1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcachefs setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcachefs.h" 11 #include "alloc_background.h" 12 #include "alloc_foreground.h" 13 #include "bkey_sort.h" 14 #include "btree_cache.h" 15 #include "btree_gc.h" 16 #include "btree_journal_iter.h" 17 #include "btree_key_cache.h" 18 #include "btree_node_scan.h" 19 #include "btree_update_interior.h" 20 #include "btree_io.h" 21 #include "btree_write_buffer.h" 22 #include "buckets_waiting_for_journal.h" 23 #include "chardev.h" 24 #include "checksum.h" 25 #include "clock.h" 26 #include "compress.h" 27 #include "debug.h" 28 #include "disk_groups.h" 29 #include "ec.h" 30 #include "errcode.h" 31 #include "error.h" 32 #include "fs.h" 33 #include "fs-io.h" 34 #include "fs-io-buffered.h" 35 #include "fs-io-direct.h" 36 #include "fsck.h" 37 #include "inode.h" 38 #include "io_read.h" 39 #include "io_write.h" 40 #include "journal.h" 41 #include "journal_reclaim.h" 42 #include "journal_seq_blacklist.h" 43 #include "move.h" 44 #include "migrate.h" 45 #include "movinggc.h" 46 #include "nocow_locking.h" 47 #include "quota.h" 48 #include "rebalance.h" 49 #include "recovery.h" 50 #include "replicas.h" 51 #include "sb-clean.h" 52 #include "sb-counters.h" 53 #include "sb-errors.h" 54 #include "sb-members.h" 55 #include "snapshot.h" 56 #include "subvolume.h" 57 #include "super.h" 58 #include "super-io.h" 59 #include "sysfs.h" 60 #include "thread_with_file.h" 61 #include "trace.h" 62 63 #include <linux/backing-dev.h> 64 #include <linux/blkdev.h> 65 #include <linux/debugfs.h> 66 #include <linux/device.h> 67 #include <linux/idr.h> 68 #include <linux/module.h> 69 #include <linux/percpu.h> 70 #include <linux/random.h> 71 #include <linux/sysfs.h> 72 #include <crypto/hash.h> 73 74 MODULE_LICENSE("GPL"); 75 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 76 MODULE_DESCRIPTION("bcachefs filesystem"); 77 MODULE_SOFTDEP("pre: crc32c"); 78 MODULE_SOFTDEP("pre: crc64"); 79 MODULE_SOFTDEP("pre: sha256"); 80 MODULE_SOFTDEP("pre: chacha20"); 81 MODULE_SOFTDEP("pre: poly1305"); 82 MODULE_SOFTDEP("pre: xxhash"); 83 84 const char * const bch2_fs_flag_strs[] = { 85 #define x(n) #n, 86 BCH_FS_FLAGS() 87 #undef x 88 NULL 89 }; 90 91 __printf(2, 0) 92 static void bch2_print_maybe_redirect(struct stdio_redirect *stdio, const char *fmt, va_list args) 93 { 94 #ifdef __KERNEL__ 95 if (unlikely(stdio)) { 96 if (fmt[0] == KERN_SOH[0]) 97 fmt += 2; 98 99 bch2_stdio_redirect_vprintf(stdio, true, fmt, args); 100 return; 101 } 102 #endif 103 vprintk(fmt, args); 104 } 105 106 void bch2_print_opts(struct bch_opts *opts, const char *fmt, ...) 107 { 108 struct stdio_redirect *stdio = (void *)(unsigned long)opts->stdio; 109 110 va_list args; 111 va_start(args, fmt); 112 bch2_print_maybe_redirect(stdio, fmt, args); 113 va_end(args); 114 } 115 116 void __bch2_print(struct bch_fs *c, const char *fmt, ...) 117 { 118 struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c); 119 120 va_list args; 121 va_start(args, fmt); 122 bch2_print_maybe_redirect(stdio, fmt, args); 123 va_end(args); 124 } 125 126 #define KTYPE(type) \ 127 static const struct attribute_group type ## _group = { \ 128 .attrs = type ## _files \ 129 }; \ 130 \ 131 static const struct attribute_group *type ## _groups[] = { \ 132 &type ## _group, \ 133 NULL \ 134 }; \ 135 \ 136 static const struct kobj_type type ## _ktype = { \ 137 .release = type ## _release, \ 138 .sysfs_ops = &type ## _sysfs_ops, \ 139 .default_groups = type ## _groups \ 140 } 141 142 static void bch2_fs_release(struct kobject *); 143 static void bch2_dev_release(struct kobject *); 144 static void bch2_fs_counters_release(struct kobject *k) 145 { 146 } 147 148 static void bch2_fs_internal_release(struct kobject *k) 149 { 150 } 151 152 static void bch2_fs_opts_dir_release(struct kobject *k) 153 { 154 } 155 156 static void bch2_fs_time_stats_release(struct kobject *k) 157 { 158 } 159 160 KTYPE(bch2_fs); 161 KTYPE(bch2_fs_counters); 162 KTYPE(bch2_fs_internal); 163 KTYPE(bch2_fs_opts_dir); 164 KTYPE(bch2_fs_time_stats); 165 KTYPE(bch2_dev); 166 167 static struct kset *bcachefs_kset; 168 static LIST_HEAD(bch_fs_list); 169 static DEFINE_MUTEX(bch_fs_list_lock); 170 171 DECLARE_WAIT_QUEUE_HEAD(bch2_read_only_wait); 172 173 static void bch2_dev_free(struct bch_dev *); 174 static int bch2_dev_alloc(struct bch_fs *, unsigned); 175 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *); 176 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *); 177 178 struct bch_fs *bch2_dev_to_fs(dev_t dev) 179 { 180 struct bch_fs *c; 181 182 mutex_lock(&bch_fs_list_lock); 183 rcu_read_lock(); 184 185 list_for_each_entry(c, &bch_fs_list, list) 186 for_each_member_device_rcu(c, ca, NULL) 187 if (ca->disk_sb.bdev && ca->disk_sb.bdev->bd_dev == dev) { 188 closure_get(&c->cl); 189 goto found; 190 } 191 c = NULL; 192 found: 193 rcu_read_unlock(); 194 mutex_unlock(&bch_fs_list_lock); 195 196 return c; 197 } 198 199 static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid) 200 { 201 struct bch_fs *c; 202 203 lockdep_assert_held(&bch_fs_list_lock); 204 205 list_for_each_entry(c, &bch_fs_list, list) 206 if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid))) 207 return c; 208 209 return NULL; 210 } 211 212 struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid) 213 { 214 struct bch_fs *c; 215 216 mutex_lock(&bch_fs_list_lock); 217 c = __bch2_uuid_to_fs(uuid); 218 if (c) 219 closure_get(&c->cl); 220 mutex_unlock(&bch_fs_list_lock); 221 222 return c; 223 } 224 225 static void bch2_dev_usage_journal_reserve(struct bch_fs *c) 226 { 227 unsigned nr = 0, u64s = 228 ((sizeof(struct jset_entry_dev_usage) + 229 sizeof(struct jset_entry_dev_usage_type) * BCH_DATA_NR)) / 230 sizeof(u64); 231 232 rcu_read_lock(); 233 for_each_member_device_rcu(c, ca, NULL) 234 nr++; 235 rcu_read_unlock(); 236 237 bch2_journal_entry_res_resize(&c->journal, 238 &c->dev_usage_journal_res, u64s * nr); 239 } 240 241 /* Filesystem RO/RW: */ 242 243 /* 244 * For startup/shutdown of RW stuff, the dependencies are: 245 * 246 * - foreground writes depend on copygc and rebalance (to free up space) 247 * 248 * - copygc and rebalance depend on mark and sweep gc (they actually probably 249 * don't because they either reserve ahead of time or don't block if 250 * allocations fail, but allocations can require mark and sweep gc to run 251 * because of generation number wraparound) 252 * 253 * - all of the above depends on the allocator threads 254 * 255 * - allocator depends on the journal (when it rewrites prios and gens) 256 */ 257 258 static void __bch2_fs_read_only(struct bch_fs *c) 259 { 260 unsigned clean_passes = 0; 261 u64 seq = 0; 262 263 bch2_fs_ec_stop(c); 264 bch2_open_buckets_stop(c, NULL, true); 265 bch2_rebalance_stop(c); 266 bch2_copygc_stop(c); 267 bch2_fs_ec_flush(c); 268 269 bch_verbose(c, "flushing journal and stopping allocators, journal seq %llu", 270 journal_cur_seq(&c->journal)); 271 272 do { 273 clean_passes++; 274 275 if (bch2_btree_interior_updates_flush(c) || 276 bch2_journal_flush_all_pins(&c->journal) || 277 bch2_btree_flush_all_writes(c) || 278 seq != atomic64_read(&c->journal.seq)) { 279 seq = atomic64_read(&c->journal.seq); 280 clean_passes = 0; 281 } 282 } while (clean_passes < 2); 283 284 bch_verbose(c, "flushing journal and stopping allocators complete, journal seq %llu", 285 journal_cur_seq(&c->journal)); 286 287 if (test_bit(JOURNAL_replay_done, &c->journal.flags) && 288 !test_bit(BCH_FS_emergency_ro, &c->flags)) 289 set_bit(BCH_FS_clean_shutdown, &c->flags); 290 291 bch2_fs_journal_stop(&c->journal); 292 293 bch_info(c, "%sshutdown complete, journal seq %llu", 294 test_bit(BCH_FS_clean_shutdown, &c->flags) ? "" : "un", 295 c->journal.seq_ondisk); 296 297 /* 298 * After stopping journal: 299 */ 300 for_each_member_device(c, ca) 301 bch2_dev_allocator_remove(c, ca); 302 } 303 304 #ifndef BCH_WRITE_REF_DEBUG 305 static void bch2_writes_disabled(struct percpu_ref *writes) 306 { 307 struct bch_fs *c = container_of(writes, struct bch_fs, writes); 308 309 set_bit(BCH_FS_write_disable_complete, &c->flags); 310 wake_up(&bch2_read_only_wait); 311 } 312 #endif 313 314 void bch2_fs_read_only(struct bch_fs *c) 315 { 316 if (!test_bit(BCH_FS_rw, &c->flags)) { 317 bch2_journal_reclaim_stop(&c->journal); 318 return; 319 } 320 321 BUG_ON(test_bit(BCH_FS_write_disable_complete, &c->flags)); 322 323 bch_verbose(c, "going read-only"); 324 325 /* 326 * Block new foreground-end write operations from starting - any new 327 * writes will return -EROFS: 328 */ 329 set_bit(BCH_FS_going_ro, &c->flags); 330 #ifndef BCH_WRITE_REF_DEBUG 331 percpu_ref_kill(&c->writes); 332 #else 333 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) 334 bch2_write_ref_put(c, i); 335 #endif 336 337 /* 338 * If we're not doing an emergency shutdown, we want to wait on 339 * outstanding writes to complete so they don't see spurious errors due 340 * to shutting down the allocator: 341 * 342 * If we are doing an emergency shutdown outstanding writes may 343 * hang until we shutdown the allocator so we don't want to wait 344 * on outstanding writes before shutting everything down - but 345 * we do need to wait on them before returning and signalling 346 * that going RO is complete: 347 */ 348 wait_event(bch2_read_only_wait, 349 test_bit(BCH_FS_write_disable_complete, &c->flags) || 350 test_bit(BCH_FS_emergency_ro, &c->flags)); 351 352 bool writes_disabled = test_bit(BCH_FS_write_disable_complete, &c->flags); 353 if (writes_disabled) 354 bch_verbose(c, "finished waiting for writes to stop"); 355 356 __bch2_fs_read_only(c); 357 358 wait_event(bch2_read_only_wait, 359 test_bit(BCH_FS_write_disable_complete, &c->flags)); 360 361 if (!writes_disabled) 362 bch_verbose(c, "finished waiting for writes to stop"); 363 364 clear_bit(BCH_FS_write_disable_complete, &c->flags); 365 clear_bit(BCH_FS_going_ro, &c->flags); 366 clear_bit(BCH_FS_rw, &c->flags); 367 368 if (!bch2_journal_error(&c->journal) && 369 !test_bit(BCH_FS_error, &c->flags) && 370 !test_bit(BCH_FS_emergency_ro, &c->flags) && 371 test_bit(BCH_FS_started, &c->flags) && 372 test_bit(BCH_FS_clean_shutdown, &c->flags) && 373 c->recovery_pass_done >= BCH_RECOVERY_PASS_journal_replay) { 374 BUG_ON(c->journal.last_empty_seq != journal_cur_seq(&c->journal)); 375 BUG_ON(atomic_read(&c->btree_cache.dirty)); 376 BUG_ON(atomic_long_read(&c->btree_key_cache.nr_dirty)); 377 BUG_ON(c->btree_write_buffer.inc.keys.nr); 378 BUG_ON(c->btree_write_buffer.flushing.keys.nr); 379 380 bch_verbose(c, "marking filesystem clean"); 381 bch2_fs_mark_clean(c); 382 } else { 383 bch_verbose(c, "done going read-only, filesystem not clean"); 384 } 385 } 386 387 static void bch2_fs_read_only_work(struct work_struct *work) 388 { 389 struct bch_fs *c = 390 container_of(work, struct bch_fs, read_only_work); 391 392 down_write(&c->state_lock); 393 bch2_fs_read_only(c); 394 up_write(&c->state_lock); 395 } 396 397 static void bch2_fs_read_only_async(struct bch_fs *c) 398 { 399 queue_work(system_long_wq, &c->read_only_work); 400 } 401 402 bool bch2_fs_emergency_read_only(struct bch_fs *c) 403 { 404 bool ret = !test_and_set_bit(BCH_FS_emergency_ro, &c->flags); 405 406 bch2_journal_halt(&c->journal); 407 bch2_fs_read_only_async(c); 408 409 wake_up(&bch2_read_only_wait); 410 return ret; 411 } 412 413 static int bch2_fs_read_write_late(struct bch_fs *c) 414 { 415 int ret; 416 417 /* 418 * Data move operations can't run until after check_snapshots has 419 * completed, and bch2_snapshot_is_ancestor() is available. 420 * 421 * Ideally we'd start copygc/rebalance earlier instead of waiting for 422 * all of recovery/fsck to complete: 423 */ 424 ret = bch2_copygc_start(c); 425 if (ret) { 426 bch_err(c, "error starting copygc thread"); 427 return ret; 428 } 429 430 ret = bch2_rebalance_start(c); 431 if (ret) { 432 bch_err(c, "error starting rebalance thread"); 433 return ret; 434 } 435 436 return 0; 437 } 438 439 static int __bch2_fs_read_write(struct bch_fs *c, bool early) 440 { 441 int ret; 442 443 if (test_bit(BCH_FS_initial_gc_unfixed, &c->flags)) { 444 bch_err(c, "cannot go rw, unfixed btree errors"); 445 return -BCH_ERR_erofs_unfixed_errors; 446 } 447 448 if (test_bit(BCH_FS_rw, &c->flags)) 449 return 0; 450 451 bch_info(c, "going read-write"); 452 453 ret = bch2_sb_members_v2_init(c); 454 if (ret) 455 goto err; 456 457 ret = bch2_fs_mark_dirty(c); 458 if (ret) 459 goto err; 460 461 clear_bit(BCH_FS_clean_shutdown, &c->flags); 462 463 /* 464 * First journal write must be a flush write: after a clean shutdown we 465 * don't read the journal, so the first journal write may end up 466 * overwriting whatever was there previously, and there must always be 467 * at least one non-flush write in the journal or recovery will fail: 468 */ 469 set_bit(JOURNAL_need_flush_write, &c->journal.flags); 470 set_bit(JOURNAL_running, &c->journal.flags); 471 472 for_each_rw_member(c, ca) 473 bch2_dev_allocator_add(c, ca); 474 bch2_recalc_capacity(c); 475 476 set_bit(BCH_FS_rw, &c->flags); 477 set_bit(BCH_FS_was_rw, &c->flags); 478 479 #ifndef BCH_WRITE_REF_DEBUG 480 percpu_ref_reinit(&c->writes); 481 #else 482 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) { 483 BUG_ON(atomic_long_read(&c->writes[i])); 484 atomic_long_inc(&c->writes[i]); 485 } 486 #endif 487 488 ret = bch2_journal_reclaim_start(&c->journal); 489 if (ret) 490 goto err; 491 492 if (!early) { 493 ret = bch2_fs_read_write_late(c); 494 if (ret) 495 goto err; 496 } 497 498 bch2_do_discards(c); 499 bch2_do_invalidates(c); 500 bch2_do_stripe_deletes(c); 501 bch2_do_pending_node_rewrites(c); 502 return 0; 503 err: 504 if (test_bit(BCH_FS_rw, &c->flags)) 505 bch2_fs_read_only(c); 506 else 507 __bch2_fs_read_only(c); 508 return ret; 509 } 510 511 int bch2_fs_read_write(struct bch_fs *c) 512 { 513 if (c->opts.recovery_pass_last && 514 c->opts.recovery_pass_last < BCH_RECOVERY_PASS_journal_replay) 515 return -BCH_ERR_erofs_norecovery; 516 517 if (c->opts.nochanges) 518 return -BCH_ERR_erofs_nochanges; 519 520 return __bch2_fs_read_write(c, false); 521 } 522 523 int bch2_fs_read_write_early(struct bch_fs *c) 524 { 525 lockdep_assert_held(&c->state_lock); 526 527 return __bch2_fs_read_write(c, true); 528 } 529 530 /* Filesystem startup/shutdown: */ 531 532 static void __bch2_fs_free(struct bch_fs *c) 533 { 534 for (unsigned i = 0; i < BCH_TIME_STAT_NR; i++) 535 bch2_time_stats_exit(&c->times[i]); 536 537 bch2_find_btree_nodes_exit(&c->found_btree_nodes); 538 bch2_free_pending_node_rewrites(c); 539 bch2_fs_sb_errors_exit(c); 540 bch2_fs_counters_exit(c); 541 bch2_fs_snapshots_exit(c); 542 bch2_fs_quota_exit(c); 543 bch2_fs_fs_io_direct_exit(c); 544 bch2_fs_fs_io_buffered_exit(c); 545 bch2_fs_fsio_exit(c); 546 bch2_fs_ec_exit(c); 547 bch2_fs_encryption_exit(c); 548 bch2_fs_nocow_locking_exit(c); 549 bch2_fs_io_write_exit(c); 550 bch2_fs_io_read_exit(c); 551 bch2_fs_buckets_waiting_for_journal_exit(c); 552 bch2_fs_btree_interior_update_exit(c); 553 bch2_fs_btree_key_cache_exit(&c->btree_key_cache); 554 bch2_fs_btree_cache_exit(c); 555 bch2_fs_btree_iter_exit(c); 556 bch2_fs_replicas_exit(c); 557 bch2_fs_journal_exit(&c->journal); 558 bch2_io_clock_exit(&c->io_clock[WRITE]); 559 bch2_io_clock_exit(&c->io_clock[READ]); 560 bch2_fs_compress_exit(c); 561 bch2_journal_keys_put_initial(c); 562 bch2_find_btree_nodes_exit(&c->found_btree_nodes); 563 BUG_ON(atomic_read(&c->journal_keys.ref)); 564 bch2_fs_btree_write_buffer_exit(c); 565 percpu_free_rwsem(&c->mark_lock); 566 EBUG_ON(c->online_reserved && percpu_u64_get(c->online_reserved)); 567 free_percpu(c->online_reserved); 568 569 darray_exit(&c->btree_roots_extra); 570 free_percpu(c->pcpu); 571 mempool_exit(&c->large_bkey_pool); 572 mempool_exit(&c->btree_bounce_pool); 573 bioset_exit(&c->btree_bio); 574 mempool_exit(&c->fill_iter); 575 #ifndef BCH_WRITE_REF_DEBUG 576 percpu_ref_exit(&c->writes); 577 #endif 578 kfree(rcu_dereference_protected(c->disk_groups, 1)); 579 kfree(c->journal_seq_blacklist_table); 580 kfree(c->unused_inode_hints); 581 582 if (c->write_ref_wq) 583 destroy_workqueue(c->write_ref_wq); 584 if (c->btree_write_submit_wq) 585 destroy_workqueue(c->btree_write_submit_wq); 586 if (c->btree_read_complete_wq) 587 destroy_workqueue(c->btree_read_complete_wq); 588 if (c->copygc_wq) 589 destroy_workqueue(c->copygc_wq); 590 if (c->btree_io_complete_wq) 591 destroy_workqueue(c->btree_io_complete_wq); 592 if (c->btree_update_wq) 593 destroy_workqueue(c->btree_update_wq); 594 595 bch2_free_super(&c->disk_sb); 596 kvfree(c); 597 module_put(THIS_MODULE); 598 } 599 600 static void bch2_fs_release(struct kobject *kobj) 601 { 602 struct bch_fs *c = container_of(kobj, struct bch_fs, kobj); 603 604 __bch2_fs_free(c); 605 } 606 607 void __bch2_fs_stop(struct bch_fs *c) 608 { 609 bch_verbose(c, "shutting down"); 610 611 set_bit(BCH_FS_stopping, &c->flags); 612 613 down_write(&c->state_lock); 614 bch2_fs_read_only(c); 615 up_write(&c->state_lock); 616 617 for_each_member_device(c, ca) 618 if (ca->kobj.state_in_sysfs && 619 ca->disk_sb.bdev) 620 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 621 622 if (c->kobj.state_in_sysfs) 623 kobject_del(&c->kobj); 624 625 bch2_fs_debug_exit(c); 626 bch2_fs_chardev_exit(c); 627 628 bch2_ro_ref_put(c); 629 wait_event(c->ro_ref_wait, !refcount_read(&c->ro_ref)); 630 631 kobject_put(&c->counters_kobj); 632 kobject_put(&c->time_stats); 633 kobject_put(&c->opts_dir); 634 kobject_put(&c->internal); 635 636 /* btree prefetch might have kicked off reads in the background: */ 637 bch2_btree_flush_all_reads(c); 638 639 for_each_member_device(c, ca) 640 cancel_work_sync(&ca->io_error_work); 641 642 cancel_work_sync(&c->read_only_work); 643 } 644 645 void bch2_fs_free(struct bch_fs *c) 646 { 647 unsigned i; 648 649 mutex_lock(&bch_fs_list_lock); 650 list_del(&c->list); 651 mutex_unlock(&bch_fs_list_lock); 652 653 closure_sync(&c->cl); 654 closure_debug_destroy(&c->cl); 655 656 for (i = 0; i < c->sb.nr_devices; i++) { 657 struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true); 658 659 if (ca) { 660 EBUG_ON(atomic_long_read(&ca->ref) != 1); 661 bch2_free_super(&ca->disk_sb); 662 bch2_dev_free(ca); 663 } 664 } 665 666 bch_verbose(c, "shutdown complete"); 667 668 kobject_put(&c->kobj); 669 } 670 671 void bch2_fs_stop(struct bch_fs *c) 672 { 673 __bch2_fs_stop(c); 674 bch2_fs_free(c); 675 } 676 677 static int bch2_fs_online(struct bch_fs *c) 678 { 679 int ret = 0; 680 681 lockdep_assert_held(&bch_fs_list_lock); 682 683 if (__bch2_uuid_to_fs(c->sb.uuid)) { 684 bch_err(c, "filesystem UUID already open"); 685 return -EINVAL; 686 } 687 688 ret = bch2_fs_chardev_init(c); 689 if (ret) { 690 bch_err(c, "error creating character device"); 691 return ret; 692 } 693 694 bch2_fs_debug_init(c); 695 696 ret = kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ?: 697 kobject_add(&c->internal, &c->kobj, "internal") ?: 698 kobject_add(&c->opts_dir, &c->kobj, "options") ?: 699 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT 700 kobject_add(&c->time_stats, &c->kobj, "time_stats") ?: 701 #endif 702 kobject_add(&c->counters_kobj, &c->kobj, "counters") ?: 703 bch2_opts_create_sysfs_files(&c->opts_dir); 704 if (ret) { 705 bch_err(c, "error creating sysfs objects"); 706 return ret; 707 } 708 709 down_write(&c->state_lock); 710 711 for_each_member_device(c, ca) { 712 ret = bch2_dev_sysfs_online(c, ca); 713 if (ret) { 714 bch_err(c, "error creating sysfs objects"); 715 bch2_dev_put(ca); 716 goto err; 717 } 718 } 719 720 BUG_ON(!list_empty(&c->list)); 721 list_add(&c->list, &bch_fs_list); 722 err: 723 up_write(&c->state_lock); 724 return ret; 725 } 726 727 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts) 728 { 729 struct bch_fs *c; 730 struct printbuf name = PRINTBUF; 731 unsigned i, iter_size; 732 int ret = 0; 733 734 c = kvmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO); 735 if (!c) { 736 c = ERR_PTR(-BCH_ERR_ENOMEM_fs_alloc); 737 goto out; 738 } 739 740 c->stdio = (void *)(unsigned long) opts.stdio; 741 742 __module_get(THIS_MODULE); 743 744 closure_init(&c->cl, NULL); 745 746 c->kobj.kset = bcachefs_kset; 747 kobject_init(&c->kobj, &bch2_fs_ktype); 748 kobject_init(&c->internal, &bch2_fs_internal_ktype); 749 kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype); 750 kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype); 751 kobject_init(&c->counters_kobj, &bch2_fs_counters_ktype); 752 753 c->minor = -1; 754 c->disk_sb.fs_sb = true; 755 756 init_rwsem(&c->state_lock); 757 mutex_init(&c->sb_lock); 758 mutex_init(&c->replicas_gc_lock); 759 mutex_init(&c->btree_root_lock); 760 INIT_WORK(&c->read_only_work, bch2_fs_read_only_work); 761 762 refcount_set(&c->ro_ref, 1); 763 init_waitqueue_head(&c->ro_ref_wait); 764 sema_init(&c->online_fsck_mutex, 1); 765 766 init_rwsem(&c->gc_lock); 767 mutex_init(&c->gc_gens_lock); 768 atomic_set(&c->journal_keys.ref, 1); 769 c->journal_keys.initial_ref_held = true; 770 771 for (i = 0; i < BCH_TIME_STAT_NR; i++) 772 bch2_time_stats_init(&c->times[i]); 773 774 bch2_fs_gc_init(c); 775 bch2_fs_copygc_init(c); 776 bch2_fs_btree_key_cache_init_early(&c->btree_key_cache); 777 bch2_fs_btree_iter_init_early(c); 778 bch2_fs_btree_interior_update_init_early(c); 779 bch2_fs_allocator_background_init(c); 780 bch2_fs_allocator_foreground_init(c); 781 bch2_fs_rebalance_init(c); 782 bch2_fs_quota_init(c); 783 bch2_fs_ec_init_early(c); 784 bch2_fs_move_init(c); 785 bch2_fs_sb_errors_init_early(c); 786 787 INIT_LIST_HEAD(&c->list); 788 789 mutex_init(&c->usage_scratch_lock); 790 791 mutex_init(&c->bio_bounce_pages_lock); 792 mutex_init(&c->snapshot_table_lock); 793 init_rwsem(&c->snapshot_create_lock); 794 795 spin_lock_init(&c->btree_write_error_lock); 796 797 INIT_LIST_HEAD(&c->journal_iters); 798 799 INIT_LIST_HEAD(&c->fsck_error_msgs); 800 mutex_init(&c->fsck_error_msgs_lock); 801 802 seqcount_init(&c->usage_lock); 803 804 sema_init(&c->io_in_flight, 128); 805 806 INIT_LIST_HEAD(&c->vfs_inodes_list); 807 mutex_init(&c->vfs_inodes_lock); 808 809 c->copy_gc_enabled = 1; 810 c->rebalance.enabled = 1; 811 c->promote_whole_extents = true; 812 813 c->journal.flush_write_time = &c->times[BCH_TIME_journal_flush_write]; 814 c->journal.noflush_write_time = &c->times[BCH_TIME_journal_noflush_write]; 815 c->journal.flush_seq_time = &c->times[BCH_TIME_journal_flush_seq]; 816 817 bch2_fs_btree_cache_init_early(&c->btree_cache); 818 819 mutex_init(&c->sectors_available_lock); 820 821 ret = percpu_init_rwsem(&c->mark_lock); 822 if (ret) 823 goto err; 824 825 mutex_lock(&c->sb_lock); 826 ret = bch2_sb_to_fs(c, sb); 827 mutex_unlock(&c->sb_lock); 828 829 if (ret) 830 goto err; 831 832 pr_uuid(&name, c->sb.user_uuid.b); 833 ret = name.allocation_failure ? -BCH_ERR_ENOMEM_fs_name_alloc : 0; 834 if (ret) 835 goto err; 836 837 strscpy(c->name, name.buf, sizeof(c->name)); 838 printbuf_exit(&name); 839 840 /* Compat: */ 841 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && 842 !BCH_SB_JOURNAL_FLUSH_DELAY(sb)) 843 SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000); 844 845 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && 846 !BCH_SB_JOURNAL_RECLAIM_DELAY(sb)) 847 SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 100); 848 849 c->opts = bch2_opts_default; 850 ret = bch2_opts_from_sb(&c->opts, sb); 851 if (ret) 852 goto err; 853 854 bch2_opts_apply(&c->opts, opts); 855 856 c->btree_key_cache_btrees |= 1U << BTREE_ID_alloc; 857 if (c->opts.inodes_use_key_cache) 858 c->btree_key_cache_btrees |= 1U << BTREE_ID_inodes; 859 c->btree_key_cache_btrees |= 1U << BTREE_ID_logged_ops; 860 861 c->block_bits = ilog2(block_sectors(c)); 862 c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c); 863 864 if (bch2_fs_init_fault("fs_alloc")) { 865 bch_err(c, "fs_alloc fault injected"); 866 ret = -EFAULT; 867 goto err; 868 } 869 870 iter_size = sizeof(struct sort_iter) + 871 (btree_blocks(c) + 1) * 2 * 872 sizeof(struct sort_iter_set); 873 874 c->inode_shard_bits = ilog2(roundup_pow_of_two(num_possible_cpus())); 875 876 if (!(c->btree_update_wq = alloc_workqueue("bcachefs", 877 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_UNBOUND, 512)) || 878 !(c->btree_io_complete_wq = alloc_workqueue("bcachefs_btree_io", 879 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) || 880 !(c->copygc_wq = alloc_workqueue("bcachefs_copygc", 881 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) || 882 !(c->btree_read_complete_wq = alloc_workqueue("bcachefs_btree_read_complete", 883 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 512)) || 884 !(c->btree_write_submit_wq = alloc_workqueue("bcachefs_btree_write_sumit", 885 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) || 886 !(c->write_ref_wq = alloc_workqueue("bcachefs_write_ref", 887 WQ_FREEZABLE, 0)) || 888 #ifndef BCH_WRITE_REF_DEBUG 889 percpu_ref_init(&c->writes, bch2_writes_disabled, 890 PERCPU_REF_INIT_DEAD, GFP_KERNEL) || 891 #endif 892 mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) || 893 bioset_init(&c->btree_bio, 1, 894 max(offsetof(struct btree_read_bio, bio), 895 offsetof(struct btree_write_bio, wbio.bio)), 896 BIOSET_NEED_BVECS) || 897 !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) || 898 !(c->online_reserved = alloc_percpu(u64)) || 899 mempool_init_kvmalloc_pool(&c->btree_bounce_pool, 1, 900 c->opts.btree_node_size) || 901 mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048) || 902 !(c->unused_inode_hints = kcalloc(1U << c->inode_shard_bits, 903 sizeof(u64), GFP_KERNEL))) { 904 ret = -BCH_ERR_ENOMEM_fs_other_alloc; 905 goto err; 906 } 907 908 ret = bch2_fs_counters_init(c) ?: 909 bch2_fs_sb_errors_init(c) ?: 910 bch2_io_clock_init(&c->io_clock[READ]) ?: 911 bch2_io_clock_init(&c->io_clock[WRITE]) ?: 912 bch2_fs_journal_init(&c->journal) ?: 913 bch2_fs_replicas_init(c) ?: 914 bch2_fs_btree_iter_init(c) ?: 915 bch2_fs_btree_cache_init(c) ?: 916 bch2_fs_btree_key_cache_init(&c->btree_key_cache) ?: 917 bch2_fs_btree_interior_update_init(c) ?: 918 bch2_fs_buckets_waiting_for_journal_init(c) ?: 919 bch2_fs_btree_write_buffer_init(c) ?: 920 bch2_fs_subvolumes_init(c) ?: 921 bch2_fs_io_read_init(c) ?: 922 bch2_fs_io_write_init(c) ?: 923 bch2_fs_nocow_locking_init(c) ?: 924 bch2_fs_encryption_init(c) ?: 925 bch2_fs_compress_init(c) ?: 926 bch2_fs_ec_init(c) ?: 927 bch2_fs_fsio_init(c) ?: 928 bch2_fs_fs_io_buffered_init(c) ?: 929 bch2_fs_fs_io_direct_init(c); 930 if (ret) 931 goto err; 932 933 for (i = 0; i < c->sb.nr_devices; i++) { 934 if (!bch2_member_exists(c->disk_sb.sb, i)) 935 continue; 936 ret = bch2_dev_alloc(c, i); 937 if (ret) 938 goto err; 939 } 940 941 bch2_journal_entry_res_resize(&c->journal, 942 &c->btree_root_journal_res, 943 BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX)); 944 bch2_dev_usage_journal_reserve(c); 945 bch2_journal_entry_res_resize(&c->journal, 946 &c->clock_journal_res, 947 (sizeof(struct jset_entry_clock) / sizeof(u64)) * 2); 948 949 mutex_lock(&bch_fs_list_lock); 950 ret = bch2_fs_online(c); 951 mutex_unlock(&bch_fs_list_lock); 952 953 if (ret) 954 goto err; 955 out: 956 return c; 957 err: 958 bch2_fs_free(c); 959 c = ERR_PTR(ret); 960 goto out; 961 } 962 963 noinline_for_stack 964 static void print_mount_opts(struct bch_fs *c) 965 { 966 enum bch_opt_id i; 967 struct printbuf p = PRINTBUF; 968 bool first = true; 969 970 prt_str(&p, "mounting version "); 971 bch2_version_to_text(&p, c->sb.version); 972 973 if (c->opts.read_only) { 974 prt_str(&p, " opts="); 975 first = false; 976 prt_printf(&p, "ro"); 977 } 978 979 for (i = 0; i < bch2_opts_nr; i++) { 980 const struct bch_option *opt = &bch2_opt_table[i]; 981 u64 v = bch2_opt_get_by_id(&c->opts, i); 982 983 if (!(opt->flags & OPT_MOUNT)) 984 continue; 985 986 if (v == bch2_opt_get_by_id(&bch2_opts_default, i)) 987 continue; 988 989 prt_str(&p, first ? " opts=" : ","); 990 first = false; 991 bch2_opt_to_text(&p, c, c->disk_sb.sb, opt, v, OPT_SHOW_MOUNT_STYLE); 992 } 993 994 bch_info(c, "%s", p.buf); 995 printbuf_exit(&p); 996 } 997 998 int bch2_fs_start(struct bch_fs *c) 999 { 1000 time64_t now = ktime_get_real_seconds(); 1001 int ret; 1002 1003 print_mount_opts(c); 1004 1005 down_write(&c->state_lock); 1006 1007 BUG_ON(test_bit(BCH_FS_started, &c->flags)); 1008 1009 mutex_lock(&c->sb_lock); 1010 1011 ret = bch2_sb_members_v2_init(c); 1012 if (ret) { 1013 mutex_unlock(&c->sb_lock); 1014 goto err; 1015 } 1016 1017 for_each_online_member(c, ca) 1018 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = cpu_to_le64(now); 1019 1020 struct bch_sb_field_ext *ext = 1021 bch2_sb_field_get_minsize(&c->disk_sb, ext, sizeof(*ext) / sizeof(u64)); 1022 mutex_unlock(&c->sb_lock); 1023 1024 if (!ext) { 1025 bch_err(c, "insufficient space in superblock for sb_field_ext"); 1026 ret = -BCH_ERR_ENOSPC_sb; 1027 goto err; 1028 } 1029 1030 for_each_rw_member(c, ca) 1031 bch2_dev_allocator_add(c, ca); 1032 bch2_recalc_capacity(c); 1033 1034 ret = BCH_SB_INITIALIZED(c->disk_sb.sb) 1035 ? bch2_fs_recovery(c) 1036 : bch2_fs_initialize(c); 1037 if (ret) 1038 goto err; 1039 1040 ret = bch2_opts_check_may_set(c); 1041 if (ret) 1042 goto err; 1043 1044 if (bch2_fs_init_fault("fs_start")) { 1045 bch_err(c, "fs_start fault injected"); 1046 ret = -EINVAL; 1047 goto err; 1048 } 1049 1050 set_bit(BCH_FS_started, &c->flags); 1051 1052 if (c->opts.read_only) { 1053 bch2_fs_read_only(c); 1054 } else { 1055 ret = !test_bit(BCH_FS_rw, &c->flags) 1056 ? bch2_fs_read_write(c) 1057 : bch2_fs_read_write_late(c); 1058 if (ret) 1059 goto err; 1060 } 1061 1062 ret = 0; 1063 err: 1064 if (ret) 1065 bch_err_msg(c, ret, "starting filesystem"); 1066 else 1067 bch_verbose(c, "done starting filesystem"); 1068 up_write(&c->state_lock); 1069 return ret; 1070 } 1071 1072 static int bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c) 1073 { 1074 struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx); 1075 1076 if (le16_to_cpu(sb->block_size) != block_sectors(c)) 1077 return -BCH_ERR_mismatched_block_size; 1078 1079 if (le16_to_cpu(m.bucket_size) < 1080 BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb)) 1081 return -BCH_ERR_bucket_size_too_small; 1082 1083 return 0; 1084 } 1085 1086 static int bch2_dev_in_fs(struct bch_sb_handle *fs, 1087 struct bch_sb_handle *sb, 1088 struct bch_opts *opts) 1089 { 1090 if (fs == sb) 1091 return 0; 1092 1093 if (!uuid_equal(&fs->sb->uuid, &sb->sb->uuid)) 1094 return -BCH_ERR_device_not_a_member_of_filesystem; 1095 1096 if (!bch2_member_exists(fs->sb, sb->sb->dev_idx)) 1097 return -BCH_ERR_device_has_been_removed; 1098 1099 if (fs->sb->block_size != sb->sb->block_size) 1100 return -BCH_ERR_mismatched_block_size; 1101 1102 if (le16_to_cpu(fs->sb->version) < bcachefs_metadata_version_member_seq || 1103 le16_to_cpu(sb->sb->version) < bcachefs_metadata_version_member_seq) 1104 return 0; 1105 1106 if (fs->sb->seq == sb->sb->seq && 1107 fs->sb->write_time != sb->sb->write_time) { 1108 struct printbuf buf = PRINTBUF; 1109 1110 prt_str(&buf, "Split brain detected between "); 1111 prt_bdevname(&buf, sb->bdev); 1112 prt_str(&buf, " and "); 1113 prt_bdevname(&buf, fs->bdev); 1114 prt_char(&buf, ':'); 1115 prt_newline(&buf); 1116 prt_printf(&buf, "seq=%llu but write_time different, got", le64_to_cpu(sb->sb->seq)); 1117 prt_newline(&buf); 1118 1119 prt_bdevname(&buf, fs->bdev); 1120 prt_char(&buf, ' '); 1121 bch2_prt_datetime(&buf, le64_to_cpu(fs->sb->write_time));; 1122 prt_newline(&buf); 1123 1124 prt_bdevname(&buf, sb->bdev); 1125 prt_char(&buf, ' '); 1126 bch2_prt_datetime(&buf, le64_to_cpu(sb->sb->write_time));; 1127 prt_newline(&buf); 1128 1129 if (!opts->no_splitbrain_check) 1130 prt_printf(&buf, "Not using older sb"); 1131 1132 pr_err("%s", buf.buf); 1133 printbuf_exit(&buf); 1134 1135 if (!opts->no_splitbrain_check) 1136 return -BCH_ERR_device_splitbrain; 1137 } 1138 1139 struct bch_member m = bch2_sb_member_get(fs->sb, sb->sb->dev_idx); 1140 u64 seq_from_fs = le64_to_cpu(m.seq); 1141 u64 seq_from_member = le64_to_cpu(sb->sb->seq); 1142 1143 if (seq_from_fs && seq_from_fs < seq_from_member) { 1144 struct printbuf buf = PRINTBUF; 1145 1146 prt_str(&buf, "Split brain detected between "); 1147 prt_bdevname(&buf, sb->bdev); 1148 prt_str(&buf, " and "); 1149 prt_bdevname(&buf, fs->bdev); 1150 prt_char(&buf, ':'); 1151 prt_newline(&buf); 1152 1153 prt_bdevname(&buf, fs->bdev); 1154 prt_str(&buf, " believes seq of "); 1155 prt_bdevname(&buf, sb->bdev); 1156 prt_printf(&buf, " to be %llu, but ", seq_from_fs); 1157 prt_bdevname(&buf, sb->bdev); 1158 prt_printf(&buf, " has %llu\n", seq_from_member); 1159 1160 if (!opts->no_splitbrain_check) { 1161 prt_str(&buf, "Not using "); 1162 prt_bdevname(&buf, sb->bdev); 1163 } 1164 1165 pr_err("%s", buf.buf); 1166 printbuf_exit(&buf); 1167 1168 if (!opts->no_splitbrain_check) 1169 return -BCH_ERR_device_splitbrain; 1170 } 1171 1172 return 0; 1173 } 1174 1175 /* Device startup/shutdown: */ 1176 1177 static void bch2_dev_release(struct kobject *kobj) 1178 { 1179 struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj); 1180 1181 kfree(ca); 1182 } 1183 1184 static void bch2_dev_free(struct bch_dev *ca) 1185 { 1186 cancel_work_sync(&ca->io_error_work); 1187 1188 if (ca->kobj.state_in_sysfs && 1189 ca->disk_sb.bdev) 1190 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 1191 1192 if (ca->kobj.state_in_sysfs) 1193 kobject_del(&ca->kobj); 1194 1195 kfree(ca->buckets_nouse); 1196 bch2_free_super(&ca->disk_sb); 1197 bch2_dev_allocator_background_exit(ca); 1198 bch2_dev_journal_exit(ca); 1199 1200 free_percpu(ca->io_done); 1201 bch2_dev_buckets_free(ca); 1202 free_page((unsigned long) ca->sb_read_scratch); 1203 1204 bch2_time_stats_quantiles_exit(&ca->io_latency[WRITE]); 1205 bch2_time_stats_quantiles_exit(&ca->io_latency[READ]); 1206 1207 percpu_ref_exit(&ca->io_ref); 1208 #ifndef CONFIG_BCACHEFS_DEBUG 1209 percpu_ref_exit(&ca->ref); 1210 #endif 1211 kobject_put(&ca->kobj); 1212 } 1213 1214 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca) 1215 { 1216 1217 lockdep_assert_held(&c->state_lock); 1218 1219 if (percpu_ref_is_zero(&ca->io_ref)) 1220 return; 1221 1222 __bch2_dev_read_only(c, ca); 1223 1224 reinit_completion(&ca->io_ref_completion); 1225 percpu_ref_kill(&ca->io_ref); 1226 wait_for_completion(&ca->io_ref_completion); 1227 1228 if (ca->kobj.state_in_sysfs) { 1229 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 1230 sysfs_remove_link(&ca->kobj, "block"); 1231 } 1232 1233 bch2_free_super(&ca->disk_sb); 1234 bch2_dev_journal_exit(ca); 1235 } 1236 1237 #ifndef CONFIG_BCACHEFS_DEBUG 1238 static void bch2_dev_ref_complete(struct percpu_ref *ref) 1239 { 1240 struct bch_dev *ca = container_of(ref, struct bch_dev, ref); 1241 1242 complete(&ca->ref_completion); 1243 } 1244 #endif 1245 1246 static void bch2_dev_io_ref_complete(struct percpu_ref *ref) 1247 { 1248 struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref); 1249 1250 complete(&ca->io_ref_completion); 1251 } 1252 1253 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca) 1254 { 1255 int ret; 1256 1257 if (!c->kobj.state_in_sysfs) 1258 return 0; 1259 1260 if (!ca->kobj.state_in_sysfs) { 1261 ret = kobject_add(&ca->kobj, &c->kobj, 1262 "dev-%u", ca->dev_idx); 1263 if (ret) 1264 return ret; 1265 } 1266 1267 if (ca->disk_sb.bdev) { 1268 struct kobject *block = bdev_kobj(ca->disk_sb.bdev); 1269 1270 ret = sysfs_create_link(block, &ca->kobj, "bcachefs"); 1271 if (ret) 1272 return ret; 1273 1274 ret = sysfs_create_link(&ca->kobj, block, "block"); 1275 if (ret) 1276 return ret; 1277 } 1278 1279 return 0; 1280 } 1281 1282 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c, 1283 struct bch_member *member) 1284 { 1285 struct bch_dev *ca; 1286 unsigned i; 1287 1288 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 1289 if (!ca) 1290 return NULL; 1291 1292 kobject_init(&ca->kobj, &bch2_dev_ktype); 1293 init_completion(&ca->ref_completion); 1294 init_completion(&ca->io_ref_completion); 1295 1296 init_rwsem(&ca->bucket_lock); 1297 1298 INIT_WORK(&ca->io_error_work, bch2_io_error_work); 1299 1300 bch2_time_stats_quantiles_init(&ca->io_latency[READ]); 1301 bch2_time_stats_quantiles_init(&ca->io_latency[WRITE]); 1302 1303 ca->mi = bch2_mi_to_cpu(member); 1304 1305 for (i = 0; i < ARRAY_SIZE(member->errors); i++) 1306 atomic64_set(&ca->errors[i], le64_to_cpu(member->errors[i])); 1307 1308 ca->uuid = member->uuid; 1309 1310 ca->nr_btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE, 1311 ca->mi.bucket_size / btree_sectors(c)); 1312 1313 #ifndef CONFIG_BCACHEFS_DEBUG 1314 if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete, 0, GFP_KERNEL)) 1315 goto err; 1316 #else 1317 atomic_long_set(&ca->ref, 1); 1318 #endif 1319 1320 bch2_dev_allocator_background_init(ca); 1321 1322 if (percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete, 1323 PERCPU_REF_INIT_DEAD, GFP_KERNEL) || 1324 !(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) || 1325 bch2_dev_buckets_alloc(c, ca) || 1326 !(ca->io_done = alloc_percpu(*ca->io_done))) 1327 goto err; 1328 1329 return ca; 1330 err: 1331 bch2_dev_free(ca); 1332 return NULL; 1333 } 1334 1335 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca, 1336 unsigned dev_idx) 1337 { 1338 ca->dev_idx = dev_idx; 1339 __set_bit(ca->dev_idx, ca->self.d); 1340 scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx); 1341 1342 ca->fs = c; 1343 rcu_assign_pointer(c->devs[ca->dev_idx], ca); 1344 1345 if (bch2_dev_sysfs_online(c, ca)) 1346 pr_warn("error creating sysfs objects"); 1347 } 1348 1349 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx) 1350 { 1351 struct bch_member member = bch2_sb_member_get(c->disk_sb.sb, dev_idx); 1352 struct bch_dev *ca = NULL; 1353 int ret = 0; 1354 1355 if (bch2_fs_init_fault("dev_alloc")) 1356 goto err; 1357 1358 ca = __bch2_dev_alloc(c, &member); 1359 if (!ca) 1360 goto err; 1361 1362 ca->fs = c; 1363 1364 bch2_dev_attach(c, ca, dev_idx); 1365 return ret; 1366 err: 1367 if (ca) 1368 bch2_dev_free(ca); 1369 return -BCH_ERR_ENOMEM_dev_alloc; 1370 } 1371 1372 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb) 1373 { 1374 unsigned ret; 1375 1376 if (bch2_dev_is_online(ca)) { 1377 bch_err(ca, "already have device online in slot %u", 1378 sb->sb->dev_idx); 1379 return -BCH_ERR_device_already_online; 1380 } 1381 1382 if (get_capacity(sb->bdev->bd_disk) < 1383 ca->mi.bucket_size * ca->mi.nbuckets) { 1384 bch_err(ca, "cannot online: device too small"); 1385 return -BCH_ERR_device_size_too_small; 1386 } 1387 1388 BUG_ON(!percpu_ref_is_zero(&ca->io_ref)); 1389 1390 ret = bch2_dev_journal_init(ca, sb->sb); 1391 if (ret) 1392 return ret; 1393 1394 /* Commit: */ 1395 ca->disk_sb = *sb; 1396 memset(sb, 0, sizeof(*sb)); 1397 1398 ca->dev = ca->disk_sb.bdev->bd_dev; 1399 1400 percpu_ref_reinit(&ca->io_ref); 1401 1402 return 0; 1403 } 1404 1405 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb) 1406 { 1407 struct bch_dev *ca; 1408 int ret; 1409 1410 lockdep_assert_held(&c->state_lock); 1411 1412 if (le64_to_cpu(sb->sb->seq) > 1413 le64_to_cpu(c->disk_sb.sb->seq)) 1414 bch2_sb_to_fs(c, sb->sb); 1415 1416 BUG_ON(!bch2_dev_exists(c, sb->sb->dev_idx)); 1417 1418 ca = bch2_dev_locked(c, sb->sb->dev_idx); 1419 1420 ret = __bch2_dev_attach_bdev(ca, sb); 1421 if (ret) 1422 return ret; 1423 1424 bch2_dev_sysfs_online(c, ca); 1425 1426 struct printbuf name = PRINTBUF; 1427 prt_bdevname(&name, ca->disk_sb.bdev); 1428 1429 if (c->sb.nr_devices == 1) 1430 strscpy(c->name, name.buf, sizeof(c->name)); 1431 strscpy(ca->name, name.buf, sizeof(ca->name)); 1432 1433 printbuf_exit(&name); 1434 1435 rebalance_wakeup(c); 1436 return 0; 1437 } 1438 1439 /* Device management: */ 1440 1441 /* 1442 * Note: this function is also used by the error paths - when a particular 1443 * device sees an error, we call it to determine whether we can just set the 1444 * device RO, or - if this function returns false - we'll set the whole 1445 * filesystem RO: 1446 * 1447 * XXX: maybe we should be more explicit about whether we're changing state 1448 * because we got an error or what have you? 1449 */ 1450 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca, 1451 enum bch_member_state new_state, int flags) 1452 { 1453 struct bch_devs_mask new_online_devs; 1454 int nr_rw = 0, required; 1455 1456 lockdep_assert_held(&c->state_lock); 1457 1458 switch (new_state) { 1459 case BCH_MEMBER_STATE_rw: 1460 return true; 1461 case BCH_MEMBER_STATE_ro: 1462 if (ca->mi.state != BCH_MEMBER_STATE_rw) 1463 return true; 1464 1465 /* do we have enough devices to write to? */ 1466 for_each_member_device(c, ca2) 1467 if (ca2 != ca) 1468 nr_rw += ca2->mi.state == BCH_MEMBER_STATE_rw; 1469 1470 required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED) 1471 ? c->opts.metadata_replicas 1472 : metadata_replicas_required(c), 1473 !(flags & BCH_FORCE_IF_DATA_DEGRADED) 1474 ? c->opts.data_replicas 1475 : data_replicas_required(c)); 1476 1477 return nr_rw >= required; 1478 case BCH_MEMBER_STATE_failed: 1479 case BCH_MEMBER_STATE_spare: 1480 if (ca->mi.state != BCH_MEMBER_STATE_rw && 1481 ca->mi.state != BCH_MEMBER_STATE_ro) 1482 return true; 1483 1484 /* do we have enough devices to read from? */ 1485 new_online_devs = bch2_online_devs(c); 1486 __clear_bit(ca->dev_idx, new_online_devs.d); 1487 1488 return bch2_have_enough_devs(c, new_online_devs, flags, false); 1489 default: 1490 BUG(); 1491 } 1492 } 1493 1494 static bool bch2_fs_may_start(struct bch_fs *c) 1495 { 1496 struct bch_dev *ca; 1497 unsigned i, flags = 0; 1498 1499 if (c->opts.very_degraded) 1500 flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST; 1501 1502 if (c->opts.degraded) 1503 flags |= BCH_FORCE_IF_DEGRADED; 1504 1505 if (!c->opts.degraded && 1506 !c->opts.very_degraded) { 1507 mutex_lock(&c->sb_lock); 1508 1509 for (i = 0; i < c->disk_sb.sb->nr_devices; i++) { 1510 if (!bch2_member_exists(c->disk_sb.sb, i)) 1511 continue; 1512 1513 ca = bch2_dev_locked(c, i); 1514 1515 if (!bch2_dev_is_online(ca) && 1516 (ca->mi.state == BCH_MEMBER_STATE_rw || 1517 ca->mi.state == BCH_MEMBER_STATE_ro)) { 1518 mutex_unlock(&c->sb_lock); 1519 return false; 1520 } 1521 } 1522 mutex_unlock(&c->sb_lock); 1523 } 1524 1525 return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true); 1526 } 1527 1528 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca) 1529 { 1530 /* 1531 * The allocator thread itself allocates btree nodes, so stop it first: 1532 */ 1533 bch2_dev_allocator_remove(c, ca); 1534 bch2_recalc_capacity(c); 1535 bch2_dev_journal_stop(&c->journal, ca); 1536 } 1537 1538 static void __bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca) 1539 { 1540 lockdep_assert_held(&c->state_lock); 1541 1542 BUG_ON(ca->mi.state != BCH_MEMBER_STATE_rw); 1543 1544 bch2_dev_allocator_add(c, ca); 1545 bch2_recalc_capacity(c); 1546 bch2_dev_do_discards(ca); 1547 } 1548 1549 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, 1550 enum bch_member_state new_state, int flags) 1551 { 1552 struct bch_member *m; 1553 int ret = 0; 1554 1555 if (ca->mi.state == new_state) 1556 return 0; 1557 1558 if (!bch2_dev_state_allowed(c, ca, new_state, flags)) 1559 return -BCH_ERR_device_state_not_allowed; 1560 1561 if (new_state != BCH_MEMBER_STATE_rw) 1562 __bch2_dev_read_only(c, ca); 1563 1564 bch_notice(ca, "%s", bch2_member_states[new_state]); 1565 1566 mutex_lock(&c->sb_lock); 1567 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); 1568 SET_BCH_MEMBER_STATE(m, new_state); 1569 bch2_write_super(c); 1570 mutex_unlock(&c->sb_lock); 1571 1572 if (new_state == BCH_MEMBER_STATE_rw) 1573 __bch2_dev_read_write(c, ca); 1574 1575 rebalance_wakeup(c); 1576 1577 return ret; 1578 } 1579 1580 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, 1581 enum bch_member_state new_state, int flags) 1582 { 1583 int ret; 1584 1585 down_write(&c->state_lock); 1586 ret = __bch2_dev_set_state(c, ca, new_state, flags); 1587 up_write(&c->state_lock); 1588 1589 return ret; 1590 } 1591 1592 /* Device add/removal: */ 1593 1594 static int bch2_dev_remove_alloc(struct bch_fs *c, struct bch_dev *ca) 1595 { 1596 struct bpos start = POS(ca->dev_idx, 0); 1597 struct bpos end = POS(ca->dev_idx, U64_MAX); 1598 int ret; 1599 1600 /* 1601 * We clear the LRU and need_discard btrees first so that we don't race 1602 * with bch2_do_invalidates() and bch2_do_discards() 1603 */ 1604 ret = bch2_btree_delete_range(c, BTREE_ID_lru, start, end, 1605 BTREE_TRIGGER_norun, NULL) ?: 1606 bch2_btree_delete_range(c, BTREE_ID_need_discard, start, end, 1607 BTREE_TRIGGER_norun, NULL) ?: 1608 bch2_btree_delete_range(c, BTREE_ID_freespace, start, end, 1609 BTREE_TRIGGER_norun, NULL) ?: 1610 bch2_btree_delete_range(c, BTREE_ID_backpointers, start, end, 1611 BTREE_TRIGGER_norun, NULL) ?: 1612 bch2_btree_delete_range(c, BTREE_ID_alloc, start, end, 1613 BTREE_TRIGGER_norun, NULL) ?: 1614 bch2_btree_delete_range(c, BTREE_ID_bucket_gens, start, end, 1615 BTREE_TRIGGER_norun, NULL); 1616 bch_err_msg(c, ret, "removing dev alloc info"); 1617 return ret; 1618 } 1619 1620 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags) 1621 { 1622 struct bch_member *m; 1623 unsigned dev_idx = ca->dev_idx, data; 1624 int ret; 1625 1626 down_write(&c->state_lock); 1627 1628 /* 1629 * We consume a reference to ca->ref, regardless of whether we succeed 1630 * or fail: 1631 */ 1632 bch2_dev_put(ca); 1633 1634 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { 1635 bch_err(ca, "Cannot remove without losing data"); 1636 ret = -BCH_ERR_device_state_not_allowed; 1637 goto err; 1638 } 1639 1640 __bch2_dev_read_only(c, ca); 1641 1642 ret = bch2_dev_data_drop(c, ca->dev_idx, flags); 1643 bch_err_msg(ca, ret, "bch2_dev_data_drop()"); 1644 if (ret) 1645 goto err; 1646 1647 ret = bch2_dev_remove_alloc(c, ca); 1648 bch_err_msg(ca, ret, "bch2_dev_remove_alloc()"); 1649 if (ret) 1650 goto err; 1651 1652 ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx); 1653 bch_err_msg(ca, ret, "bch2_journal_flush_device_pins()"); 1654 if (ret) 1655 goto err; 1656 1657 ret = bch2_journal_flush(&c->journal); 1658 bch_err_msg(ca, ret, "bch2_journal_flush()"); 1659 if (ret) 1660 goto err; 1661 1662 ret = bch2_replicas_gc2(c); 1663 bch_err_msg(ca, ret, "bch2_replicas_gc2()"); 1664 if (ret) 1665 goto err; 1666 1667 data = bch2_dev_has_data(c, ca); 1668 if (data) { 1669 struct printbuf data_has = PRINTBUF; 1670 1671 prt_bitflags(&data_has, __bch2_data_types, data); 1672 bch_err(ca, "Remove failed, still has data (%s)", data_has.buf); 1673 printbuf_exit(&data_has); 1674 ret = -EBUSY; 1675 goto err; 1676 } 1677 1678 __bch2_dev_offline(c, ca); 1679 1680 mutex_lock(&c->sb_lock); 1681 rcu_assign_pointer(c->devs[ca->dev_idx], NULL); 1682 mutex_unlock(&c->sb_lock); 1683 1684 #ifndef CONFIG_BCACHEFS_DEBUG 1685 percpu_ref_kill(&ca->ref); 1686 #else 1687 ca->dying = true; 1688 bch2_dev_put(ca); 1689 #endif 1690 wait_for_completion(&ca->ref_completion); 1691 1692 bch2_dev_free(ca); 1693 1694 /* 1695 * At this point the device object has been removed in-core, but the 1696 * on-disk journal might still refer to the device index via sb device 1697 * usage entries. Recovery fails if it sees usage information for an 1698 * invalid device. Flush journal pins to push the back of the journal 1699 * past now invalid device index references before we update the 1700 * superblock, but after the device object has been removed so any 1701 * further journal writes elide usage info for the device. 1702 */ 1703 bch2_journal_flush_all_pins(&c->journal); 1704 1705 /* 1706 * Free this device's slot in the bch_member array - all pointers to 1707 * this device must be gone: 1708 */ 1709 mutex_lock(&c->sb_lock); 1710 m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx); 1711 memset(&m->uuid, 0, sizeof(m->uuid)); 1712 1713 bch2_write_super(c); 1714 1715 mutex_unlock(&c->sb_lock); 1716 up_write(&c->state_lock); 1717 1718 bch2_dev_usage_journal_reserve(c); 1719 return 0; 1720 err: 1721 if (ca->mi.state == BCH_MEMBER_STATE_rw && 1722 !percpu_ref_is_zero(&ca->io_ref)) 1723 __bch2_dev_read_write(c, ca); 1724 up_write(&c->state_lock); 1725 return ret; 1726 } 1727 1728 /* Add new device to running filesystem: */ 1729 int bch2_dev_add(struct bch_fs *c, const char *path) 1730 { 1731 struct bch_opts opts = bch2_opts_empty(); 1732 struct bch_sb_handle sb; 1733 struct bch_dev *ca = NULL; 1734 struct bch_sb_field_members_v2 *mi; 1735 struct bch_member dev_mi; 1736 unsigned dev_idx, nr_devices, u64s; 1737 struct printbuf errbuf = PRINTBUF; 1738 struct printbuf label = PRINTBUF; 1739 int ret; 1740 1741 ret = bch2_read_super(path, &opts, &sb); 1742 bch_err_msg(c, ret, "reading super"); 1743 if (ret) 1744 goto err; 1745 1746 dev_mi = bch2_sb_member_get(sb.sb, sb.sb->dev_idx); 1747 1748 if (BCH_MEMBER_GROUP(&dev_mi)) { 1749 bch2_disk_path_to_text_sb(&label, sb.sb, BCH_MEMBER_GROUP(&dev_mi) - 1); 1750 if (label.allocation_failure) { 1751 ret = -ENOMEM; 1752 goto err; 1753 } 1754 } 1755 1756 ret = bch2_dev_may_add(sb.sb, c); 1757 if (ret) 1758 goto err; 1759 1760 ca = __bch2_dev_alloc(c, &dev_mi); 1761 if (!ca) { 1762 ret = -ENOMEM; 1763 goto err; 1764 } 1765 1766 bch2_dev_usage_init(ca); 1767 1768 ret = __bch2_dev_attach_bdev(ca, &sb); 1769 if (ret) 1770 goto err; 1771 1772 ret = bch2_dev_journal_alloc(ca); 1773 bch_err_msg(c, ret, "allocating journal"); 1774 if (ret) 1775 goto err; 1776 1777 down_write(&c->state_lock); 1778 mutex_lock(&c->sb_lock); 1779 1780 ret = bch2_sb_from_fs(c, ca); 1781 bch_err_msg(c, ret, "setting up new superblock"); 1782 if (ret) 1783 goto err_unlock; 1784 1785 if (dynamic_fault("bcachefs:add:no_slot")) 1786 goto no_slot; 1787 1788 if (c->sb.nr_devices < BCH_SB_MEMBERS_MAX) { 1789 dev_idx = c->sb.nr_devices; 1790 goto have_slot; 1791 } 1792 1793 int best = -1; 1794 u64 best_last_mount = 0; 1795 for (dev_idx = 0; dev_idx < BCH_SB_MEMBERS_MAX; dev_idx++) { 1796 struct bch_member m = bch2_sb_member_get(c->disk_sb.sb, dev_idx); 1797 if (bch2_member_alive(&m)) 1798 continue; 1799 1800 u64 last_mount = le64_to_cpu(m.last_mount); 1801 if (best < 0 || last_mount < best_last_mount) { 1802 best = dev_idx; 1803 best_last_mount = last_mount; 1804 } 1805 } 1806 if (best >= 0) { 1807 dev_idx = best; 1808 goto have_slot; 1809 } 1810 no_slot: 1811 ret = -BCH_ERR_ENOSPC_sb_members; 1812 bch_err_msg(c, ret, "setting up new superblock"); 1813 goto err_unlock; 1814 1815 have_slot: 1816 nr_devices = max_t(unsigned, dev_idx + 1, c->sb.nr_devices); 1817 1818 mi = bch2_sb_field_get(c->disk_sb.sb, members_v2); 1819 u64s = DIV_ROUND_UP(sizeof(struct bch_sb_field_members_v2) + 1820 le16_to_cpu(mi->member_bytes) * nr_devices, sizeof(u64)); 1821 1822 mi = bch2_sb_field_resize(&c->disk_sb, members_v2, u64s); 1823 if (!mi) { 1824 ret = -BCH_ERR_ENOSPC_sb_members; 1825 bch_err_msg(c, ret, "setting up new superblock"); 1826 goto err_unlock; 1827 } 1828 struct bch_member *m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx); 1829 1830 /* success: */ 1831 1832 *m = dev_mi; 1833 m->last_mount = cpu_to_le64(ktime_get_real_seconds()); 1834 c->disk_sb.sb->nr_devices = nr_devices; 1835 1836 ca->disk_sb.sb->dev_idx = dev_idx; 1837 bch2_dev_attach(c, ca, dev_idx); 1838 1839 if (BCH_MEMBER_GROUP(&dev_mi)) { 1840 ret = __bch2_dev_group_set(c, ca, label.buf); 1841 bch_err_msg(c, ret, "creating new label"); 1842 if (ret) 1843 goto err_unlock; 1844 } 1845 1846 bch2_write_super(c); 1847 mutex_unlock(&c->sb_lock); 1848 1849 bch2_dev_usage_journal_reserve(c); 1850 1851 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional); 1852 bch_err_msg(ca, ret, "marking new superblock"); 1853 if (ret) 1854 goto err_late; 1855 1856 ret = bch2_fs_freespace_init(c); 1857 bch_err_msg(ca, ret, "initializing free space"); 1858 if (ret) 1859 goto err_late; 1860 1861 ca->new_fs_bucket_idx = 0; 1862 1863 if (ca->mi.state == BCH_MEMBER_STATE_rw) 1864 __bch2_dev_read_write(c, ca); 1865 1866 up_write(&c->state_lock); 1867 return 0; 1868 1869 err_unlock: 1870 mutex_unlock(&c->sb_lock); 1871 up_write(&c->state_lock); 1872 err: 1873 if (ca) 1874 bch2_dev_free(ca); 1875 bch2_free_super(&sb); 1876 printbuf_exit(&label); 1877 printbuf_exit(&errbuf); 1878 bch_err_fn(c, ret); 1879 return ret; 1880 err_late: 1881 up_write(&c->state_lock); 1882 ca = NULL; 1883 goto err; 1884 } 1885 1886 /* Hot add existing device to running filesystem: */ 1887 int bch2_dev_online(struct bch_fs *c, const char *path) 1888 { 1889 struct bch_opts opts = bch2_opts_empty(); 1890 struct bch_sb_handle sb = { NULL }; 1891 struct bch_dev *ca; 1892 unsigned dev_idx; 1893 int ret; 1894 1895 down_write(&c->state_lock); 1896 1897 ret = bch2_read_super(path, &opts, &sb); 1898 if (ret) { 1899 up_write(&c->state_lock); 1900 return ret; 1901 } 1902 1903 dev_idx = sb.sb->dev_idx; 1904 1905 ret = bch2_dev_in_fs(&c->disk_sb, &sb, &c->opts); 1906 bch_err_msg(c, ret, "bringing %s online", path); 1907 if (ret) 1908 goto err; 1909 1910 ret = bch2_dev_attach_bdev(c, &sb); 1911 if (ret) 1912 goto err; 1913 1914 ca = bch2_dev_locked(c, dev_idx); 1915 1916 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional); 1917 bch_err_msg(c, ret, "bringing %s online: error from bch2_trans_mark_dev_sb", path); 1918 if (ret) 1919 goto err; 1920 1921 if (ca->mi.state == BCH_MEMBER_STATE_rw) 1922 __bch2_dev_read_write(c, ca); 1923 1924 if (!ca->mi.freespace_initialized) { 1925 ret = bch2_dev_freespace_init(c, ca, 0, ca->mi.nbuckets); 1926 bch_err_msg(ca, ret, "initializing free space"); 1927 if (ret) 1928 goto err; 1929 } 1930 1931 if (!ca->journal.nr) { 1932 ret = bch2_dev_journal_alloc(ca); 1933 bch_err_msg(ca, ret, "allocating journal"); 1934 if (ret) 1935 goto err; 1936 } 1937 1938 mutex_lock(&c->sb_lock); 1939 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = 1940 cpu_to_le64(ktime_get_real_seconds()); 1941 bch2_write_super(c); 1942 mutex_unlock(&c->sb_lock); 1943 1944 up_write(&c->state_lock); 1945 return 0; 1946 err: 1947 up_write(&c->state_lock); 1948 bch2_free_super(&sb); 1949 return ret; 1950 } 1951 1952 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags) 1953 { 1954 down_write(&c->state_lock); 1955 1956 if (!bch2_dev_is_online(ca)) { 1957 bch_err(ca, "Already offline"); 1958 up_write(&c->state_lock); 1959 return 0; 1960 } 1961 1962 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { 1963 bch_err(ca, "Cannot offline required disk"); 1964 up_write(&c->state_lock); 1965 return -BCH_ERR_device_state_not_allowed; 1966 } 1967 1968 __bch2_dev_offline(c, ca); 1969 1970 up_write(&c->state_lock); 1971 return 0; 1972 } 1973 1974 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets) 1975 { 1976 struct bch_member *m; 1977 u64 old_nbuckets; 1978 int ret = 0; 1979 1980 down_write(&c->state_lock); 1981 old_nbuckets = ca->mi.nbuckets; 1982 1983 if (nbuckets < ca->mi.nbuckets) { 1984 bch_err(ca, "Cannot shrink yet"); 1985 ret = -EINVAL; 1986 goto err; 1987 } 1988 1989 if (nbuckets > BCH_MEMBER_NBUCKETS_MAX) { 1990 bch_err(ca, "New device size too big (%llu greater than max %u)", 1991 nbuckets, BCH_MEMBER_NBUCKETS_MAX); 1992 ret = -BCH_ERR_device_size_too_big; 1993 goto err; 1994 } 1995 1996 if (bch2_dev_is_online(ca) && 1997 get_capacity(ca->disk_sb.bdev->bd_disk) < 1998 ca->mi.bucket_size * nbuckets) { 1999 bch_err(ca, "New size larger than device"); 2000 ret = -BCH_ERR_device_size_too_small; 2001 goto err; 2002 } 2003 2004 ret = bch2_dev_buckets_resize(c, ca, nbuckets); 2005 bch_err_msg(ca, ret, "resizing buckets"); 2006 if (ret) 2007 goto err; 2008 2009 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional); 2010 if (ret) 2011 goto err; 2012 2013 mutex_lock(&c->sb_lock); 2014 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); 2015 m->nbuckets = cpu_to_le64(nbuckets); 2016 2017 bch2_write_super(c); 2018 mutex_unlock(&c->sb_lock); 2019 2020 if (ca->mi.freespace_initialized) { 2021 ret = bch2_dev_freespace_init(c, ca, old_nbuckets, nbuckets); 2022 if (ret) 2023 goto err; 2024 2025 /* 2026 * XXX: this is all wrong transactionally - we'll be able to do 2027 * this correctly after the disk space accounting rewrite 2028 */ 2029 ca->usage_base->d[BCH_DATA_free].buckets += nbuckets - old_nbuckets; 2030 } 2031 2032 bch2_recalc_capacity(c); 2033 err: 2034 up_write(&c->state_lock); 2035 return ret; 2036 } 2037 2038 /* return with ref on ca->ref: */ 2039 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *name) 2040 { 2041 for_each_member_device(c, ca) 2042 if (!strcmp(name, ca->name)) 2043 return ca; 2044 return ERR_PTR(-BCH_ERR_ENOENT_dev_not_found); 2045 } 2046 2047 /* Filesystem open: */ 2048 2049 static inline int sb_cmp(struct bch_sb *l, struct bch_sb *r) 2050 { 2051 return cmp_int(le64_to_cpu(l->seq), le64_to_cpu(r->seq)) ?: 2052 cmp_int(le64_to_cpu(l->write_time), le64_to_cpu(r->write_time)); 2053 } 2054 2055 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices, 2056 struct bch_opts opts) 2057 { 2058 DARRAY(struct bch_sb_handle) sbs = { 0 }; 2059 struct bch_fs *c = NULL; 2060 struct bch_sb_handle *best = NULL; 2061 struct printbuf errbuf = PRINTBUF; 2062 int ret = 0; 2063 2064 if (!try_module_get(THIS_MODULE)) 2065 return ERR_PTR(-ENODEV); 2066 2067 if (!nr_devices) { 2068 ret = -EINVAL; 2069 goto err; 2070 } 2071 2072 ret = darray_make_room(&sbs, nr_devices); 2073 if (ret) 2074 goto err; 2075 2076 for (unsigned i = 0; i < nr_devices; i++) { 2077 struct bch_sb_handle sb = { NULL }; 2078 2079 ret = bch2_read_super(devices[i], &opts, &sb); 2080 if (ret) 2081 goto err; 2082 2083 BUG_ON(darray_push(&sbs, sb)); 2084 } 2085 2086 if (opts.nochanges && !opts.read_only) { 2087 ret = -BCH_ERR_erofs_nochanges; 2088 goto err_print; 2089 } 2090 2091 darray_for_each(sbs, sb) 2092 if (!best || sb_cmp(sb->sb, best->sb) > 0) 2093 best = sb; 2094 2095 darray_for_each_reverse(sbs, sb) { 2096 ret = bch2_dev_in_fs(best, sb, &opts); 2097 2098 if (ret == -BCH_ERR_device_has_been_removed || 2099 ret == -BCH_ERR_device_splitbrain) { 2100 bch2_free_super(sb); 2101 darray_remove_item(&sbs, sb); 2102 best -= best > sb; 2103 ret = 0; 2104 continue; 2105 } 2106 2107 if (ret) 2108 goto err_print; 2109 } 2110 2111 c = bch2_fs_alloc(best->sb, opts); 2112 ret = PTR_ERR_OR_ZERO(c); 2113 if (ret) 2114 goto err; 2115 2116 down_write(&c->state_lock); 2117 darray_for_each(sbs, sb) { 2118 ret = bch2_dev_attach_bdev(c, sb); 2119 if (ret) { 2120 up_write(&c->state_lock); 2121 goto err; 2122 } 2123 } 2124 up_write(&c->state_lock); 2125 2126 if (!bch2_fs_may_start(c)) { 2127 ret = -BCH_ERR_insufficient_devices_to_start; 2128 goto err_print; 2129 } 2130 2131 if (!c->opts.nostart) { 2132 ret = bch2_fs_start(c); 2133 if (ret) 2134 goto err; 2135 } 2136 out: 2137 darray_for_each(sbs, sb) 2138 bch2_free_super(sb); 2139 darray_exit(&sbs); 2140 printbuf_exit(&errbuf); 2141 module_put(THIS_MODULE); 2142 return c; 2143 err_print: 2144 pr_err("bch_fs_open err opening %s: %s", 2145 devices[0], bch2_err_str(ret)); 2146 err: 2147 if (!IS_ERR_OR_NULL(c)) 2148 bch2_fs_stop(c); 2149 c = ERR_PTR(ret); 2150 goto out; 2151 } 2152 2153 /* Global interfaces/init */ 2154 2155 static void bcachefs_exit(void) 2156 { 2157 bch2_debug_exit(); 2158 bch2_vfs_exit(); 2159 bch2_chardev_exit(); 2160 bch2_btree_key_cache_exit(); 2161 if (bcachefs_kset) 2162 kset_unregister(bcachefs_kset); 2163 } 2164 2165 static int __init bcachefs_init(void) 2166 { 2167 bch2_bkey_pack_test(); 2168 2169 if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) || 2170 bch2_btree_key_cache_init() || 2171 bch2_chardev_init() || 2172 bch2_vfs_init() || 2173 bch2_debug_init()) 2174 goto err; 2175 2176 return 0; 2177 err: 2178 bcachefs_exit(); 2179 return -ENOMEM; 2180 } 2181 2182 #define BCH_DEBUG_PARAM(name, description) \ 2183 bool bch2_##name; \ 2184 module_param_named(name, bch2_##name, bool, 0644); \ 2185 MODULE_PARM_DESC(name, description); 2186 BCH_DEBUG_PARAMS() 2187 #undef BCH_DEBUG_PARAM 2188 2189 __maybe_unused 2190 static unsigned bch2_metadata_version = bcachefs_metadata_version_current; 2191 module_param_named(version, bch2_metadata_version, uint, 0400); 2192 2193 module_exit(bcachefs_exit); 2194 module_init(bcachefs_init); 2195