1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcachefs setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcachefs.h" 11 #include "alloc_background.h" 12 #include "alloc_foreground.h" 13 #include "bkey_sort.h" 14 #include "btree_cache.h" 15 #include "btree_gc.h" 16 #include "btree_journal_iter.h" 17 #include "btree_key_cache.h" 18 #include "btree_update_interior.h" 19 #include "btree_io.h" 20 #include "btree_write_buffer.h" 21 #include "buckets_waiting_for_journal.h" 22 #include "chardev.h" 23 #include "checksum.h" 24 #include "clock.h" 25 #include "compress.h" 26 #include "counters.h" 27 #include "debug.h" 28 #include "disk_groups.h" 29 #include "ec.h" 30 #include "errcode.h" 31 #include "error.h" 32 #include "fs.h" 33 #include "fs-io.h" 34 #include "fs-io-buffered.h" 35 #include "fs-io-direct.h" 36 #include "fsck.h" 37 #include "inode.h" 38 #include "io_read.h" 39 #include "io_write.h" 40 #include "journal.h" 41 #include "journal_reclaim.h" 42 #include "journal_seq_blacklist.h" 43 #include "move.h" 44 #include "migrate.h" 45 #include "movinggc.h" 46 #include "nocow_locking.h" 47 #include "quota.h" 48 #include "rebalance.h" 49 #include "recovery.h" 50 #include "replicas.h" 51 #include "sb-clean.h" 52 #include "sb-members.h" 53 #include "snapshot.h" 54 #include "subvolume.h" 55 #include "super.h" 56 #include "super-io.h" 57 #include "sysfs.h" 58 #include "trace.h" 59 60 #include <linux/backing-dev.h> 61 #include <linux/blkdev.h> 62 #include <linux/debugfs.h> 63 #include <linux/device.h> 64 #include <linux/idr.h> 65 #include <linux/module.h> 66 #include <linux/percpu.h> 67 #include <linux/random.h> 68 #include <linux/sysfs.h> 69 #include <crypto/hash.h> 70 71 MODULE_LICENSE("GPL"); 72 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 73 MODULE_DESCRIPTION("bcachefs filesystem"); 74 75 #define KTYPE(type) \ 76 static const struct attribute_group type ## _group = { \ 77 .attrs = type ## _files \ 78 }; \ 79 \ 80 static const struct attribute_group *type ## _groups[] = { \ 81 &type ## _group, \ 82 NULL \ 83 }; \ 84 \ 85 static const struct kobj_type type ## _ktype = { \ 86 .release = type ## _release, \ 87 .sysfs_ops = &type ## _sysfs_ops, \ 88 .default_groups = type ## _groups \ 89 } 90 91 static void bch2_fs_release(struct kobject *); 92 static void bch2_dev_release(struct kobject *); 93 static void bch2_fs_counters_release(struct kobject *k) 94 { 95 } 96 97 static void bch2_fs_internal_release(struct kobject *k) 98 { 99 } 100 101 static void bch2_fs_opts_dir_release(struct kobject *k) 102 { 103 } 104 105 static void bch2_fs_time_stats_release(struct kobject *k) 106 { 107 } 108 109 KTYPE(bch2_fs); 110 KTYPE(bch2_fs_counters); 111 KTYPE(bch2_fs_internal); 112 KTYPE(bch2_fs_opts_dir); 113 KTYPE(bch2_fs_time_stats); 114 KTYPE(bch2_dev); 115 116 static struct kset *bcachefs_kset; 117 static LIST_HEAD(bch_fs_list); 118 static DEFINE_MUTEX(bch_fs_list_lock); 119 120 DECLARE_WAIT_QUEUE_HEAD(bch2_read_only_wait); 121 122 static void bch2_dev_free(struct bch_dev *); 123 static int bch2_dev_alloc(struct bch_fs *, unsigned); 124 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *); 125 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *); 126 127 struct bch_fs *bch2_dev_to_fs(dev_t dev) 128 { 129 struct bch_fs *c; 130 struct bch_dev *ca; 131 unsigned i; 132 133 mutex_lock(&bch_fs_list_lock); 134 rcu_read_lock(); 135 136 list_for_each_entry(c, &bch_fs_list, list) 137 for_each_member_device_rcu(ca, c, i, NULL) 138 if (ca->disk_sb.bdev && ca->disk_sb.bdev->bd_dev == dev) { 139 closure_get(&c->cl); 140 goto found; 141 } 142 c = NULL; 143 found: 144 rcu_read_unlock(); 145 mutex_unlock(&bch_fs_list_lock); 146 147 return c; 148 } 149 150 static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid) 151 { 152 struct bch_fs *c; 153 154 lockdep_assert_held(&bch_fs_list_lock); 155 156 list_for_each_entry(c, &bch_fs_list, list) 157 if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid))) 158 return c; 159 160 return NULL; 161 } 162 163 struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid) 164 { 165 struct bch_fs *c; 166 167 mutex_lock(&bch_fs_list_lock); 168 c = __bch2_uuid_to_fs(uuid); 169 if (c) 170 closure_get(&c->cl); 171 mutex_unlock(&bch_fs_list_lock); 172 173 return c; 174 } 175 176 static void bch2_dev_usage_journal_reserve(struct bch_fs *c) 177 { 178 struct bch_dev *ca; 179 unsigned i, nr = 0, u64s = 180 ((sizeof(struct jset_entry_dev_usage) + 181 sizeof(struct jset_entry_dev_usage_type) * BCH_DATA_NR)) / 182 sizeof(u64); 183 184 rcu_read_lock(); 185 for_each_member_device_rcu(ca, c, i, NULL) 186 nr++; 187 rcu_read_unlock(); 188 189 bch2_journal_entry_res_resize(&c->journal, 190 &c->dev_usage_journal_res, u64s * nr); 191 } 192 193 /* Filesystem RO/RW: */ 194 195 /* 196 * For startup/shutdown of RW stuff, the dependencies are: 197 * 198 * - foreground writes depend on copygc and rebalance (to free up space) 199 * 200 * - copygc and rebalance depend on mark and sweep gc (they actually probably 201 * don't because they either reserve ahead of time or don't block if 202 * allocations fail, but allocations can require mark and sweep gc to run 203 * because of generation number wraparound) 204 * 205 * - all of the above depends on the allocator threads 206 * 207 * - allocator depends on the journal (when it rewrites prios and gens) 208 */ 209 210 static void __bch2_fs_read_only(struct bch_fs *c) 211 { 212 struct bch_dev *ca; 213 unsigned i, clean_passes = 0; 214 u64 seq = 0; 215 216 bch2_fs_ec_stop(c); 217 bch2_open_buckets_stop(c, NULL, true); 218 bch2_rebalance_stop(c); 219 bch2_copygc_stop(c); 220 bch2_gc_thread_stop(c); 221 bch2_fs_ec_flush(c); 222 223 bch_verbose(c, "flushing journal and stopping allocators, journal seq %llu", 224 journal_cur_seq(&c->journal)); 225 226 do { 227 clean_passes++; 228 229 if (bch2_btree_interior_updates_flush(c) || 230 bch2_journal_flush_all_pins(&c->journal) || 231 bch2_btree_flush_all_writes(c) || 232 seq != atomic64_read(&c->journal.seq)) { 233 seq = atomic64_read(&c->journal.seq); 234 clean_passes = 0; 235 } 236 } while (clean_passes < 2); 237 238 bch_verbose(c, "flushing journal and stopping allocators complete, journal seq %llu", 239 journal_cur_seq(&c->journal)); 240 241 if (test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags) && 242 !test_bit(BCH_FS_EMERGENCY_RO, &c->flags)) 243 set_bit(BCH_FS_CLEAN_SHUTDOWN, &c->flags); 244 bch2_fs_journal_stop(&c->journal); 245 246 /* 247 * After stopping journal: 248 */ 249 for_each_member_device(ca, c, i) 250 bch2_dev_allocator_remove(c, ca); 251 } 252 253 #ifndef BCH_WRITE_REF_DEBUG 254 static void bch2_writes_disabled(struct percpu_ref *writes) 255 { 256 struct bch_fs *c = container_of(writes, struct bch_fs, writes); 257 258 set_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags); 259 wake_up(&bch2_read_only_wait); 260 } 261 #endif 262 263 void bch2_fs_read_only(struct bch_fs *c) 264 { 265 if (!test_bit(BCH_FS_RW, &c->flags)) { 266 bch2_journal_reclaim_stop(&c->journal); 267 return; 268 } 269 270 BUG_ON(test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags)); 271 272 /* 273 * Block new foreground-end write operations from starting - any new 274 * writes will return -EROFS: 275 */ 276 set_bit(BCH_FS_GOING_RO, &c->flags); 277 #ifndef BCH_WRITE_REF_DEBUG 278 percpu_ref_kill(&c->writes); 279 #else 280 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) 281 bch2_write_ref_put(c, i); 282 #endif 283 284 /* 285 * If we're not doing an emergency shutdown, we want to wait on 286 * outstanding writes to complete so they don't see spurious errors due 287 * to shutting down the allocator: 288 * 289 * If we are doing an emergency shutdown outstanding writes may 290 * hang until we shutdown the allocator so we don't want to wait 291 * on outstanding writes before shutting everything down - but 292 * we do need to wait on them before returning and signalling 293 * that going RO is complete: 294 */ 295 wait_event(bch2_read_only_wait, 296 test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags) || 297 test_bit(BCH_FS_EMERGENCY_RO, &c->flags)); 298 299 __bch2_fs_read_only(c); 300 301 wait_event(bch2_read_only_wait, 302 test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags)); 303 304 clear_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags); 305 clear_bit(BCH_FS_GOING_RO, &c->flags); 306 307 if (!bch2_journal_error(&c->journal) && 308 !test_bit(BCH_FS_ERROR, &c->flags) && 309 !test_bit(BCH_FS_EMERGENCY_RO, &c->flags) && 310 test_bit(BCH_FS_STARTED, &c->flags) && 311 test_bit(BCH_FS_CLEAN_SHUTDOWN, &c->flags) && 312 !c->opts.norecovery) { 313 BUG_ON(c->journal.last_empty_seq != journal_cur_seq(&c->journal)); 314 BUG_ON(atomic_read(&c->btree_cache.dirty)); 315 BUG_ON(atomic_long_read(&c->btree_key_cache.nr_dirty)); 316 BUG_ON(c->btree_write_buffer.state.nr); 317 318 bch_verbose(c, "marking filesystem clean"); 319 bch2_fs_mark_clean(c); 320 } 321 322 clear_bit(BCH_FS_RW, &c->flags); 323 } 324 325 static void bch2_fs_read_only_work(struct work_struct *work) 326 { 327 struct bch_fs *c = 328 container_of(work, struct bch_fs, read_only_work); 329 330 down_write(&c->state_lock); 331 bch2_fs_read_only(c); 332 up_write(&c->state_lock); 333 } 334 335 static void bch2_fs_read_only_async(struct bch_fs *c) 336 { 337 queue_work(system_long_wq, &c->read_only_work); 338 } 339 340 bool bch2_fs_emergency_read_only(struct bch_fs *c) 341 { 342 bool ret = !test_and_set_bit(BCH_FS_EMERGENCY_RO, &c->flags); 343 344 bch2_journal_halt(&c->journal); 345 bch2_fs_read_only_async(c); 346 347 wake_up(&bch2_read_only_wait); 348 return ret; 349 } 350 351 static int bch2_fs_read_write_late(struct bch_fs *c) 352 { 353 int ret; 354 355 /* 356 * Data move operations can't run until after check_snapshots has 357 * completed, and bch2_snapshot_is_ancestor() is available. 358 * 359 * Ideally we'd start copygc/rebalance earlier instead of waiting for 360 * all of recovery/fsck to complete: 361 */ 362 ret = bch2_copygc_start(c); 363 if (ret) { 364 bch_err(c, "error starting copygc thread"); 365 return ret; 366 } 367 368 ret = bch2_rebalance_start(c); 369 if (ret) { 370 bch_err(c, "error starting rebalance thread"); 371 return ret; 372 } 373 374 return 0; 375 } 376 377 static int __bch2_fs_read_write(struct bch_fs *c, bool early) 378 { 379 struct bch_dev *ca; 380 unsigned i; 381 int ret; 382 383 if (test_bit(BCH_FS_INITIAL_GC_UNFIXED, &c->flags)) { 384 bch_err(c, "cannot go rw, unfixed btree errors"); 385 return -BCH_ERR_erofs_unfixed_errors; 386 } 387 388 if (test_bit(BCH_FS_RW, &c->flags)) 389 return 0; 390 391 if (c->opts.norecovery) 392 return -BCH_ERR_erofs_norecovery; 393 394 /* 395 * nochanges is used for fsck -n mode - we have to allow going rw 396 * during recovery for that to work: 397 */ 398 if (c->opts.nochanges && (!early || c->opts.read_only)) 399 return -BCH_ERR_erofs_nochanges; 400 401 bch_info(c, "going read-write"); 402 403 ret = bch2_members_v2_init(c); 404 if (ret) 405 goto err; 406 407 ret = bch2_fs_mark_dirty(c); 408 if (ret) 409 goto err; 410 411 clear_bit(BCH_FS_CLEAN_SHUTDOWN, &c->flags); 412 413 /* 414 * First journal write must be a flush write: after a clean shutdown we 415 * don't read the journal, so the first journal write may end up 416 * overwriting whatever was there previously, and there must always be 417 * at least one non-flush write in the journal or recovery will fail: 418 */ 419 set_bit(JOURNAL_NEED_FLUSH_WRITE, &c->journal.flags); 420 421 for_each_rw_member(ca, c, i) 422 bch2_dev_allocator_add(c, ca); 423 bch2_recalc_capacity(c); 424 425 ret = bch2_gc_thread_start(c); 426 if (ret) { 427 bch_err(c, "error starting gc thread"); 428 return ret; 429 } 430 431 ret = bch2_journal_reclaim_start(&c->journal); 432 if (ret) 433 goto err; 434 435 if (!early) { 436 ret = bch2_fs_read_write_late(c); 437 if (ret) 438 goto err; 439 } 440 441 #ifndef BCH_WRITE_REF_DEBUG 442 percpu_ref_reinit(&c->writes); 443 #else 444 for (i = 0; i < BCH_WRITE_REF_NR; i++) { 445 BUG_ON(atomic_long_read(&c->writes[i])); 446 atomic_long_inc(&c->writes[i]); 447 } 448 #endif 449 set_bit(BCH_FS_RW, &c->flags); 450 set_bit(BCH_FS_WAS_RW, &c->flags); 451 452 bch2_do_discards(c); 453 bch2_do_invalidates(c); 454 bch2_do_stripe_deletes(c); 455 bch2_do_pending_node_rewrites(c); 456 return 0; 457 err: 458 __bch2_fs_read_only(c); 459 return ret; 460 } 461 462 int bch2_fs_read_write(struct bch_fs *c) 463 { 464 return __bch2_fs_read_write(c, false); 465 } 466 467 int bch2_fs_read_write_early(struct bch_fs *c) 468 { 469 lockdep_assert_held(&c->state_lock); 470 471 return __bch2_fs_read_write(c, true); 472 } 473 474 /* Filesystem startup/shutdown: */ 475 476 static void __bch2_fs_free(struct bch_fs *c) 477 { 478 unsigned i; 479 480 for (i = 0; i < BCH_TIME_STAT_NR; i++) 481 bch2_time_stats_exit(&c->times[i]); 482 483 bch2_free_pending_node_rewrites(c); 484 bch2_fs_counters_exit(c); 485 bch2_fs_snapshots_exit(c); 486 bch2_fs_quota_exit(c); 487 bch2_fs_fs_io_direct_exit(c); 488 bch2_fs_fs_io_buffered_exit(c); 489 bch2_fs_fsio_exit(c); 490 bch2_fs_ec_exit(c); 491 bch2_fs_encryption_exit(c); 492 bch2_fs_nocow_locking_exit(c); 493 bch2_fs_io_write_exit(c); 494 bch2_fs_io_read_exit(c); 495 bch2_fs_buckets_waiting_for_journal_exit(c); 496 bch2_fs_btree_interior_update_exit(c); 497 bch2_fs_btree_iter_exit(c); 498 bch2_fs_btree_key_cache_exit(&c->btree_key_cache); 499 bch2_fs_btree_cache_exit(c); 500 bch2_fs_replicas_exit(c); 501 bch2_fs_journal_exit(&c->journal); 502 bch2_io_clock_exit(&c->io_clock[WRITE]); 503 bch2_io_clock_exit(&c->io_clock[READ]); 504 bch2_fs_compress_exit(c); 505 bch2_journal_keys_free(&c->journal_keys); 506 bch2_journal_entries_free(c); 507 bch2_fs_btree_write_buffer_exit(c); 508 percpu_free_rwsem(&c->mark_lock); 509 free_percpu(c->online_reserved); 510 511 darray_exit(&c->btree_roots_extra); 512 free_percpu(c->pcpu); 513 mempool_exit(&c->large_bkey_pool); 514 mempool_exit(&c->btree_bounce_pool); 515 bioset_exit(&c->btree_bio); 516 mempool_exit(&c->fill_iter); 517 #ifndef BCH_WRITE_REF_DEBUG 518 percpu_ref_exit(&c->writes); 519 #endif 520 kfree(rcu_dereference_protected(c->disk_groups, 1)); 521 kfree(c->journal_seq_blacklist_table); 522 kfree(c->unused_inode_hints); 523 524 if (c->write_ref_wq) 525 destroy_workqueue(c->write_ref_wq); 526 if (c->io_complete_wq) 527 destroy_workqueue(c->io_complete_wq); 528 if (c->copygc_wq) 529 destroy_workqueue(c->copygc_wq); 530 if (c->btree_io_complete_wq) 531 destroy_workqueue(c->btree_io_complete_wq); 532 if (c->btree_update_wq) 533 destroy_workqueue(c->btree_update_wq); 534 535 bch2_free_super(&c->disk_sb); 536 kvpfree(c, sizeof(*c)); 537 module_put(THIS_MODULE); 538 } 539 540 static void bch2_fs_release(struct kobject *kobj) 541 { 542 struct bch_fs *c = container_of(kobj, struct bch_fs, kobj); 543 544 __bch2_fs_free(c); 545 } 546 547 void __bch2_fs_stop(struct bch_fs *c) 548 { 549 struct bch_dev *ca; 550 unsigned i; 551 552 bch_verbose(c, "shutting down"); 553 554 set_bit(BCH_FS_STOPPING, &c->flags); 555 556 cancel_work_sync(&c->journal_seq_blacklist_gc_work); 557 558 down_write(&c->state_lock); 559 bch2_fs_read_only(c); 560 up_write(&c->state_lock); 561 562 for_each_member_device(ca, c, i) 563 if (ca->kobj.state_in_sysfs && 564 ca->disk_sb.bdev) 565 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 566 567 if (c->kobj.state_in_sysfs) 568 kobject_del(&c->kobj); 569 570 bch2_fs_debug_exit(c); 571 bch2_fs_chardev_exit(c); 572 573 kobject_put(&c->counters_kobj); 574 kobject_put(&c->time_stats); 575 kobject_put(&c->opts_dir); 576 kobject_put(&c->internal); 577 578 /* btree prefetch might have kicked off reads in the background: */ 579 bch2_btree_flush_all_reads(c); 580 581 for_each_member_device(ca, c, i) 582 cancel_work_sync(&ca->io_error_work); 583 584 cancel_work_sync(&c->read_only_work); 585 } 586 587 void bch2_fs_free(struct bch_fs *c) 588 { 589 unsigned i; 590 591 mutex_lock(&bch_fs_list_lock); 592 list_del(&c->list); 593 mutex_unlock(&bch_fs_list_lock); 594 595 closure_sync(&c->cl); 596 closure_debug_destroy(&c->cl); 597 598 for (i = 0; i < c->sb.nr_devices; i++) { 599 struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true); 600 601 if (ca) { 602 bch2_free_super(&ca->disk_sb); 603 bch2_dev_free(ca); 604 } 605 } 606 607 bch_verbose(c, "shutdown complete"); 608 609 kobject_put(&c->kobj); 610 } 611 612 void bch2_fs_stop(struct bch_fs *c) 613 { 614 __bch2_fs_stop(c); 615 bch2_fs_free(c); 616 } 617 618 static int bch2_fs_online(struct bch_fs *c) 619 { 620 struct bch_dev *ca; 621 unsigned i; 622 int ret = 0; 623 624 lockdep_assert_held(&bch_fs_list_lock); 625 626 if (__bch2_uuid_to_fs(c->sb.uuid)) { 627 bch_err(c, "filesystem UUID already open"); 628 return -EINVAL; 629 } 630 631 ret = bch2_fs_chardev_init(c); 632 if (ret) { 633 bch_err(c, "error creating character device"); 634 return ret; 635 } 636 637 bch2_fs_debug_init(c); 638 639 ret = kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ?: 640 kobject_add(&c->internal, &c->kobj, "internal") ?: 641 kobject_add(&c->opts_dir, &c->kobj, "options") ?: 642 kobject_add(&c->time_stats, &c->kobj, "time_stats") ?: 643 kobject_add(&c->counters_kobj, &c->kobj, "counters") ?: 644 bch2_opts_create_sysfs_files(&c->opts_dir); 645 if (ret) { 646 bch_err(c, "error creating sysfs objects"); 647 return ret; 648 } 649 650 down_write(&c->state_lock); 651 652 for_each_member_device(ca, c, i) { 653 ret = bch2_dev_sysfs_online(c, ca); 654 if (ret) { 655 bch_err(c, "error creating sysfs objects"); 656 percpu_ref_put(&ca->ref); 657 goto err; 658 } 659 } 660 661 BUG_ON(!list_empty(&c->list)); 662 list_add(&c->list, &bch_fs_list); 663 err: 664 up_write(&c->state_lock); 665 return ret; 666 } 667 668 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts) 669 { 670 struct bch_fs *c; 671 struct printbuf name = PRINTBUF; 672 unsigned i, iter_size; 673 int ret = 0; 674 675 c = kvpmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO); 676 if (!c) { 677 c = ERR_PTR(-BCH_ERR_ENOMEM_fs_alloc); 678 goto out; 679 } 680 681 __module_get(THIS_MODULE); 682 683 closure_init(&c->cl, NULL); 684 685 c->kobj.kset = bcachefs_kset; 686 kobject_init(&c->kobj, &bch2_fs_ktype); 687 kobject_init(&c->internal, &bch2_fs_internal_ktype); 688 kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype); 689 kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype); 690 kobject_init(&c->counters_kobj, &bch2_fs_counters_ktype); 691 692 c->minor = -1; 693 c->disk_sb.fs_sb = true; 694 695 init_rwsem(&c->state_lock); 696 mutex_init(&c->sb_lock); 697 mutex_init(&c->replicas_gc_lock); 698 mutex_init(&c->btree_root_lock); 699 INIT_WORK(&c->read_only_work, bch2_fs_read_only_work); 700 701 init_rwsem(&c->gc_lock); 702 mutex_init(&c->gc_gens_lock); 703 704 for (i = 0; i < BCH_TIME_STAT_NR; i++) 705 bch2_time_stats_init(&c->times[i]); 706 707 bch2_fs_copygc_init(c); 708 bch2_fs_btree_key_cache_init_early(&c->btree_key_cache); 709 bch2_fs_btree_interior_update_init_early(c); 710 bch2_fs_allocator_background_init(c); 711 bch2_fs_allocator_foreground_init(c); 712 bch2_fs_rebalance_init(c); 713 bch2_fs_quota_init(c); 714 bch2_fs_ec_init_early(c); 715 bch2_fs_move_init(c); 716 717 INIT_LIST_HEAD(&c->list); 718 719 mutex_init(&c->usage_scratch_lock); 720 721 mutex_init(&c->bio_bounce_pages_lock); 722 mutex_init(&c->snapshot_table_lock); 723 init_rwsem(&c->snapshot_create_lock); 724 725 spin_lock_init(&c->btree_write_error_lock); 726 727 INIT_WORK(&c->journal_seq_blacklist_gc_work, 728 bch2_blacklist_entries_gc); 729 730 INIT_LIST_HEAD(&c->journal_iters); 731 732 INIT_LIST_HEAD(&c->fsck_errors); 733 mutex_init(&c->fsck_error_lock); 734 735 seqcount_init(&c->gc_pos_lock); 736 737 seqcount_init(&c->usage_lock); 738 739 sema_init(&c->io_in_flight, 128); 740 741 INIT_LIST_HEAD(&c->vfs_inodes_list); 742 mutex_init(&c->vfs_inodes_lock); 743 744 c->copy_gc_enabled = 1; 745 c->rebalance.enabled = 1; 746 c->promote_whole_extents = true; 747 748 c->journal.flush_write_time = &c->times[BCH_TIME_journal_flush_write]; 749 c->journal.noflush_write_time = &c->times[BCH_TIME_journal_noflush_write]; 750 c->journal.blocked_time = &c->times[BCH_TIME_blocked_journal]; 751 c->journal.flush_seq_time = &c->times[BCH_TIME_journal_flush_seq]; 752 753 bch2_fs_btree_cache_init_early(&c->btree_cache); 754 755 mutex_init(&c->sectors_available_lock); 756 757 ret = percpu_init_rwsem(&c->mark_lock); 758 if (ret) 759 goto err; 760 761 mutex_lock(&c->sb_lock); 762 ret = bch2_sb_to_fs(c, sb); 763 mutex_unlock(&c->sb_lock); 764 765 if (ret) 766 goto err; 767 768 pr_uuid(&name, c->sb.user_uuid.b); 769 strscpy(c->name, name.buf, sizeof(c->name)); 770 printbuf_exit(&name); 771 772 ret = name.allocation_failure ? -BCH_ERR_ENOMEM_fs_name_alloc : 0; 773 if (ret) 774 goto err; 775 776 /* Compat: */ 777 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && 778 !BCH_SB_JOURNAL_FLUSH_DELAY(sb)) 779 SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000); 780 781 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && 782 !BCH_SB_JOURNAL_RECLAIM_DELAY(sb)) 783 SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 100); 784 785 c->opts = bch2_opts_default; 786 ret = bch2_opts_from_sb(&c->opts, sb); 787 if (ret) 788 goto err; 789 790 bch2_opts_apply(&c->opts, opts); 791 792 c->btree_key_cache_btrees |= 1U << BTREE_ID_alloc; 793 if (c->opts.inodes_use_key_cache) 794 c->btree_key_cache_btrees |= 1U << BTREE_ID_inodes; 795 c->btree_key_cache_btrees |= 1U << BTREE_ID_logged_ops; 796 797 c->block_bits = ilog2(block_sectors(c)); 798 c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c); 799 800 if (bch2_fs_init_fault("fs_alloc")) { 801 bch_err(c, "fs_alloc fault injected"); 802 ret = -EFAULT; 803 goto err; 804 } 805 806 iter_size = sizeof(struct sort_iter) + 807 (btree_blocks(c) + 1) * 2 * 808 sizeof(struct sort_iter_set); 809 810 c->inode_shard_bits = ilog2(roundup_pow_of_two(num_possible_cpus())); 811 812 if (!(c->btree_update_wq = alloc_workqueue("bcachefs", 813 WQ_FREEZABLE|WQ_UNBOUND|WQ_MEM_RECLAIM, 512)) || 814 !(c->btree_io_complete_wq = alloc_workqueue("bcachefs_btree_io", 815 WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) || 816 !(c->copygc_wq = alloc_workqueue("bcachefs_copygc", 817 WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) || 818 !(c->io_complete_wq = alloc_workqueue("bcachefs_io", 819 WQ_FREEZABLE|WQ_HIGHPRI|WQ_MEM_RECLAIM, 1)) || 820 !(c->write_ref_wq = alloc_workqueue("bcachefs_write_ref", 821 WQ_FREEZABLE, 0)) || 822 #ifndef BCH_WRITE_REF_DEBUG 823 percpu_ref_init(&c->writes, bch2_writes_disabled, 824 PERCPU_REF_INIT_DEAD, GFP_KERNEL) || 825 #endif 826 mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) || 827 bioset_init(&c->btree_bio, 1, 828 max(offsetof(struct btree_read_bio, bio), 829 offsetof(struct btree_write_bio, wbio.bio)), 830 BIOSET_NEED_BVECS) || 831 !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) || 832 !(c->online_reserved = alloc_percpu(u64)) || 833 mempool_init_kvpmalloc_pool(&c->btree_bounce_pool, 1, 834 btree_bytes(c)) || 835 mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048) || 836 !(c->unused_inode_hints = kcalloc(1U << c->inode_shard_bits, 837 sizeof(u64), GFP_KERNEL))) { 838 ret = -BCH_ERR_ENOMEM_fs_other_alloc; 839 goto err; 840 } 841 842 ret = bch2_fs_counters_init(c) ?: 843 bch2_io_clock_init(&c->io_clock[READ]) ?: 844 bch2_io_clock_init(&c->io_clock[WRITE]) ?: 845 bch2_fs_journal_init(&c->journal) ?: 846 bch2_fs_replicas_init(c) ?: 847 bch2_fs_btree_cache_init(c) ?: 848 bch2_fs_btree_key_cache_init(&c->btree_key_cache) ?: 849 bch2_fs_btree_iter_init(c) ?: 850 bch2_fs_btree_interior_update_init(c) ?: 851 bch2_fs_buckets_waiting_for_journal_init(c) ?: 852 bch2_fs_btree_write_buffer_init(c) ?: 853 bch2_fs_subvolumes_init(c) ?: 854 bch2_fs_io_read_init(c) ?: 855 bch2_fs_io_write_init(c) ?: 856 bch2_fs_nocow_locking_init(c) ?: 857 bch2_fs_encryption_init(c) ?: 858 bch2_fs_compress_init(c) ?: 859 bch2_fs_ec_init(c) ?: 860 bch2_fs_fsio_init(c) ?: 861 bch2_fs_fs_io_buffered_init(c) ?: 862 bch2_fs_fs_io_direct_init(c); 863 if (ret) 864 goto err; 865 866 for (i = 0; i < c->sb.nr_devices; i++) 867 if (bch2_dev_exists(c->disk_sb.sb, i) && 868 bch2_dev_alloc(c, i)) { 869 ret = -EEXIST; 870 goto err; 871 } 872 873 bch2_journal_entry_res_resize(&c->journal, 874 &c->btree_root_journal_res, 875 BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX)); 876 bch2_dev_usage_journal_reserve(c); 877 bch2_journal_entry_res_resize(&c->journal, 878 &c->clock_journal_res, 879 (sizeof(struct jset_entry_clock) / sizeof(u64)) * 2); 880 881 mutex_lock(&bch_fs_list_lock); 882 ret = bch2_fs_online(c); 883 mutex_unlock(&bch_fs_list_lock); 884 885 if (ret) 886 goto err; 887 out: 888 return c; 889 err: 890 bch2_fs_free(c); 891 c = ERR_PTR(ret); 892 goto out; 893 } 894 895 noinline_for_stack 896 static void print_mount_opts(struct bch_fs *c) 897 { 898 enum bch_opt_id i; 899 struct printbuf p = PRINTBUF; 900 bool first = true; 901 902 prt_str(&p, "mounting version "); 903 bch2_version_to_text(&p, c->sb.version); 904 905 if (c->opts.read_only) { 906 prt_str(&p, " opts="); 907 first = false; 908 prt_printf(&p, "ro"); 909 } 910 911 for (i = 0; i < bch2_opts_nr; i++) { 912 const struct bch_option *opt = &bch2_opt_table[i]; 913 u64 v = bch2_opt_get_by_id(&c->opts, i); 914 915 if (!(opt->flags & OPT_MOUNT)) 916 continue; 917 918 if (v == bch2_opt_get_by_id(&bch2_opts_default, i)) 919 continue; 920 921 prt_str(&p, first ? " opts=" : ","); 922 first = false; 923 bch2_opt_to_text(&p, c, c->disk_sb.sb, opt, v, OPT_SHOW_MOUNT_STYLE); 924 } 925 926 bch_info(c, "%s", p.buf); 927 printbuf_exit(&p); 928 } 929 930 int bch2_fs_start(struct bch_fs *c) 931 { 932 struct bch_dev *ca; 933 time64_t now = ktime_get_real_seconds(); 934 unsigned i; 935 int ret; 936 937 print_mount_opts(c); 938 939 down_write(&c->state_lock); 940 941 BUG_ON(test_bit(BCH_FS_STARTED, &c->flags)); 942 943 mutex_lock(&c->sb_lock); 944 945 ret = bch2_members_v2_init(c); 946 if (ret) { 947 mutex_unlock(&c->sb_lock); 948 goto err; 949 } 950 951 for_each_online_member(ca, c, i) 952 bch2_sb_from_fs(c, ca); 953 954 for_each_online_member(ca, c, i) 955 bch2_members_v2_get_mut(c->disk_sb.sb, i)->last_mount = cpu_to_le64(now); 956 957 mutex_unlock(&c->sb_lock); 958 959 for_each_rw_member(ca, c, i) 960 bch2_dev_allocator_add(c, ca); 961 bch2_recalc_capacity(c); 962 963 for (i = 0; i < BCH_TRANSACTIONS_NR; i++) { 964 mutex_lock(&c->btree_transaction_stats[i].lock); 965 bch2_time_stats_init(&c->btree_transaction_stats[i].lock_hold_times); 966 mutex_unlock(&c->btree_transaction_stats[i].lock); 967 } 968 969 ret = BCH_SB_INITIALIZED(c->disk_sb.sb) 970 ? bch2_fs_recovery(c) 971 : bch2_fs_initialize(c); 972 if (ret) 973 goto err; 974 975 ret = bch2_opts_check_may_set(c); 976 if (ret) 977 goto err; 978 979 if (bch2_fs_init_fault("fs_start")) { 980 bch_err(c, "fs_start fault injected"); 981 ret = -EINVAL; 982 goto err; 983 } 984 985 set_bit(BCH_FS_STARTED, &c->flags); 986 987 if (c->opts.read_only || c->opts.nochanges) { 988 bch2_fs_read_only(c); 989 } else { 990 ret = !test_bit(BCH_FS_RW, &c->flags) 991 ? bch2_fs_read_write(c) 992 : bch2_fs_read_write_late(c); 993 if (ret) 994 goto err; 995 } 996 997 ret = 0; 998 out: 999 up_write(&c->state_lock); 1000 return ret; 1001 err: 1002 bch_err_msg(c, ret, "starting filesystem"); 1003 goto out; 1004 } 1005 1006 static int bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c) 1007 { 1008 struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx); 1009 1010 if (le16_to_cpu(sb->block_size) != block_sectors(c)) 1011 return -BCH_ERR_mismatched_block_size; 1012 1013 if (le16_to_cpu(m.bucket_size) < 1014 BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb)) 1015 return -BCH_ERR_bucket_size_too_small; 1016 1017 return 0; 1018 } 1019 1020 static int bch2_dev_in_fs(struct bch_sb *fs, struct bch_sb *sb) 1021 { 1022 struct bch_sb *newest = 1023 le64_to_cpu(fs->seq) > le64_to_cpu(sb->seq) ? fs : sb; 1024 1025 if (!uuid_equal(&fs->uuid, &sb->uuid)) 1026 return -BCH_ERR_device_not_a_member_of_filesystem; 1027 1028 if (!bch2_dev_exists(newest, sb->dev_idx)) 1029 return -BCH_ERR_device_has_been_removed; 1030 1031 if (fs->block_size != sb->block_size) 1032 return -BCH_ERR_mismatched_block_size; 1033 1034 return 0; 1035 } 1036 1037 /* Device startup/shutdown: */ 1038 1039 static void bch2_dev_release(struct kobject *kobj) 1040 { 1041 struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj); 1042 1043 kfree(ca); 1044 } 1045 1046 static void bch2_dev_free(struct bch_dev *ca) 1047 { 1048 cancel_work_sync(&ca->io_error_work); 1049 1050 if (ca->kobj.state_in_sysfs && 1051 ca->disk_sb.bdev) 1052 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 1053 1054 if (ca->kobj.state_in_sysfs) 1055 kobject_del(&ca->kobj); 1056 1057 bch2_free_super(&ca->disk_sb); 1058 bch2_dev_journal_exit(ca); 1059 1060 free_percpu(ca->io_done); 1061 bioset_exit(&ca->replica_set); 1062 bch2_dev_buckets_free(ca); 1063 free_page((unsigned long) ca->sb_read_scratch); 1064 1065 bch2_time_stats_exit(&ca->io_latency[WRITE]); 1066 bch2_time_stats_exit(&ca->io_latency[READ]); 1067 1068 percpu_ref_exit(&ca->io_ref); 1069 percpu_ref_exit(&ca->ref); 1070 kobject_put(&ca->kobj); 1071 } 1072 1073 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca) 1074 { 1075 1076 lockdep_assert_held(&c->state_lock); 1077 1078 if (percpu_ref_is_zero(&ca->io_ref)) 1079 return; 1080 1081 __bch2_dev_read_only(c, ca); 1082 1083 reinit_completion(&ca->io_ref_completion); 1084 percpu_ref_kill(&ca->io_ref); 1085 wait_for_completion(&ca->io_ref_completion); 1086 1087 if (ca->kobj.state_in_sysfs) { 1088 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 1089 sysfs_remove_link(&ca->kobj, "block"); 1090 } 1091 1092 bch2_free_super(&ca->disk_sb); 1093 bch2_dev_journal_exit(ca); 1094 } 1095 1096 static void bch2_dev_ref_complete(struct percpu_ref *ref) 1097 { 1098 struct bch_dev *ca = container_of(ref, struct bch_dev, ref); 1099 1100 complete(&ca->ref_completion); 1101 } 1102 1103 static void bch2_dev_io_ref_complete(struct percpu_ref *ref) 1104 { 1105 struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref); 1106 1107 complete(&ca->io_ref_completion); 1108 } 1109 1110 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca) 1111 { 1112 int ret; 1113 1114 if (!c->kobj.state_in_sysfs) 1115 return 0; 1116 1117 if (!ca->kobj.state_in_sysfs) { 1118 ret = kobject_add(&ca->kobj, &c->kobj, 1119 "dev-%u", ca->dev_idx); 1120 if (ret) 1121 return ret; 1122 } 1123 1124 if (ca->disk_sb.bdev) { 1125 struct kobject *block = bdev_kobj(ca->disk_sb.bdev); 1126 1127 ret = sysfs_create_link(block, &ca->kobj, "bcachefs"); 1128 if (ret) 1129 return ret; 1130 1131 ret = sysfs_create_link(&ca->kobj, block, "block"); 1132 if (ret) 1133 return ret; 1134 } 1135 1136 return 0; 1137 } 1138 1139 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c, 1140 struct bch_member *member) 1141 { 1142 struct bch_dev *ca; 1143 1144 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 1145 if (!ca) 1146 return NULL; 1147 1148 kobject_init(&ca->kobj, &bch2_dev_ktype); 1149 init_completion(&ca->ref_completion); 1150 init_completion(&ca->io_ref_completion); 1151 1152 init_rwsem(&ca->bucket_lock); 1153 1154 INIT_WORK(&ca->io_error_work, bch2_io_error_work); 1155 1156 bch2_time_stats_init(&ca->io_latency[READ]); 1157 bch2_time_stats_init(&ca->io_latency[WRITE]); 1158 1159 ca->mi = bch2_mi_to_cpu(member); 1160 ca->uuid = member->uuid; 1161 1162 ca->nr_btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE, 1163 ca->mi.bucket_size / btree_sectors(c)); 1164 1165 if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete, 1166 0, GFP_KERNEL) || 1167 percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete, 1168 PERCPU_REF_INIT_DEAD, GFP_KERNEL) || 1169 !(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) || 1170 bch2_dev_buckets_alloc(c, ca) || 1171 bioset_init(&ca->replica_set, 4, 1172 offsetof(struct bch_write_bio, bio), 0) || 1173 !(ca->io_done = alloc_percpu(*ca->io_done))) 1174 goto err; 1175 1176 return ca; 1177 err: 1178 bch2_dev_free(ca); 1179 return NULL; 1180 } 1181 1182 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca, 1183 unsigned dev_idx) 1184 { 1185 ca->dev_idx = dev_idx; 1186 __set_bit(ca->dev_idx, ca->self.d); 1187 scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx); 1188 1189 ca->fs = c; 1190 rcu_assign_pointer(c->devs[ca->dev_idx], ca); 1191 1192 if (bch2_dev_sysfs_online(c, ca)) 1193 pr_warn("error creating sysfs objects"); 1194 } 1195 1196 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx) 1197 { 1198 struct bch_member member = bch2_sb_member_get(c->disk_sb.sb, dev_idx); 1199 struct bch_dev *ca = NULL; 1200 int ret = 0; 1201 1202 if (bch2_fs_init_fault("dev_alloc")) 1203 goto err; 1204 1205 ca = __bch2_dev_alloc(c, &member); 1206 if (!ca) 1207 goto err; 1208 1209 ca->fs = c; 1210 1211 bch2_dev_attach(c, ca, dev_idx); 1212 return ret; 1213 err: 1214 if (ca) 1215 bch2_dev_free(ca); 1216 return -BCH_ERR_ENOMEM_dev_alloc; 1217 } 1218 1219 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb) 1220 { 1221 unsigned ret; 1222 1223 if (bch2_dev_is_online(ca)) { 1224 bch_err(ca, "already have device online in slot %u", 1225 sb->sb->dev_idx); 1226 return -BCH_ERR_device_already_online; 1227 } 1228 1229 if (get_capacity(sb->bdev->bd_disk) < 1230 ca->mi.bucket_size * ca->mi.nbuckets) { 1231 bch_err(ca, "cannot online: device too small"); 1232 return -BCH_ERR_device_size_too_small; 1233 } 1234 1235 BUG_ON(!percpu_ref_is_zero(&ca->io_ref)); 1236 1237 ret = bch2_dev_journal_init(ca, sb->sb); 1238 if (ret) 1239 return ret; 1240 1241 /* Commit: */ 1242 ca->disk_sb = *sb; 1243 memset(sb, 0, sizeof(*sb)); 1244 1245 ca->dev = ca->disk_sb.bdev->bd_dev; 1246 1247 percpu_ref_reinit(&ca->io_ref); 1248 1249 return 0; 1250 } 1251 1252 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb) 1253 { 1254 struct bch_dev *ca; 1255 int ret; 1256 1257 lockdep_assert_held(&c->state_lock); 1258 1259 if (le64_to_cpu(sb->sb->seq) > 1260 le64_to_cpu(c->disk_sb.sb->seq)) 1261 bch2_sb_to_fs(c, sb->sb); 1262 1263 BUG_ON(sb->sb->dev_idx >= c->sb.nr_devices || 1264 !c->devs[sb->sb->dev_idx]); 1265 1266 ca = bch_dev_locked(c, sb->sb->dev_idx); 1267 1268 ret = __bch2_dev_attach_bdev(ca, sb); 1269 if (ret) 1270 return ret; 1271 1272 bch2_dev_sysfs_online(c, ca); 1273 1274 if (c->sb.nr_devices == 1) 1275 snprintf(c->name, sizeof(c->name), "%pg", ca->disk_sb.bdev); 1276 snprintf(ca->name, sizeof(ca->name), "%pg", ca->disk_sb.bdev); 1277 1278 rebalance_wakeup(c); 1279 return 0; 1280 } 1281 1282 /* Device management: */ 1283 1284 /* 1285 * Note: this function is also used by the error paths - when a particular 1286 * device sees an error, we call it to determine whether we can just set the 1287 * device RO, or - if this function returns false - we'll set the whole 1288 * filesystem RO: 1289 * 1290 * XXX: maybe we should be more explicit about whether we're changing state 1291 * because we got an error or what have you? 1292 */ 1293 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca, 1294 enum bch_member_state new_state, int flags) 1295 { 1296 struct bch_devs_mask new_online_devs; 1297 struct bch_dev *ca2; 1298 int i, nr_rw = 0, required; 1299 1300 lockdep_assert_held(&c->state_lock); 1301 1302 switch (new_state) { 1303 case BCH_MEMBER_STATE_rw: 1304 return true; 1305 case BCH_MEMBER_STATE_ro: 1306 if (ca->mi.state != BCH_MEMBER_STATE_rw) 1307 return true; 1308 1309 /* do we have enough devices to write to? */ 1310 for_each_member_device(ca2, c, i) 1311 if (ca2 != ca) 1312 nr_rw += ca2->mi.state == BCH_MEMBER_STATE_rw; 1313 1314 required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED) 1315 ? c->opts.metadata_replicas 1316 : c->opts.metadata_replicas_required, 1317 !(flags & BCH_FORCE_IF_DATA_DEGRADED) 1318 ? c->opts.data_replicas 1319 : c->opts.data_replicas_required); 1320 1321 return nr_rw >= required; 1322 case BCH_MEMBER_STATE_failed: 1323 case BCH_MEMBER_STATE_spare: 1324 if (ca->mi.state != BCH_MEMBER_STATE_rw && 1325 ca->mi.state != BCH_MEMBER_STATE_ro) 1326 return true; 1327 1328 /* do we have enough devices to read from? */ 1329 new_online_devs = bch2_online_devs(c); 1330 __clear_bit(ca->dev_idx, new_online_devs.d); 1331 1332 return bch2_have_enough_devs(c, new_online_devs, flags, false); 1333 default: 1334 BUG(); 1335 } 1336 } 1337 1338 static bool bch2_fs_may_start(struct bch_fs *c) 1339 { 1340 struct bch_dev *ca; 1341 unsigned i, flags = 0; 1342 1343 if (c->opts.very_degraded) 1344 flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST; 1345 1346 if (c->opts.degraded) 1347 flags |= BCH_FORCE_IF_DEGRADED; 1348 1349 if (!c->opts.degraded && 1350 !c->opts.very_degraded) { 1351 mutex_lock(&c->sb_lock); 1352 1353 for (i = 0; i < c->disk_sb.sb->nr_devices; i++) { 1354 if (!bch2_dev_exists(c->disk_sb.sb, i)) 1355 continue; 1356 1357 ca = bch_dev_locked(c, i); 1358 1359 if (!bch2_dev_is_online(ca) && 1360 (ca->mi.state == BCH_MEMBER_STATE_rw || 1361 ca->mi.state == BCH_MEMBER_STATE_ro)) { 1362 mutex_unlock(&c->sb_lock); 1363 return false; 1364 } 1365 } 1366 mutex_unlock(&c->sb_lock); 1367 } 1368 1369 return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true); 1370 } 1371 1372 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca) 1373 { 1374 /* 1375 * The allocator thread itself allocates btree nodes, so stop it first: 1376 */ 1377 bch2_dev_allocator_remove(c, ca); 1378 bch2_dev_journal_stop(&c->journal, ca); 1379 } 1380 1381 static void __bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca) 1382 { 1383 lockdep_assert_held(&c->state_lock); 1384 1385 BUG_ON(ca->mi.state != BCH_MEMBER_STATE_rw); 1386 1387 bch2_dev_allocator_add(c, ca); 1388 bch2_recalc_capacity(c); 1389 } 1390 1391 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, 1392 enum bch_member_state new_state, int flags) 1393 { 1394 struct bch_member *m; 1395 int ret = 0; 1396 1397 if (ca->mi.state == new_state) 1398 return 0; 1399 1400 if (!bch2_dev_state_allowed(c, ca, new_state, flags)) 1401 return -BCH_ERR_device_state_not_allowed; 1402 1403 if (new_state != BCH_MEMBER_STATE_rw) 1404 __bch2_dev_read_only(c, ca); 1405 1406 bch_notice(ca, "%s", bch2_member_states[new_state]); 1407 1408 mutex_lock(&c->sb_lock); 1409 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); 1410 SET_BCH_MEMBER_STATE(m, new_state); 1411 bch2_write_super(c); 1412 mutex_unlock(&c->sb_lock); 1413 1414 if (new_state == BCH_MEMBER_STATE_rw) 1415 __bch2_dev_read_write(c, ca); 1416 1417 rebalance_wakeup(c); 1418 1419 return ret; 1420 } 1421 1422 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, 1423 enum bch_member_state new_state, int flags) 1424 { 1425 int ret; 1426 1427 down_write(&c->state_lock); 1428 ret = __bch2_dev_set_state(c, ca, new_state, flags); 1429 up_write(&c->state_lock); 1430 1431 return ret; 1432 } 1433 1434 /* Device add/removal: */ 1435 1436 static int bch2_dev_remove_alloc(struct bch_fs *c, struct bch_dev *ca) 1437 { 1438 struct bpos start = POS(ca->dev_idx, 0); 1439 struct bpos end = POS(ca->dev_idx, U64_MAX); 1440 int ret; 1441 1442 /* 1443 * We clear the LRU and need_discard btrees first so that we don't race 1444 * with bch2_do_invalidates() and bch2_do_discards() 1445 */ 1446 ret = bch2_btree_delete_range(c, BTREE_ID_lru, start, end, 1447 BTREE_TRIGGER_NORUN, NULL) ?: 1448 bch2_btree_delete_range(c, BTREE_ID_need_discard, start, end, 1449 BTREE_TRIGGER_NORUN, NULL) ?: 1450 bch2_btree_delete_range(c, BTREE_ID_freespace, start, end, 1451 BTREE_TRIGGER_NORUN, NULL) ?: 1452 bch2_btree_delete_range(c, BTREE_ID_backpointers, start, end, 1453 BTREE_TRIGGER_NORUN, NULL) ?: 1454 bch2_btree_delete_range(c, BTREE_ID_alloc, start, end, 1455 BTREE_TRIGGER_NORUN, NULL) ?: 1456 bch2_btree_delete_range(c, BTREE_ID_bucket_gens, start, end, 1457 BTREE_TRIGGER_NORUN, NULL); 1458 if (ret) 1459 bch_err_msg(c, ret, "removing dev alloc info"); 1460 1461 return ret; 1462 } 1463 1464 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags) 1465 { 1466 struct bch_member *m; 1467 unsigned dev_idx = ca->dev_idx, data; 1468 int ret; 1469 1470 down_write(&c->state_lock); 1471 1472 /* 1473 * We consume a reference to ca->ref, regardless of whether we succeed 1474 * or fail: 1475 */ 1476 percpu_ref_put(&ca->ref); 1477 1478 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { 1479 bch_err(ca, "Cannot remove without losing data"); 1480 ret = -BCH_ERR_device_state_not_allowed; 1481 goto err; 1482 } 1483 1484 __bch2_dev_read_only(c, ca); 1485 1486 ret = bch2_dev_data_drop(c, ca->dev_idx, flags); 1487 if (ret) { 1488 bch_err_msg(ca, ret, "dropping data"); 1489 goto err; 1490 } 1491 1492 ret = bch2_dev_remove_alloc(c, ca); 1493 if (ret) { 1494 bch_err_msg(ca, ret, "deleting alloc info"); 1495 goto err; 1496 } 1497 1498 ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx); 1499 if (ret) { 1500 bch_err_msg(ca, ret, "flushing journal"); 1501 goto err; 1502 } 1503 1504 ret = bch2_journal_flush(&c->journal); 1505 if (ret) { 1506 bch_err(ca, "journal error"); 1507 goto err; 1508 } 1509 1510 ret = bch2_replicas_gc2(c); 1511 if (ret) { 1512 bch_err_msg(ca, ret, "in replicas_gc2()"); 1513 goto err; 1514 } 1515 1516 data = bch2_dev_has_data(c, ca); 1517 if (data) { 1518 struct printbuf data_has = PRINTBUF; 1519 1520 prt_bitflags(&data_has, bch2_data_types, data); 1521 bch_err(ca, "Remove failed, still has data (%s)", data_has.buf); 1522 printbuf_exit(&data_has); 1523 ret = -EBUSY; 1524 goto err; 1525 } 1526 1527 __bch2_dev_offline(c, ca); 1528 1529 mutex_lock(&c->sb_lock); 1530 rcu_assign_pointer(c->devs[ca->dev_idx], NULL); 1531 mutex_unlock(&c->sb_lock); 1532 1533 percpu_ref_kill(&ca->ref); 1534 wait_for_completion(&ca->ref_completion); 1535 1536 bch2_dev_free(ca); 1537 1538 /* 1539 * At this point the device object has been removed in-core, but the 1540 * on-disk journal might still refer to the device index via sb device 1541 * usage entries. Recovery fails if it sees usage information for an 1542 * invalid device. Flush journal pins to push the back of the journal 1543 * past now invalid device index references before we update the 1544 * superblock, but after the device object has been removed so any 1545 * further journal writes elide usage info for the device. 1546 */ 1547 bch2_journal_flush_all_pins(&c->journal); 1548 1549 /* 1550 * Free this device's slot in the bch_member array - all pointers to 1551 * this device must be gone: 1552 */ 1553 mutex_lock(&c->sb_lock); 1554 m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx); 1555 memset(&m->uuid, 0, sizeof(m->uuid)); 1556 1557 bch2_write_super(c); 1558 1559 mutex_unlock(&c->sb_lock); 1560 up_write(&c->state_lock); 1561 1562 bch2_dev_usage_journal_reserve(c); 1563 return 0; 1564 err: 1565 if (ca->mi.state == BCH_MEMBER_STATE_rw && 1566 !percpu_ref_is_zero(&ca->io_ref)) 1567 __bch2_dev_read_write(c, ca); 1568 up_write(&c->state_lock); 1569 return ret; 1570 } 1571 1572 /* Add new device to running filesystem: */ 1573 int bch2_dev_add(struct bch_fs *c, const char *path) 1574 { 1575 struct bch_opts opts = bch2_opts_empty(); 1576 struct bch_sb_handle sb; 1577 struct bch_dev *ca = NULL; 1578 struct bch_sb_field_members_v2 *mi; 1579 struct bch_member dev_mi; 1580 unsigned dev_idx, nr_devices, u64s; 1581 struct printbuf errbuf = PRINTBUF; 1582 struct printbuf label = PRINTBUF; 1583 int ret; 1584 1585 ret = bch2_read_super(path, &opts, &sb); 1586 if (ret) { 1587 bch_err_msg(c, ret, "reading super"); 1588 goto err; 1589 } 1590 1591 dev_mi = bch2_sb_member_get(sb.sb, sb.sb->dev_idx); 1592 1593 if (BCH_MEMBER_GROUP(&dev_mi)) { 1594 bch2_disk_path_to_text(&label, sb.sb, BCH_MEMBER_GROUP(&dev_mi) - 1); 1595 if (label.allocation_failure) { 1596 ret = -ENOMEM; 1597 goto err; 1598 } 1599 } 1600 1601 ret = bch2_dev_may_add(sb.sb, c); 1602 if (ret) { 1603 bch_err_fn(c, ret); 1604 goto err; 1605 } 1606 1607 ca = __bch2_dev_alloc(c, &dev_mi); 1608 if (!ca) { 1609 ret = -ENOMEM; 1610 goto err; 1611 } 1612 1613 bch2_dev_usage_init(ca); 1614 1615 ret = __bch2_dev_attach_bdev(ca, &sb); 1616 if (ret) 1617 goto err; 1618 1619 ret = bch2_dev_journal_alloc(ca); 1620 if (ret) { 1621 bch_err_msg(c, ret, "allocating journal"); 1622 goto err; 1623 } 1624 1625 down_write(&c->state_lock); 1626 mutex_lock(&c->sb_lock); 1627 1628 ret = bch2_sb_from_fs(c, ca); 1629 if (ret) { 1630 bch_err_msg(c, ret, "setting up new superblock"); 1631 goto err_unlock; 1632 } 1633 1634 mi = bch2_sb_field_get(ca->disk_sb.sb, members_v2); 1635 1636 if (!bch2_sb_field_resize(&ca->disk_sb, members_v2, 1637 le32_to_cpu(mi->field.u64s) + 1638 sizeof(dev_mi) / sizeof(u64))) { 1639 ret = -BCH_ERR_ENOSPC_sb_members; 1640 bch_err_msg(c, ret, "setting up new superblock"); 1641 goto err_unlock; 1642 } 1643 1644 if (dynamic_fault("bcachefs:add:no_slot")) 1645 goto no_slot; 1646 1647 for (dev_idx = 0; dev_idx < BCH_SB_MEMBERS_MAX; dev_idx++) 1648 if (!bch2_dev_exists(c->disk_sb.sb, dev_idx)) 1649 goto have_slot; 1650 no_slot: 1651 ret = -BCH_ERR_ENOSPC_sb_members; 1652 bch_err_msg(c, ret, "setting up new superblock"); 1653 goto err_unlock; 1654 1655 have_slot: 1656 nr_devices = max_t(unsigned, dev_idx + 1, c->sb.nr_devices); 1657 u64s = DIV_ROUND_UP(sizeof(struct bch_sb_field_members_v2) + 1658 le16_to_cpu(mi->member_bytes) * nr_devices, sizeof(u64)); 1659 1660 mi = bch2_sb_field_resize(&c->disk_sb, members_v2, u64s); 1661 if (!mi) { 1662 ret = -BCH_ERR_ENOSPC_sb_members; 1663 bch_err_msg(c, ret, "setting up new superblock"); 1664 goto err_unlock; 1665 } 1666 struct bch_member *m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx); 1667 1668 /* success: */ 1669 1670 *m = dev_mi; 1671 m->last_mount = cpu_to_le64(ktime_get_real_seconds()); 1672 c->disk_sb.sb->nr_devices = nr_devices; 1673 1674 ca->disk_sb.sb->dev_idx = dev_idx; 1675 bch2_dev_attach(c, ca, dev_idx); 1676 1677 if (BCH_MEMBER_GROUP(&dev_mi)) { 1678 ret = __bch2_dev_group_set(c, ca, label.buf); 1679 if (ret) { 1680 bch_err_msg(c, ret, "creating new label"); 1681 goto err_unlock; 1682 } 1683 } 1684 1685 bch2_write_super(c); 1686 mutex_unlock(&c->sb_lock); 1687 1688 bch2_dev_usage_journal_reserve(c); 1689 1690 ret = bch2_trans_mark_dev_sb(c, ca); 1691 if (ret) { 1692 bch_err_msg(c, ret, "marking new superblock"); 1693 goto err_late; 1694 } 1695 1696 ret = bch2_fs_freespace_init(c); 1697 if (ret) { 1698 bch_err_msg(c, ret, "initializing free space"); 1699 goto err_late; 1700 } 1701 1702 ca->new_fs_bucket_idx = 0; 1703 1704 if (ca->mi.state == BCH_MEMBER_STATE_rw) 1705 __bch2_dev_read_write(c, ca); 1706 1707 up_write(&c->state_lock); 1708 return 0; 1709 1710 err_unlock: 1711 mutex_unlock(&c->sb_lock); 1712 up_write(&c->state_lock); 1713 err: 1714 if (ca) 1715 bch2_dev_free(ca); 1716 bch2_free_super(&sb); 1717 printbuf_exit(&label); 1718 printbuf_exit(&errbuf); 1719 return ret; 1720 err_late: 1721 up_write(&c->state_lock); 1722 ca = NULL; 1723 goto err; 1724 } 1725 1726 /* Hot add existing device to running filesystem: */ 1727 int bch2_dev_online(struct bch_fs *c, const char *path) 1728 { 1729 struct bch_opts opts = bch2_opts_empty(); 1730 struct bch_sb_handle sb = { NULL }; 1731 struct bch_dev *ca; 1732 unsigned dev_idx; 1733 int ret; 1734 1735 down_write(&c->state_lock); 1736 1737 ret = bch2_read_super(path, &opts, &sb); 1738 if (ret) { 1739 up_write(&c->state_lock); 1740 return ret; 1741 } 1742 1743 dev_idx = sb.sb->dev_idx; 1744 1745 ret = bch2_dev_in_fs(c->disk_sb.sb, sb.sb); 1746 if (ret) { 1747 bch_err_msg(c, ret, "bringing %s online", path); 1748 goto err; 1749 } 1750 1751 ret = bch2_dev_attach_bdev(c, &sb); 1752 if (ret) 1753 goto err; 1754 1755 ca = bch_dev_locked(c, dev_idx); 1756 1757 ret = bch2_trans_mark_dev_sb(c, ca); 1758 if (ret) { 1759 bch_err_msg(c, ret, "bringing %s online: error from bch2_trans_mark_dev_sb", path); 1760 goto err; 1761 } 1762 1763 if (ca->mi.state == BCH_MEMBER_STATE_rw) 1764 __bch2_dev_read_write(c, ca); 1765 1766 mutex_lock(&c->sb_lock); 1767 struct bch_member *m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); 1768 1769 m->last_mount = 1770 cpu_to_le64(ktime_get_real_seconds()); 1771 1772 bch2_write_super(c); 1773 mutex_unlock(&c->sb_lock); 1774 1775 ret = bch2_fs_freespace_init(c); 1776 if (ret) 1777 bch_err_msg(c, ret, "initializing free space"); 1778 1779 up_write(&c->state_lock); 1780 return 0; 1781 err: 1782 up_write(&c->state_lock); 1783 bch2_free_super(&sb); 1784 return ret; 1785 } 1786 1787 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags) 1788 { 1789 down_write(&c->state_lock); 1790 1791 if (!bch2_dev_is_online(ca)) { 1792 bch_err(ca, "Already offline"); 1793 up_write(&c->state_lock); 1794 return 0; 1795 } 1796 1797 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { 1798 bch_err(ca, "Cannot offline required disk"); 1799 up_write(&c->state_lock); 1800 return -BCH_ERR_device_state_not_allowed; 1801 } 1802 1803 __bch2_dev_offline(c, ca); 1804 1805 up_write(&c->state_lock); 1806 return 0; 1807 } 1808 1809 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets) 1810 { 1811 struct bch_member *m; 1812 u64 old_nbuckets; 1813 int ret = 0; 1814 1815 down_write(&c->state_lock); 1816 old_nbuckets = ca->mi.nbuckets; 1817 1818 if (nbuckets < ca->mi.nbuckets) { 1819 bch_err(ca, "Cannot shrink yet"); 1820 ret = -EINVAL; 1821 goto err; 1822 } 1823 1824 if (bch2_dev_is_online(ca) && 1825 get_capacity(ca->disk_sb.bdev->bd_disk) < 1826 ca->mi.bucket_size * nbuckets) { 1827 bch_err(ca, "New size larger than device"); 1828 ret = -BCH_ERR_device_size_too_small; 1829 goto err; 1830 } 1831 1832 ret = bch2_dev_buckets_resize(c, ca, nbuckets); 1833 if (ret) { 1834 bch_err_msg(ca, ret, "resizing buckets"); 1835 goto err; 1836 } 1837 1838 ret = bch2_trans_mark_dev_sb(c, ca); 1839 if (ret) 1840 goto err; 1841 1842 mutex_lock(&c->sb_lock); 1843 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); 1844 m->nbuckets = cpu_to_le64(nbuckets); 1845 1846 bch2_write_super(c); 1847 mutex_unlock(&c->sb_lock); 1848 1849 if (ca->mi.freespace_initialized) { 1850 ret = bch2_dev_freespace_init(c, ca, old_nbuckets, nbuckets); 1851 if (ret) 1852 goto err; 1853 1854 /* 1855 * XXX: this is all wrong transactionally - we'll be able to do 1856 * this correctly after the disk space accounting rewrite 1857 */ 1858 ca->usage_base->d[BCH_DATA_free].buckets += nbuckets - old_nbuckets; 1859 } 1860 1861 bch2_recalc_capacity(c); 1862 err: 1863 up_write(&c->state_lock); 1864 return ret; 1865 } 1866 1867 /* return with ref on ca->ref: */ 1868 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *name) 1869 { 1870 struct bch_dev *ca; 1871 unsigned i; 1872 1873 rcu_read_lock(); 1874 for_each_member_device_rcu(ca, c, i, NULL) 1875 if (!strcmp(name, ca->name)) 1876 goto found; 1877 ca = ERR_PTR(-BCH_ERR_ENOENT_dev_not_found); 1878 found: 1879 rcu_read_unlock(); 1880 1881 return ca; 1882 } 1883 1884 /* Filesystem open: */ 1885 1886 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices, 1887 struct bch_opts opts) 1888 { 1889 struct bch_sb_handle *sb = NULL; 1890 struct bch_fs *c = NULL; 1891 unsigned i, best_sb = 0; 1892 struct printbuf errbuf = PRINTBUF; 1893 int ret = 0; 1894 1895 if (!try_module_get(THIS_MODULE)) 1896 return ERR_PTR(-ENODEV); 1897 1898 if (!nr_devices) { 1899 ret = -EINVAL; 1900 goto err; 1901 } 1902 1903 sb = kcalloc(nr_devices, sizeof(*sb), GFP_KERNEL); 1904 if (!sb) { 1905 ret = -ENOMEM; 1906 goto err; 1907 } 1908 1909 for (i = 0; i < nr_devices; i++) { 1910 ret = bch2_read_super(devices[i], &opts, &sb[i]); 1911 if (ret) 1912 goto err; 1913 1914 } 1915 1916 for (i = 1; i < nr_devices; i++) 1917 if (le64_to_cpu(sb[i].sb->seq) > 1918 le64_to_cpu(sb[best_sb].sb->seq)) 1919 best_sb = i; 1920 1921 i = 0; 1922 while (i < nr_devices) { 1923 if (i != best_sb && 1924 !bch2_dev_exists(sb[best_sb].sb, sb[i].sb->dev_idx)) { 1925 pr_info("%pg has been removed, skipping", sb[i].bdev); 1926 bch2_free_super(&sb[i]); 1927 array_remove_item(sb, nr_devices, i); 1928 continue; 1929 } 1930 1931 ret = bch2_dev_in_fs(sb[best_sb].sb, sb[i].sb); 1932 if (ret) 1933 goto err_print; 1934 i++; 1935 } 1936 1937 c = bch2_fs_alloc(sb[best_sb].sb, opts); 1938 if (IS_ERR(c)) { 1939 ret = PTR_ERR(c); 1940 goto err; 1941 } 1942 1943 down_write(&c->state_lock); 1944 for (i = 0; i < nr_devices; i++) { 1945 ret = bch2_dev_attach_bdev(c, &sb[i]); 1946 if (ret) { 1947 up_write(&c->state_lock); 1948 goto err; 1949 } 1950 } 1951 up_write(&c->state_lock); 1952 1953 if (!bch2_fs_may_start(c)) { 1954 ret = -BCH_ERR_insufficient_devices_to_start; 1955 goto err_print; 1956 } 1957 1958 if (!c->opts.nostart) { 1959 ret = bch2_fs_start(c); 1960 if (ret) 1961 goto err; 1962 } 1963 out: 1964 kfree(sb); 1965 printbuf_exit(&errbuf); 1966 module_put(THIS_MODULE); 1967 return c; 1968 err_print: 1969 pr_err("bch_fs_open err opening %s: %s", 1970 devices[0], bch2_err_str(ret)); 1971 err: 1972 if (!IS_ERR_OR_NULL(c)) 1973 bch2_fs_stop(c); 1974 if (sb) 1975 for (i = 0; i < nr_devices; i++) 1976 bch2_free_super(&sb[i]); 1977 c = ERR_PTR(ret); 1978 goto out; 1979 } 1980 1981 /* Global interfaces/init */ 1982 1983 static void bcachefs_exit(void) 1984 { 1985 bch2_debug_exit(); 1986 bch2_vfs_exit(); 1987 bch2_chardev_exit(); 1988 bch2_btree_key_cache_exit(); 1989 if (bcachefs_kset) 1990 kset_unregister(bcachefs_kset); 1991 } 1992 1993 static int __init bcachefs_init(void) 1994 { 1995 bch2_bkey_pack_test(); 1996 1997 if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) || 1998 bch2_btree_key_cache_init() || 1999 bch2_chardev_init() || 2000 bch2_vfs_init() || 2001 bch2_debug_init()) 2002 goto err; 2003 2004 return 0; 2005 err: 2006 bcachefs_exit(); 2007 return -ENOMEM; 2008 } 2009 2010 #define BCH_DEBUG_PARAM(name, description) \ 2011 bool bch2_##name; \ 2012 module_param_named(name, bch2_##name, bool, 0644); \ 2013 MODULE_PARM_DESC(name, description); 2014 BCH_DEBUG_PARAMS() 2015 #undef BCH_DEBUG_PARAM 2016 2017 __maybe_unused 2018 static unsigned bch2_metadata_version = bcachefs_metadata_version_current; 2019 module_param_named(version, bch2_metadata_version, uint, 0400); 2020 2021 module_exit(bcachefs_exit); 2022 module_init(bcachefs_init); 2023