->io_error_work); 644 645 cancel_work_sync(&c->read_only_work); 646 } 647 648 void bch2_fs_free(struct bch_fs *c) 649 { 650 unsigned i; 651 652 mutex_lock(&bch_fs_list_lock); 653 list_del(&c->list); 654 mutex_unlock(&bch_fs_list_lock); 655 656 closure_sync(&c->cl); 657 closure_debug_destroy(&c->cl); 658 659 for (i = 0; i < c->sb.nr_devices; i++) { 660 struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true); 661 662 if (ca) { 663 EBUG_ON(atomic_long_read(&ca->ref) != 1); 664 bch2_free_super(&ca->disk_sb); 665 bch2_dev_free(ca); 666 } 667 } 668 669 bch_verbose(c, "shutdown complete"); 670 671 kobject_put(&c->kobj); 672 } 673 674 void bch2_fs_stop(struct bch_fs *c) 675 { 676 __bch2_fs_stop(c); 677 bch2_fs_free(c); 678 } 679 680 static int bch2_fs_online(struct bch_fs *c) 681 { 682 int ret = 0; 683 684 lockdep_assert_held(&bch_fs_list_lock); 685 686 if (__bch2_uuid_to_fs(c->sb.uuid)) { 687 bch_err(c, "filesystem UUID already open"); 688 return -EINVAL; 689 } 690 691 ret = bch2_fs_chardev_init(c); 692 if (ret) { 693 bch_err(c, "error creating character device"); 694 return ret; 695 } 696 697 bch2_fs_debug_init(c); 698 699 ret = kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ?: 700 kobject_add(&c->internal, &c->kobj, "internal") ?: 701 kobject_add(&c->opts_dir, &c->kobj, "options") ?: 702 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT 703 kobject_add(&c->time_stats, &c->kobj, "time_stats") ?: 704 #endif 705 kobject_add(&c->counters_kobj, &c->kobj, "counters") ?: 706 bch2_opts_create_sysfs_files(&c->opts_dir); 707 if (ret) { 708 bch_err(c, "error creating sysfs objects"); 709 return ret; 710 } 711 712 down_write(&c->state_lock); 713 714 for_each_member_device(c, ca) { 715 ret = bch2_dev_sysfs_online(c, ca); 716 if (ret) { 717 bch_err(c, "error creating sysfs objects"); 718 bch2_dev_put(ca); 719 goto err; 720 } 721 } 722 723 BUG_ON(!list_empty(&c->list)); 724 list_add(&c->list, &bch_fs_list); 725 err: 726 up_write(&c->state_lock); 727 return ret; 728 } 729 730 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts) 731 { 732 struct bch_fs *c; 733 struct printbuf name = PRINTBUF; 734 unsigned i, iter_size; 735 int ret = 0; 736 737 c = kvmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO); 738 if (!c) { 739 c = ERR_PTR(-BCH_ERR_ENOMEM_fs_alloc); 740 goto out; 741 } 742 743 c->stdio = (void *)(unsigned long) opts.stdio; 744 745 __module_get(THIS_MODULE); 746 747 closure_init(&c->cl, NULL); 748 749 c->kobj.kset = bcachefs_kset; 750 kobject_init(&c->kobj, &bch2_fs_ktype); 751 kobject_init(&c->internal, &bch2_fs_internal_ktype); 752 kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype); 753 kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype); 754 kobject_init(&c->counters_kobj, &bch2_fs_counters_ktype); 755 756 c->minor = -1; 757 c->disk_sb.fs_sb = true; 758 759 init_rwsem(&c->state_lock); 760 mutex_init(&c->sb_lock); 761 mutex_init(&c->replicas_gc_lock); 762 mutex_init(&c->btree_root_lock); 763 INIT_WORK(&c->read_only_work, bch2_fs_read_only_work); 764 765 refcount_set(&c->ro_ref, 1); 766 init_waitqueue_head(&c->ro_ref_wait); 767 sema_init(&c->online_fsck_mutex, 1); 768 769 init_rwsem(&c->gc_lock); 770 mutex_init(&c->gc_gens_lock); 771 atomic_set(&c->journal_keys.ref, 1); 772 c->journal_keys.initial_ref_held = true; 773 774 for (i = 0; i < BCH_TIME_STAT_NR; i++) 775 bch2_time_stats_init(&c->times[i]); 776 777 bch2_fs_gc_init(c); 778 bch2_fs_copygc_init(c); 779 bch2_fs_btree_key_cache_init_early(&c->btree_key_cache); 780 bch2_fs_btree_iter_init_early(c); 781 bch2_fs_btree_interior_update_init_early(c); 782 bch2_fs_allocator_background_init(c); 783 bch2_fs_allocator_foreground_init(c); 784 bch2_fs_rebalance_init(c); 785 bch2_fs_quota_init(c); 786 bch2_fs_ec_init_early(c); 787 bch2_fs_move_init(c); 788 bch2_fs_sb_errors_init_early(c); 789 790 INIT_LIST_HEAD(&c->list); 791 792 mutex_init(&c->usage_scratch_lock); 793 794 mutex_init(&c->bio_bounce_pages_lock); 795 mutex_init(&c->snapshot_table_lock); 796 init_rwsem(&c->snapshot_create_lock); 797 798 spin_lock_init(&c->btree_write_error_lock); 799 800 INIT_LIST_HEAD(&c->journal_iters); 801 802 INIT_LIST_HEAD(&c->fsck_error_msgs); 803 mutex_init(&c->fsck_error_msgs_lock); 804 805 seqcount_init(&c->usage_lock); 806 807 sema_init(&c->io_in_flight, 128); 808 809 INIT_LIST_HEAD(&c->vfs_inodes_list); 810 mutex_init(&c->vfs_inodes_lock); 811 812 c->copy_gc_enabled = 1; 813 c->rebalance.enabled = 1; 814 c->promote_whole_extents = true; 815 816 c->journal.flush_write_time = &c->times[BCH_TIME_journal_flush_write]; 817 c->journal.noflush_write_time = &c->times[BCH_TIME_journal_noflush_write]; 818 c->journal.flush_seq_time = &c->times[BCH_TIME_journal_flush_seq]; 819 820 bch2_fs_btree_cache_init_early(&c->btree_cache); 821 822 mutex_init(&c->sectors_available_lock); 823 824 ret = percpu_init_rwsem(&c->mark_lock); 825 if (ret) 826 goto err; 827 828 mutex_lock(&c->sb_lock); 829 ret = bch2_sb_to_fs(c, sb); 830 mutex_unlock(&c->sb_lock); 831 832 if (ret) 833 goto err; 834 835 pr_uuid(&name, c->sb.user_uuid.b); 836 ret = name.allocation_failure ? -BCH_ERR_ENOMEM_fs_name_alloc : 0; 837 if (ret) 838 goto err; 839 840 strscpy(c->name, name.buf, sizeof(c->name)); 841 printbuf_exit(&name); 842 843 /* Compat: */ 844 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && 845 !BCH_SB_JOURNAL_FLUSH_DELAY(sb)) 846 SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000); 847 848 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && 849 !BCH_SB_JOURNAL_RECLAIM_DELAY(sb)) 850 SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 100); 851 852 c->opts = bch2_opts_default; 853 ret = bch2_opts_from_sb(&c->opts, sb); 854 if (ret) 855 goto err; 856 857 bch2_opts_apply(&c->opts, opts); 858 859 c->btree_key_cache_btrees |= 1U << BTREE_ID_alloc; 860 if (c->opts.inodes_use_key_cache) 861 c->btree_key_cache_btrees |= 1U << BTREE_ID_inodes; 862 c->btree_key_cache_btrees |= 1U << BTREE_ID_logged_ops; 863 864 c->block_bits = ilog2(block_sectors(c)); 865 c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c); 866 867 if (bch2_fs_init_fault("fs_alloc")) { 868 bch_err(c, "fs_alloc fault injected"); 869 ret = -EFAULT; 870 goto err; 871 } 872 873 iter_size = sizeof(struct sort_iter) + 874 (btree_blocks(c) + 1) * 2 * 875 sizeof(struct sort_iter_set); 876 877 c->inode_shard_bits = ilog2(roundup_pow_of_two(num_possible_cpus())); 878 879 if (!(c->btree_update_wq = alloc_workqueue("bcachefs", 880 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_UNBOUND, 512)) || 881 !(c->btree_io_complete_wq = alloc_workqueue("bcachefs_btree_io", 882 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) || 883 !(c->copygc_wq = alloc_workqueue("bcachefs_copygc", 884 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) || 885 !(c->btree_read_complete_wq = alloc_workqueue("bcachefs_btree_read_complete", 886 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 512)) || 887 !(c->btree_write_submit_wq = alloc_workqueue("bcachefs_btree_write_sumit", 888 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) || 889 !(c->write_ref_wq = alloc_workqueue("bcachefs_write_ref", 890 WQ_FREEZABLE, 0)) || 891 #ifndef BCH_WRITE_REF_DEBUG 892 percpu_ref_init(&c->writes, bch2_writes_disabled, 893 PERCPU_REF_INIT_DEAD, GFP_KERNEL) || 894 #endif 895 mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) || 896 bioset_init(&c->btree_bio, 1, 897 max(offsetof(struct btree_read_bio, bio), 898 offsetof(struct btree_write_bio, wbio.bio)), 899 BIOSET_NEED_BVECS) || 900 !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) || 901 !(c->online_reserved = alloc_percpu(u64)) || 902 mempool_init_kvmalloc_pool(&c->btree_bounce_pool, 1, 903 c->opts.btree_node_size) || 904 mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048) || 905 !(c->unused_inode_hints = kcalloc(1U << c->inode_shard_bits, 906 sizeof(u64), GFP_KERNEL))) { 907 ret = -BCH_ERR_ENOMEM_fs_other_alloc; 908 goto err; 909 } 910 911 ret = bch2_fs_counters_init(c) ?: 912 bch2_fs_sb_errors_init(c) ?: 913 bch2_io_clock_init(&c->io_clock[READ]) ?: 914 bch2_io_clock_init(&c->io_clock[WRITE]) ?: 915 bch2_fs_journal_init(&c->journal) ?: 916 bch2_fs_replicas_init(c) ?: 917 bch2_fs_btree_iter_init(c) ?: 918 bch2_fs_btree_cache_init(c) ?: 919 bch2_fs_btree_key_cache_init(&c->btree_key_cache) ?: 920 bch2_fs_btree_interior_update_init(c) ?: 921 bch2_fs_buckets_waiting_for_journal_init(c) ?: 922 bch2_fs_btree_write_buffer_init(c) ?: 923 bch2_fs_subvolumes_init(c) ?: 924 bch2_fs_io_read_init(c) ?: 925 bch2_fs_io_write_init(c) ?: 926 bch2_fs_nocow_locking_init(c) ?: 927 bch2_fs_encryption_init(c) ?: 928 bch2_fs_compress_init(c) ?: 929 bch2_fs_ec_init(c) ?: 930 bch2_fs_fsio_init(c) ?: 931 bch2_fs_fs_io_buffered_init(c) ?: 932 bch2_fs_fs_io_direct_init(c); 933 if (ret) 934 goto err; 935 936 for (i = 0; i < c->sb.nr_devices; i++) { 937 if (!bch2_member_exists(c->disk_sb.sb, i)) 938 continue; 939 ret = bch2_dev_alloc(c, i); 940 if (ret) 941 goto err; 942 } 943 944 bch2_journal_entry_res_resize(&c->journal, 945 &c->btree_root_journal_res, 946 BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX)); 947 bch2_dev_usage_journal_reserve(c); 948 bch2_journal_entry_res_resize(&c->journal, 949 &c->clock_journal_res, 950 (sizeof(struct jset_entry_clock) / sizeof(u64)) * 2); 951 952 mutex_lock(&bch_fs_list_lock); 953 ret = bch2_fs_online(c); 954 mutex_unlock(&bch_fs_list_lock); 955 956 if (ret) 957 goto err; 958 out: 959 return c; 960 err: 961 bch2_fs_free(c); 962 c = ERR_PTR(ret); 963 goto out; 964 } 965 966 noinline_for_stack 967 static void print_mount_opts(struct bch_fs *c) 968 { 969 enum bch_opt_id i; 970 struct printbuf p = PRINTBUF; 971 bool first = true; 972 973 prt_str(&p, "mounting version "); 974 bch2_version_to_text(&p, c->sb.version); 975 976 if (c->opts.read_only) { 977 prt_str(&p, " opts="); 978 first = false; 979 prt_printf(&p, "ro"); 980 } 981 982 for (i = 0; i < bch2_opts_nr; i++) { 983 const struct bch_option *opt = &bch2_opt_table[i]; 984 u64 v = bch2_opt_get_by_id(&c->opts, i); 985 986 if (!(opt->flags & OPT_MOUNT)) 987 continue; 988 989 if (v == bch2_opt_get_by_id(&bch2_opts_default, i)) 990 continue; 991 992 prt_str(&p, first ? " opts=" : ","); 993 first = false; 994 bch2_opt_to_text(&p, c, c->disk_sb.sb, opt, v, OPT_SHOW_MOUNT_STYLE); 995 } 996 997 bch_info(c, "%s", p.buf); 998 printbuf_exit(&p); 999 } 1000 1001 int bch2_fs_start(struct bch_fs *c) 1002 { 1003 time64_t now = ktime_get_real_seconds(); 1004 int ret; 1005 1006 print_mount_opts(c); 1007 1008 down_write(&c->state_lock); 1009 1010 BUG_ON(test_bit(BCH_FS_started, &c->flags)); 1011 1012 mutex_lock(&c->sb_lock); 1013 1014 ret = bch2_sb_members_v2_init(c); 1015 if (ret) { 1016 mutex_unlock(&c->sb_lock); 1017 goto err; 1018 } 1019 1020 for_each_online_member(c, ca) 1021 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = cpu_to_le64(now); 1022 1023 struct bch_sb_field_ext *ext = 1024 bch2_sb_field_get_minsize(&c->disk_sb, ext, sizeof(*ext) / sizeof(u64)); 1025 mutex_unlock(&c->sb_lock); 1026 1027 if (!ext) { 1028 bch_err(c, "insufficient space in superblock for sb_field_ext"); 1029 ret = -BCH_ERR_ENOSPC_sb; 1030 goto err; 1031 } 1032 1033 for_each_rw_member(c, ca) 1034 bch2_dev_allocator_add(c, ca); 1035 bch2_recalc_capacity(c); 1036 1037 ret = BCH_SB_INITIALIZED(c->disk_sb.sb) 1038 ? bch2_fs_recovery(c) 1039 : bch2_fs_initialize(c); 1040 if (ret) 1041 goto err; 1042 1043 ret = bch2_opts_check_may_set(c); 1044 if (ret) 1045 goto err; 1046 1047 if (bch2_fs_init_fault("fs_start")) { 1048 bch_err(c, "fs_start fault injected"); 1049 ret = -EINVAL; 1050 goto err; 1051 } 1052 1053 set_bit(BCH_FS_started, &c->flags); 1054 1055 if (c->opts.read_only) { 1056 bch2_fs_read_only(c); 1057 } else { 1058 ret = !test_bit(BCH_FS_rw, &c->flags) 1059 ? bch2_fs_read_write(c) 1060 : bch2_fs_read_write_late(c); 1061 if (ret) 1062 goto err; 1063 } 1064 1065 ret = 0; 1066 err: 1067 if (ret) 1068 bch_err_msg(c, ret, "starting filesystem"); 1069 else 1070 bch_verbose(c, "done starting filesystem"); 1071 up_write(&c->state_lock); 1072 return ret; 1073 } 1074 1075 static int bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c) 1076 { 1077 struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx); 1078 1079 if (le16_to_cpu(sb->block_size) != block_sectors(c)) 1080 return -BCH_ERR_mismatched_block_size; 1081 1082 if (le16_to_cpu(m.bucket_size) < 1083 BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb)) 1084 return -BCH_ERR_bucket_size_too_small; 1085 1086 return 0; 1087 } 1088 1089 static int bch2_dev_in_fs(struct bch_sb_handle *fs, 1090 struct bch_sb_handle *sb, 1091 struct bch_opts *opts) 1092 { 1093 if (fs == sb) 1094 return 0; 1095 1096 if (!uuid_equal(&fs->sb->uuid, &sb->sb->uuid)) 1097 return -BCH_ERR_device_not_a_member_of_filesystem; 1098 1099 if (!bch2_member_exists(fs->sb, sb->sb->dev_idx)) 1100 return -BCH_ERR_device_has_been_removed; 1101 1102 if (fs->sb->block_size != sb->sb->block_size) 1103 return -BCH_ERR_mismatched_block_size; 1104 1105 if (le16_to_cpu(fs->sb->version) < bcachefs_metadata_version_member_seq || 1106 le16_to_cpu(sb->sb->version) < bcachefs_metadata_version_member_seq) 1107 return 0; 1108 1109 if (fs->sb->seq == sb->sb->seq && 1110 fs->sb->write_time != sb->sb->write_time) { 1111 struct printbuf buf = PRINTBUF; 1112 1113 prt_str(&buf, "Split brain detected between "); 1114 prt_bdevname(&buf, sb->bdev); 1115 prt_str(&buf, " and "); 1116 prt_bdevname(&buf, fs->bdev); 1117 prt_char(&buf, ':'); 1118 prt_newline(&buf); 1119 prt_printf(&buf, "seq=%llu but write_time different, got", le64_to_cpu(sb->sb->seq)); 1120 prt_newline(&buf); 1121 1122 prt_bdevname(&buf, fs->bdev); 1123 prt_char(&buf, ' '); 1124 bch2_prt_datetime(&buf, le64_to_cpu(fs->sb->write_time));; 1125 prt_newline(&buf); 1126 1127 prt_bdevname(&buf, sb->bdev); 1128 prt_char(&buf, ' '); 1129 bch2_prt_datetime(&buf, le64_to_cpu(sb->sb->write_time));; 1130 prt_newline(&buf); 1131 1132 if (!opts->no_splitbrain_check) 1133 prt_printf(&buf, "Not using older sb"); 1134 1135 pr_err("%s", buf.buf); 1136 printbuf_exit(&buf); 1137 1138 if (!opts->no_splitbrain_check) 1139 return -BCH_ERR_device_splitbrain; 1140 } 1141 1142 struct bch_member m = bch2_sb_member_get(fs->sb, sb->sb->dev_idx); 1143 u64 seq_from_fs = le64_to_cpu(m.seq); 1144 u64 seq_from_member = le64_to_cpu(sb->sb->seq); 1145 1146 if (seq_from_fs && seq_from_fs < seq_from_member) { 1147 struct printbuf buf = PRINTBUF; 1148 1149 prt_str(&buf, "Split brain detected between "); 1150 prt_bdevname(&buf, sb->bdev); 1151 prt_str(&buf, " and "); 1152 prt_bdevname(&buf, fs->bdev); 1153 prt_char(&buf, ':'); 1154 prt_newline(&buf); 1155 1156 prt_bdevname(&buf, fs->bdev); 1157 prt_str(&buf, " believes seq of "); 1158 prt_bdevname(&buf, sb->bdev); 1159 prt_printf(&buf, " to be %llu, but ", seq_from_fs); 1160 prt_bdevname(&buf, sb->bdev); 1161 prt_printf(&buf, " has %llu\n", seq_from_member); 1162 1163 if (!opts->no_splitbrain_check) { 1164 prt_str(&buf, "Not using "); 1165 prt_bdevname(&buf, sb->bdev); 1166 } 1167 1168 pr_err("%s", buf.buf); 1169 printbuf_exit(&buf); 1170 1171 if (!opts->no_splitbrain_check) 1172 return -BCH_ERR_device_splitbrain; 1173 } 1174 1175 return 0; 1176 } 1177 1178 /* Device startup/shutdown: */ 1179 1180 static void bch2_dev_release(struct kobject *kobj) 1181 { 1182 struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj); 1183 1184 kfree(ca); 1185 } 1186 1187 static void bch2_dev_free(struct bch_dev *ca) 1188 { 1189 cancel_work_sync(&ca->io_error_work); 1190 1191 if (ca->kobj.state_in_sysfs && 1192 ca->disk_sb.bdev) 1193 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 1194 1195 if (ca->kobj.state_in_sysfs) 1196 kobject_del(&ca->kobj); 1197 1198 kfree(ca->buckets_nouse); 1199 bch2_free_super(&ca->disk_sb); 1200 bch2_dev_allocator_background_exit(ca); 1201 bch2_dev_journal_exit(ca); 1202 1203 free_percpu(ca->io_done); 1204 bch2_dev_buckets_free(ca); 1205 free_page((unsigned long) ca->sb_read_scratch); 1206 1207 bch2_time_stats_quantiles_exit(&ca->io_latency[WRITE]); 1208 bch2_time_stats_quantiles_exit(&ca->io_latency[READ]); 1209 1210 percpu_ref_exit(&ca->io_ref); 1211 #ifndef CONFIG_BCACHEFS_DEBUG 1212 percpu_ref_exit(&ca->ref); 1213 #endif 1214 kobject_put(&ca->kobj); 1215 } 1216 1217 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca) 1218 { 1219 1220 lockdep_assert_held(&c->state_lock); 1221 1222 if (percpu_ref_is_zero(&ca->io_ref)) 1223 return; 1224 1225 __bch2_dev_read_only(c, ca); 1226 1227 reinit_completion(&ca->io_ref_completion); 1228 percpu_ref_kill(&ca->io_ref); 1229 wait_for_completion(&ca->io_ref_completion); 1230 1231 if (ca->kobj.state_in_sysfs) { 1232 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 1233 sysfs_remove_link(&ca->kobj, "block"); 1234 } 1235 1236 bch2_free_super(&ca->disk_sb); 1237 bch2_dev_journal_exit(ca); 1238 } 1239 1240 #ifndef CONFIG_BCACHEFS_DEBUG 1241 static void bch2_dev_ref_complete(struct percpu_ref *ref) 1242 { 1243 struct bch_dev *ca = container_of(ref, struct bch_dev, ref); 1244 1245 complete(&ca->ref_completion); 1246 } 1247 #endif 1248 1249 static void bch2_dev_io_ref_complete(struct percpu_ref *ref) 1250 { 1251 struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref); 1252 1253 complete(&ca->io_ref_completion); 1254 } 1255 1256 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca) 1257 { 1258 int ret; 1259 1260 if (!c->kobj.state_in_sysfs) 1261 return 0; 1262 1263 if (!ca->kobj.state_in_sysfs) { 1264 ret = kobject_add(&ca->kobj, &c->kobj, 1265 "dev-%u", ca->dev_idx); 1266 if (ret) 1267 return ret; 1268 } 1269 1270 if (ca->disk_sb.bdev) { 1271 struct kobject *block = bdev_kobj(ca->disk_sb.bdev); 1272 1273 ret = sysfs_create_link(block, &ca->kobj, "bcachefs"); 1274 if (ret) 1275 return ret; 1276 1277 ret = sysfs_create_link(&ca->kobj, block, "block"); 1278 if (ret) 1279 return ret; 1280 } 1281 1282 return 0; 1283 } 1284 1285 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c, 1286 struct bch_member *member) 1287 { 1288 struct bch_dev *ca; 1289 unsigned i; 1290 1291 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 1292 if (!ca) 1293 return NULL; 1294 1295 kobject_init(&ca->kobj, &bch2_dev_ktype); 1296 init_completion(&ca->ref_completion); 1297 init_completion(&ca->io_ref_completion); 1298 1299 init_rwsem(&ca->bucket_lock); 1300 1301 INIT_WORK(&ca->io_error_work, bch2_io_error_work); 1302 1303 bch2_time_stats_quantiles_init(&ca->io_latency[READ]); 1304 bch2_time_stats_quantiles_init(&ca->io_latency[WRITE]); 1305 1306 ca->mi = bch2_mi_to_cpu(member); 1307 1308 for (i = 0; i < ARRAY_SIZE(member->errors); i++) 1309 atomic64_set(&ca->errors[i], le64_to_cpu(member->errors[i])); 1310 1311 ca->uuid = member->uuid; 1312 1313 ca->nr_btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE, 1314 ca->mi.bucket_size / btree_sectors(c)); 1315 1316 #ifndef CONFIG_BCACHEFS_DEBUG 1317 if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete, 0, GFP_KERNEL)) 1318 goto err; 1319 #else 1320 atomic_long_set(&ca->ref, 1); 1321 #endif 1322 1323 bch2_dev_allocator_background_init(ca); 1324 1325 if (percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete, 1326 PERCPU_REF_INIT_DEAD, GFP_KERNEL) || 1327 !(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) || 1328 bch2_dev_buckets_alloc(c, ca) || 1329 !(ca->io_done = alloc_percpu(*ca->io_done))) 1330 goto err; 1331 1332 return ca; 1333 err: 1334 bch2_dev_free(ca); 1335 return NULL; 1336 } 1337 1338 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca, 1339 unsigned dev_idx) 1340 { 1341 ca->dev_idx = dev_idx; 1342 __set_bit(ca->dev_idx, ca->self.d); 1343 scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx); 1344 1345 ca->fs = c; 1346 rcu_assign_pointer(c->devs[ca->dev_idx], ca); 1347 1348 if (bch2_dev_sysfs_online(c, ca)) 1349 pr_warn("error creating sysfs objects"); 1350 } 1351 1352 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx) 1353 { 1354 struct bch_member member = bch2_sb_member_get(c->disk_sb.sb, dev_idx); 1355 struct bch_dev *ca = NULL; 1356 int ret = 0; 1357 1358 if (bch2_fs_init_fault("dev_alloc")) 1359 goto err; 1360 1361 ca = __bch2_dev_alloc(c, &member); 1362 if (!ca) 1363 goto err; 1364 1365 ca->fs = c; 1366 1367 bch2_dev_attach(c, ca, dev_idx); 1368 return ret; 1369 err: 1370 if (ca) 1371 bch2_dev_free(ca); 1372 return -BCH_ERR_ENOMEM_dev_alloc; 1373 } 1374 1375 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb) 1376 { 1377 unsigned ret; 1378 1379 if (bch2_dev_is_online(ca)) { 1380 bch_err(ca, "already have device online in slot %u", 1381 sb->sb->dev_idx); 1382 return -BCH_ERR_device_already_online; 1383 } 1384 1385 if (get_capacity(sb->bdev->bd_disk) < 1386 ca->mi.bucket_size * ca->mi.nbuckets) { 1387 bch_err(ca, "cannot online: device too small"); 1388 return -BCH_ERR_device_size_too_small; 1389 } 1390 1391 BUG_ON(!percpu_ref_is_zero(&ca->io_ref)); 1392 1393 ret = bch2_dev_journal_init(ca, sb->sb); 1394 if (ret) 1395 return ret; 1396 1397 /* Commit: */ 1398 ca->disk_sb = *sb; 1399 memset(sb, 0, sizeof(*sb)); 1400 1401 ca->dev = ca->disk_sb.bdev->bd_dev; 1402 1403 percpu_ref_reinit(&ca->io_ref); 1404 1405 return 0; 1406 } 1407 1408 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb) 1409 { 1410 struct bch_dev *ca; 1411 int ret; 1412 1413 lockdep_assert_held(&c->state_lock); 1414 1415 if (le64_to_cpu(sb->sb->seq) > 1416 le64_to_cpu(c->disk_sb.sb->seq)) 1417 bch2_sb_to_fs(c, sb->sb); 1418 1419 BUG_ON(!bch2_dev_exists(c, sb->sb->dev_idx)); 1420 1421 ca = bch2_dev_locked(c, sb->sb->dev_idx); 1422 1423 ret = __bch2_dev_attach_bdev(ca, sb); 1424 if (ret) 1425 return ret; 1426 1427 bch2_dev_sysfs_online(c, ca); 1428 1429 struct printbuf name = PRINTBUF; 1430 prt_bdevname(&name, ca->disk_sb.bdev); 1431 1432 if (c->sb.nr_devices == 1) 1433 strscpy(c->name, name.buf, sizeof(c->name)); 1434 strscpy(ca->name, name.buf, sizeof(ca->name)); 1435 1436 printbuf_exit(&name); 1437 1438 rebalance_wakeup(c); 1439 return 0; 1440 } 1441 1442 /* Device management: */ 1443 1444 /* 1445 * Note: this function is also used by the error paths - when a particular 1446 * device sees an error, we call it to determine whether we can just set the 1447 * device RO, or - if this function returns false - we'll set the whole 1448 * filesystem RO: 1449 * 1450 * XXX: maybe we should be more explicit about whether we're changing state 1451 * because we got an error or what have you? 1452 */ 1453 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca, 1454 enum bch_member_state new_state, int flags) 1455 { 1456 struct bch_devs_mask new_online_devs; 1457 int nr_rw = 0, required; 1458 1459 lockdep_assert_held(&c->state_lock); 1460 1461 switch (new_state) { 1462 case BCH_MEMBER_STATE_rw: 1463 return true; 1464 case BCH_MEMBER_STATE_ro: 1465 if (ca->mi.state != BCH_MEMBER_STATE_rw) 1466 return true; 1467 1468 /* do we have enough devices to write to? */ 1469 for_each_member_device(c, ca2) 1470 if (ca2 != ca) 1471 nr_rw += ca2->mi.state == BCH_MEMBER_STATE_rw; 1472 1473 required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED) 1474 ? c->opts.metadata_replicas 1475 : metadata_replicas_required(c), 1476 !(flags & BCH_FORCE_IF_DATA_DEGRADED) 1477 ? c->opts.data_replicas 1478 : data_replicas_required(c)); 1479 1480 return nr_rw >= required; 1481 case BCH_MEMBER_STATE_failed: 1482 case BCH_MEMBER_STATE_spare: 1483 if (ca->mi.state != BCH_MEMBER_STATE_rw && 1484 ca->mi.state != BCH_MEMBER_STATE_ro) 1485 return true; 1486 1487 /* do we have enough devices to read from? */ 1488 new_online_devs = bch2_online_devs(c); 1489 __clear_bit(ca->dev_idx, new_online_devs.d); 1490 1491 return bch2_have_enough_devs(c, new_online_devs, flags, false); 1492 default: 1493 BUG(); 1494 } 1495 } 1496 1497 static bool bch2_fs_may_start(struct bch_fs *c) 1498 { 1499 struct bch_dev *ca; 1500 unsigned i, flags = 0; 1501 1502 if (c->opts.very_degraded) 1503 flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST; 1504 1505 if (c->opts.degraded) 1506 flags |= BCH_FORCE_IF_DEGRADED; 1507 1508 if (!c->opts.degraded && 1509 !c->opts.very_degraded) { 1510 mutex_lock(&c->sb_lock); 1511 1512 for (i = 0; i < c->disk_sb.sb->nr_devices; i++) { 1513 if (!bch2_member_exists(c->disk_sb.sb, i)) 1514 continue; 1515 1516 ca = bch2_dev_locked(c, i); 1517 1518 if (!bch2_dev_is_online(ca) && 1519 (ca->mi.state == BCH_MEMBER_STATE_rw || 1520 ca->mi.state == BCH_MEMBER_STATE_ro)) { 1521 mutex_unlock(&c->sb_lock); 1522 return false; 1523 } 1524 } 1525 mutex_unlock(&c->sb_lock); 1526 } 1527 1528 return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true); 1529 } 1530 1531 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca) 1532 { 1533 /* 1534 * The allocator thread itself allocates btree nodes, so stop it first: 1535 */ 1536 bch2_dev_allocator_remove(c, ca); 1537 bch2_recalc_capacity(c); 1538 bch2_dev_journal_stop(&c->journal, ca); 1539 } 1540 1541 static void __bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca) 1542 { 1543 lockdep_assert_held(&c->state_lock); 1544 1545 BUG_ON(ca->mi.state != BCH_MEMBER_STATE_rw); 1546 1547 bch2_dev_allocator_add(c, ca); 1548 bch2_recalc_capacity(c); 1549 bch2_dev_do_discards(ca); 1550 } 1551 1552 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, 1553 enum bch_member_state new_state, int flags) 1554 { 1555 struct bch_member *m; 1556 int ret = 0; 1557 1558 if (ca->mi.state == new_state) 1559 return 0; 1560 1561 if (!bch2_dev_state_allowed(c, ca, new_state, flags)) 1562 return -BCH_ERR_device_state_not_allowed; 1563 1564 if (new_state != BCH_MEMBER_STATE_rw) 1565 __bch2_dev_read_only(c, ca); 1566 1567 bch_notice(ca, "%s", bch2_member_states[new_state]); 1568 1569 mutex_lock(&c->sb_lock); 1570 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); 1571 SET_BCH_MEMBER_STATE(m, new_state); 1572 bch2_write_super(c); 1573 mutex_unlock(&c->sb_lock); 1574 1575 if (new_state == BCH_MEMBER_STATE_rw) 1576 __bch2_dev_read_write(c, ca); 1577 1578 rebalance_wakeup(c); 1579 1580 return ret; 1581 } 1582 1583 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, 1584 enum bch_member_state new_state, int flags) 1585 { 1586 int ret; 1587 1588 down_write(&c->state_lock); 1589 ret = __bch2_dev_set_state(c, ca, new_state, flags); 1590 up_write(&c->state_lock); 1591 1592 return ret; 1593 } 1594 1595 /* Device add/removal: */ 1596 1597 static int bch2_dev_remove_alloc(struct bch_fs *c, struct bch_dev *ca) 1598 { 1599 struct bpos start = POS(ca->dev_idx, 0); 1600 struct bpos end = POS(ca->dev_idx, U64_MAX); 1601 int ret; 1602 1603 /* 1604 * We clear the LRU and need_discard btrees first so that we don't race 1605 * with bch2_do_invalidates() and bch2_do_discards() 1606 */ 1607 ret = bch2_btree_delete_range(c, BTREE_ID_lru, start, end, 1608 BTREE_TRIGGER_norun, NULL) ?: 1609 bch2_btree_delete_range(c, BTREE_ID_need_discard, start, end, 1610 BTREE_TRIGGER_norun, NULL) ?: 1611 bch2_btree_delete_range(c, BTREE_ID_freespace, start, end, 1612 BTREE_TRIGGER_norun, NULL) ?: 1613 bch2_btree_delete_range(c, BTREE_ID_backpointers, start, end, 1614 BTREE_TRIGGER_norun, NULL) ?: 1615 bch2_btree_delete_range(c, BTREE_ID_alloc, start, end, 1616 BTREE_TRIGGER_norun, NULL) ?: 1617 bch2_btree_delete_range(c, BTREE_ID_bucket_gens, start, end, 1618 BTREE_TRIGGER_norun, NULL); 1619 bch_err_msg(c, ret, "removing dev alloc info"); 1620 return ret; 1621 } 1622 1623 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags) 1624 { 1625 struct bch_member *m; 1626 unsigned dev_idx = ca->dev_idx, data; 1627 int ret; 1628 1629 down_write(&c->state_lock); 1630 1631 /* 1632 * We consume a reference to ca->ref, regardless of whether we succeed 1633 * or fail: 1634 */ 1635 bch2_dev_put(ca); 1636 1637 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { 1638 bch_err(ca, "Cannot remove without losing data"); 1639 ret = -BCH_ERR_device_state_not_allowed; 1640 goto err; 1641 } 1642 1643 __bch2_dev_read_only(c, ca); 1644 1645 ret = bch2_dev_data_drop(c, ca->dev_idx, flags); 1646 bch_err_msg(ca, ret, "bch2_dev_data_drop()"); 1647 if (ret) 1648 goto err; 1649 1650 ret = bch2_dev_remove_alloc(c, ca); 1651 bch_err_msg(ca, ret, "bch2_dev_remove_alloc()"); 1652 if (ret) 1653 goto err; 1654 1655 ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx); 1656 bch_err_msg(ca, ret, "bch2_journal_flush_device_pins()"); 1657 if (ret) 1658 goto err; 1659 1660 ret = bch2_journal_flush(&c->journal); 1661 bch_err_msg(ca, ret, "bch2_journal_flush()"); 1662 if (ret) 1663 goto err; 1664 1665 ret = bch2_replicas_gc2(c); 1666 bch_err_msg(ca, ret, "bch2_replicas_gc2()"); 1667 if (ret) 1668 goto err; 1669 1670 data = bch2_dev_has_data(c, ca); 1671 if (data) { 1672 struct printbuf data_has = PRINTBUF; 1673 1674 prt_bitflags(&data_has, __bch2_data_types, data); 1675 bch_err(ca, "Remove failed, still has data (%s)", data_has.buf); 1676 printbuf_exit(&data_has); 1677 ret = -EBUSY; 1678 goto err; 1679 } 1680 1681 __bch2_dev_offline(c, ca); 1682 1683 mutex_lock(&c->sb_lock); 1684 rcu_assign_pointer(c->devs[ca->dev_idx], NULL); 1685 mutex_unlock(&c->sb_lock); 1686 1687 #ifndef CONFIG_BCACHEFS_DEBUG 1688 percpu_ref_kill(&ca->ref); 1689 #else 1690 ca->dying = true; 1691 bch2_dev_put(ca); 1692 #endif 1693 wait_for_completion(&ca->ref_completion); 1694 1695 bch2_dev_free(ca); 1696 1697 /* 1698 * At this point the device object has been removed in-core, but the 1699 * on-disk journal might still refer to the device index via sb device 1700 * usage entries. Recovery fails if it sees usage information for an 1701 * invalid device. Flush journal pins to push the back of the journal 1702 * past now invalid device index references before we update the 1703 * superblock, but after the device object has been removed so any 1704 * further journal writes elide usage info for the device. 1705 */ 1706 bch2_journal_flush_all_pins(&c->journal); 1707 1708 /* 1709 * Free this device's slot in the bch_member array - all pointers to 1710 * this device must be gone: 1711 */ 1712 mutex_lock(&c->sb_lock); 1713 m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx); 1714 memset(&m->uuid, 0, sizeof(m->uuid)); 1715 1716 bch2_write_super(c); 1717 1718 mutex_unlock(&c->sb_lock); 1719 up_write(&c->state_lock); 1720 1721 bch2_dev_usage_journal_reserve(c); 1722 return 0; 1723 err: 1724 if (ca->mi.state == BCH_MEMBER_STATE_rw && 1725 !percpu_ref_is_zero(&ca->io_ref)) 1726 __bch2_dev_read_write(c, ca); 1727 up_write(&c->state_lock); 1728 return ret; 1729 } 1730 1731 /* Add new device to running filesystem: */ 1732 int bch2_dev_add(struct bch_fs *c, const char *path) 1733 { 1734 struct bch_opts opts = bch2_opts_empty(); 1735 struct bch_sb_handle sb; 1736 struct bch_dev *ca = NULL; 1737 struct bch_sb_field_members_v2 *mi; 1738 struct bch_member dev_mi; 1739 unsigned dev_idx, nr_devices, u64s; 1740 struct printbuf errbuf = PRINTBUF; 1741 struct printbuf label = PRINTBUF; 1742 int ret; 1743 1744 ret = bch2_read_super(path, &opts, &sb); 1745 bch_err_msg(c, ret, "reading super"); 1746 if (ret) 1747 goto err; 1748 1749 dev_mi = bch2_sb_member_get(sb.sb, sb.sb->dev_idx); 1750 1751 if (BCH_MEMBER_GROUP(&dev_mi)) { 1752 bch2_disk_path_to_text_sb(&label, sb.sb, BCH_MEMBER_GROUP(&dev_mi) - 1); 1753 if (label.allocation_failure) { 1754 ret = -ENOMEM; 1755 goto err; 1756 } 1757 } 1758 1759 ret = bch2_dev_may_add(sb.sb, c); 1760 if (ret) 1761 goto err; 1762 1763 ca = __bch2_dev_alloc(c, &dev_mi); 1764 if (!ca) { 1765 ret = -ENOMEM; 1766 goto err; 1767 } 1768 1769 bch2_dev_usage_init(ca); 1770 1771 ret = __bch2_dev_attach_bdev(ca, &sb); 1772 if (ret) 1773 goto err; 1774 1775 ret = bch2_dev_journal_alloc(ca, true); 1776 bch_err_msg(c, ret, "allocating journal"); 1777 if (ret) 1778 goto err; 1779 1780 down_write(&c->state_lock); 1781 mutex_lock(&c->sb_lock); 1782 1783 ret = bch2_sb_from_fs(c, ca); 1784 bch_err_msg(c, ret, "setting up new superblock"); 1785 if (ret) 1786 goto err_unlock; 1787 1788 if (dynamic_fault("bcachefs:add:no_slot")) 1789 goto no_slot; 1790 1791 if (c->sb.nr_devices < BCH_SB_MEMBERS_MAX) { 1792 dev_idx = c->sb.nr_devices; 1793 goto have_slot; 1794 } 1795 1796 int best = -1; 1797 u64 best_last_mount = 0; 1798 for (dev_idx = 0; dev_idx < BCH_SB_MEMBERS_MAX; dev_idx++) { 1799 struct bch_member m = bch2_sb_member_get(c->disk_sb.sb, dev_idx); 1800 if (bch2_member_alive(&m)) 1801 continue; 1802 1803 u64 last_mount = le64_to_cpu(m.last_mount); 1804 if (best < 0 || last_mount < best_last_mount) { 1805 best = dev_idx; 1806 best_last_mount = last_mount; 1807 } 1808 } 1809 if (best >= 0) { 1810 dev_idx = best; 1811 goto have_slot; 1812 } 1813 no_slot: 1814 ret = -BCH_ERR_ENOSPC_sb_members; 1815 bch_err_msg(c, ret, "setting up new superblock"); 1816 goto err_unlock; 1817 1818 have_slot: 1819 nr_devices = max_t(unsigned, dev_idx + 1, c->sb.nr_devices); 1820 1821 mi = bch2_sb_field_get(c->disk_sb.sb, members_v2); 1822 u64s = DIV_ROUND_UP(sizeof(struct bch_sb_field_members_v2) + 1823 le16_to_cpu(mi->member_bytes) * nr_devices, sizeof(u64)); 1824 1825 mi = bch2_sb_field_resize(&c->disk_sb, members_v2, u64s); 1826 if (!mi) { 1827 ret = -BCH_ERR_ENOSPC_sb_members; 1828 bch_err_msg(c, ret, "setting up new superblock"); 1829 goto err_unlock; 1830 } 1831 struct bch_member *m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx); 1832 1833 /* success: */ 1834 1835 *m = dev_mi; 1836 m->last_mount = cpu_to_le64(ktime_get_real_seconds()); 1837 c->disk_sb.sb->nr_devices = nr_devices; 1838 1839 ca->disk_sb.sb->dev_idx = dev_idx; 1840 bch2_dev_attach(c, ca, dev_idx); 1841 1842 if (BCH_MEMBER_GROUP(&dev_mi)) { 1843 ret = __bch2_dev_group_set(c, ca, label.buf); 1844 bch_err_msg(c, ret, "creating new label"); 1845 if (ret) 1846 goto err_unlock; 1847 } 1848 1849 bch2_write_super(c); 1850 mutex_unlock(&c->sb_lock); 1851 1852 bch2_dev_usage_journal_reserve(c); 1853 1854 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional); 1855 bch_err_msg(ca, ret, "marking new superblock"); 1856 if (ret) 1857 goto err_late; 1858 1859 ret = bch2_fs_freespace_init(c); 1860 bch_err_msg(ca, ret, "initializing free space"); 1861 if (ret) 1862 goto err_late; 1863 1864 ca->new_fs_bucket_idx = 0; 1865 1866 if (ca->mi.state == BCH_MEMBER_STATE_rw) 1867 __bch2_dev_read_write(c, ca); 1868 1869 up_write(&c->state_lock); 1870 return 0; 1871 1872 err_unlock: 1873 mutex_unlock(&c->sb_lock); 1874 up_write(&c->state_lock); 1875 err: 1876 if (ca) 1877 bch2_dev_free(ca); 1878 bch2_free_super(&sb); 1879 printbuf_exit(&label); 1880 printbuf_exit(&errbuf); 1881 bch_err_fn(c, ret); 1882 return ret; 1883 err_late: 1884 up_write(&c->state_lock); 1885 ca = NULL; 1886 goto err; 1887 } 1888 1889 /* Hot add existing device to running filesystem: */ 1890 int bch2_dev_online(struct bch_fs *c, const char *path) 1891 { 1892 struct bch_opts opts = bch2_opts_empty(); 1893 struct bch_sb_handle sb = { NULL }; 1894 struct bch_dev *ca; 1895 unsigned dev_idx; 1896 int ret; 1897 1898 down_write(&c->state_lock); 1899 1900 ret = bch2_read_super(path, &opts, &sb); 1901 if (ret) { 1902 up_write(&c->state_lock); 1903 return ret; 1904 } 1905 1906 dev_idx = sb.sb->dev_idx; 1907 1908 ret = bch2_dev_in_fs(&c->disk_sb, &sb, &c->opts); 1909 bch_err_msg(c, ret, "bringing %s online", path); 1910 if (ret) 1911 goto err; 1912 1913 ret = bch2_dev_attach_bdev(c, &sb); 1914 if (ret) 1915 goto err; 1916 1917 ca = bch2_dev_locked(c, dev_idx); 1918 1919 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional); 1920 bch_err_msg(c, ret, "bringing %s online: error from bch2_trans_mark_dev_sb", path); 1921 if (ret) 1922 goto err; 1923 1924 if (ca->mi.state == BCH_MEMBER_STATE_rw) 1925 __bch2_dev_read_write(c, ca); 1926 1927 if (!ca->mi.freespace_initialized) { 1928 ret = bch2_dev_freespace_init(c, ca, 0, ca->mi.nbuckets); 1929 bch_err_msg(ca, ret, "initializing free space"); 1930 if (ret) 1931 goto err; 1932 } 1933 1934 if (!ca->journal.nr) { 1935 ret = bch2_dev_journal_alloc(ca, false); 1936 bch_err_msg(ca, ret, "allocating journal"); 1937 if (ret) 1938 goto err; 1939 } 1940 1941 mutex_lock(&c->sb_lock); 1942 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = 1943 cpu_to_le64(ktime_get_real_seconds()); 1944 bch2_write_super(c); 1945 mutex_unlock(&c->sb_lock); 1946 1947 up_write(&c->state_lock); 1948 return 0; 1949 err: 1950 up_write(&c->state_lock); 1951 bch2_free_super(&sb); 1952 return ret; 1953 } 1954 1955 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags) 1956 { 1957 down_write(&c->state_lock); 1958 1959 if (!bch2_dev_is_online(ca)) { 1960 bch_err(ca, "Already offline"); 1961 up_write(&c->state_lock); 1962 return 0; 1963 } 1964 1965 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { 1966 bch_err(ca, "Cannot offline required disk"); 1967 up_write(&c->state_lock); 1968 return -BCH_ERR_device_state_not_allowed; 1969 } 1970 1971 __bch2_dev_offline(c, ca); 1972 1973 up_write(&c->state_lock); 1974 return 0; 1975 } 1976 1977 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets) 1978 { 1979 struct bch_member *m; 1980 u64 old_nbuckets; 1981 int ret = 0; 1982 1983 down_write(&c->state_lock); 1984 old_nbuckets = ca->mi.nbuckets; 1985 1986 if (nbuckets < ca->mi.nbuckets) { 1987 bch_err(ca, "Cannot shrink yet"); 1988 ret = -EINVAL; 1989 goto err; 1990 } 1991 1992 if (nbuckets > BCH_MEMBER_NBUCKETS_MAX) { 1993 bch_err(ca, "New device size too big (%llu greater than max %u)", 1994 nbuckets, BCH_MEMBER_NBUCKETS_MAX); 1995 ret = -BCH_ERR_device_size_too_big; 1996 goto err; 1997 } 1998 1999 if (bch2_dev_is_online(ca) && 2000 get_capacity(ca->disk_sb.bdev->bd_disk) < 2001 ca->mi.bucket_size * nbuckets) { 2002 bch_err(ca, "New size larger than device"); 2003 ret = -BCH_ERR_device_size_too_small; 2004 goto err; 2005 } 2006 2007 ret = bch2_dev_buckets_resize(c, ca, nbuckets); 2008 bch_err_msg(ca, ret, "resizing buckets"); 2009 if (ret) 2010 goto err; 2011 2012 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional); 2013 if (ret) 2014 goto err; 2015 2016 mutex_lock(&c->sb_lock); 2017 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); 2018 m->nbuckets = cpu_to_le64(nbuckets); 2019 2020 bch2_write_super(c); 2021 mutex_unlock(&c->sb_lock); 2022 2023 if (ca->mi.freespace_initialized) { 2024 ret = bch2_dev_freespace_init(c, ca, old_nbuckets, nbuckets); 2025 if (ret) 2026 goto err; 2027 2028 /* 2029 * XXX: this is all wrong transactionally - we'll be able to do 2030 * this correctly after the disk space accounting rewrite 2031 */ 2032 ca->usage_base->d[BCH_DATA_free].buckets += nbuckets - old_nbuckets; 2033 } 2034 2035 bch2_recalc_capacity(c); 2036 err: 2037 up_write(&c->state_lock); 2038 return ret; 2039 } 2040 2041 /* return with ref on ca->ref: */ 2042 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *name) 2043 { 2044 for_each_member_device(c, ca) 2045 if (!strcmp(name, ca->name)) 2046 return ca; 2047 return ERR_PTR(-BCH_ERR_ENOENT_dev_not_found); 2048 } 2049 2050 /* Filesystem open: */ 2051 2052 static inline int sb_cmp(struct bch_sb *l, struct bch_sb *r) 2053 { 2054 return cmp_int(le64_to_cpu(l->seq), le64_to_cpu(r->seq)) ?: 2055 cmp_int(le64_to_cpu(l->write_time), le64_to_cpu(r->write_time)); 2056 } 2057 2058 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices, 2059 struct bch_opts opts) 2060 { 2061 DARRAY(struct bch_sb_handle) sbs = { 0 }; 2062 struct bch_fs *c = NULL; 2063 struct bch_sb_handle *best = NULL; 2064 struct printbuf errbuf = PRINTBUF; 2065 int ret = 0; 2066 2067 if (!try_module_get(THIS_MODULE)) 2068 return ERR_PTR(-ENODEV); 2069 2070 if (!nr_devices) { 2071 ret = -EINVAL; 2072 goto err; 2073 } 2074 2075 ret = darray_make_room(&sbs, nr_devices); 2076 if (ret) 2077 goto err; 2078 2079 for (unsigned i = 0; i < nr_devices; i++) { 2080 struct bch_sb_handle sb = { NULL }; 2081 2082 ret = bch2_read_super(devices[i], &opts, &sb); 2083 if (ret) 2084 goto err; 2085 2086 BUG_ON(darray_push(&sbs, sb)); 2087 } 2088 2089 if (opts.nochanges && !opts.read_only) { 2090 ret = -BCH_ERR_erofs_nochanges; 2091 goto err_print; 2092 } 2093 2094 darray_for_each(sbs, sb) 2095 if (!best || sb_cmp(sb->sb, best->sb) > 0) 2096 best = sb; 2097 2098 darray_for_each_reverse(sbs, sb) { 2099 ret = bch2_dev_in_fs(best, sb, &opts); 2100 2101 if (ret == -BCH_ERR_device_has_been_removed || 2102 ret == -BCH_ERR_device_splitbrain) { 2103 bch2_free_super(sb); 2104 darray_remove_item(&sbs, sb); 2105 best -= best > sb; 2106 ret = 0; 2107 continue; 2108 } 2109 2110 if (ret) 2111 goto err_print; 2112 } 2113 2114 c = bch2_fs_alloc(best->sb, opts); 2115 ret = PTR_ERR_OR_ZERO(c); 2116 if (ret) 2117 goto err; 2118 2119 down_write(&c->state_lock); 2120 darray_for_each(sbs, sb) { 2121 ret = bch2_dev_attach_bdev(c, sb); 2122 if (ret) { 2123 up_write(&c->state_lock); 2124 goto err; 2125 } 2126 } 2127 up_write(&c->state_lock); 2128 2129 if (!bch2_fs_may_start(c)) { 2130 ret = -BCH_ERR_insufficient_devices_to_start; 2131 goto err_print; 2132 } 2133 2134 if (!c->opts.nostart) { 2135 ret = bch2_fs_start(c); 2136 if (ret) 2137 goto err; 2138 } 2139 out: 2140 darray_for_each(sbs, sb) 2141 bch2_free_super(sb); 2142 darray_exit(&sbs); 2143 printbuf_exit(&errbuf); 2144 module_put(THIS_MODULE); 2145 return c; 2146 err_print: 2147 pr_err("bch_fs_open err opening %s: %s", 2148 devices[0], bch2_err_str(ret)); 2149 err: 2150 if (!IS_ERR_OR_NULL(c)) 2151 bch2_fs_stop(c); 2152 c = ERR_PTR(ret); 2153 goto out; 2154 } 2155 2156 /* Global interfaces/init */ 2157 2158 static void bcachefs_exit(void) 2159 { 2160 bch2_debug_exit(); 2161 bch2_vfs_exit(); 2162 bch2_chardev_exit(); 2163 bch2_btree_key_cache_exit(); 2164 if (bcachefs_kset) 2165 kset_unregister(bcachefs_kset); 2166 } 2167 2168 static int __init bcachefs_init(void) 2169 { 2170 bch2_bkey_pack_test(); 2171 2172 if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) || 2173 bch2_btree_key_cache_init() || 2174 bch2_chardev_init() || 2175 bch2_vfs_init() || 2176 bch2_debug_init()) 2177 goto err; 2178 2179 return 0; 2180 err: 2181 bcachefs_exit(); 2182 return -ENOMEM; 2183 } 2184 2185 #define BCH_DEBUG_PARAM(name, description) \ 2186 bool bch2_##name; \ 2187 module_param_named(name, bch2_##name, bool, 0644); \ 2188 MODULE_PARM_DESC(name, description); 2189 BCH_DEBUG_PARAMS() 2190 #undef BCH_DEBUG_PARAM 2191 2192 __maybe_unused 2193 static unsigned bch2_metadata_version = bcachefs_metadata_version_current; 2194 module_param_named(version, bch2_metadata_version, uint, 0400); 2195 2196 module_exit(bcachefs_exit); 2197 module_init(bcachefs_init); 2198