1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcachefs setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcachefs.h" 11 #include "alloc_background.h" 12 #include "alloc_foreground.h" 13 #include "bkey_sort.h" 14 #include "btree_cache.h" 15 #include "btree_gc.h" 16 #include "btree_journal_iter.h" 17 #include "btree_key_cache.h" 18 #include "btree_update_interior.h" 19 #include "btree_io.h" 20 #include "btree_write_buffer.h" 21 #include "buckets_waiting_for_journal.h" 22 #include "chardev.h" 23 #include "checksum.h" 24 #include "clock.h" 25 #include "compress.h" 26 #include "counters.h" 27 #include "debug.h" 28 #include "disk_groups.h" 29 #include "ec.h" 30 #include "errcode.h" 31 #include "error.h" 32 #include "fs.h" 33 #include "fs-io.h" 34 #include "fs-io-buffered.h" 35 #include "fs-io-direct.h" 36 #include "fsck.h" 37 #include "inode.h" 38 #include "io_read.h" 39 #include "io_write.h" 40 #include "journal.h" 41 #include "journal_reclaim.h" 42 #include "journal_seq_blacklist.h" 43 #include "move.h" 44 #include "migrate.h" 45 #include "movinggc.h" 46 #include "nocow_locking.h" 47 #include "quota.h" 48 #include "rebalance.h" 49 #include "recovery.h" 50 #include "replicas.h" 51 #include "sb-clean.h" 52 #include "sb-errors.h" 53 #include "sb-members.h" 54 #include "snapshot.h" 55 #include "subvolume.h" 56 #include "super.h" 57 #include "super-io.h" 58 #include "sysfs.h" 59 #include "trace.h" 60 61 #include <linux/backing-dev.h> 62 #include <linux/blkdev.h> 63 #include <linux/debugfs.h> 64 #include <linux/device.h> 65 #include <linux/idr.h> 66 #include <linux/module.h> 67 #include <linux/percpu.h> 68 #include <linux/random.h> 69 #include <linux/sysfs.h> 70 #include <crypto/hash.h> 71 72 MODULE_LICENSE("GPL"); 73 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 74 MODULE_DESCRIPTION("bcachefs filesystem"); 75 76 #define KTYPE(type) \ 77 static const struct attribute_group type ## _group = { \ 78 .attrs = type ## _files \ 79 }; \ 80 \ 81 static const struct attribute_group *type ## _groups[] = { \ 82 &type ## _group, \ 83 NULL \ 84 }; \ 85 \ 86 static const struct kobj_type type ## _ktype = { \ 87 .release = type ## _release, \ 88 .sysfs_ops = &type ## _sysfs_ops, \ 89 .default_groups = type ## _groups \ 90 } 91 92 static void bch2_fs_release(struct kobject *); 93 static void bch2_dev_release(struct kobject *); 94 static void bch2_fs_counters_release(struct kobject *k) 95 { 96 } 97 98 static void bch2_fs_internal_release(struct kobject *k) 99 { 100 } 101 102 static void bch2_fs_opts_dir_release(struct kobject *k) 103 { 104 } 105 106 static void bch2_fs_time_stats_release(struct kobject *k) 107 { 108 } 109 110 KTYPE(bch2_fs); 111 KTYPE(bch2_fs_counters); 112 KTYPE(bch2_fs_internal); 113 KTYPE(bch2_fs_opts_dir); 114 KTYPE(bch2_fs_time_stats); 115 KTYPE(bch2_dev); 116 117 static struct kset *bcachefs_kset; 118 static LIST_HEAD(bch_fs_list); 119 static DEFINE_MUTEX(bch_fs_list_lock); 120 121 DECLARE_WAIT_QUEUE_HEAD(bch2_read_only_wait); 122 123 static void bch2_dev_free(struct bch_dev *); 124 static int bch2_dev_alloc(struct bch_fs *, unsigned); 125 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *); 126 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *); 127 128 struct bch_fs *bch2_dev_to_fs(dev_t dev) 129 { 130 struct bch_fs *c; 131 struct bch_dev *ca; 132 unsigned i; 133 134 mutex_lock(&bch_fs_list_lock); 135 rcu_read_lock(); 136 137 list_for_each_entry(c, &bch_fs_list, list) 138 for_each_member_device_rcu(ca, c, i, NULL) 139 if (ca->disk_sb.bdev && ca->disk_sb.bdev->bd_dev == dev) { 140 closure_get(&c->cl); 141 goto found; 142 } 143 c = NULL; 144 found: 145 rcu_read_unlock(); 146 mutex_unlock(&bch_fs_list_lock); 147 148 return c; 149 } 150 151 static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid) 152 { 153 struct bch_fs *c; 154 155 lockdep_assert_held(&bch_fs_list_lock); 156 157 list_for_each_entry(c, &bch_fs_list, list) 158 if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid))) 159 return c; 160 161 return NULL; 162 } 163 164 struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid) 165 { 166 struct bch_fs *c; 167 168 mutex_lock(&bch_fs_list_lock); 169 c = __bch2_uuid_to_fs(uuid); 170 if (c) 171 closure_get(&c->cl); 172 mutex_unlock(&bch_fs_list_lock); 173 174 return c; 175 } 176 177 static void bch2_dev_usage_journal_reserve(struct bch_fs *c) 178 { 179 struct bch_dev *ca; 180 unsigned i, nr = 0, u64s = 181 ((sizeof(struct jset_entry_dev_usage) + 182 sizeof(struct jset_entry_dev_usage_type) * BCH_DATA_NR)) / 183 sizeof(u64); 184 185 rcu_read_lock(); 186 for_each_member_device_rcu(ca, c, i, NULL) 187 nr++; 188 rcu_read_unlock(); 189 190 bch2_journal_entry_res_resize(&c->journal, 191 &c->dev_usage_journal_res, u64s * nr); 192 } 193 194 /* Filesystem RO/RW: */ 195 196 /* 197 * For startup/shutdown of RW stuff, the dependencies are: 198 * 199 * - foreground writes depend on copygc and rebalance (to free up space) 200 * 201 * - copygc and rebalance depend on mark and sweep gc (they actually probably 202 * don't because they either reserve ahead of time or don't block if 203 * allocations fail, but allocations can require mark and sweep gc to run 204 * because of generation number wraparound) 205 * 206 * - all of the above depends on the allocator threads 207 * 208 * - allocator depends on the journal (when it rewrites prios and gens) 209 */ 210 211 static void __bch2_fs_read_only(struct bch_fs *c) 212 { 213 struct bch_dev *ca; 214 unsigned i, clean_passes = 0; 215 u64 seq = 0; 216 217 bch2_fs_ec_stop(c); 218 bch2_open_buckets_stop(c, NULL, true); 219 bch2_rebalance_stop(c); 220 bch2_copygc_stop(c); 221 bch2_gc_thread_stop(c); 222 bch2_fs_ec_flush(c); 223 224 bch_verbose(c, "flushing journal and stopping allocators, journal seq %llu", 225 journal_cur_seq(&c->journal)); 226 227 do { 228 clean_passes++; 229 230 if (bch2_btree_interior_updates_flush(c) || 231 bch2_journal_flush_all_pins(&c->journal) || 232 bch2_btree_flush_all_writes(c) || 233 seq != atomic64_read(&c->journal.seq)) { 234 seq = atomic64_read(&c->journal.seq); 235 clean_passes = 0; 236 } 237 } while (clean_passes < 2); 238 239 bch_verbose(c, "flushing journal and stopping allocators complete, journal seq %llu", 240 journal_cur_seq(&c->journal)); 241 242 if (test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags) && 243 !test_bit(BCH_FS_EMERGENCY_RO, &c->flags)) 244 set_bit(BCH_FS_CLEAN_SHUTDOWN, &c->flags); 245 bch2_fs_journal_stop(&c->journal); 246 247 /* 248 * After stopping journal: 249 */ 250 for_each_member_device(ca, c, i) 251 bch2_dev_allocator_remove(c, ca); 252 } 253 254 #ifndef BCH_WRITE_REF_DEBUG 255 static void bch2_writes_disabled(struct percpu_ref *writes) 256 { 257 struct bch_fs *c = container_of(writes, struct bch_fs, writes); 258 259 set_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags); 260 wake_up(&bch2_read_only_wait); 261 } 262 #endif 263 264 void bch2_fs_read_only(struct bch_fs *c) 265 { 266 if (!test_bit(BCH_FS_RW, &c->flags)) { 267 bch2_journal_reclaim_stop(&c->journal); 268 return; 269 } 270 271 BUG_ON(test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags)); 272 273 /* 274 * Block new foreground-end write operations from starting - any new 275 * writes will return -EROFS: 276 */ 277 set_bit(BCH_FS_GOING_RO, &c->flags); 278 #ifndef BCH_WRITE_REF_DEBUG 279 percpu_ref_kill(&c->writes); 280 #else 281 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) 282 bch2_write_ref_put(c, i); 283 #endif 284 285 /* 286 * If we're not doing an emergency shutdown, we want to wait on 287 * outstanding writes to complete so they don't see spurious errors due 288 * to shutting down the allocator: 289 * 290 * If we are doing an emergency shutdown outstanding writes may 291 * hang until we shutdown the allocator so we don't want to wait 292 * on outstanding writes before shutting everything down - but 293 * we do need to wait on them before returning and signalling 294 * that going RO is complete: 295 */ 296 wait_event(bch2_read_only_wait, 297 test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags) || 298 test_bit(BCH_FS_EMERGENCY_RO, &c->flags)); 299 300 __bch2_fs_read_only(c); 301 302 wait_event(bch2_read_only_wait, 303 test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags)); 304 305 clear_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags); 306 clear_bit(BCH_FS_GOING_RO, &c->flags); 307 308 if (!bch2_journal_error(&c->journal) && 309 !test_bit(BCH_FS_ERROR, &c->flags) && 310 !test_bit(BCH_FS_EMERGENCY_RO, &c->flags) && 311 test_bit(BCH_FS_STARTED, &c->flags) && 312 test_bit(BCH_FS_CLEAN_SHUTDOWN, &c->flags) && 313 !c->opts.norecovery) { 314 BUG_ON(c->journal.last_empty_seq != journal_cur_seq(&c->journal)); 315 BUG_ON(atomic_read(&c->btree_cache.dirty)); 316 BUG_ON(atomic_long_read(&c->btree_key_cache.nr_dirty)); 317 BUG_ON(c->btree_write_buffer.state.nr); 318 319 bch_verbose(c, "marking filesystem clean"); 320 bch2_fs_mark_clean(c); 321 } 322 323 clear_bit(BCH_FS_RW, &c->flags); 324 } 325 326 static void bch2_fs_read_only_work(struct work_struct *work) 327 { 328 struct bch_fs *c = 329 container_of(work, struct bch_fs, read_only_work); 330 331 down_write(&c->state_lock); 332 bch2_fs_read_only(c); 333 up_write(&c->state_lock); 334 } 335 336 static void bch2_fs_read_only_async(struct bch_fs *c) 337 { 338 queue_work(system_long_wq, &c->read_only_work); 339 } 340 341 bool bch2_fs_emergency_read_only(struct bch_fs *c) 342 { 343 bool ret = !test_and_set_bit(BCH_FS_EMERGENCY_RO, &c->flags); 344 345 bch2_journal_halt(&c->journal); 346 bch2_fs_read_only_async(c); 347 348 wake_up(&bch2_read_only_wait); 349 return ret; 350 } 351 352 static int bch2_fs_read_write_late(struct bch_fs *c) 353 { 354 int ret; 355 356 /* 357 * Data move operations can't run until after check_snapshots has 358 * completed, and bch2_snapshot_is_ancestor() is available. 359 * 360 * Ideally we'd start copygc/rebalance earlier instead of waiting for 361 * all of recovery/fsck to complete: 362 */ 363 ret = bch2_copygc_start(c); 364 if (ret) { 365 bch_err(c, "error starting copygc thread"); 366 return ret; 367 } 368 369 ret = bch2_rebalance_start(c); 370 if (ret) { 371 bch_err(c, "error starting rebalance thread"); 372 return ret; 373 } 374 375 return 0; 376 } 377 378 static int __bch2_fs_read_write(struct bch_fs *c, bool early) 379 { 380 struct bch_dev *ca; 381 unsigned i; 382 int ret; 383 384 if (test_bit(BCH_FS_INITIAL_GC_UNFIXED, &c->flags)) { 385 bch_err(c, "cannot go rw, unfixed btree errors"); 386 return -BCH_ERR_erofs_unfixed_errors; 387 } 388 389 if (test_bit(BCH_FS_RW, &c->flags)) 390 return 0; 391 392 if (c->opts.norecovery) 393 return -BCH_ERR_erofs_norecovery; 394 395 /* 396 * nochanges is used for fsck -n mode - we have to allow going rw 397 * during recovery for that to work: 398 */ 399 if (c->opts.nochanges && (!early || c->opts.read_only)) 400 return -BCH_ERR_erofs_nochanges; 401 402 bch_info(c, "going read-write"); 403 404 ret = bch2_sb_members_v2_init(c); 405 if (ret) 406 goto err; 407 408 ret = bch2_fs_mark_dirty(c); 409 if (ret) 410 goto err; 411 412 clear_bit(BCH_FS_CLEAN_SHUTDOWN, &c->flags); 413 414 /* 415 * First journal write must be a flush write: after a clean shutdown we 416 * don't read the journal, so the first journal write may end up 417 * overwriting whatever was there previously, and there must always be 418 * at least one non-flush write in the journal or recovery will fail: 419 */ 420 set_bit(JOURNAL_NEED_FLUSH_WRITE, &c->journal.flags); 421 422 for_each_rw_member(ca, c, i) 423 bch2_dev_allocator_add(c, ca); 424 bch2_recalc_capacity(c); 425 426 ret = bch2_gc_thread_start(c); 427 if (ret) { 428 bch_err(c, "error starting gc thread"); 429 return ret; 430 } 431 432 ret = bch2_journal_reclaim_start(&c->journal); 433 if (ret) 434 goto err; 435 436 if (!early) { 437 ret = bch2_fs_read_write_late(c); 438 if (ret) 439 goto err; 440 } 441 442 #ifndef BCH_WRITE_REF_DEBUG 443 percpu_ref_reinit(&c->writes); 444 #else 445 for (i = 0; i < BCH_WRITE_REF_NR; i++) { 446 BUG_ON(atomic_long_read(&c->writes[i])); 447 atomic_long_inc(&c->writes[i]); 448 } 449 #endif 450 set_bit(BCH_FS_RW, &c->flags); 451 set_bit(BCH_FS_WAS_RW, &c->flags); 452 453 bch2_do_discards(c); 454 bch2_do_invalidates(c); 455 bch2_do_stripe_deletes(c); 456 bch2_do_pending_node_rewrites(c); 457 return 0; 458 err: 459 __bch2_fs_read_only(c); 460 return ret; 461 } 462 463 int bch2_fs_read_write(struct bch_fs *c) 464 { 465 return __bch2_fs_read_write(c, false); 466 } 467 468 int bch2_fs_read_write_early(struct bch_fs *c) 469 { 470 lockdep_assert_held(&c->state_lock); 471 472 return __bch2_fs_read_write(c, true); 473 } 474 475 /* Filesystem startup/shutdown: */ 476 477 static void __bch2_fs_free(struct bch_fs *c) 478 { 479 unsigned i; 480 481 for (i = 0; i < BCH_TIME_STAT_NR; i++) 482 bch2_time_stats_exit(&c->times[i]); 483 484 bch2_free_pending_node_rewrites(c); 485 bch2_fs_sb_errors_exit(c); 486 bch2_fs_counters_exit(c); 487 bch2_fs_snapshots_exit(c); 488 bch2_fs_quota_exit(c); 489 bch2_fs_fs_io_direct_exit(c); 490 bch2_fs_fs_io_buffered_exit(c); 491 bch2_fs_fsio_exit(c); 492 bch2_fs_ec_exit(c); 493 bch2_fs_encryption_exit(c); 494 bch2_fs_nocow_locking_exit(c); 495 bch2_fs_io_write_exit(c); 496 bch2_fs_io_read_exit(c); 497 bch2_fs_buckets_waiting_for_journal_exit(c); 498 bch2_fs_btree_interior_update_exit(c); 499 bch2_fs_btree_iter_exit(c); 500 bch2_fs_btree_key_cache_exit(&c->btree_key_cache); 501 bch2_fs_btree_cache_exit(c); 502 bch2_fs_replicas_exit(c); 503 bch2_fs_journal_exit(&c->journal); 504 bch2_io_clock_exit(&c->io_clock[WRITE]); 505 bch2_io_clock_exit(&c->io_clock[READ]); 506 bch2_fs_compress_exit(c); 507 bch2_journal_keys_free(&c->journal_keys); 508 bch2_journal_entries_free(c); 509 bch2_fs_btree_write_buffer_exit(c); 510 percpu_free_rwsem(&c->mark_lock); 511 free_percpu(c->online_reserved); 512 513 darray_exit(&c->btree_roots_extra); 514 free_percpu(c->pcpu); 515 mempool_exit(&c->large_bkey_pool); 516 mempool_exit(&c->btree_bounce_pool); 517 bioset_exit(&c->btree_bio); 518 mempool_exit(&c->fill_iter); 519 #ifndef BCH_WRITE_REF_DEBUG 520 percpu_ref_exit(&c->writes); 521 #endif 522 kfree(rcu_dereference_protected(c->disk_groups, 1)); 523 kfree(c->journal_seq_blacklist_table); 524 kfree(c->unused_inode_hints); 525 526 if (c->write_ref_wq) 527 destroy_workqueue(c->write_ref_wq); 528 if (c->io_complete_wq) 529 destroy_workqueue(c->io_complete_wq); 530 if (c->copygc_wq) 531 destroy_workqueue(c->copygc_wq); 532 if (c->btree_io_complete_wq) 533 destroy_workqueue(c->btree_io_complete_wq); 534 if (c->btree_update_wq) 535 destroy_workqueue(c->btree_update_wq); 536 537 bch2_free_super(&c->disk_sb); 538 kvpfree(c, sizeof(*c)); 539 module_put(THIS_MODULE); 540 } 541 542 static void bch2_fs_release(struct kobject *kobj) 543 { 544 struct bch_fs *c = container_of(kobj, struct bch_fs, kobj); 545 546 __bch2_fs_free(c); 547 } 548 549 void __bch2_fs_stop(struct bch_fs *c) 550 { 551 struct bch_dev *ca; 552 unsigned i; 553 554 bch_verbose(c, "shutting down"); 555 556 set_bit(BCH_FS_STOPPING, &c->flags); 557 558 cancel_work_sync(&c->journal_seq_blacklist_gc_work); 559 560 down_write(&c->state_lock); 561 bch2_fs_read_only(c); 562 up_write(&c->state_lock); 563 564 for_each_member_device(ca, c, i) 565 if (ca->kobj.state_in_sysfs && 566 ca->disk_sb.bdev) 567 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 568 569 if (c->kobj.state_in_sysfs) 570 kobject_del(&c->kobj); 571 572 bch2_fs_debug_exit(c); 573 bch2_fs_chardev_exit(c); 574 575 kobject_put(&c->counters_kobj); 576 kobject_put(&c->time_stats); 577 kobject_put(&c->opts_dir); 578 kobject_put(&c->internal); 579 580 /* btree prefetch might have kicked off reads in the background: */ 581 bch2_btree_flush_all_reads(c); 582 583 for_each_member_device(ca, c, i) 584 cancel_work_sync(&ca->io_error_work); 585 586 cancel_work_sync(&c->read_only_work); 587 } 588 589 void bch2_fs_free(struct bch_fs *c) 590 { 591 unsigned i; 592 593 mutex_lock(&bch_fs_list_lock); 594 list_del(&c->list); 595 mutex_unlock(&bch_fs_list_lock); 596 597 closure_sync(&c->cl); 598 closure_debug_destroy(&c->cl); 599 600 for (i = 0; i < c->sb.nr_devices; i++) { 601 struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true); 602 603 if (ca) { 604 bch2_free_super(&ca->disk_sb); 605 bch2_dev_free(ca); 606 } 607 } 608 609 bch_verbose(c, "shutdown complete"); 610 611 kobject_put(&c->kobj); 612 } 613 614 void bch2_fs_stop(struct bch_fs *c) 615 { 616 __bch2_fs_stop(c); 617 bch2_fs_free(c); 618 } 619 620 static int bch2_fs_online(struct bch_fs *c) 621 { 622 struct bch_dev *ca; 623 unsigned i; 624 int ret = 0; 625 626 lockdep_assert_held(&bch_fs_list_lock); 627 628 if (__bch2_uuid_to_fs(c->sb.uuid)) { 629 bch_err(c, "filesystem UUID already open"); 630 return -EINVAL; 631 } 632 633 ret = bch2_fs_chardev_init(c); 634 if (ret) { 635 bch_err(c, "error creating character device"); 636 return ret; 637 } 638 639 bch2_fs_debug_init(c); 640 641 ret = kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ?: 642 kobject_add(&c->internal, &c->kobj, "internal") ?: 643 kobject_add(&c->opts_dir, &c->kobj, "options") ?: 644 kobject_add(&c->time_stats, &c->kobj, "time_stats") ?: 645 kobject_add(&c->counters_kobj, &c->kobj, "counters") ?: 646 bch2_opts_create_sysfs_files(&c->opts_dir); 647 if (ret) { 648 bch_err(c, "error creating sysfs objects"); 649 return ret; 650 } 651 652 down_write(&c->state_lock); 653 654 for_each_member_device(ca, c, i) { 655 ret = bch2_dev_sysfs_online(c, ca); 656 if (ret) { 657 bch_err(c, "error creating sysfs objects"); 658 percpu_ref_put(&ca->ref); 659 goto err; 660 } 661 } 662 663 BUG_ON(!list_empty(&c->list)); 664 list_add(&c->list, &bch_fs_list); 665 err: 666 up_write(&c->state_lock); 667 return ret; 668 } 669 670 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts) 671 { 672 struct bch_fs *c; 673 struct printbuf name = PRINTBUF; 674 unsigned i, iter_size; 675 int ret = 0; 676 677 c = kvpmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO); 678 if (!c) { 679 c = ERR_PTR(-BCH_ERR_ENOMEM_fs_alloc); 680 goto out; 681 } 682 683 __module_get(THIS_MODULE); 684 685 closure_init(&c->cl, NULL); 686 687 c->kobj.kset = bcachefs_kset; 688 kobject_init(&c->kobj, &bch2_fs_ktype); 689 kobject_init(&c->internal, &bch2_fs_internal_ktype); 690 kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype); 691 kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype); 692 kobject_init(&c->counters_kobj, &bch2_fs_counters_ktype); 693 694 c->minor = -1; 695 c->disk_sb.fs_sb = true; 696 697 init_rwsem(&c->state_lock); 698 mutex_init(&c->sb_lock); 699 mutex_init(&c->replicas_gc_lock); 700 mutex_init(&c->btree_root_lock); 701 INIT_WORK(&c->read_only_work, bch2_fs_read_only_work); 702 703 init_rwsem(&c->gc_lock); 704 mutex_init(&c->gc_gens_lock); 705 706 for (i = 0; i < BCH_TIME_STAT_NR; i++) 707 bch2_time_stats_init(&c->times[i]); 708 709 bch2_fs_copygc_init(c); 710 bch2_fs_btree_key_cache_init_early(&c->btree_key_cache); 711 bch2_fs_btree_interior_update_init_early(c); 712 bch2_fs_allocator_background_init(c); 713 bch2_fs_allocator_foreground_init(c); 714 bch2_fs_rebalance_init(c); 715 bch2_fs_quota_init(c); 716 bch2_fs_ec_init_early(c); 717 bch2_fs_move_init(c); 718 bch2_fs_sb_errors_init_early(c); 719 720 INIT_LIST_HEAD(&c->list); 721 722 mutex_init(&c->usage_scratch_lock); 723 724 mutex_init(&c->bio_bounce_pages_lock); 725 mutex_init(&c->snapshot_table_lock); 726 init_rwsem(&c->snapshot_create_lock); 727 728 spin_lock_init(&c->btree_write_error_lock); 729 730 INIT_WORK(&c->journal_seq_blacklist_gc_work, 731 bch2_blacklist_entries_gc); 732 733 INIT_LIST_HEAD(&c->journal_iters); 734 735 INIT_LIST_HEAD(&c->fsck_error_msgs); 736 mutex_init(&c->fsck_error_msgs_lock); 737 738 seqcount_init(&c->gc_pos_lock); 739 740 seqcount_init(&c->usage_lock); 741 742 sema_init(&c->io_in_flight, 128); 743 744 INIT_LIST_HEAD(&c->vfs_inodes_list); 745 mutex_init(&c->vfs_inodes_lock); 746 747 c->copy_gc_enabled = 1; 748 c->rebalance.enabled = 1; 749 c->promote_whole_extents = true; 750 751 c->journal.flush_write_time = &c->times[BCH_TIME_journal_flush_write]; 752 c->journal.noflush_write_time = &c->times[BCH_TIME_journal_noflush_write]; 753 c->journal.blocked_time = &c->times[BCH_TIME_blocked_journal]; 754 c->journal.flush_seq_time = &c->times[BCH_TIME_journal_flush_seq]; 755 756 bch2_fs_btree_cache_init_early(&c->btree_cache); 757 758 mutex_init(&c->sectors_available_lock); 759 760 ret = percpu_init_rwsem(&c->mark_lock); 761 if (ret) 762 goto err; 763 764 mutex_lock(&c->sb_lock); 765 ret = bch2_sb_to_fs(c, sb); 766 mutex_unlock(&c->sb_lock); 767 768 if (ret) 769 goto err; 770 771 pr_uuid(&name, c->sb.user_uuid.b); 772 strscpy(c->name, name.buf, sizeof(c->name)); 773 printbuf_exit(&name); 774 775 ret = name.allocation_failure ? -BCH_ERR_ENOMEM_fs_name_alloc : 0; 776 if (ret) 777 goto err; 778 779 /* Compat: */ 780 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && 781 !BCH_SB_JOURNAL_FLUSH_DELAY(sb)) 782 SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000); 783 784 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && 785 !BCH_SB_JOURNAL_RECLAIM_DELAY(sb)) 786 SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 100); 787 788 c->opts = bch2_opts_default; 789 ret = bch2_opts_from_sb(&c->opts, sb); 790 if (ret) 791 goto err; 792 793 bch2_opts_apply(&c->opts, opts); 794 795 c->btree_key_cache_btrees |= 1U << BTREE_ID_alloc; 796 if (c->opts.inodes_use_key_cache) 797 c->btree_key_cache_btrees |= 1U << BTREE_ID_inodes; 798 c->btree_key_cache_btrees |= 1U << BTREE_ID_logged_ops; 799 800 c->block_bits = ilog2(block_sectors(c)); 801 c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c); 802 803 if (bch2_fs_init_fault("fs_alloc")) { 804 bch_err(c, "fs_alloc fault injected"); 805 ret = -EFAULT; 806 goto err; 807 } 808 809 iter_size = sizeof(struct sort_iter) + 810 (btree_blocks(c) + 1) * 2 * 811 sizeof(struct sort_iter_set); 812 813 c->inode_shard_bits = ilog2(roundup_pow_of_two(num_possible_cpus())); 814 815 if (!(c->btree_update_wq = alloc_workqueue("bcachefs", 816 WQ_FREEZABLE|WQ_UNBOUND|WQ_MEM_RECLAIM, 512)) || 817 !(c->btree_io_complete_wq = alloc_workqueue("bcachefs_btree_io", 818 WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) || 819 !(c->copygc_wq = alloc_workqueue("bcachefs_copygc", 820 WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) || 821 !(c->io_complete_wq = alloc_workqueue("bcachefs_io", 822 WQ_FREEZABLE|WQ_HIGHPRI|WQ_MEM_RECLAIM, 1)) || 823 !(c->write_ref_wq = alloc_workqueue("bcachefs_write_ref", 824 WQ_FREEZABLE, 0)) || 825 #ifndef BCH_WRITE_REF_DEBUG 826 percpu_ref_init(&c->writes, bch2_writes_disabled, 827 PERCPU_REF_INIT_DEAD, GFP_KERNEL) || 828 #endif 829 mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) || 830 bioset_init(&c->btree_bio, 1, 831 max(offsetof(struct btree_read_bio, bio), 832 offsetof(struct btree_write_bio, wbio.bio)), 833 BIOSET_NEED_BVECS) || 834 !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) || 835 !(c->online_reserved = alloc_percpu(u64)) || 836 mempool_init_kvpmalloc_pool(&c->btree_bounce_pool, 1, 837 btree_bytes(c)) || 838 mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048) || 839 !(c->unused_inode_hints = kcalloc(1U << c->inode_shard_bits, 840 sizeof(u64), GFP_KERNEL))) { 841 ret = -BCH_ERR_ENOMEM_fs_other_alloc; 842 goto err; 843 } 844 845 ret = bch2_fs_counters_init(c) ?: 846 bch2_fs_sb_errors_init(c) ?: 847 bch2_io_clock_init(&c->io_clock[READ]) ?: 848 bch2_io_clock_init(&c->io_clock[WRITE]) ?: 849 bch2_fs_journal_init(&c->journal) ?: 850 bch2_fs_replicas_init(c) ?: 851 bch2_fs_btree_cache_init(c) ?: 852 bch2_fs_btree_key_cache_init(&c->btree_key_cache) ?: 853 bch2_fs_btree_iter_init(c) ?: 854 bch2_fs_btree_interior_update_init(c) ?: 855 bch2_fs_buckets_waiting_for_journal_init(c) ?: 856 bch2_fs_btree_write_buffer_init(c) ?: 857 bch2_fs_subvolumes_init(c) ?: 858 bch2_fs_io_read_init(c) ?: 859 bch2_fs_io_write_init(c) ?: 860 bch2_fs_nocow_locking_init(c) ?: 861 bch2_fs_encryption_init(c) ?: 862 bch2_fs_compress_init(c) ?: 863 bch2_fs_ec_init(c) ?: 864 bch2_fs_fsio_init(c) ?: 865 bch2_fs_fs_io_buffered_init(c) ?: 866 bch2_fs_fs_io_direct_init(c); 867 if (ret) 868 goto err; 869 870 for (i = 0; i < c->sb.nr_devices; i++) 871 if (bch2_dev_exists(c->disk_sb.sb, i) && 872 bch2_dev_alloc(c, i)) { 873 ret = -EEXIST; 874 goto err; 875 } 876 877 bch2_journal_entry_res_resize(&c->journal, 878 &c->btree_root_journal_res, 879 BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX)); 880 bch2_dev_usage_journal_reserve(c); 881 bch2_journal_entry_res_resize(&c->journal, 882 &c->clock_journal_res, 883 (sizeof(struct jset_entry_clock) / sizeof(u64)) * 2); 884 885 mutex_lock(&bch_fs_list_lock); 886 ret = bch2_fs_online(c); 887 mutex_unlock(&bch_fs_list_lock); 888 889 if (ret) 890 goto err; 891 out: 892 return c; 893 err: 894 bch2_fs_free(c); 895 c = ERR_PTR(ret); 896 goto out; 897 } 898 899 noinline_for_stack 900 static void print_mount_opts(struct bch_fs *c) 901 { 902 enum bch_opt_id i; 903 struct printbuf p = PRINTBUF; 904 bool first = true; 905 906 prt_str(&p, "mounting version "); 907 bch2_version_to_text(&p, c->sb.version); 908 909 if (c->opts.read_only) { 910 prt_str(&p, " opts="); 911 first = false; 912 prt_printf(&p, "ro"); 913 } 914 915 for (i = 0; i < bch2_opts_nr; i++) { 916 const struct bch_option *opt = &bch2_opt_table[i]; 917 u64 v = bch2_opt_get_by_id(&c->opts, i); 918 919 if (!(opt->flags & OPT_MOUNT)) 920 continue; 921 922 if (v == bch2_opt_get_by_id(&bch2_opts_default, i)) 923 continue; 924 925 prt_str(&p, first ? " opts=" : ","); 926 first = false; 927 bch2_opt_to_text(&p, c, c->disk_sb.sb, opt, v, OPT_SHOW_MOUNT_STYLE); 928 } 929 930 bch_info(c, "%s", p.buf); 931 printbuf_exit(&p); 932 } 933 934 int bch2_fs_start(struct bch_fs *c) 935 { 936 struct bch_dev *ca; 937 time64_t now = ktime_get_real_seconds(); 938 unsigned i; 939 int ret; 940 941 print_mount_opts(c); 942 943 down_write(&c->state_lock); 944 945 BUG_ON(test_bit(BCH_FS_STARTED, &c->flags)); 946 947 mutex_lock(&c->sb_lock); 948 949 ret = bch2_sb_members_v2_init(c); 950 if (ret) { 951 mutex_unlock(&c->sb_lock); 952 goto err; 953 } 954 955 for_each_online_member(ca, c, i) 956 bch2_members_v2_get_mut(c->disk_sb.sb, i)->last_mount = cpu_to_le64(now); 957 958 mutex_unlock(&c->sb_lock); 959 960 for_each_rw_member(ca, c, i) 961 bch2_dev_allocator_add(c, ca); 962 bch2_recalc_capacity(c); 963 964 ret = BCH_SB_INITIALIZED(c->disk_sb.sb) 965 ? bch2_fs_recovery(c) 966 : bch2_fs_initialize(c); 967 if (ret) 968 goto err; 969 970 ret = bch2_opts_check_may_set(c); 971 if (ret) 972 goto err; 973 974 if (bch2_fs_init_fault("fs_start")) { 975 bch_err(c, "fs_start fault injected"); 976 ret = -EINVAL; 977 goto err; 978 } 979 980 set_bit(BCH_FS_STARTED, &c->flags); 981 982 if (c->opts.read_only || c->opts.nochanges) { 983 bch2_fs_read_only(c); 984 } else { 985 ret = !test_bit(BCH_FS_RW, &c->flags) 986 ? bch2_fs_read_write(c) 987 : bch2_fs_read_write_late(c); 988 if (ret) 989 goto err; 990 } 991 992 ret = 0; 993 out: 994 up_write(&c->state_lock); 995 return ret; 996 err: 997 bch_err_msg(c, ret, "starting filesystem"); 998 goto out; 999 } 1000 1001 static int bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c) 1002 { 1003 struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx); 1004 1005 if (le16_to_cpu(sb->block_size) != block_sectors(c)) 1006 return -BCH_ERR_mismatched_block_size; 1007 1008 if (le16_to_cpu(m.bucket_size) < 1009 BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb)) 1010 return -BCH_ERR_bucket_size_too_small; 1011 1012 return 0; 1013 } 1014 1015 static int bch2_dev_in_fs(struct bch_sb *fs, struct bch_sb *sb) 1016 { 1017 struct bch_sb *newest = 1018 le64_to_cpu(fs->seq) > le64_to_cpu(sb->seq) ? fs : sb; 1019 1020 if (!uuid_equal(&fs->uuid, &sb->uuid)) 1021 return -BCH_ERR_device_not_a_member_of_filesystem; 1022 1023 if (!bch2_dev_exists(newest, sb->dev_idx)) 1024 return -BCH_ERR_device_has_been_removed; 1025 1026 if (fs->block_size != sb->block_size) 1027 return -BCH_ERR_mismatched_block_size; 1028 1029 return 0; 1030 } 1031 1032 /* Device startup/shutdown: */ 1033 1034 static void bch2_dev_release(struct kobject *kobj) 1035 { 1036 struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj); 1037 1038 kfree(ca); 1039 } 1040 1041 static void bch2_dev_free(struct bch_dev *ca) 1042 { 1043 cancel_work_sync(&ca->io_error_work); 1044 1045 if (ca->kobj.state_in_sysfs && 1046 ca->disk_sb.bdev) 1047 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 1048 1049 if (ca->kobj.state_in_sysfs) 1050 kobject_del(&ca->kobj); 1051 1052 bch2_free_super(&ca->disk_sb); 1053 bch2_dev_journal_exit(ca); 1054 1055 free_percpu(ca->io_done); 1056 bioset_exit(&ca->replica_set); 1057 bch2_dev_buckets_free(ca); 1058 free_page((unsigned long) ca->sb_read_scratch); 1059 1060 bch2_time_stats_exit(&ca->io_latency[WRITE]); 1061 bch2_time_stats_exit(&ca->io_latency[READ]); 1062 1063 percpu_ref_exit(&ca->io_ref); 1064 percpu_ref_exit(&ca->ref); 1065 kobject_put(&ca->kobj); 1066 } 1067 1068 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca) 1069 { 1070 1071 lockdep_assert_held(&c->state_lock); 1072 1073 if (percpu_ref_is_zero(&ca->io_ref)) 1074 return; 1075 1076 __bch2_dev_read_only(c, ca); 1077 1078 reinit_completion(&ca->io_ref_completion); 1079 percpu_ref_kill(&ca->io_ref); 1080 wait_for_completion(&ca->io_ref_completion); 1081 1082 if (ca->kobj.state_in_sysfs) { 1083 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 1084 sysfs_remove_link(&ca->kobj, "block"); 1085 } 1086 1087 bch2_free_super(&ca->disk_sb); 1088 bch2_dev_journal_exit(ca); 1089 } 1090 1091 static void bch2_dev_ref_complete(struct percpu_ref *ref) 1092 { 1093 struct bch_dev *ca = container_of(ref, struct bch_dev, ref); 1094 1095 complete(&ca->ref_completion); 1096 } 1097 1098 static void bch2_dev_io_ref_complete(struct percpu_ref *ref) 1099 { 1100 struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref); 1101 1102 complete(&ca->io_ref_completion); 1103 } 1104 1105 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca) 1106 { 1107 int ret; 1108 1109 if (!c->kobj.state_in_sysfs) 1110 return 0; 1111 1112 if (!ca->kobj.state_in_sysfs) { 1113 ret = kobject_add(&ca->kobj, &c->kobj, 1114 "dev-%u", ca->dev_idx); 1115 if (ret) 1116 return ret; 1117 } 1118 1119 if (ca->disk_sb.bdev) { 1120 struct kobject *block = bdev_kobj(ca->disk_sb.bdev); 1121 1122 ret = sysfs_create_link(block, &ca->kobj, "bcachefs"); 1123 if (ret) 1124 return ret; 1125 1126 ret = sysfs_create_link(&ca->kobj, block, "block"); 1127 if (ret) 1128 return ret; 1129 } 1130 1131 return 0; 1132 } 1133 1134 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c, 1135 struct bch_member *member) 1136 { 1137 struct bch_dev *ca; 1138 unsigned i; 1139 1140 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 1141 if (!ca) 1142 return NULL; 1143 1144 kobject_init(&ca->kobj, &bch2_dev_ktype); 1145 init_completion(&ca->ref_completion); 1146 init_completion(&ca->io_ref_completion); 1147 1148 init_rwsem(&ca->bucket_lock); 1149 1150 INIT_WORK(&ca->io_error_work, bch2_io_error_work); 1151 1152 bch2_time_stats_init(&ca->io_latency[READ]); 1153 bch2_time_stats_init(&ca->io_latency[WRITE]); 1154 1155 ca->mi = bch2_mi_to_cpu(member); 1156 1157 for (i = 0; i < ARRAY_SIZE(member->errors); i++) 1158 atomic64_set(&ca->errors[i], le64_to_cpu(member->errors[i])); 1159 1160 ca->uuid = member->uuid; 1161 1162 ca->nr_btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE, 1163 ca->mi.bucket_size / btree_sectors(c)); 1164 1165 if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete, 1166 0, GFP_KERNEL) || 1167 percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete, 1168 PERCPU_REF_INIT_DEAD, GFP_KERNEL) || 1169 !(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) || 1170 bch2_dev_buckets_alloc(c, ca) || 1171 bioset_init(&ca->replica_set, 4, 1172 offsetof(struct bch_write_bio, bio), 0) || 1173 !(ca->io_done = alloc_percpu(*ca->io_done))) 1174 goto err; 1175 1176 return ca; 1177 err: 1178 bch2_dev_free(ca); 1179 return NULL; 1180 } 1181 1182 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca, 1183 unsigned dev_idx) 1184 { 1185 ca->dev_idx = dev_idx; 1186 __set_bit(ca->dev_idx, ca->self.d); 1187 scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx); 1188 1189 ca->fs = c; 1190 rcu_assign_pointer(c->devs[ca->dev_idx], ca); 1191 1192 if (bch2_dev_sysfs_online(c, ca)) 1193 pr_warn("error creating sysfs objects"); 1194 } 1195 1196 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx) 1197 { 1198 struct bch_member member = bch2_sb_member_get(c->disk_sb.sb, dev_idx); 1199 struct bch_dev *ca = NULL; 1200 int ret = 0; 1201 1202 if (bch2_fs_init_fault("dev_alloc")) 1203 goto err; 1204 1205 ca = __bch2_dev_alloc(c, &member); 1206 if (!ca) 1207 goto err; 1208 1209 ca->fs = c; 1210 1211 bch2_dev_attach(c, ca, dev_idx); 1212 return ret; 1213 err: 1214 if (ca) 1215 bch2_dev_free(ca); 1216 return -BCH_ERR_ENOMEM_dev_alloc; 1217 } 1218 1219 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb) 1220 { 1221 unsigned ret; 1222 1223 if (bch2_dev_is_online(ca)) { 1224 bch_err(ca, "already have device online in slot %u", 1225 sb->sb->dev_idx); 1226 return -BCH_ERR_device_already_online; 1227 } 1228 1229 if (get_capacity(sb->bdev->bd_disk) < 1230 ca->mi.bucket_size * ca->mi.nbuckets) { 1231 bch_err(ca, "cannot online: device too small"); 1232 return -BCH_ERR_device_size_too_small; 1233 } 1234 1235 BUG_ON(!percpu_ref_is_zero(&ca->io_ref)); 1236 1237 ret = bch2_dev_journal_init(ca, sb->sb); 1238 if (ret) 1239 return ret; 1240 1241 /* Commit: */ 1242 ca->disk_sb = *sb; 1243 memset(sb, 0, sizeof(*sb)); 1244 1245 ca->dev = ca->disk_sb.bdev->bd_dev; 1246 1247 percpu_ref_reinit(&ca->io_ref); 1248 1249 return 0; 1250 } 1251 1252 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb) 1253 { 1254 struct bch_dev *ca; 1255 int ret; 1256 1257 lockdep_assert_held(&c->state_lock); 1258 1259 if (le64_to_cpu(sb->sb->seq) > 1260 le64_to_cpu(c->disk_sb.sb->seq)) 1261 bch2_sb_to_fs(c, sb->sb); 1262 1263 BUG_ON(sb->sb->dev_idx >= c->sb.nr_devices || 1264 !c->devs[sb->sb->dev_idx]); 1265 1266 ca = bch_dev_locked(c, sb->sb->dev_idx); 1267 1268 ret = __bch2_dev_attach_bdev(ca, sb); 1269 if (ret) 1270 return ret; 1271 1272 bch2_dev_sysfs_online(c, ca); 1273 1274 if (c->sb.nr_devices == 1) 1275 snprintf(c->name, sizeof(c->name), "%pg", ca->disk_sb.bdev); 1276 snprintf(ca->name, sizeof(ca->name), "%pg", ca->disk_sb.bdev); 1277 1278 rebalance_wakeup(c); 1279 return 0; 1280 } 1281 1282 /* Device management: */ 1283 1284 /* 1285 * Note: this function is also used by the error paths - when a particular 1286 * device sees an error, we call it to determine whether we can just set the 1287 * device RO, or - if this function returns false - we'll set the whole 1288 * filesystem RO: 1289 * 1290 * XXX: maybe we should be more explicit about whether we're changing state 1291 * because we got an error or what have you? 1292 */ 1293 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca, 1294 enum bch_member_state new_state, int flags) 1295 { 1296 struct bch_devs_mask new_online_devs; 1297 struct bch_dev *ca2; 1298 int i, nr_rw = 0, required; 1299 1300 lockdep_assert_held(&c->state_lock); 1301 1302 switch (new_state) { 1303 case BCH_MEMBER_STATE_rw: 1304 return true; 1305 case BCH_MEMBER_STATE_ro: 1306 if (ca->mi.state != BCH_MEMBER_STATE_rw) 1307 return true; 1308 1309 /* do we have enough devices to write to? */ 1310 for_each_member_device(ca2, c, i) 1311 if (ca2 != ca) 1312 nr_rw += ca2->mi.state == BCH_MEMBER_STATE_rw; 1313 1314 required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED) 1315 ? c->opts.metadata_replicas 1316 : c->opts.metadata_replicas_required, 1317 !(flags & BCH_FORCE_IF_DATA_DEGRADED) 1318 ? c->opts.data_replicas 1319 : c->opts.data_replicas_required); 1320 1321 return nr_rw >= required; 1322 case BCH_MEMBER_STATE_failed: 1323 case BCH_MEMBER_STATE_spare: 1324 if (ca->mi.state != BCH_MEMBER_STATE_rw && 1325 ca->mi.state != BCH_MEMBER_STATE_ro) 1326 return true; 1327 1328 /* do we have enough devices to read from? */ 1329 new_online_devs = bch2_online_devs(c); 1330 __clear_bit(ca->dev_idx, new_online_devs.d); 1331 1332 return bch2_have_enough_devs(c, new_online_devs, flags, false); 1333 default: 1334 BUG(); 1335 } 1336 } 1337 1338 static bool bch2_fs_may_start(struct bch_fs *c) 1339 { 1340 struct bch_dev *ca; 1341 unsigned i, flags = 0; 1342 1343 if (c->opts.very_degraded) 1344 flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST; 1345 1346 if (c->opts.degraded) 1347 flags |= BCH_FORCE_IF_DEGRADED; 1348 1349 if (!c->opts.degraded && 1350 !c->opts.very_degraded) { 1351 mutex_lock(&c->sb_lock); 1352 1353 for (i = 0; i < c->disk_sb.sb->nr_devices; i++) { 1354 if (!bch2_dev_exists(c->disk_sb.sb, i)) 1355 continue; 1356 1357 ca = bch_dev_locked(c, i); 1358 1359 if (!bch2_dev_is_online(ca) && 1360 (ca->mi.state == BCH_MEMBER_STATE_rw || 1361 ca->mi.state == BCH_MEMBER_STATE_ro)) { 1362 mutex_unlock(&c->sb_lock); 1363 return false; 1364 } 1365 } 1366 mutex_unlock(&c->sb_lock); 1367 } 1368 1369 return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true); 1370 } 1371 1372 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca) 1373 { 1374 /* 1375 * The allocator thread itself allocates btree nodes, so stop it first: 1376 */ 1377 bch2_dev_allocator_remove(c, ca); 1378 bch2_dev_journal_stop(&c->journal, ca); 1379 } 1380 1381 static void __bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca) 1382 { 1383 lockdep_assert_held(&c->state_lock); 1384 1385 BUG_ON(ca->mi.state != BCH_MEMBER_STATE_rw); 1386 1387 bch2_dev_allocator_add(c, ca); 1388 bch2_recalc_capacity(c); 1389 } 1390 1391 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, 1392 enum bch_member_state new_state, int flags) 1393 { 1394 struct bch_member *m; 1395 int ret = 0; 1396 1397 if (ca->mi.state == new_state) 1398 return 0; 1399 1400 if (!bch2_dev_state_allowed(c, ca, new_state, flags)) 1401 return -BCH_ERR_device_state_not_allowed; 1402 1403 if (new_state != BCH_MEMBER_STATE_rw) 1404 __bch2_dev_read_only(c, ca); 1405 1406 bch_notice(ca, "%s", bch2_member_states[new_state]); 1407 1408 mutex_lock(&c->sb_lock); 1409 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); 1410 SET_BCH_MEMBER_STATE(m, new_state); 1411 bch2_write_super(c); 1412 mutex_unlock(&c->sb_lock); 1413 1414 if (new_state == BCH_MEMBER_STATE_rw) 1415 __bch2_dev_read_write(c, ca); 1416 1417 rebalance_wakeup(c); 1418 1419 return ret; 1420 } 1421 1422 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, 1423 enum bch_member_state new_state, int flags) 1424 { 1425 int ret; 1426 1427 down_write(&c->state_lock); 1428 ret = __bch2_dev_set_state(c, ca, new_state, flags); 1429 up_write(&c->state_lock); 1430 1431 return ret; 1432 } 1433 1434 /* Device add/removal: */ 1435 1436 static int bch2_dev_remove_alloc(struct bch_fs *c, struct bch_dev *ca) 1437 { 1438 struct bpos start = POS(ca->dev_idx, 0); 1439 struct bpos end = POS(ca->dev_idx, U64_MAX); 1440 int ret; 1441 1442 /* 1443 * We clear the LRU and need_discard btrees first so that we don't race 1444 * with bch2_do_invalidates() and bch2_do_discards() 1445 */ 1446 ret = bch2_btree_delete_range(c, BTREE_ID_lru, start, end, 1447 BTREE_TRIGGER_NORUN, NULL) ?: 1448 bch2_btree_delete_range(c, BTREE_ID_need_discard, start, end, 1449 BTREE_TRIGGER_NORUN, NULL) ?: 1450 bch2_btree_delete_range(c, BTREE_ID_freespace, start, end, 1451 BTREE_TRIGGER_NORUN, NULL) ?: 1452 bch2_btree_delete_range(c, BTREE_ID_backpointers, start, end, 1453 BTREE_TRIGGER_NORUN, NULL) ?: 1454 bch2_btree_delete_range(c, BTREE_ID_alloc, start, end, 1455 BTREE_TRIGGER_NORUN, NULL) ?: 1456 bch2_btree_delete_range(c, BTREE_ID_bucket_gens, start, end, 1457 BTREE_TRIGGER_NORUN, NULL); 1458 if (ret) 1459 bch_err_msg(c, ret, "removing dev alloc info"); 1460 1461 return ret; 1462 } 1463 1464 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags) 1465 { 1466 struct bch_member *m; 1467 unsigned dev_idx = ca->dev_idx, data; 1468 int ret; 1469 1470 down_write(&c->state_lock); 1471 1472 /* 1473 * We consume a reference to ca->ref, regardless of whether we succeed 1474 * or fail: 1475 */ 1476 percpu_ref_put(&ca->ref); 1477 1478 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { 1479 bch_err(ca, "Cannot remove without losing data"); 1480 ret = -BCH_ERR_device_state_not_allowed; 1481 goto err; 1482 } 1483 1484 __bch2_dev_read_only(c, ca); 1485 1486 ret = bch2_dev_data_drop(c, ca->dev_idx, flags); 1487 if (ret) { 1488 bch_err_msg(ca, ret, "dropping data"); 1489 goto err; 1490 } 1491 1492 ret = bch2_dev_remove_alloc(c, ca); 1493 if (ret) { 1494 bch_err_msg(ca, ret, "deleting alloc info"); 1495 goto err; 1496 } 1497 1498 ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx); 1499 if (ret) { 1500 bch_err_msg(ca, ret, "flushing journal"); 1501 goto err; 1502 } 1503 1504 ret = bch2_journal_flush(&c->journal); 1505 if (ret) { 1506 bch_err(ca, "journal error"); 1507 goto err; 1508 } 1509 1510 ret = bch2_replicas_gc2(c); 1511 if (ret) { 1512 bch_err_msg(ca, ret, "in replicas_gc2()"); 1513 goto err; 1514 } 1515 1516 data = bch2_dev_has_data(c, ca); 1517 if (data) { 1518 struct printbuf data_has = PRINTBUF; 1519 1520 prt_bitflags(&data_has, bch2_data_types, data); 1521 bch_err(ca, "Remove failed, still has data (%s)", data_has.buf); 1522 printbuf_exit(&data_has); 1523 ret = -EBUSY; 1524 goto err; 1525 } 1526 1527 __bch2_dev_offline(c, ca); 1528 1529 mutex_lock(&c->sb_lock); 1530 rcu_assign_pointer(c->devs[ca->dev_idx], NULL); 1531 mutex_unlock(&c->sb_lock); 1532 1533 percpu_ref_kill(&ca->ref); 1534 wait_for_completion(&ca->ref_completion); 1535 1536 bch2_dev_free(ca); 1537 1538 /* 1539 * At this point the device object has been removed in-core, but the 1540 * on-disk journal might still refer to the device index via sb device 1541 * usage entries. Recovery fails if it sees usage information for an 1542 * invalid device. Flush journal pins to push the back of the journal 1543 * past now invalid device index references before we update the 1544 * superblock, but after the device object has been removed so any 1545 * further journal writes elide usage info for the device. 1546 */ 1547 bch2_journal_flush_all_pins(&c->journal); 1548 1549 /* 1550 * Free this device's slot in the bch_member array - all pointers to 1551 * this device must be gone: 1552 */ 1553 mutex_lock(&c->sb_lock); 1554 m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx); 1555 memset(&m->uuid, 0, sizeof(m->uuid)); 1556 1557 bch2_write_super(c); 1558 1559 mutex_unlock(&c->sb_lock); 1560 up_write(&c->state_lock); 1561 1562 bch2_dev_usage_journal_reserve(c); 1563 return 0; 1564 err: 1565 if (ca->mi.state == BCH_MEMBER_STATE_rw && 1566 !percpu_ref_is_zero(&ca->io_ref)) 1567 __bch2_dev_read_write(c, ca); 1568 up_write(&c->state_lock); 1569 return ret; 1570 } 1571 1572 /* Add new device to running filesystem: */ 1573 int bch2_dev_add(struct bch_fs *c, const char *path) 1574 { 1575 struct bch_opts opts = bch2_opts_empty(); 1576 struct bch_sb_handle sb; 1577 struct bch_dev *ca = NULL; 1578 struct bch_sb_field_members_v2 *mi; 1579 struct bch_member dev_mi; 1580 unsigned dev_idx, nr_devices, u64s; 1581 struct printbuf errbuf = PRINTBUF; 1582 struct printbuf label = PRINTBUF; 1583 int ret; 1584 1585 ret = bch2_read_super(path, &opts, &sb); 1586 if (ret) { 1587 bch_err_msg(c, ret, "reading super"); 1588 goto err; 1589 } 1590 1591 dev_mi = bch2_sb_member_get(sb.sb, sb.sb->dev_idx); 1592 1593 if (BCH_MEMBER_GROUP(&dev_mi)) { 1594 bch2_disk_path_to_text_sb(&label, sb.sb, BCH_MEMBER_GROUP(&dev_mi) - 1); 1595 if (label.allocation_failure) { 1596 ret = -ENOMEM; 1597 goto err; 1598 } 1599 } 1600 1601 ret = bch2_dev_may_add(sb.sb, c); 1602 if (ret) { 1603 bch_err_fn(c, ret); 1604 goto err; 1605 } 1606 1607 ca = __bch2_dev_alloc(c, &dev_mi); 1608 if (!ca) { 1609 ret = -ENOMEM; 1610 goto err; 1611 } 1612 1613 bch2_dev_usage_init(ca); 1614 1615 ret = __bch2_dev_attach_bdev(ca, &sb); 1616 if (ret) 1617 goto err; 1618 1619 ret = bch2_dev_journal_alloc(ca); 1620 if (ret) { 1621 bch_err_msg(c, ret, "allocating journal"); 1622 goto err; 1623 } 1624 1625 down_write(&c->state_lock); 1626 mutex_lock(&c->sb_lock); 1627 1628 ret = bch2_sb_from_fs(c, ca); 1629 if (ret) { 1630 bch_err_msg(c, ret, "setting up new superblock"); 1631 goto err_unlock; 1632 } 1633 1634 if (dynamic_fault("bcachefs:add:no_slot")) 1635 goto no_slot; 1636 1637 for (dev_idx = 0; dev_idx < BCH_SB_MEMBERS_MAX; dev_idx++) 1638 if (!bch2_dev_exists(c->disk_sb.sb, dev_idx)) 1639 goto have_slot; 1640 no_slot: 1641 ret = -BCH_ERR_ENOSPC_sb_members; 1642 bch_err_msg(c, ret, "setting up new superblock"); 1643 goto err_unlock; 1644 1645 have_slot: 1646 nr_devices = max_t(unsigned, dev_idx + 1, c->sb.nr_devices); 1647 1648 mi = bch2_sb_field_get(c->disk_sb.sb, members_v2); 1649 u64s = DIV_ROUND_UP(sizeof(struct bch_sb_field_members_v2) + 1650 le16_to_cpu(mi->member_bytes) * nr_devices, sizeof(u64)); 1651 1652 mi = bch2_sb_field_resize(&c->disk_sb, members_v2, u64s); 1653 if (!mi) { 1654 ret = -BCH_ERR_ENOSPC_sb_members; 1655 bch_err_msg(c, ret, "setting up new superblock"); 1656 goto err_unlock; 1657 } 1658 struct bch_member *m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx); 1659 1660 /* success: */ 1661 1662 *m = dev_mi; 1663 m->last_mount = cpu_to_le64(ktime_get_real_seconds()); 1664 c->disk_sb.sb->nr_devices = nr_devices; 1665 1666 ca->disk_sb.sb->dev_idx = dev_idx; 1667 bch2_dev_attach(c, ca, dev_idx); 1668 1669 if (BCH_MEMBER_GROUP(&dev_mi)) { 1670 ret = __bch2_dev_group_set(c, ca, label.buf); 1671 if (ret) { 1672 bch_err_msg(c, ret, "creating new label"); 1673 goto err_unlock; 1674 } 1675 } 1676 1677 bch2_write_super(c); 1678 mutex_unlock(&c->sb_lock); 1679 1680 bch2_dev_usage_journal_reserve(c); 1681 1682 ret = bch2_trans_mark_dev_sb(c, ca); 1683 if (ret) { 1684 bch_err_msg(ca, ret, "marking new superblock"); 1685 goto err_late; 1686 } 1687 1688 ret = bch2_fs_freespace_init(c); 1689 if (ret) { 1690 bch_err_msg(ca, ret, "initializing free space"); 1691 goto err_late; 1692 } 1693 1694 ca->new_fs_bucket_idx = 0; 1695 1696 if (ca->mi.state == BCH_MEMBER_STATE_rw) 1697 __bch2_dev_read_write(c, ca); 1698 1699 up_write(&c->state_lock); 1700 return 0; 1701 1702 err_unlock: 1703 mutex_unlock(&c->sb_lock); 1704 up_write(&c->state_lock); 1705 err: 1706 if (ca) 1707 bch2_dev_free(ca); 1708 bch2_free_super(&sb); 1709 printbuf_exit(&label); 1710 printbuf_exit(&errbuf); 1711 return ret; 1712 err_late: 1713 up_write(&c->state_lock); 1714 ca = NULL; 1715 goto err; 1716 } 1717 1718 /* Hot add existing device to running filesystem: */ 1719 int bch2_dev_online(struct bch_fs *c, const char *path) 1720 { 1721 struct bch_opts opts = bch2_opts_empty(); 1722 struct bch_sb_handle sb = { NULL }; 1723 struct bch_dev *ca; 1724 unsigned dev_idx; 1725 int ret; 1726 1727 down_write(&c->state_lock); 1728 1729 ret = bch2_read_super(path, &opts, &sb); 1730 if (ret) { 1731 up_write(&c->state_lock); 1732 return ret; 1733 } 1734 1735 dev_idx = sb.sb->dev_idx; 1736 1737 ret = bch2_dev_in_fs(c->disk_sb.sb, sb.sb); 1738 if (ret) { 1739 bch_err_msg(c, ret, "bringing %s online", path); 1740 goto err; 1741 } 1742 1743 ret = bch2_dev_attach_bdev(c, &sb); 1744 if (ret) 1745 goto err; 1746 1747 ca = bch_dev_locked(c, dev_idx); 1748 1749 ret = bch2_trans_mark_dev_sb(c, ca); 1750 if (ret) { 1751 bch_err_msg(c, ret, "bringing %s online: error from bch2_trans_mark_dev_sb", path); 1752 goto err; 1753 } 1754 1755 if (ca->mi.state == BCH_MEMBER_STATE_rw) 1756 __bch2_dev_read_write(c, ca); 1757 1758 if (!ca->mi.freespace_initialized) { 1759 ret = bch2_dev_freespace_init(c, ca, 0, ca->mi.nbuckets); 1760 bch_err_msg(ca, ret, "initializing free space"); 1761 if (ret) 1762 goto err; 1763 } 1764 1765 if (!ca->journal.nr) { 1766 ret = bch2_dev_journal_alloc(ca); 1767 bch_err_msg(ca, ret, "allocating journal"); 1768 if (ret) 1769 goto err; 1770 } 1771 1772 mutex_lock(&c->sb_lock); 1773 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = 1774 cpu_to_le64(ktime_get_real_seconds()); 1775 bch2_write_super(c); 1776 mutex_unlock(&c->sb_lock); 1777 1778 up_write(&c->state_lock); 1779 return 0; 1780 err: 1781 up_write(&c->state_lock); 1782 bch2_free_super(&sb); 1783 return ret; 1784 } 1785 1786 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags) 1787 { 1788 down_write(&c->state_lock); 1789 1790 if (!bch2_dev_is_online(ca)) { 1791 bch_err(ca, "Already offline"); 1792 up_write(&c->state_lock); 1793 return 0; 1794 } 1795 1796 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { 1797 bch_err(ca, "Cannot offline required disk"); 1798 up_write(&c->state_lock); 1799 return -BCH_ERR_device_state_not_allowed; 1800 } 1801 1802 __bch2_dev_offline(c, ca); 1803 1804 up_write(&c->state_lock); 1805 return 0; 1806 } 1807 1808 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets) 1809 { 1810 struct bch_member *m; 1811 u64 old_nbuckets; 1812 int ret = 0; 1813 1814 down_write(&c->state_lock); 1815 old_nbuckets = ca->mi.nbuckets; 1816 1817 if (nbuckets < ca->mi.nbuckets) { 1818 bch_err(ca, "Cannot shrink yet"); 1819 ret = -EINVAL; 1820 goto err; 1821 } 1822 1823 if (bch2_dev_is_online(ca) && 1824 get_capacity(ca->disk_sb.bdev->bd_disk) < 1825 ca->mi.bucket_size * nbuckets) { 1826 bch_err(ca, "New size larger than device"); 1827 ret = -BCH_ERR_device_size_too_small; 1828 goto err; 1829 } 1830 1831 ret = bch2_dev_buckets_resize(c, ca, nbuckets); 1832 if (ret) { 1833 bch_err_msg(ca, ret, "resizing buckets"); 1834 goto err; 1835 } 1836 1837 ret = bch2_trans_mark_dev_sb(c, ca); 1838 if (ret) 1839 goto err; 1840 1841 mutex_lock(&c->sb_lock); 1842 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); 1843 m->nbuckets = cpu_to_le64(nbuckets); 1844 1845 bch2_write_super(c); 1846 mutex_unlock(&c->sb_lock); 1847 1848 if (ca->mi.freespace_initialized) { 1849 ret = bch2_dev_freespace_init(c, ca, old_nbuckets, nbuckets); 1850 if (ret) 1851 goto err; 1852 1853 /* 1854 * XXX: this is all wrong transactionally - we'll be able to do 1855 * this correctly after the disk space accounting rewrite 1856 */ 1857 ca->usage_base->d[BCH_DATA_free].buckets += nbuckets - old_nbuckets; 1858 } 1859 1860 bch2_recalc_capacity(c); 1861 err: 1862 up_write(&c->state_lock); 1863 return ret; 1864 } 1865 1866 /* return with ref on ca->ref: */ 1867 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *name) 1868 { 1869 struct bch_dev *ca; 1870 unsigned i; 1871 1872 rcu_read_lock(); 1873 for_each_member_device_rcu(ca, c, i, NULL) 1874 if (!strcmp(name, ca->name)) 1875 goto found; 1876 ca = ERR_PTR(-BCH_ERR_ENOENT_dev_not_found); 1877 found: 1878 rcu_read_unlock(); 1879 1880 return ca; 1881 } 1882 1883 /* Filesystem open: */ 1884 1885 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices, 1886 struct bch_opts opts) 1887 { 1888 DARRAY(struct bch_sb_handle) sbs = { 0 }; 1889 struct bch_fs *c = NULL; 1890 struct bch_sb_handle *sb, *best = NULL; 1891 struct printbuf errbuf = PRINTBUF; 1892 int ret = 0; 1893 1894 if (!try_module_get(THIS_MODULE)) 1895 return ERR_PTR(-ENODEV); 1896 1897 if (!nr_devices) { 1898 ret = -EINVAL; 1899 goto err; 1900 } 1901 1902 ret = darray_make_room(&sbs, nr_devices); 1903 if (ret) 1904 goto err; 1905 1906 for (unsigned i = 0; i < nr_devices; i++) { 1907 struct bch_sb_handle sb = { NULL }; 1908 1909 ret = bch2_read_super(devices[i], &opts, &sb); 1910 if (ret) 1911 goto err; 1912 1913 BUG_ON(darray_push(&sbs, sb)); 1914 } 1915 1916 darray_for_each(sbs, sb) 1917 if (!best || le64_to_cpu(sb->sb->seq) > le64_to_cpu(best->sb->seq)) 1918 best = sb; 1919 1920 darray_for_each_reverse(sbs, sb) { 1921 if (sb != best && !bch2_dev_exists(best->sb, sb->sb->dev_idx)) { 1922 pr_info("%pg has been removed, skipping", sb->bdev); 1923 bch2_free_super(sb); 1924 darray_remove_item(&sbs, sb); 1925 best -= best > sb; 1926 continue; 1927 } 1928 1929 ret = bch2_dev_in_fs(best->sb, sb->sb); 1930 if (ret) 1931 goto err_print; 1932 } 1933 1934 c = bch2_fs_alloc(best->sb, opts); 1935 ret = PTR_ERR_OR_ZERO(c); 1936 if (ret) 1937 goto err; 1938 1939 down_write(&c->state_lock); 1940 darray_for_each(sbs, sb) { 1941 ret = bch2_dev_attach_bdev(c, sb); 1942 if (ret) { 1943 up_write(&c->state_lock); 1944 goto err; 1945 } 1946 } 1947 up_write(&c->state_lock); 1948 1949 if (!bch2_fs_may_start(c)) { 1950 ret = -BCH_ERR_insufficient_devices_to_start; 1951 goto err_print; 1952 } 1953 1954 if (!c->opts.nostart) { 1955 ret = bch2_fs_start(c); 1956 if (ret) 1957 goto err; 1958 } 1959 out: 1960 darray_for_each(sbs, sb) 1961 bch2_free_super(sb); 1962 darray_exit(&sbs); 1963 printbuf_exit(&errbuf); 1964 module_put(THIS_MODULE); 1965 return c; 1966 err_print: 1967 pr_err("bch_fs_open err opening %s: %s", 1968 devices[0], bch2_err_str(ret)); 1969 err: 1970 if (!IS_ERR_OR_NULL(c)) 1971 bch2_fs_stop(c); 1972 c = ERR_PTR(ret); 1973 goto out; 1974 } 1975 1976 /* Global interfaces/init */ 1977 1978 static void bcachefs_exit(void) 1979 { 1980 bch2_debug_exit(); 1981 bch2_vfs_exit(); 1982 bch2_chardev_exit(); 1983 bch2_btree_key_cache_exit(); 1984 if (bcachefs_kset) 1985 kset_unregister(bcachefs_kset); 1986 } 1987 1988 static int __init bcachefs_init(void) 1989 { 1990 bch2_bkey_pack_test(); 1991 1992 if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) || 1993 bch2_btree_key_cache_init() || 1994 bch2_chardev_init() || 1995 bch2_vfs_init() || 1996 bch2_debug_init()) 1997 goto err; 1998 1999 return 0; 2000 err: 2001 bcachefs_exit(); 2002 return -ENOMEM; 2003 } 2004 2005 #define BCH_DEBUG_PARAM(name, description) \ 2006 bool bch2_##name; \ 2007 module_param_named(name, bch2_##name, bool, 0644); \ 2008 MODULE_PARM_DESC(name, description); 2009 BCH_DEBUG_PARAMS() 2010 #undef BCH_DEBUG_PARAM 2011 2012 __maybe_unused 2013 static unsigned bch2_metadata_version = bcachefs_metadata_version_current; 2014 module_param_named(version, bch2_metadata_version, uint, 0400); 2015 2016 module_exit(bcachefs_exit); 2017 module_init(bcachefs_init); 2018