1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcachefs setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcachefs.h" 11 #include "alloc_background.h" 12 #include "alloc_foreground.h" 13 #include "bkey_sort.h" 14 #include "btree_cache.h" 15 #include "btree_gc.h" 16 #include "btree_journal_iter.h" 17 #include "btree_key_cache.h" 18 #include "btree_node_scan.h" 19 #include "btree_update_interior.h" 20 #include "btree_io.h" 21 #include "btree_write_buffer.h" 22 #include "buckets_waiting_for_journal.h" 23 #include "chardev.h" 24 #include "checksum.h" 25 #include "clock.h" 26 #include "compress.h" 27 #include "debug.h" 28 #include "disk_groups.h" 29 #include "ec.h" 30 #include "errcode.h" 31 #include "error.h" 32 #include "fs.h" 33 #include "fs-io.h" 34 #include "fs-io-buffered.h" 35 #include "fs-io-direct.h" 36 #include "fsck.h" 37 #include "inode.h" 38 #include "io_read.h" 39 #include "io_write.h" 40 #include "journal.h" 41 #include "journal_reclaim.h" 42 #include "journal_seq_blacklist.h" 43 #include "move.h" 44 #include "migrate.h" 45 #include "movinggc.h" 46 #include "nocow_locking.h" 47 #include "quota.h" 48 #include "rebalance.h" 49 #include "recovery.h" 50 #include "replicas.h" 51 #include "sb-clean.h" 52 #include "sb-counters.h" 53 #include "sb-errors.h" 54 #include "sb-members.h" 55 #include "snapshot.h" 56 #include "subvolume.h" 57 #include "super.h" 58 #include "super-io.h" 59 #include "sysfs.h" 60 #include "thread_with_file.h" 61 #include "trace.h" 62 63 #include <linux/backing-dev.h> 64 #include <linux/blkdev.h> 65 #include <linux/debugfs.h> 66 #include <linux/device.h> 67 #include <linux/idr.h> 68 #include <linux/module.h> 69 #include <linux/percpu.h> 70 #include <linux/random.h> 71 #include <linux/sysfs.h> 72 #include <crypto/hash.h> 73 74 MODULE_LICENSE("GPL"); 75 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 76 MODULE_DESCRIPTION("bcachefs filesystem"); 77 MODULE_SOFTDEP("pre: crc32c"); 78 MODULE_SOFTDEP("pre: crc64"); 79 MODULE_SOFTDEP("pre: sha256"); 80 MODULE_SOFTDEP("pre: chacha20"); 81 MODULE_SOFTDEP("pre: poly1305"); 82 MODULE_SOFTDEP("pre: xxhash"); 83 84 const char * const bch2_fs_flag_strs[] = { 85 #define x(n) #n, 86 BCH_FS_FLAGS() 87 #undef x 88 NULL 89 }; 90 91 __printf(2, 0) 92 static void bch2_print_maybe_redirect(struct stdio_redirect *stdio, const char *fmt, va_list args) 93 { 94 #ifdef __KERNEL__ 95 if (unlikely(stdio)) { 96 if (fmt[0] == KERN_SOH[0]) 97 fmt += 2; 98 99 bch2_stdio_redirect_vprintf(stdio, true, fmt, args); 100 return; 101 } 102 #endif 103 vprintk(fmt, args); 104 } 105 106 void bch2_print_opts(struct bch_opts *opts, const char *fmt, ...) 107 { 108 struct stdio_redirect *stdio = (void *)(unsigned long)opts->stdio; 109 110 va_list args; 111 va_start(args, fmt); 112 bch2_print_maybe_redirect(stdio, fmt, args); 113 va_end(args); 114 } 115 116 void __bch2_print(struct bch_fs *c, const char *fmt, ...) 117 { 118 struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c); 119 120 va_list args; 121 va_start(args, fmt); 122 bch2_print_maybe_redirect(stdio, fmt, args); 123 va_end(args); 124 } 125 126 #define KTYPE(type) \ 127 static const struct attribute_group type ## _group = { \ 128 .attrs = type ## _files \ 129 }; \ 130 \ 131 static const struct attribute_group *type ## _groups[] = { \ 132 &type ## _group, \ 133 NULL \ 134 }; \ 135 \ 136 static const struct kobj_type type ## _ktype = { \ 137 .release = type ## _release, \ 138 .sysfs_ops = &type ## _sysfs_ops, \ 139 .default_groups = type ## _groups \ 140 } 141 142 static void bch2_fs_release(struct kobject *); 143 static void bch2_dev_release(struct kobject *); 144 static void bch2_fs_counters_release(struct kobject *k) 145 { 146 } 147 148 static void bch2_fs_internal_release(struct kobject *k) 149 { 150 } 151 152 static void bch2_fs_opts_dir_release(struct kobject *k) 153 { 154 } 155 156 static void bch2_fs_time_stats_release(struct kobject *k) 157 { 158 } 159 160 KTYPE(bch2_fs); 161 KTYPE(bch2_fs_counters); 162 KTYPE(bch2_fs_internal); 163 KTYPE(bch2_fs_opts_dir); 164 KTYPE(bch2_fs_time_stats); 165 KTYPE(bch2_dev); 166 167 static struct kset *bcachefs_kset; 168 static LIST_HEAD(bch_fs_list); 169 static DEFINE_MUTEX(bch_fs_list_lock); 170 171 DECLARE_WAIT_QUEUE_HEAD(bch2_read_only_wait); 172 173 static void bch2_dev_free(struct bch_dev *); 174 static int bch2_dev_alloc(struct bch_fs *, unsigned); 175 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *); 176 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *); 177 178 struct bch_fs *bch2_dev_to_fs(dev_t dev) 179 { 180 struct bch_fs *c; 181 182 mutex_lock(&bch_fs_list_lock); 183 rcu_read_lock(); 184 185 list_for_each_entry(c, &bch_fs_list, list) 186 for_each_member_device_rcu(c, ca, NULL) 187 if (ca->disk_sb.bdev && ca->disk_sb.bdev->bd_dev == dev) { 188 closure_get(&c->cl); 189 goto found; 190 } 191 c = NULL; 192 found: 193 rcu_read_unlock(); 194 mutex_unlock(&bch_fs_list_lock); 195 196 return c; 197 } 198 199 static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid) 200 { 201 struct bch_fs *c; 202 203 lockdep_assert_held(&bch_fs_list_lock); 204 205 list_for_each_entry(c, &bch_fs_list, list) 206 if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid))) 207 return c; 208 209 return NULL; 210 } 211 212 struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid) 213 { 214 struct bch_fs *c; 215 216 mutex_lock(&bch_fs_list_lock); 217 c = __bch2_uuid_to_fs(uuid); 218 if (c) 219 closure_get(&c->cl); 220 mutex_unlock(&bch_fs_list_lock); 221 222 return c; 223 } 224 225 static void bch2_dev_usage_journal_reserve(struct bch_fs *c) 226 { 227 unsigned nr = 0, u64s = 228 ((sizeof(struct jset_entry_dev_usage) + 229 sizeof(struct jset_entry_dev_usage_type) * BCH_DATA_NR)) / 230 sizeof(u64); 231 232 rcu_read_lock(); 233 for_each_member_device_rcu(c, ca, NULL) 234 nr++; 235 rcu_read_unlock(); 236 237 bch2_journal_entry_res_resize(&c->journal, 238 &c->dev_usage_journal_res, u64s * nr); 239 } 240 241 /* Filesystem RO/RW: */ 242 243 /* 244 * For startup/shutdown of RW stuff, the dependencies are: 245 * 246 * - foreground writes depend on copygc and rebalance (to free up space) 247 * 248 * - copygc and rebalance depend on mark and sweep gc (they actually probably 249 * don't because they either reserve ahead of time or don't block if 250 * allocations fail, but allocations can require mark and sweep gc to run 251 * because of generation number wraparound) 252 * 253 * - all of the above depends on the allocator threads 254 * 255 * - allocator depends on the journal (when it rewrites prios and gens) 256 */ 257 258 static void __bch2_fs_read_only(struct bch_fs *c) 259 { 260 unsigned clean_passes = 0; 261 u64 seq = 0; 262 263 bch2_fs_ec_stop(c); 264 bch2_open_buckets_stop(c, NULL, true); 265 bch2_rebalance_stop(c); 266 bch2_copygc_stop(c); 267 bch2_gc_thread_stop(c); 268 bch2_fs_ec_flush(c); 269 270 bch_verbose(c, "flushing journal and stopping allocators, journal seq %llu", 271 journal_cur_seq(&c->journal)); 272 273 do { 274 clean_passes++; 275 276 if (bch2_btree_interior_updates_flush(c) || 277 bch2_journal_flush_all_pins(&c->journal) || 278 bch2_btree_flush_all_writes(c) || 279 seq != atomic64_read(&c->journal.seq)) { 280 seq = atomic64_read(&c->journal.seq); 281 clean_passes = 0; 282 } 283 } while (clean_passes < 2); 284 285 bch_verbose(c, "flushing journal and stopping allocators complete, journal seq %llu", 286 journal_cur_seq(&c->journal)); 287 288 if (test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags) && 289 !test_bit(BCH_FS_emergency_ro, &c->flags)) 290 set_bit(BCH_FS_clean_shutdown, &c->flags); 291 292 bch2_fs_journal_stop(&c->journal); 293 294 bch_info(c, "%sshutdown complete, journal seq %llu", 295 test_bit(BCH_FS_clean_shutdown, &c->flags) ? "" : "un", 296 c->journal.seq_ondisk); 297 298 /* 299 * After stopping journal: 300 */ 301 for_each_member_device(c, ca) 302 bch2_dev_allocator_remove(c, ca); 303 } 304 305 #ifndef BCH_WRITE_REF_DEBUG 306 static void bch2_writes_disabled(struct percpu_ref *writes) 307 { 308 struct bch_fs *c = container_of(writes, struct bch_fs, writes); 309 310 set_bit(BCH_FS_write_disable_complete, &c->flags); 311 wake_up(&bch2_read_only_wait); 312 } 313 #endif 314 315 void bch2_fs_read_only(struct bch_fs *c) 316 { 317 if (!test_bit(BCH_FS_rw, &c->flags)) { 318 bch2_journal_reclaim_stop(&c->journal); 319 return; 320 } 321 322 BUG_ON(test_bit(BCH_FS_write_disable_complete, &c->flags)); 323 324 bch_verbose(c, "going read-only"); 325 326 /* 327 * Block new foreground-end write operations from starting - any new 328 * writes will return -EROFS: 329 */ 330 set_bit(BCH_FS_going_ro, &c->flags); 331 #ifndef BCH_WRITE_REF_DEBUG 332 percpu_ref_kill(&c->writes); 333 #else 334 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) 335 bch2_write_ref_put(c, i); 336 #endif 337 338 /* 339 * If we're not doing an emergency shutdown, we want to wait on 340 * outstanding writes to complete so they don't see spurious errors due 341 * to shutting down the allocator: 342 * 343 * If we are doing an emergency shutdown outstanding writes may 344 * hang until we shutdown the allocator so we don't want to wait 345 * on outstanding writes before shutting everything down - but 346 * we do need to wait on them before returning and signalling 347 * that going RO is complete: 348 */ 349 wait_event(bch2_read_only_wait, 350 test_bit(BCH_FS_write_disable_complete, &c->flags) || 351 test_bit(BCH_FS_emergency_ro, &c->flags)); 352 353 bool writes_disabled = test_bit(BCH_FS_write_disable_complete, &c->flags); 354 if (writes_disabled) 355 bch_verbose(c, "finished waiting for writes to stop"); 356 357 __bch2_fs_read_only(c); 358 359 wait_event(bch2_read_only_wait, 360 test_bit(BCH_FS_write_disable_complete, &c->flags)); 361 362 if (!writes_disabled) 363 bch_verbose(c, "finished waiting for writes to stop"); 364 365 clear_bit(BCH_FS_write_disable_complete, &c->flags); 366 clear_bit(BCH_FS_going_ro, &c->flags); 367 clear_bit(BCH_FS_rw, &c->flags); 368 369 if (!bch2_journal_error(&c->journal) && 370 !test_bit(BCH_FS_error, &c->flags) && 371 !test_bit(BCH_FS_emergency_ro, &c->flags) && 372 test_bit(BCH_FS_started, &c->flags) && 373 test_bit(BCH_FS_clean_shutdown, &c->flags) && 374 c->recovery_pass_done >= BCH_RECOVERY_PASS_journal_replay) { 375 BUG_ON(c->journal.last_empty_seq != journal_cur_seq(&c->journal)); 376 BUG_ON(atomic_read(&c->btree_cache.dirty)); 377 BUG_ON(atomic_long_read(&c->btree_key_cache.nr_dirty)); 378 BUG_ON(c->btree_write_buffer.inc.keys.nr); 379 BUG_ON(c->btree_write_buffer.flushing.keys.nr); 380 381 bch_verbose(c, "marking filesystem clean"); 382 bch2_fs_mark_clean(c); 383 } else { 384 bch_verbose(c, "done going read-only, filesystem not clean"); 385 } 386 } 387 388 static void bch2_fs_read_only_work(struct work_struct *work) 389 { 390 struct bch_fs *c = 391 container_of(work, struct bch_fs, read_only_work); 392 393 down_write(&c->state_lock); 394 bch2_fs_read_only(c); 395 up_write(&c->state_lock); 396 } 397 398 static void bch2_fs_read_only_async(struct bch_fs *c) 399 { 400 queue_work(system_long_wq, &c->read_only_work); 401 } 402 403 bool bch2_fs_emergency_read_only(struct bch_fs *c) 404 { 405 bool ret = !test_and_set_bit(BCH_FS_emergency_ro, &c->flags); 406 407 bch2_journal_halt(&c->journal); 408 bch2_fs_read_only_async(c); 409 410 wake_up(&bch2_read_only_wait); 411 return ret; 412 } 413 414 static int bch2_fs_read_write_late(struct bch_fs *c) 415 { 416 int ret; 417 418 /* 419 * Data move operations can't run until after check_snapshots has 420 * completed, and bch2_snapshot_is_ancestor() is available. 421 * 422 * Ideally we'd start copygc/rebalance earlier instead of waiting for 423 * all of recovery/fsck to complete: 424 */ 425 ret = bch2_copygc_start(c); 426 if (ret) { 427 bch_err(c, "error starting copygc thread"); 428 return ret; 429 } 430 431 ret = bch2_rebalance_start(c); 432 if (ret) { 433 bch_err(c, "error starting rebalance thread"); 434 return ret; 435 } 436 437 return 0; 438 } 439 440 static int __bch2_fs_read_write(struct bch_fs *c, bool early) 441 { 442 int ret; 443 444 if (test_bit(BCH_FS_initial_gc_unfixed, &c->flags)) { 445 bch_err(c, "cannot go rw, unfixed btree errors"); 446 return -BCH_ERR_erofs_unfixed_errors; 447 } 448 449 if (test_bit(BCH_FS_rw, &c->flags)) 450 return 0; 451 452 bch_info(c, "going read-write"); 453 454 ret = bch2_sb_members_v2_init(c); 455 if (ret) 456 goto err; 457 458 ret = bch2_fs_mark_dirty(c); 459 if (ret) 460 goto err; 461 462 clear_bit(BCH_FS_clean_shutdown, &c->flags); 463 464 /* 465 * First journal write must be a flush write: after a clean shutdown we 466 * don't read the journal, so the first journal write may end up 467 * overwriting whatever was there previously, and there must always be 468 * at least one non-flush write in the journal or recovery will fail: 469 */ 470 set_bit(JOURNAL_NEED_FLUSH_WRITE, &c->journal.flags); 471 472 for_each_rw_member(c, ca) 473 bch2_dev_allocator_add(c, ca); 474 bch2_recalc_capacity(c); 475 476 set_bit(BCH_FS_rw, &c->flags); 477 set_bit(BCH_FS_was_rw, &c->flags); 478 479 #ifndef BCH_WRITE_REF_DEBUG 480 percpu_ref_reinit(&c->writes); 481 #else 482 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) { 483 BUG_ON(atomic_long_read(&c->writes[i])); 484 atomic_long_inc(&c->writes[i]); 485 } 486 #endif 487 488 ret = bch2_gc_thread_start(c); 489 if (ret) { 490 bch_err(c, "error starting gc thread"); 491 return ret; 492 } 493 494 ret = bch2_journal_reclaim_start(&c->journal); 495 if (ret) 496 goto err; 497 498 if (!early) { 499 ret = bch2_fs_read_write_late(c); 500 if (ret) 501 goto err; 502 } 503 504 bch2_do_discards(c); 505 bch2_do_invalidates(c); 506 bch2_do_stripe_deletes(c); 507 bch2_do_pending_node_rewrites(c); 508 return 0; 509 err: 510 if (test_bit(BCH_FS_rw, &c->flags)) 511 bch2_fs_read_only(c); 512 else 513 __bch2_fs_read_only(c); 514 return ret; 515 } 516 517 int bch2_fs_read_write(struct bch_fs *c) 518 { 519 if (c->opts.recovery_pass_last && 520 c->opts.recovery_pass_last < BCH_RECOVERY_PASS_journal_replay) 521 return -BCH_ERR_erofs_norecovery; 522 523 if (c->opts.nochanges) 524 return -BCH_ERR_erofs_nochanges; 525 526 return __bch2_fs_read_write(c, false); 527 } 528 529 int bch2_fs_read_write_early(struct bch_fs *c) 530 { 531 lockdep_assert_held(&c->state_lock); 532 533 return __bch2_fs_read_write(c, true); 534 } 535 536 /* Filesystem startup/shutdown: */ 537 538 static void __bch2_fs_free(struct bch_fs *c) 539 { 540 unsigned i; 541 542 for (i = 0; i < BCH_TIME_STAT_NR; i++) 543 bch2_time_stats_exit(&c->times[i]); 544 545 bch2_find_btree_nodes_exit(&c->found_btree_nodes); 546 bch2_free_pending_node_rewrites(c); 547 bch2_fs_sb_errors_exit(c); 548 bch2_fs_counters_exit(c); 549 bch2_fs_snapshots_exit(c); 550 bch2_fs_quota_exit(c); 551 bch2_fs_fs_io_direct_exit(c); 552 bch2_fs_fs_io_buffered_exit(c); 553 bch2_fs_fsio_exit(c); 554 bch2_fs_ec_exit(c); 555 bch2_fs_encryption_exit(c); 556 bch2_fs_nocow_locking_exit(c); 557 bch2_fs_io_write_exit(c); 558 bch2_fs_io_read_exit(c); 559 bch2_fs_buckets_waiting_for_journal_exit(c); 560 bch2_fs_btree_interior_update_exit(c); 561 bch2_fs_btree_iter_exit(c); 562 bch2_fs_btree_key_cache_exit(&c->btree_key_cache); 563 bch2_fs_btree_cache_exit(c); 564 bch2_fs_replicas_exit(c); 565 bch2_fs_journal_exit(&c->journal); 566 bch2_io_clock_exit(&c->io_clock[WRITE]); 567 bch2_io_clock_exit(&c->io_clock[READ]); 568 bch2_fs_compress_exit(c); 569 bch2_journal_keys_put_initial(c); 570 bch2_find_btree_nodes_exit(&c->found_btree_nodes); 571 BUG_ON(atomic_read(&c->journal_keys.ref)); 572 bch2_fs_btree_write_buffer_exit(c); 573 percpu_free_rwsem(&c->mark_lock); 574 free_percpu(c->online_reserved); 575 576 darray_exit(&c->btree_roots_extra); 577 free_percpu(c->pcpu); 578 mempool_exit(&c->large_bkey_pool); 579 mempool_exit(&c->btree_bounce_pool); 580 bioset_exit(&c->btree_bio); 581 mempool_exit(&c->fill_iter); 582 #ifndef BCH_WRITE_REF_DEBUG 583 percpu_ref_exit(&c->writes); 584 #endif 585 kfree(rcu_dereference_protected(c->disk_groups, 1)); 586 kfree(c->journal_seq_blacklist_table); 587 kfree(c->unused_inode_hints); 588 589 if (c->write_ref_wq) 590 destroy_workqueue(c->write_ref_wq); 591 if (c->io_complete_wq) 592 destroy_workqueue(c->io_complete_wq); 593 if (c->copygc_wq) 594 destroy_workqueue(c->copygc_wq); 595 if (c->btree_io_complete_wq) 596 destroy_workqueue(c->btree_io_complete_wq); 597 if (c->btree_update_wq) 598 destroy_workqueue(c->btree_update_wq); 599 600 bch2_free_super(&c->disk_sb); 601 kvfree(c); 602 module_put(THIS_MODULE); 603 } 604 605 static void bch2_fs_release(struct kobject *kobj) 606 { 607 struct bch_fs *c = container_of(kobj, struct bch_fs, kobj); 608 609 __bch2_fs_free(c); 610 } 611 612 void __bch2_fs_stop(struct bch_fs *c) 613 { 614 bch_verbose(c, "shutting down"); 615 616 set_bit(BCH_FS_stopping, &c->flags); 617 618 cancel_work_sync(&c->journal_seq_blacklist_gc_work); 619 620 down_write(&c->state_lock); 621 bch2_fs_read_only(c); 622 up_write(&c->state_lock); 623 624 for_each_member_device(c, ca) 625 if (ca->kobj.state_in_sysfs && 626 ca->disk_sb.bdev) 627 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 628 629 if (c->kobj.state_in_sysfs) 630 kobject_del(&c->kobj); 631 632 bch2_fs_debug_exit(c); 633 bch2_fs_chardev_exit(c); 634 635 bch2_ro_ref_put(c); 636 wait_event(c->ro_ref_wait, !refcount_read(&c->ro_ref)); 637 638 kobject_put(&c->counters_kobj); 639 kobject_put(&c->time_stats); 640 kobject_put(&c->opts_dir); 641 kobject_put(&c->internal); 642 643 /* btree prefetch might have kicked off reads in the background: */ 644 bch2_btree_flush_all_reads(c); 645 646 for_each_member_device(c, ca) 647 cancel_work_sync(&ca->io_error_work); 648 649 cancel_work_sync(&c->read_only_work); 650 } 651 652 void bch2_fs_free(struct bch_fs *c) 653 { 654 unsigned i; 655 656 mutex_lock(&bch_fs_list_lock); 657 list_del(&c->list); 658 mutex_unlock(&bch_fs_list_lock); 659 660 closure_sync(&c->cl); 661 closure_debug_destroy(&c->cl); 662 663 for (i = 0; i < c->sb.nr_devices; i++) { 664 struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true); 665 666 if (ca) { 667 bch2_free_super(&ca->disk_sb); 668 bch2_dev_free(ca); 669 } 670 } 671 672 bch_verbose(c, "shutdown complete"); 673 674 kobject_put(&c->kobj); 675 } 676 677 void bch2_fs_stop(struct bch_fs *c) 678 { 679 __bch2_fs_stop(c); 680 bch2_fs_free(c); 681 } 682 683 static int bch2_fs_online(struct bch_fs *c) 684 { 685 int ret = 0; 686 687 lockdep_assert_held(&bch_fs_list_lock); 688 689 if (__bch2_uuid_to_fs(c->sb.uuid)) { 690 bch_err(c, "filesystem UUID already open"); 691 return -EINVAL; 692 } 693 694 ret = bch2_fs_chardev_init(c); 695 if (ret) { 696 bch_err(c, "error creating character device"); 697 return ret; 698 } 699 700 bch2_fs_debug_init(c); 701 702 ret = kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ?: 703 kobject_add(&c->internal, &c->kobj, "internal") ?: 704 kobject_add(&c->opts_dir, &c->kobj, "options") ?: 705 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT 706 kobject_add(&c->time_stats, &c->kobj, "time_stats") ?: 707 #endif 708 kobject_add(&c->counters_kobj, &c->kobj, "counters") ?: 709 bch2_opts_create_sysfs_files(&c->opts_dir); 710 if (ret) { 711 bch_err(c, "error creating sysfs objects"); 712 return ret; 713 } 714 715 down_write(&c->state_lock); 716 717 for_each_member_device(c, ca) { 718 ret = bch2_dev_sysfs_online(c, ca); 719 if (ret) { 720 bch_err(c, "error creating sysfs objects"); 721 percpu_ref_put(&ca->ref); 722 goto err; 723 } 724 } 725 726 BUG_ON(!list_empty(&c->list)); 727 list_add(&c->list, &bch_fs_list); 728 err: 729 up_write(&c->state_lock); 730 return ret; 731 } 732 733 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts) 734 { 735 struct bch_fs *c; 736 struct printbuf name = PRINTBUF; 737 unsigned i, iter_size; 738 int ret = 0; 739 740 c = kvmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO); 741 if (!c) { 742 c = ERR_PTR(-BCH_ERR_ENOMEM_fs_alloc); 743 goto out; 744 } 745 746 c->stdio = (void *)(unsigned long) opts.stdio; 747 748 __module_get(THIS_MODULE); 749 750 closure_init(&c->cl, NULL); 751 752 c->kobj.kset = bcachefs_kset; 753 kobject_init(&c->kobj, &bch2_fs_ktype); 754 kobject_init(&c->internal, &bch2_fs_internal_ktype); 755 kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype); 756 kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype); 757 kobject_init(&c->counters_kobj, &bch2_fs_counters_ktype); 758 759 c->minor = -1; 760 c->disk_sb.fs_sb = true; 761 762 init_rwsem(&c->state_lock); 763 mutex_init(&c->sb_lock); 764 mutex_init(&c->replicas_gc_lock); 765 mutex_init(&c->btree_root_lock); 766 INIT_WORK(&c->read_only_work, bch2_fs_read_only_work); 767 768 refcount_set(&c->ro_ref, 1); 769 init_waitqueue_head(&c->ro_ref_wait); 770 sema_init(&c->online_fsck_mutex, 1); 771 772 init_rwsem(&c->gc_lock); 773 mutex_init(&c->gc_gens_lock); 774 atomic_set(&c->journal_keys.ref, 1); 775 c->journal_keys.initial_ref_held = true; 776 777 for (i = 0; i < BCH_TIME_STAT_NR; i++) 778 bch2_time_stats_init(&c->times[i]); 779 780 bch2_fs_copygc_init(c); 781 bch2_fs_btree_key_cache_init_early(&c->btree_key_cache); 782 bch2_fs_btree_iter_init_early(c); 783 bch2_fs_btree_interior_update_init_early(c); 784 bch2_fs_allocator_background_init(c); 785 bch2_fs_allocator_foreground_init(c); 786 bch2_fs_rebalance_init(c); 787 bch2_fs_quota_init(c); 788 bch2_fs_ec_init_early(c); 789 bch2_fs_move_init(c); 790 bch2_fs_sb_errors_init_early(c); 791 792 INIT_LIST_HEAD(&c->list); 793 794 mutex_init(&c->usage_scratch_lock); 795 796 mutex_init(&c->bio_bounce_pages_lock); 797 mutex_init(&c->snapshot_table_lock); 798 init_rwsem(&c->snapshot_create_lock); 799 800 spin_lock_init(&c->btree_write_error_lock); 801 802 INIT_WORK(&c->journal_seq_blacklist_gc_work, 803 bch2_blacklist_entries_gc); 804 805 INIT_LIST_HEAD(&c->journal_iters); 806 807 INIT_LIST_HEAD(&c->fsck_error_msgs); 808 mutex_init(&c->fsck_error_msgs_lock); 809 810 seqcount_init(&c->gc_pos_lock); 811 812 seqcount_init(&c->usage_lock); 813 814 sema_init(&c->io_in_flight, 128); 815 816 INIT_LIST_HEAD(&c->vfs_inodes_list); 817 mutex_init(&c->vfs_inodes_lock); 818 819 c->copy_gc_enabled = 1; 820 c->rebalance.enabled = 1; 821 c->promote_whole_extents = true; 822 823 c->journal.flush_write_time = &c->times[BCH_TIME_journal_flush_write]; 824 c->journal.noflush_write_time = &c->times[BCH_TIME_journal_noflush_write]; 825 c->journal.flush_seq_time = &c->times[BCH_TIME_journal_flush_seq]; 826 827 bch2_fs_btree_cache_init_early(&c->btree_cache); 828 829 mutex_init(&c->sectors_available_lock); 830 831 ret = percpu_init_rwsem(&c->mark_lock); 832 if (ret) 833 goto err; 834 835 mutex_lock(&c->sb_lock); 836 ret = bch2_sb_to_fs(c, sb); 837 mutex_unlock(&c->sb_lock); 838 839 if (ret) 840 goto err; 841 842 pr_uuid(&name, c->sb.user_uuid.b); 843 ret = name.allocation_failure ? -BCH_ERR_ENOMEM_fs_name_alloc : 0; 844 if (ret) 845 goto err; 846 847 strscpy(c->name, name.buf, sizeof(c->name)); 848 printbuf_exit(&name); 849 850 /* Compat: */ 851 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && 852 !BCH_SB_JOURNAL_FLUSH_DELAY(sb)) 853 SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000); 854 855 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && 856 !BCH_SB_JOURNAL_RECLAIM_DELAY(sb)) 857 SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 100); 858 859 c->opts = bch2_opts_default; 860 ret = bch2_opts_from_sb(&c->opts, sb); 861 if (ret) 862 goto err; 863 864 bch2_opts_apply(&c->opts, opts); 865 866 c->btree_key_cache_btrees |= 1U << BTREE_ID_alloc; 867 if (c->opts.inodes_use_key_cache) 868 c->btree_key_cache_btrees |= 1U << BTREE_ID_inodes; 869 c->btree_key_cache_btrees |= 1U << BTREE_ID_logged_ops; 870 871 c->block_bits = ilog2(block_sectors(c)); 872 c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c); 873 874 if (bch2_fs_init_fault("fs_alloc")) { 875 bch_err(c, "fs_alloc fault injected"); 876 ret = -EFAULT; 877 goto err; 878 } 879 880 iter_size = sizeof(struct sort_iter) + 881 (btree_blocks(c) + 1) * 2 * 882 sizeof(struct sort_iter_set); 883 884 c->inode_shard_bits = ilog2(roundup_pow_of_two(num_possible_cpus())); 885 886 if (!(c->btree_update_wq = alloc_workqueue("bcachefs", 887 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_UNBOUND, 512)) || 888 !(c->btree_io_complete_wq = alloc_workqueue("bcachefs_btree_io", 889 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) || 890 !(c->copygc_wq = alloc_workqueue("bcachefs_copygc", 891 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) || 892 !(c->io_complete_wq = alloc_workqueue("bcachefs_io", 893 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 512)) || 894 !(c->write_ref_wq = alloc_workqueue("bcachefs_write_ref", 895 WQ_FREEZABLE, 0)) || 896 #ifndef BCH_WRITE_REF_DEBUG 897 percpu_ref_init(&c->writes, bch2_writes_disabled, 898 PERCPU_REF_INIT_DEAD, GFP_KERNEL) || 899 #endif 900 mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) || 901 bioset_init(&c->btree_bio, 1, 902 max(offsetof(struct btree_read_bio, bio), 903 offsetof(struct btree_write_bio, wbio.bio)), 904 BIOSET_NEED_BVECS) || 905 !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) || 906 !(c->online_reserved = alloc_percpu(u64)) || 907 mempool_init_kvmalloc_pool(&c->btree_bounce_pool, 1, 908 c->opts.btree_node_size) || 909 mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048) || 910 !(c->unused_inode_hints = kcalloc(1U << c->inode_shard_bits, 911 sizeof(u64), GFP_KERNEL))) { 912 ret = -BCH_ERR_ENOMEM_fs_other_alloc; 913 goto err; 914 } 915 916 ret = bch2_fs_counters_init(c) ?: 917 bch2_fs_sb_errors_init(c) ?: 918 bch2_io_clock_init(&c->io_clock[READ]) ?: 919 bch2_io_clock_init(&c->io_clock[WRITE]) ?: 920 bch2_fs_journal_init(&c->journal) ?: 921 bch2_fs_replicas_init(c) ?: 922 bch2_fs_btree_cache_init(c) ?: 923 bch2_fs_btree_key_cache_init(&c->btree_key_cache) ?: 924 bch2_fs_btree_iter_init(c) ?: 925 bch2_fs_btree_interior_update_init(c) ?: 926 bch2_fs_buckets_waiting_for_journal_init(c) ?: 927 bch2_fs_btree_write_buffer_init(c) ?: 928 bch2_fs_subvolumes_init(c) ?: 929 bch2_fs_io_read_init(c) ?: 930 bch2_fs_io_write_init(c) ?: 931 bch2_fs_nocow_locking_init(c) ?: 932 bch2_fs_encryption_init(c) ?: 933 bch2_fs_compress_init(c) ?: 934 bch2_fs_ec_init(c) ?: 935 bch2_fs_fsio_init(c) ?: 936 bch2_fs_fs_io_buffered_init(c) ?: 937 bch2_fs_fs_io_direct_init(c); 938 if (ret) 939 goto err; 940 941 for (i = 0; i < c->sb.nr_devices; i++) 942 if (bch2_dev_exists(c->disk_sb.sb, i) && 943 bch2_dev_alloc(c, i)) { 944 ret = -EEXIST; 945 goto err; 946 } 947 948 bch2_journal_entry_res_resize(&c->journal, 949 &c->btree_root_journal_res, 950 BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX)); 951 bch2_dev_usage_journal_reserve(c); 952 bch2_journal_entry_res_resize(&c->journal, 953 &c->clock_journal_res, 954 (sizeof(struct jset_entry_clock) / sizeof(u64)) * 2); 955 956 mutex_lock(&bch_fs_list_lock); 957 ret = bch2_fs_online(c); 958 mutex_unlock(&bch_fs_list_lock); 959 960 if (ret) 961 goto err; 962 out: 963 return c; 964 err: 965 bch2_fs_free(c); 966 c = ERR_PTR(ret); 967 goto out; 968 } 969 970 noinline_for_stack 971 static void print_mount_opts(struct bch_fs *c) 972 { 973 enum bch_opt_id i; 974 struct printbuf p = PRINTBUF; 975 bool first = true; 976 977 prt_str(&p, "mounting version "); 978 bch2_version_to_text(&p, c->sb.version); 979 980 if (c->opts.read_only) { 981 prt_str(&p, " opts="); 982 first = false; 983 prt_printf(&p, "ro"); 984 } 985 986 for (i = 0; i < bch2_opts_nr; i++) { 987 const struct bch_option *opt = &bch2_opt_table[i]; 988 u64 v = bch2_opt_get_by_id(&c->opts, i); 989 990 if (!(opt->flags & OPT_MOUNT)) 991 continue; 992 993 if (v == bch2_opt_get_by_id(&bch2_opts_default, i)) 994 continue; 995 996 prt_str(&p, first ? " opts=" : ","); 997 first = false; 998 bch2_opt_to_text(&p, c, c->disk_sb.sb, opt, v, OPT_SHOW_MOUNT_STYLE); 999 } 1000 1001 bch_info(c, "%s", p.buf); 1002 printbuf_exit(&p); 1003 } 1004 1005 int bch2_fs_start(struct bch_fs *c) 1006 { 1007 time64_t now = ktime_get_real_seconds(); 1008 int ret; 1009 1010 print_mount_opts(c); 1011 1012 down_write(&c->state_lock); 1013 1014 BUG_ON(test_bit(BCH_FS_started, &c->flags)); 1015 1016 mutex_lock(&c->sb_lock); 1017 1018 ret = bch2_sb_members_v2_init(c); 1019 if (ret) { 1020 mutex_unlock(&c->sb_lock); 1021 goto err; 1022 } 1023 1024 for_each_online_member(c, ca) 1025 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = cpu_to_le64(now); 1026 1027 struct bch_sb_field_ext *ext = 1028 bch2_sb_field_get_minsize(&c->disk_sb, ext, sizeof(*ext) / sizeof(u64)); 1029 mutex_unlock(&c->sb_lock); 1030 1031 if (!ext) { 1032 bch_err(c, "insufficient space in superblock for sb_field_ext"); 1033 ret = -BCH_ERR_ENOSPC_sb; 1034 goto err; 1035 } 1036 1037 for_each_rw_member(c, ca) 1038 bch2_dev_allocator_add(c, ca); 1039 bch2_recalc_capacity(c); 1040 1041 ret = BCH_SB_INITIALIZED(c->disk_sb.sb) 1042 ? bch2_fs_recovery(c) 1043 : bch2_fs_initialize(c); 1044 if (ret) 1045 goto err; 1046 1047 ret = bch2_opts_check_may_set(c); 1048 if (ret) 1049 goto err; 1050 1051 if (bch2_fs_init_fault("fs_start")) { 1052 bch_err(c, "fs_start fault injected"); 1053 ret = -EINVAL; 1054 goto err; 1055 } 1056 1057 set_bit(BCH_FS_started, &c->flags); 1058 1059 if (c->opts.read_only) { 1060 bch2_fs_read_only(c); 1061 } else { 1062 ret = !test_bit(BCH_FS_rw, &c->flags) 1063 ? bch2_fs_read_write(c) 1064 : bch2_fs_read_write_late(c); 1065 if (ret) 1066 goto err; 1067 } 1068 1069 ret = 0; 1070 err: 1071 if (ret) 1072 bch_err_msg(c, ret, "starting filesystem"); 1073 else 1074 bch_verbose(c, "done starting filesystem"); 1075 up_write(&c->state_lock); 1076 return ret; 1077 } 1078 1079 static int bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c) 1080 { 1081 struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx); 1082 1083 if (le16_to_cpu(sb->block_size) != block_sectors(c)) 1084 return -BCH_ERR_mismatched_block_size; 1085 1086 if (le16_to_cpu(m.bucket_size) < 1087 BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb)) 1088 return -BCH_ERR_bucket_size_too_small; 1089 1090 return 0; 1091 } 1092 1093 static int bch2_dev_in_fs(struct bch_sb_handle *fs, 1094 struct bch_sb_handle *sb, 1095 struct bch_opts *opts) 1096 { 1097 if (fs == sb) 1098 return 0; 1099 1100 if (!uuid_equal(&fs->sb->uuid, &sb->sb->uuid)) 1101 return -BCH_ERR_device_not_a_member_of_filesystem; 1102 1103 if (!bch2_dev_exists(fs->sb, sb->sb->dev_idx)) 1104 return -BCH_ERR_device_has_been_removed; 1105 1106 if (fs->sb->block_size != sb->sb->block_size) 1107 return -BCH_ERR_mismatched_block_size; 1108 1109 if (le16_to_cpu(fs->sb->version) < bcachefs_metadata_version_member_seq || 1110 le16_to_cpu(sb->sb->version) < bcachefs_metadata_version_member_seq) 1111 return 0; 1112 1113 if (fs->sb->seq == sb->sb->seq && 1114 fs->sb->write_time != sb->sb->write_time) { 1115 struct printbuf buf = PRINTBUF; 1116 1117 prt_str(&buf, "Split brain detected between "); 1118 prt_bdevname(&buf, sb->bdev); 1119 prt_str(&buf, " and "); 1120 prt_bdevname(&buf, fs->bdev); 1121 prt_char(&buf, ':'); 1122 prt_newline(&buf); 1123 prt_printf(&buf, "seq=%llu but write_time different, got", le64_to_cpu(sb->sb->seq)); 1124 prt_newline(&buf); 1125 1126 prt_bdevname(&buf, fs->bdev); 1127 prt_char(&buf, ' '); 1128 bch2_prt_datetime(&buf, le64_to_cpu(fs->sb->write_time));; 1129 prt_newline(&buf); 1130 1131 prt_bdevname(&buf, sb->bdev); 1132 prt_char(&buf, ' '); 1133 bch2_prt_datetime(&buf, le64_to_cpu(sb->sb->write_time));; 1134 prt_newline(&buf); 1135 1136 if (!opts->no_splitbrain_check) 1137 prt_printf(&buf, "Not using older sb"); 1138 1139 pr_err("%s", buf.buf); 1140 printbuf_exit(&buf); 1141 1142 if (!opts->no_splitbrain_check) 1143 return -BCH_ERR_device_splitbrain; 1144 } 1145 1146 struct bch_member m = bch2_sb_member_get(fs->sb, sb->sb->dev_idx); 1147 u64 seq_from_fs = le64_to_cpu(m.seq); 1148 u64 seq_from_member = le64_to_cpu(sb->sb->seq); 1149 1150 if (seq_from_fs && seq_from_fs < seq_from_member) { 1151 struct printbuf buf = PRINTBUF; 1152 1153 prt_str(&buf, "Split brain detected between "); 1154 prt_bdevname(&buf, sb->bdev); 1155 prt_str(&buf, " and "); 1156 prt_bdevname(&buf, fs->bdev); 1157 prt_char(&buf, ':'); 1158 prt_newline(&buf); 1159 1160 prt_bdevname(&buf, fs->bdev); 1161 prt_str(&buf, " believes seq of "); 1162 prt_bdevname(&buf, sb->bdev); 1163 prt_printf(&buf, " to be %llu, but ", seq_from_fs); 1164 prt_bdevname(&buf, sb->bdev); 1165 prt_printf(&buf, " has %llu\n", seq_from_member); 1166 1167 if (!opts->no_splitbrain_check) { 1168 prt_str(&buf, "Not using "); 1169 prt_bdevname(&buf, sb->bdev); 1170 } 1171 1172 pr_err("%s", buf.buf); 1173 printbuf_exit(&buf); 1174 1175 if (!opts->no_splitbrain_check) 1176 return -BCH_ERR_device_splitbrain; 1177 } 1178 1179 return 0; 1180 } 1181 1182 /* Device startup/shutdown: */ 1183 1184 static void bch2_dev_release(struct kobject *kobj) 1185 { 1186 struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj); 1187 1188 kfree(ca); 1189 } 1190 1191 static void bch2_dev_free(struct bch_dev *ca) 1192 { 1193 cancel_work_sync(&ca->io_error_work); 1194 1195 if (ca->kobj.state_in_sysfs && 1196 ca->disk_sb.bdev) 1197 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 1198 1199 if (ca->kobj.state_in_sysfs) 1200 kobject_del(&ca->kobj); 1201 1202 bch2_free_super(&ca->disk_sb); 1203 bch2_dev_journal_exit(ca); 1204 1205 free_percpu(ca->io_done); 1206 bioset_exit(&ca->replica_set); 1207 bch2_dev_buckets_free(ca); 1208 free_page((unsigned long) ca->sb_read_scratch); 1209 1210 bch2_time_stats_quantiles_exit(&ca->io_latency[WRITE]); 1211 bch2_time_stats_quantiles_exit(&ca->io_latency[READ]); 1212 1213 percpu_ref_exit(&ca->io_ref); 1214 percpu_ref_exit(&ca->ref); 1215 kobject_put(&ca->kobj); 1216 } 1217 1218 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca) 1219 { 1220 1221 lockdep_assert_held(&c->state_lock); 1222 1223 if (percpu_ref_is_zero(&ca->io_ref)) 1224 return; 1225 1226 __bch2_dev_read_only(c, ca); 1227 1228 reinit_completion(&ca->io_ref_completion); 1229 percpu_ref_kill(&ca->io_ref); 1230 wait_for_completion(&ca->io_ref_completion); 1231 1232 if (ca->kobj.state_in_sysfs) { 1233 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 1234 sysfs_remove_link(&ca->kobj, "block"); 1235 } 1236 1237 bch2_free_super(&ca->disk_sb); 1238 bch2_dev_journal_exit(ca); 1239 } 1240 1241 static void bch2_dev_ref_complete(struct percpu_ref *ref) 1242 { 1243 struct bch_dev *ca = container_of(ref, struct bch_dev, ref); 1244 1245 complete(&ca->ref_completion); 1246 } 1247 1248 static void bch2_dev_io_ref_complete(struct percpu_ref *ref) 1249 { 1250 struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref); 1251 1252 complete(&ca->io_ref_completion); 1253 } 1254 1255 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca) 1256 { 1257 int ret; 1258 1259 if (!c->kobj.state_in_sysfs) 1260 return 0; 1261 1262 if (!ca->kobj.state_in_sysfs) { 1263 ret = kobject_add(&ca->kobj, &c->kobj, 1264 "dev-%u", ca->dev_idx); 1265 if (ret) 1266 return ret; 1267 } 1268 1269 if (ca->disk_sb.bdev) { 1270 struct kobject *block = bdev_kobj(ca->disk_sb.bdev); 1271 1272 ret = sysfs_create_link(block, &ca->kobj, "bcachefs"); 1273 if (ret) 1274 return ret; 1275 1276 ret = sysfs_create_link(&ca->kobj, block, "block"); 1277 if (ret) 1278 return ret; 1279 } 1280 1281 return 0; 1282 } 1283 1284 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c, 1285 struct bch_member *member) 1286 { 1287 struct bch_dev *ca; 1288 unsigned i; 1289 1290 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 1291 if (!ca) 1292 return NULL; 1293 1294 kobject_init(&ca->kobj, &bch2_dev_ktype); 1295 init_completion(&ca->ref_completion); 1296 init_completion(&ca->io_ref_completion); 1297 1298 init_rwsem(&ca->bucket_lock); 1299 1300 INIT_WORK(&ca->io_error_work, bch2_io_error_work); 1301 1302 bch2_time_stats_quantiles_init(&ca->io_latency[READ]); 1303 bch2_time_stats_quantiles_init(&ca->io_latency[WRITE]); 1304 1305 ca->mi = bch2_mi_to_cpu(member); 1306 1307 for (i = 0; i < ARRAY_SIZE(member->errors); i++) 1308 atomic64_set(&ca->errors[i], le64_to_cpu(member->errors[i])); 1309 1310 ca->uuid = member->uuid; 1311 1312 ca->nr_btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE, 1313 ca->mi.bucket_size / btree_sectors(c)); 1314 1315 if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete, 1316 0, GFP_KERNEL) || 1317 percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete, 1318 PERCPU_REF_INIT_DEAD, GFP_KERNEL) || 1319 !(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) || 1320 bch2_dev_buckets_alloc(c, ca) || 1321 bioset_init(&ca->replica_set, 4, 1322 offsetof(struct bch_write_bio, bio), 0) || 1323 !(ca->io_done = alloc_percpu(*ca->io_done))) 1324 goto err; 1325 1326 return ca; 1327 err: 1328 bch2_dev_free(ca); 1329 return NULL; 1330 } 1331 1332 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca, 1333 unsigned dev_idx) 1334 { 1335 ca->dev_idx = dev_idx; 1336 __set_bit(ca->dev_idx, ca->self.d); 1337 scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx); 1338 1339 ca->fs = c; 1340 rcu_assign_pointer(c->devs[ca->dev_idx], ca); 1341 1342 if (bch2_dev_sysfs_online(c, ca)) 1343 pr_warn("error creating sysfs objects"); 1344 } 1345 1346 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx) 1347 { 1348 struct bch_member member = bch2_sb_member_get(c->disk_sb.sb, dev_idx); 1349 struct bch_dev *ca = NULL; 1350 int ret = 0; 1351 1352 if (bch2_fs_init_fault("dev_alloc")) 1353 goto err; 1354 1355 ca = __bch2_dev_alloc(c, &member); 1356 if (!ca) 1357 goto err; 1358 1359 ca->fs = c; 1360 1361 bch2_dev_attach(c, ca, dev_idx); 1362 return ret; 1363 err: 1364 if (ca) 1365 bch2_dev_free(ca); 1366 return -BCH_ERR_ENOMEM_dev_alloc; 1367 } 1368 1369 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb) 1370 { 1371 unsigned ret; 1372 1373 if (bch2_dev_is_online(ca)) { 1374 bch_err(ca, "already have device online in slot %u", 1375 sb->sb->dev_idx); 1376 return -BCH_ERR_device_already_online; 1377 } 1378 1379 if (get_capacity(sb->bdev->bd_disk) < 1380 ca->mi.bucket_size * ca->mi.nbuckets) { 1381 bch_err(ca, "cannot online: device too small"); 1382 return -BCH_ERR_device_size_too_small; 1383 } 1384 1385 BUG_ON(!percpu_ref_is_zero(&ca->io_ref)); 1386 1387 ret = bch2_dev_journal_init(ca, sb->sb); 1388 if (ret) 1389 return ret; 1390 1391 /* Commit: */ 1392 ca->disk_sb = *sb; 1393 memset(sb, 0, sizeof(*sb)); 1394 1395 ca->dev = ca->disk_sb.bdev->bd_dev; 1396 1397 percpu_ref_reinit(&ca->io_ref); 1398 1399 return 0; 1400 } 1401 1402 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb) 1403 { 1404 struct bch_dev *ca; 1405 int ret; 1406 1407 lockdep_assert_held(&c->state_lock); 1408 1409 if (le64_to_cpu(sb->sb->seq) > 1410 le64_to_cpu(c->disk_sb.sb->seq)) 1411 bch2_sb_to_fs(c, sb->sb); 1412 1413 BUG_ON(sb->sb->dev_idx >= c->sb.nr_devices || 1414 !c->devs[sb->sb->dev_idx]); 1415 1416 ca = bch_dev_locked(c, sb->sb->dev_idx); 1417 1418 ret = __bch2_dev_attach_bdev(ca, sb); 1419 if (ret) 1420 return ret; 1421 1422 bch2_dev_sysfs_online(c, ca); 1423 1424 struct printbuf name = PRINTBUF; 1425 prt_bdevname(&name, ca->disk_sb.bdev); 1426 1427 if (c->sb.nr_devices == 1) 1428 strscpy(c->name, name.buf, sizeof(c->name)); 1429 strscpy(ca->name, name.buf, sizeof(ca->name)); 1430 1431 printbuf_exit(&name); 1432 1433 rebalance_wakeup(c); 1434 return 0; 1435 } 1436 1437 /* Device management: */ 1438 1439 /* 1440 * Note: this function is also used by the error paths - when a particular 1441 * device sees an error, we call it to determine whether we can just set the 1442 * device RO, or - if this function returns false - we'll set the whole 1443 * filesystem RO: 1444 * 1445 * XXX: maybe we should be more explicit about whether we're changing state 1446 * because we got an error or what have you? 1447 */ 1448 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca, 1449 enum bch_member_state new_state, int flags) 1450 { 1451 struct bch_devs_mask new_online_devs; 1452 int nr_rw = 0, required; 1453 1454 lockdep_assert_held(&c->state_lock); 1455 1456 switch (new_state) { 1457 case BCH_MEMBER_STATE_rw: 1458 return true; 1459 case BCH_MEMBER_STATE_ro: 1460 if (ca->mi.state != BCH_MEMBER_STATE_rw) 1461 return true; 1462 1463 /* do we have enough devices to write to? */ 1464 for_each_member_device(c, ca2) 1465 if (ca2 != ca) 1466 nr_rw += ca2->mi.state == BCH_MEMBER_STATE_rw; 1467 1468 required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED) 1469 ? c->opts.metadata_replicas 1470 : metadata_replicas_required(c), 1471 !(flags & BCH_FORCE_IF_DATA_DEGRADED) 1472 ? c->opts.data_replicas 1473 : data_replicas_required(c)); 1474 1475 return nr_rw >= required; 1476 case BCH_MEMBER_STATE_failed: 1477 case BCH_MEMBER_STATE_spare: 1478 if (ca->mi.state != BCH_MEMBER_STATE_rw && 1479 ca->mi.state != BCH_MEMBER_STATE_ro) 1480 return true; 1481 1482 /* do we have enough devices to read from? */ 1483 new_online_devs = bch2_online_devs(c); 1484 __clear_bit(ca->dev_idx, new_online_devs.d); 1485 1486 return bch2_have_enough_devs(c, new_online_devs, flags, false); 1487 default: 1488 BUG(); 1489 } 1490 } 1491 1492 static bool bch2_fs_may_start(struct bch_fs *c) 1493 { 1494 struct bch_dev *ca; 1495 unsigned i, flags = 0; 1496 1497 if (c->opts.very_degraded) 1498 flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST; 1499 1500 if (c->opts.degraded) 1501 flags |= BCH_FORCE_IF_DEGRADED; 1502 1503 if (!c->opts.degraded && 1504 !c->opts.very_degraded) { 1505 mutex_lock(&c->sb_lock); 1506 1507 for (i = 0; i < c->disk_sb.sb->nr_devices; i++) { 1508 if (!bch2_dev_exists(c->disk_sb.sb, i)) 1509 continue; 1510 1511 ca = bch_dev_locked(c, i); 1512 1513 if (!bch2_dev_is_online(ca) && 1514 (ca->mi.state == BCH_MEMBER_STATE_rw || 1515 ca->mi.state == BCH_MEMBER_STATE_ro)) { 1516 mutex_unlock(&c->sb_lock); 1517 return false; 1518 } 1519 } 1520 mutex_unlock(&c->sb_lock); 1521 } 1522 1523 return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true); 1524 } 1525 1526 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca) 1527 { 1528 /* 1529 * The allocator thread itself allocates btree nodes, so stop it first: 1530 */ 1531 bch2_dev_allocator_remove(c, ca); 1532 bch2_dev_journal_stop(&c->journal, ca); 1533 } 1534 1535 static void __bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca) 1536 { 1537 lockdep_assert_held(&c->state_lock); 1538 1539 BUG_ON(ca->mi.state != BCH_MEMBER_STATE_rw); 1540 1541 bch2_dev_allocator_add(c, ca); 1542 bch2_recalc_capacity(c); 1543 } 1544 1545 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, 1546 enum bch_member_state new_state, int flags) 1547 { 1548 struct bch_member *m; 1549 int ret = 0; 1550 1551 if (ca->mi.state == new_state) 1552 return 0; 1553 1554 if (!bch2_dev_state_allowed(c, ca, new_state, flags)) 1555 return -BCH_ERR_device_state_not_allowed; 1556 1557 if (new_state != BCH_MEMBER_STATE_rw) 1558 __bch2_dev_read_only(c, ca); 1559 1560 bch_notice(ca, "%s", bch2_member_states[new_state]); 1561 1562 mutex_lock(&c->sb_lock); 1563 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); 1564 SET_BCH_MEMBER_STATE(m, new_state); 1565 bch2_write_super(c); 1566 mutex_unlock(&c->sb_lock); 1567 1568 if (new_state == BCH_MEMBER_STATE_rw) 1569 __bch2_dev_read_write(c, ca); 1570 1571 rebalance_wakeup(c); 1572 1573 return ret; 1574 } 1575 1576 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, 1577 enum bch_member_state new_state, int flags) 1578 { 1579 int ret; 1580 1581 down_write(&c->state_lock); 1582 ret = __bch2_dev_set_state(c, ca, new_state, flags); 1583 up_write(&c->state_lock); 1584 1585 return ret; 1586 } 1587 1588 /* Device add/removal: */ 1589 1590 static int bch2_dev_remove_alloc(struct bch_fs *c, struct bch_dev *ca) 1591 { 1592 struct bpos start = POS(ca->dev_idx, 0); 1593 struct bpos end = POS(ca->dev_idx, U64_MAX); 1594 int ret; 1595 1596 /* 1597 * We clear the LRU and need_discard btrees first so that we don't race 1598 * with bch2_do_invalidates() and bch2_do_discards() 1599 */ 1600 ret = bch2_btree_delete_range(c, BTREE_ID_lru, start, end, 1601 BTREE_TRIGGER_NORUN, NULL) ?: 1602 bch2_btree_delete_range(c, BTREE_ID_need_discard, start, end, 1603 BTREE_TRIGGER_NORUN, NULL) ?: 1604 bch2_btree_delete_range(c, BTREE_ID_freespace, start, end, 1605 BTREE_TRIGGER_NORUN, NULL) ?: 1606 bch2_btree_delete_range(c, BTREE_ID_backpointers, start, end, 1607 BTREE_TRIGGER_NORUN, NULL) ?: 1608 bch2_btree_delete_range(c, BTREE_ID_alloc, start, end, 1609 BTREE_TRIGGER_NORUN, NULL) ?: 1610 bch2_btree_delete_range(c, BTREE_ID_bucket_gens, start, end, 1611 BTREE_TRIGGER_NORUN, NULL); 1612 bch_err_msg(c, ret, "removing dev alloc info"); 1613 return ret; 1614 } 1615 1616 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags) 1617 { 1618 struct bch_member *m; 1619 unsigned dev_idx = ca->dev_idx, data; 1620 int ret; 1621 1622 down_write(&c->state_lock); 1623 1624 /* 1625 * We consume a reference to ca->ref, regardless of whether we succeed 1626 * or fail: 1627 */ 1628 percpu_ref_put(&ca->ref); 1629 1630 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { 1631 bch_err(ca, "Cannot remove without losing data"); 1632 ret = -BCH_ERR_device_state_not_allowed; 1633 goto err; 1634 } 1635 1636 __bch2_dev_read_only(c, ca); 1637 1638 ret = bch2_dev_data_drop(c, ca->dev_idx, flags); 1639 bch_err_msg(ca, ret, "bch2_dev_data_drop()"); 1640 if (ret) 1641 goto err; 1642 1643 ret = bch2_dev_remove_alloc(c, ca); 1644 bch_err_msg(ca, ret, "bch2_dev_remove_alloc()"); 1645 if (ret) 1646 goto err; 1647 1648 ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx); 1649 bch_err_msg(ca, ret, "bch2_journal_flush_device_pins()"); 1650 if (ret) 1651 goto err; 1652 1653 ret = bch2_journal_flush(&c->journal); 1654 bch_err_msg(ca, ret, "bch2_journal_flush()"); 1655 if (ret) 1656 goto err; 1657 1658 ret = bch2_replicas_gc2(c); 1659 bch_err_msg(ca, ret, "bch2_replicas_gc2()"); 1660 if (ret) 1661 goto err; 1662 1663 data = bch2_dev_has_data(c, ca); 1664 if (data) { 1665 struct printbuf data_has = PRINTBUF; 1666 1667 prt_bitflags(&data_has, __bch2_data_types, data); 1668 bch_err(ca, "Remove failed, still has data (%s)", data_has.buf); 1669 printbuf_exit(&data_has); 1670 ret = -EBUSY; 1671 goto err; 1672 } 1673 1674 __bch2_dev_offline(c, ca); 1675 1676 mutex_lock(&c->sb_lock); 1677 rcu_assign_pointer(c->devs[ca->dev_idx], NULL); 1678 mutex_unlock(&c->sb_lock); 1679 1680 percpu_ref_kill(&ca->ref); 1681 wait_for_completion(&ca->ref_completion); 1682 1683 bch2_dev_free(ca); 1684 1685 /* 1686 * At this point the device object has been removed in-core, but the 1687 * on-disk journal might still refer to the device index via sb device 1688 * usage entries. Recovery fails if it sees usage information for an 1689 * invalid device. Flush journal pins to push the back of the journal 1690 * past now invalid device index references before we update the 1691 * superblock, but after the device object has been removed so any 1692 * further journal writes elide usage info for the device. 1693 */ 1694 bch2_journal_flush_all_pins(&c->journal); 1695 1696 /* 1697 * Free this device's slot in the bch_member array - all pointers to 1698 * this device must be gone: 1699 */ 1700 mutex_lock(&c->sb_lock); 1701 m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx); 1702 memset(&m->uuid, 0, sizeof(m->uuid)); 1703 1704 bch2_write_super(c); 1705 1706 mutex_unlock(&c->sb_lock); 1707 up_write(&c->state_lock); 1708 1709 bch2_dev_usage_journal_reserve(c); 1710 return 0; 1711 err: 1712 if (ca->mi.state == BCH_MEMBER_STATE_rw && 1713 !percpu_ref_is_zero(&ca->io_ref)) 1714 __bch2_dev_read_write(c, ca); 1715 up_write(&c->state_lock); 1716 return ret; 1717 } 1718 1719 /* Add new device to running filesystem: */ 1720 int bch2_dev_add(struct bch_fs *c, const char *path) 1721 { 1722 struct bch_opts opts = bch2_opts_empty(); 1723 struct bch_sb_handle sb; 1724 struct bch_dev *ca = NULL; 1725 struct bch_sb_field_members_v2 *mi; 1726 struct bch_member dev_mi; 1727 unsigned dev_idx, nr_devices, u64s; 1728 struct printbuf errbuf = PRINTBUF; 1729 struct printbuf label = PRINTBUF; 1730 int ret; 1731 1732 ret = bch2_read_super(path, &opts, &sb); 1733 bch_err_msg(c, ret, "reading super"); 1734 if (ret) 1735 goto err; 1736 1737 dev_mi = bch2_sb_member_get(sb.sb, sb.sb->dev_idx); 1738 1739 if (BCH_MEMBER_GROUP(&dev_mi)) { 1740 bch2_disk_path_to_text_sb(&label, sb.sb, BCH_MEMBER_GROUP(&dev_mi) - 1); 1741 if (label.allocation_failure) { 1742 ret = -ENOMEM; 1743 goto err; 1744 } 1745 } 1746 1747 ret = bch2_dev_may_add(sb.sb, c); 1748 if (ret) 1749 goto err; 1750 1751 ca = __bch2_dev_alloc(c, &dev_mi); 1752 if (!ca) { 1753 ret = -ENOMEM; 1754 goto err; 1755 } 1756 1757 bch2_dev_usage_init(ca); 1758 1759 ret = __bch2_dev_attach_bdev(ca, &sb); 1760 if (ret) 1761 goto err; 1762 1763 ret = bch2_dev_journal_alloc(ca); 1764 bch_err_msg(c, ret, "allocating journal"); 1765 if (ret) 1766 goto err; 1767 1768 down_write(&c->state_lock); 1769 mutex_lock(&c->sb_lock); 1770 1771 ret = bch2_sb_from_fs(c, ca); 1772 bch_err_msg(c, ret, "setting up new superblock"); 1773 if (ret) 1774 goto err_unlock; 1775 1776 if (dynamic_fault("bcachefs:add:no_slot")) 1777 goto no_slot; 1778 1779 for (dev_idx = 0; dev_idx < BCH_SB_MEMBERS_MAX; dev_idx++) 1780 if (!bch2_dev_exists(c->disk_sb.sb, dev_idx)) 1781 goto have_slot; 1782 no_slot: 1783 ret = -BCH_ERR_ENOSPC_sb_members; 1784 bch_err_msg(c, ret, "setting up new superblock"); 1785 goto err_unlock; 1786 1787 have_slot: 1788 nr_devices = max_t(unsigned, dev_idx + 1, c->sb.nr_devices); 1789 1790 mi = bch2_sb_field_get(c->disk_sb.sb, members_v2); 1791 u64s = DIV_ROUND_UP(sizeof(struct bch_sb_field_members_v2) + 1792 le16_to_cpu(mi->member_bytes) * nr_devices, sizeof(u64)); 1793 1794 mi = bch2_sb_field_resize(&c->disk_sb, members_v2, u64s); 1795 if (!mi) { 1796 ret = -BCH_ERR_ENOSPC_sb_members; 1797 bch_err_msg(c, ret, "setting up new superblock"); 1798 goto err_unlock; 1799 } 1800 struct bch_member *m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx); 1801 1802 /* success: */ 1803 1804 *m = dev_mi; 1805 m->last_mount = cpu_to_le64(ktime_get_real_seconds()); 1806 c->disk_sb.sb->nr_devices = nr_devices; 1807 1808 ca->disk_sb.sb->dev_idx = dev_idx; 1809 bch2_dev_attach(c, ca, dev_idx); 1810 1811 if (BCH_MEMBER_GROUP(&dev_mi)) { 1812 ret = __bch2_dev_group_set(c, ca, label.buf); 1813 bch_err_msg(c, ret, "creating new label"); 1814 if (ret) 1815 goto err_unlock; 1816 } 1817 1818 bch2_write_super(c); 1819 mutex_unlock(&c->sb_lock); 1820 1821 bch2_dev_usage_journal_reserve(c); 1822 1823 ret = bch2_trans_mark_dev_sb(c, ca); 1824 bch_err_msg(ca, ret, "marking new superblock"); 1825 if (ret) 1826 goto err_late; 1827 1828 ret = bch2_fs_freespace_init(c); 1829 bch_err_msg(ca, ret, "initializing free space"); 1830 if (ret) 1831 goto err_late; 1832 1833 ca->new_fs_bucket_idx = 0; 1834 1835 if (ca->mi.state == BCH_MEMBER_STATE_rw) 1836 __bch2_dev_read_write(c, ca); 1837 1838 up_write(&c->state_lock); 1839 return 0; 1840 1841 err_unlock: 1842 mutex_unlock(&c->sb_lock); 1843 up_write(&c->state_lock); 1844 err: 1845 if (ca) 1846 bch2_dev_free(ca); 1847 bch2_free_super(&sb); 1848 printbuf_exit(&label); 1849 printbuf_exit(&errbuf); 1850 bch_err_fn(c, ret); 1851 return ret; 1852 err_late: 1853 up_write(&c->state_lock); 1854 ca = NULL; 1855 goto err; 1856 } 1857 1858 /* Hot add existing device to running filesystem: */ 1859 int bch2_dev_online(struct bch_fs *c, const char *path) 1860 { 1861 struct bch_opts opts = bch2_opts_empty(); 1862 struct bch_sb_handle sb = { NULL }; 1863 struct bch_dev *ca; 1864 unsigned dev_idx; 1865 int ret; 1866 1867 down_write(&c->state_lock); 1868 1869 ret = bch2_read_super(path, &opts, &sb); 1870 if (ret) { 1871 up_write(&c->state_lock); 1872 return ret; 1873 } 1874 1875 dev_idx = sb.sb->dev_idx; 1876 1877 ret = bch2_dev_in_fs(&c->disk_sb, &sb, &c->opts); 1878 bch_err_msg(c, ret, "bringing %s online", path); 1879 if (ret) 1880 goto err; 1881 1882 ret = bch2_dev_attach_bdev(c, &sb); 1883 if (ret) 1884 goto err; 1885 1886 ca = bch_dev_locked(c, dev_idx); 1887 1888 ret = bch2_trans_mark_dev_sb(c, ca); 1889 bch_err_msg(c, ret, "bringing %s online: error from bch2_trans_mark_dev_sb", path); 1890 if (ret) 1891 goto err; 1892 1893 if (ca->mi.state == BCH_MEMBER_STATE_rw) 1894 __bch2_dev_read_write(c, ca); 1895 1896 if (!ca->mi.freespace_initialized) { 1897 ret = bch2_dev_freespace_init(c, ca, 0, ca->mi.nbuckets); 1898 bch_err_msg(ca, ret, "initializing free space"); 1899 if (ret) 1900 goto err; 1901 } 1902 1903 if (!ca->journal.nr) { 1904 ret = bch2_dev_journal_alloc(ca); 1905 bch_err_msg(ca, ret, "allocating journal"); 1906 if (ret) 1907 goto err; 1908 } 1909 1910 mutex_lock(&c->sb_lock); 1911 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = 1912 cpu_to_le64(ktime_get_real_seconds()); 1913 bch2_write_super(c); 1914 mutex_unlock(&c->sb_lock); 1915 1916 up_write(&c->state_lock); 1917 return 0; 1918 err: 1919 up_write(&c->state_lock); 1920 bch2_free_super(&sb); 1921 return ret; 1922 } 1923 1924 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags) 1925 { 1926 down_write(&c->state_lock); 1927 1928 if (!bch2_dev_is_online(ca)) { 1929 bch_err(ca, "Already offline"); 1930 up_write(&c->state_lock); 1931 return 0; 1932 } 1933 1934 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { 1935 bch_err(ca, "Cannot offline required disk"); 1936 up_write(&c->state_lock); 1937 return -BCH_ERR_device_state_not_allowed; 1938 } 1939 1940 __bch2_dev_offline(c, ca); 1941 1942 up_write(&c->state_lock); 1943 return 0; 1944 } 1945 1946 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets) 1947 { 1948 struct bch_member *m; 1949 u64 old_nbuckets; 1950 int ret = 0; 1951 1952 down_write(&c->state_lock); 1953 old_nbuckets = ca->mi.nbuckets; 1954 1955 if (nbuckets < ca->mi.nbuckets) { 1956 bch_err(ca, "Cannot shrink yet"); 1957 ret = -EINVAL; 1958 goto err; 1959 } 1960 1961 if (bch2_dev_is_online(ca) && 1962 get_capacity(ca->disk_sb.bdev->bd_disk) < 1963 ca->mi.bucket_size * nbuckets) { 1964 bch_err(ca, "New size larger than device"); 1965 ret = -BCH_ERR_device_size_too_small; 1966 goto err; 1967 } 1968 1969 ret = bch2_dev_buckets_resize(c, ca, nbuckets); 1970 bch_err_msg(ca, ret, "resizing buckets"); 1971 if (ret) 1972 goto err; 1973 1974 ret = bch2_trans_mark_dev_sb(c, ca); 1975 if (ret) 1976 goto err; 1977 1978 mutex_lock(&c->sb_lock); 1979 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); 1980 m->nbuckets = cpu_to_le64(nbuckets); 1981 1982 bch2_write_super(c); 1983 mutex_unlock(&c->sb_lock); 1984 1985 if (ca->mi.freespace_initialized) { 1986 ret = bch2_dev_freespace_init(c, ca, old_nbuckets, nbuckets); 1987 if (ret) 1988 goto err; 1989 1990 /* 1991 * XXX: this is all wrong transactionally - we'll be able to do 1992 * this correctly after the disk space accounting rewrite 1993 */ 1994 ca->usage_base->d[BCH_DATA_free].buckets += nbuckets - old_nbuckets; 1995 } 1996 1997 bch2_recalc_capacity(c); 1998 err: 1999 up_write(&c->state_lock); 2000 return ret; 2001 } 2002 2003 /* return with ref on ca->ref: */ 2004 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *name) 2005 { 2006 rcu_read_lock(); 2007 for_each_member_device_rcu(c, ca, NULL) 2008 if (!strcmp(name, ca->name)) { 2009 rcu_read_unlock(); 2010 return ca; 2011 } 2012 rcu_read_unlock(); 2013 return ERR_PTR(-BCH_ERR_ENOENT_dev_not_found); 2014 } 2015 2016 /* Filesystem open: */ 2017 2018 static inline int sb_cmp(struct bch_sb *l, struct bch_sb *r) 2019 { 2020 return cmp_int(le64_to_cpu(l->seq), le64_to_cpu(r->seq)) ?: 2021 cmp_int(le64_to_cpu(l->write_time), le64_to_cpu(r->write_time)); 2022 } 2023 2024 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices, 2025 struct bch_opts opts) 2026 { 2027 DARRAY(struct bch_sb_handle) sbs = { 0 }; 2028 struct bch_fs *c = NULL; 2029 struct bch_sb_handle *best = NULL; 2030 struct printbuf errbuf = PRINTBUF; 2031 int ret = 0; 2032 2033 if (!try_module_get(THIS_MODULE)) 2034 return ERR_PTR(-ENODEV); 2035 2036 if (!nr_devices) { 2037 ret = -EINVAL; 2038 goto err; 2039 } 2040 2041 ret = darray_make_room(&sbs, nr_devices); 2042 if (ret) 2043 goto err; 2044 2045 for (unsigned i = 0; i < nr_devices; i++) { 2046 struct bch_sb_handle sb = { NULL }; 2047 2048 ret = bch2_read_super(devices[i], &opts, &sb); 2049 if (ret) 2050 goto err; 2051 2052 BUG_ON(darray_push(&sbs, sb)); 2053 } 2054 2055 if (opts.nochanges && !opts.read_only) { 2056 ret = -BCH_ERR_erofs_nochanges; 2057 goto err_print; 2058 } 2059 2060 darray_for_each(sbs, sb) 2061 if (!best || sb_cmp(sb->sb, best->sb) > 0) 2062 best = sb; 2063 2064 darray_for_each_reverse(sbs, sb) { 2065 ret = bch2_dev_in_fs(best, sb, &opts); 2066 2067 if (ret == -BCH_ERR_device_has_been_removed || 2068 ret == -BCH_ERR_device_splitbrain) { 2069 bch2_free_super(sb); 2070 darray_remove_item(&sbs, sb); 2071 best -= best > sb; 2072 ret = 0; 2073 continue; 2074 } 2075 2076 if (ret) 2077 goto err_print; 2078 } 2079 2080 c = bch2_fs_alloc(best->sb, opts); 2081 ret = PTR_ERR_OR_ZERO(c); 2082 if (ret) 2083 goto err; 2084 2085 down_write(&c->state_lock); 2086 darray_for_each(sbs, sb) { 2087 ret = bch2_dev_attach_bdev(c, sb); 2088 if (ret) { 2089 up_write(&c->state_lock); 2090 goto err; 2091 } 2092 } 2093 up_write(&c->state_lock); 2094 2095 if (!bch2_fs_may_start(c)) { 2096 ret = -BCH_ERR_insufficient_devices_to_start; 2097 goto err_print; 2098 } 2099 2100 if (!c->opts.nostart) { 2101 ret = bch2_fs_start(c); 2102 if (ret) 2103 goto err; 2104 } 2105 out: 2106 darray_for_each(sbs, sb) 2107 bch2_free_super(sb); 2108 darray_exit(&sbs); 2109 printbuf_exit(&errbuf); 2110 module_put(THIS_MODULE); 2111 return c; 2112 err_print: 2113 pr_err("bch_fs_open err opening %s: %s", 2114 devices[0], bch2_err_str(ret)); 2115 err: 2116 if (!IS_ERR_OR_NULL(c)) 2117 bch2_fs_stop(c); 2118 c = ERR_PTR(ret); 2119 goto out; 2120 } 2121 2122 /* Global interfaces/init */ 2123 2124 static void bcachefs_exit(void) 2125 { 2126 bch2_debug_exit(); 2127 bch2_vfs_exit(); 2128 bch2_chardev_exit(); 2129 bch2_btree_key_cache_exit(); 2130 if (bcachefs_kset) 2131 kset_unregister(bcachefs_kset); 2132 } 2133 2134 static int __init bcachefs_init(void) 2135 { 2136 bch2_bkey_pack_test(); 2137 2138 if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) || 2139 bch2_btree_key_cache_init() || 2140 bch2_chardev_init() || 2141 bch2_vfs_init() || 2142 bch2_debug_init()) 2143 goto err; 2144 2145 return 0; 2146 err: 2147 bcachefs_exit(); 2148 return -ENOMEM; 2149 } 2150 2151 #define BCH_DEBUG_PARAM(name, description) \ 2152 bool bch2_##name; \ 2153 module_param_named(name, bch2_##name, bool, 0644); \ 2154 MODULE_PARM_DESC(name, description); 2155 BCH_DEBUG_PARAMS() 2156 #undef BCH_DEBUG_PARAM 2157 2158 __maybe_unused 2159 static unsigned bch2_metadata_version = bcachefs_metadata_version_current; 2160 module_param_named(version, bch2_metadata_version, uint, 0400); 2161 2162 module_exit(bcachefs_exit); 2163 module_init(bcachefs_init); 2164