xref: /linux/fs/bcachefs/super.c (revision 031fba65fc202abf1f193e321be7a2c274fd88ba)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcachefs setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcachefs.h"
11 #include "alloc_background.h"
12 #include "alloc_foreground.h"
13 #include "bkey_sort.h"
14 #include "btree_cache.h"
15 #include "btree_gc.h"
16 #include "btree_journal_iter.h"
17 #include "btree_key_cache.h"
18 #include "btree_update_interior.h"
19 #include "btree_io.h"
20 #include "btree_write_buffer.h"
21 #include "buckets_waiting_for_journal.h"
22 #include "chardev.h"
23 #include "checksum.h"
24 #include "clock.h"
25 #include "compress.h"
26 #include "counters.h"
27 #include "debug.h"
28 #include "disk_groups.h"
29 #include "ec.h"
30 #include "errcode.h"
31 #include "error.h"
32 #include "fs.h"
33 #include "fs-io.h"
34 #include "fs-io-buffered.h"
35 #include "fs-io-direct.h"
36 #include "fsck.h"
37 #include "inode.h"
38 #include "io_read.h"
39 #include "io_write.h"
40 #include "journal.h"
41 #include "journal_reclaim.h"
42 #include "journal_seq_blacklist.h"
43 #include "move.h"
44 #include "migrate.h"
45 #include "movinggc.h"
46 #include "nocow_locking.h"
47 #include "quota.h"
48 #include "rebalance.h"
49 #include "recovery.h"
50 #include "replicas.h"
51 #include "sb-clean.h"
52 #include "sb-members.h"
53 #include "snapshot.h"
54 #include "subvolume.h"
55 #include "super.h"
56 #include "super-io.h"
57 #include "sysfs.h"
58 #include "trace.h"
59 
60 #include <linux/backing-dev.h>
61 #include <linux/blkdev.h>
62 #include <linux/debugfs.h>
63 #include <linux/device.h>
64 #include <linux/idr.h>
65 #include <linux/module.h>
66 #include <linux/percpu.h>
67 #include <linux/random.h>
68 #include <linux/sysfs.h>
69 #include <crypto/hash.h>
70 
71 MODULE_LICENSE("GPL");
72 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
73 MODULE_DESCRIPTION("bcachefs filesystem");
74 
75 #define KTYPE(type)							\
76 static const struct attribute_group type ## _group = {			\
77 	.attrs = type ## _files						\
78 };									\
79 									\
80 static const struct attribute_group *type ## _groups[] = {		\
81 	&type ## _group,						\
82 	NULL								\
83 };									\
84 									\
85 static const struct kobj_type type ## _ktype = {			\
86 	.release	= type ## _release,				\
87 	.sysfs_ops	= &type ## _sysfs_ops,				\
88 	.default_groups = type ## _groups				\
89 }
90 
91 static void bch2_fs_release(struct kobject *);
92 static void bch2_dev_release(struct kobject *);
93 static void bch2_fs_counters_release(struct kobject *k)
94 {
95 }
96 
97 static void bch2_fs_internal_release(struct kobject *k)
98 {
99 }
100 
101 static void bch2_fs_opts_dir_release(struct kobject *k)
102 {
103 }
104 
105 static void bch2_fs_time_stats_release(struct kobject *k)
106 {
107 }
108 
109 KTYPE(bch2_fs);
110 KTYPE(bch2_fs_counters);
111 KTYPE(bch2_fs_internal);
112 KTYPE(bch2_fs_opts_dir);
113 KTYPE(bch2_fs_time_stats);
114 KTYPE(bch2_dev);
115 
116 static struct kset *bcachefs_kset;
117 static LIST_HEAD(bch_fs_list);
118 static DEFINE_MUTEX(bch_fs_list_lock);
119 
120 DECLARE_WAIT_QUEUE_HEAD(bch2_read_only_wait);
121 
122 static void bch2_dev_free(struct bch_dev *);
123 static int bch2_dev_alloc(struct bch_fs *, unsigned);
124 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *);
125 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *);
126 
127 struct bch_fs *bch2_dev_to_fs(dev_t dev)
128 {
129 	struct bch_fs *c;
130 	struct bch_dev *ca;
131 	unsigned i;
132 
133 	mutex_lock(&bch_fs_list_lock);
134 	rcu_read_lock();
135 
136 	list_for_each_entry(c, &bch_fs_list, list)
137 		for_each_member_device_rcu(ca, c, i, NULL)
138 			if (ca->disk_sb.bdev && ca->disk_sb.bdev->bd_dev == dev) {
139 				closure_get(&c->cl);
140 				goto found;
141 			}
142 	c = NULL;
143 found:
144 	rcu_read_unlock();
145 	mutex_unlock(&bch_fs_list_lock);
146 
147 	return c;
148 }
149 
150 static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid)
151 {
152 	struct bch_fs *c;
153 
154 	lockdep_assert_held(&bch_fs_list_lock);
155 
156 	list_for_each_entry(c, &bch_fs_list, list)
157 		if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid)))
158 			return c;
159 
160 	return NULL;
161 }
162 
163 struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid)
164 {
165 	struct bch_fs *c;
166 
167 	mutex_lock(&bch_fs_list_lock);
168 	c = __bch2_uuid_to_fs(uuid);
169 	if (c)
170 		closure_get(&c->cl);
171 	mutex_unlock(&bch_fs_list_lock);
172 
173 	return c;
174 }
175 
176 static void bch2_dev_usage_journal_reserve(struct bch_fs *c)
177 {
178 	struct bch_dev *ca;
179 	unsigned i, nr = 0, u64s =
180 		((sizeof(struct jset_entry_dev_usage) +
181 		  sizeof(struct jset_entry_dev_usage_type) * BCH_DATA_NR)) /
182 		sizeof(u64);
183 
184 	rcu_read_lock();
185 	for_each_member_device_rcu(ca, c, i, NULL)
186 		nr++;
187 	rcu_read_unlock();
188 
189 	bch2_journal_entry_res_resize(&c->journal,
190 			&c->dev_usage_journal_res, u64s * nr);
191 }
192 
193 /* Filesystem RO/RW: */
194 
195 /*
196  * For startup/shutdown of RW stuff, the dependencies are:
197  *
198  * - foreground writes depend on copygc and rebalance (to free up space)
199  *
200  * - copygc and rebalance depend on mark and sweep gc (they actually probably
201  *   don't because they either reserve ahead of time or don't block if
202  *   allocations fail, but allocations can require mark and sweep gc to run
203  *   because of generation number wraparound)
204  *
205  * - all of the above depends on the allocator threads
206  *
207  * - allocator depends on the journal (when it rewrites prios and gens)
208  */
209 
210 static void __bch2_fs_read_only(struct bch_fs *c)
211 {
212 	struct bch_dev *ca;
213 	unsigned i, clean_passes = 0;
214 	u64 seq = 0;
215 
216 	bch2_fs_ec_stop(c);
217 	bch2_open_buckets_stop(c, NULL, true);
218 	bch2_rebalance_stop(c);
219 	bch2_copygc_stop(c);
220 	bch2_gc_thread_stop(c);
221 	bch2_fs_ec_flush(c);
222 
223 	bch_verbose(c, "flushing journal and stopping allocators, journal seq %llu",
224 		    journal_cur_seq(&c->journal));
225 
226 	do {
227 		clean_passes++;
228 
229 		if (bch2_btree_interior_updates_flush(c) ||
230 		    bch2_journal_flush_all_pins(&c->journal) ||
231 		    bch2_btree_flush_all_writes(c) ||
232 		    seq != atomic64_read(&c->journal.seq)) {
233 			seq = atomic64_read(&c->journal.seq);
234 			clean_passes = 0;
235 		}
236 	} while (clean_passes < 2);
237 
238 	bch_verbose(c, "flushing journal and stopping allocators complete, journal seq %llu",
239 		    journal_cur_seq(&c->journal));
240 
241 	if (test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags) &&
242 	    !test_bit(BCH_FS_EMERGENCY_RO, &c->flags))
243 		set_bit(BCH_FS_CLEAN_SHUTDOWN, &c->flags);
244 	bch2_fs_journal_stop(&c->journal);
245 
246 	/*
247 	 * After stopping journal:
248 	 */
249 	for_each_member_device(ca, c, i)
250 		bch2_dev_allocator_remove(c, ca);
251 }
252 
253 #ifndef BCH_WRITE_REF_DEBUG
254 static void bch2_writes_disabled(struct percpu_ref *writes)
255 {
256 	struct bch_fs *c = container_of(writes, struct bch_fs, writes);
257 
258 	set_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags);
259 	wake_up(&bch2_read_only_wait);
260 }
261 #endif
262 
263 void bch2_fs_read_only(struct bch_fs *c)
264 {
265 	if (!test_bit(BCH_FS_RW, &c->flags)) {
266 		bch2_journal_reclaim_stop(&c->journal);
267 		return;
268 	}
269 
270 	BUG_ON(test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags));
271 
272 	/*
273 	 * Block new foreground-end write operations from starting - any new
274 	 * writes will return -EROFS:
275 	 */
276 	set_bit(BCH_FS_GOING_RO, &c->flags);
277 #ifndef BCH_WRITE_REF_DEBUG
278 	percpu_ref_kill(&c->writes);
279 #else
280 	for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++)
281 		bch2_write_ref_put(c, i);
282 #endif
283 
284 	/*
285 	 * If we're not doing an emergency shutdown, we want to wait on
286 	 * outstanding writes to complete so they don't see spurious errors due
287 	 * to shutting down the allocator:
288 	 *
289 	 * If we are doing an emergency shutdown outstanding writes may
290 	 * hang until we shutdown the allocator so we don't want to wait
291 	 * on outstanding writes before shutting everything down - but
292 	 * we do need to wait on them before returning and signalling
293 	 * that going RO is complete:
294 	 */
295 	wait_event(bch2_read_only_wait,
296 		   test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags) ||
297 		   test_bit(BCH_FS_EMERGENCY_RO, &c->flags));
298 
299 	__bch2_fs_read_only(c);
300 
301 	wait_event(bch2_read_only_wait,
302 		   test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags));
303 
304 	clear_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags);
305 	clear_bit(BCH_FS_GOING_RO, &c->flags);
306 
307 	if (!bch2_journal_error(&c->journal) &&
308 	    !test_bit(BCH_FS_ERROR, &c->flags) &&
309 	    !test_bit(BCH_FS_EMERGENCY_RO, &c->flags) &&
310 	    test_bit(BCH_FS_STARTED, &c->flags) &&
311 	    test_bit(BCH_FS_CLEAN_SHUTDOWN, &c->flags) &&
312 	    !c->opts.norecovery) {
313 		BUG_ON(c->journal.last_empty_seq != journal_cur_seq(&c->journal));
314 		BUG_ON(atomic_read(&c->btree_cache.dirty));
315 		BUG_ON(atomic_long_read(&c->btree_key_cache.nr_dirty));
316 		BUG_ON(c->btree_write_buffer.state.nr);
317 
318 		bch_verbose(c, "marking filesystem clean");
319 		bch2_fs_mark_clean(c);
320 	}
321 
322 	clear_bit(BCH_FS_RW, &c->flags);
323 }
324 
325 static void bch2_fs_read_only_work(struct work_struct *work)
326 {
327 	struct bch_fs *c =
328 		container_of(work, struct bch_fs, read_only_work);
329 
330 	down_write(&c->state_lock);
331 	bch2_fs_read_only(c);
332 	up_write(&c->state_lock);
333 }
334 
335 static void bch2_fs_read_only_async(struct bch_fs *c)
336 {
337 	queue_work(system_long_wq, &c->read_only_work);
338 }
339 
340 bool bch2_fs_emergency_read_only(struct bch_fs *c)
341 {
342 	bool ret = !test_and_set_bit(BCH_FS_EMERGENCY_RO, &c->flags);
343 
344 	bch2_journal_halt(&c->journal);
345 	bch2_fs_read_only_async(c);
346 
347 	wake_up(&bch2_read_only_wait);
348 	return ret;
349 }
350 
351 static int bch2_fs_read_write_late(struct bch_fs *c)
352 {
353 	int ret;
354 
355 	/*
356 	 * Data move operations can't run until after check_snapshots has
357 	 * completed, and bch2_snapshot_is_ancestor() is available.
358 	 *
359 	 * Ideally we'd start copygc/rebalance earlier instead of waiting for
360 	 * all of recovery/fsck to complete:
361 	 */
362 	ret = bch2_copygc_start(c);
363 	if (ret) {
364 		bch_err(c, "error starting copygc thread");
365 		return ret;
366 	}
367 
368 	ret = bch2_rebalance_start(c);
369 	if (ret) {
370 		bch_err(c, "error starting rebalance thread");
371 		return ret;
372 	}
373 
374 	return 0;
375 }
376 
377 static int __bch2_fs_read_write(struct bch_fs *c, bool early)
378 {
379 	struct bch_dev *ca;
380 	unsigned i;
381 	int ret;
382 
383 	if (test_bit(BCH_FS_INITIAL_GC_UNFIXED, &c->flags)) {
384 		bch_err(c, "cannot go rw, unfixed btree errors");
385 		return -BCH_ERR_erofs_unfixed_errors;
386 	}
387 
388 	if (test_bit(BCH_FS_RW, &c->flags))
389 		return 0;
390 
391 	if (c->opts.norecovery)
392 		return -BCH_ERR_erofs_norecovery;
393 
394 	/*
395 	 * nochanges is used for fsck -n mode - we have to allow going rw
396 	 * during recovery for that to work:
397 	 */
398 	if (c->opts.nochanges && (!early || c->opts.read_only))
399 		return -BCH_ERR_erofs_nochanges;
400 
401 	bch_info(c, "going read-write");
402 
403 	ret = bch2_members_v2_init(c);
404 	if (ret)
405 		goto err;
406 
407 	ret = bch2_fs_mark_dirty(c);
408 	if (ret)
409 		goto err;
410 
411 	clear_bit(BCH_FS_CLEAN_SHUTDOWN, &c->flags);
412 
413 	/*
414 	 * First journal write must be a flush write: after a clean shutdown we
415 	 * don't read the journal, so the first journal write may end up
416 	 * overwriting whatever was there previously, and there must always be
417 	 * at least one non-flush write in the journal or recovery will fail:
418 	 */
419 	set_bit(JOURNAL_NEED_FLUSH_WRITE, &c->journal.flags);
420 
421 	for_each_rw_member(ca, c, i)
422 		bch2_dev_allocator_add(c, ca);
423 	bch2_recalc_capacity(c);
424 
425 	ret = bch2_gc_thread_start(c);
426 	if (ret) {
427 		bch_err(c, "error starting gc thread");
428 		return ret;
429 	}
430 
431 	ret = bch2_journal_reclaim_start(&c->journal);
432 	if (ret)
433 		goto err;
434 
435 	if (!early) {
436 		ret = bch2_fs_read_write_late(c);
437 		if (ret)
438 			goto err;
439 	}
440 
441 #ifndef BCH_WRITE_REF_DEBUG
442 	percpu_ref_reinit(&c->writes);
443 #else
444 	for (i = 0; i < BCH_WRITE_REF_NR; i++) {
445 		BUG_ON(atomic_long_read(&c->writes[i]));
446 		atomic_long_inc(&c->writes[i]);
447 	}
448 #endif
449 	set_bit(BCH_FS_RW, &c->flags);
450 	set_bit(BCH_FS_WAS_RW, &c->flags);
451 
452 	bch2_do_discards(c);
453 	bch2_do_invalidates(c);
454 	bch2_do_stripe_deletes(c);
455 	bch2_do_pending_node_rewrites(c);
456 	return 0;
457 err:
458 	__bch2_fs_read_only(c);
459 	return ret;
460 }
461 
462 int bch2_fs_read_write(struct bch_fs *c)
463 {
464 	return __bch2_fs_read_write(c, false);
465 }
466 
467 int bch2_fs_read_write_early(struct bch_fs *c)
468 {
469 	lockdep_assert_held(&c->state_lock);
470 
471 	return __bch2_fs_read_write(c, true);
472 }
473 
474 /* Filesystem startup/shutdown: */
475 
476 static void __bch2_fs_free(struct bch_fs *c)
477 {
478 	unsigned i;
479 
480 	for (i = 0; i < BCH_TIME_STAT_NR; i++)
481 		bch2_time_stats_exit(&c->times[i]);
482 
483 	bch2_free_pending_node_rewrites(c);
484 	bch2_fs_counters_exit(c);
485 	bch2_fs_snapshots_exit(c);
486 	bch2_fs_quota_exit(c);
487 	bch2_fs_fs_io_direct_exit(c);
488 	bch2_fs_fs_io_buffered_exit(c);
489 	bch2_fs_fsio_exit(c);
490 	bch2_fs_ec_exit(c);
491 	bch2_fs_encryption_exit(c);
492 	bch2_fs_nocow_locking_exit(c);
493 	bch2_fs_io_write_exit(c);
494 	bch2_fs_io_read_exit(c);
495 	bch2_fs_buckets_waiting_for_journal_exit(c);
496 	bch2_fs_btree_interior_update_exit(c);
497 	bch2_fs_btree_iter_exit(c);
498 	bch2_fs_btree_key_cache_exit(&c->btree_key_cache);
499 	bch2_fs_btree_cache_exit(c);
500 	bch2_fs_replicas_exit(c);
501 	bch2_fs_journal_exit(&c->journal);
502 	bch2_io_clock_exit(&c->io_clock[WRITE]);
503 	bch2_io_clock_exit(&c->io_clock[READ]);
504 	bch2_fs_compress_exit(c);
505 	bch2_journal_keys_free(&c->journal_keys);
506 	bch2_journal_entries_free(c);
507 	bch2_fs_btree_write_buffer_exit(c);
508 	percpu_free_rwsem(&c->mark_lock);
509 	free_percpu(c->online_reserved);
510 
511 	darray_exit(&c->btree_roots_extra);
512 	free_percpu(c->pcpu);
513 	mempool_exit(&c->large_bkey_pool);
514 	mempool_exit(&c->btree_bounce_pool);
515 	bioset_exit(&c->btree_bio);
516 	mempool_exit(&c->fill_iter);
517 #ifndef BCH_WRITE_REF_DEBUG
518 	percpu_ref_exit(&c->writes);
519 #endif
520 	kfree(rcu_dereference_protected(c->disk_groups, 1));
521 	kfree(c->journal_seq_blacklist_table);
522 	kfree(c->unused_inode_hints);
523 
524 	if (c->write_ref_wq)
525 		destroy_workqueue(c->write_ref_wq);
526 	if (c->io_complete_wq)
527 		destroy_workqueue(c->io_complete_wq);
528 	if (c->copygc_wq)
529 		destroy_workqueue(c->copygc_wq);
530 	if (c->btree_io_complete_wq)
531 		destroy_workqueue(c->btree_io_complete_wq);
532 	if (c->btree_update_wq)
533 		destroy_workqueue(c->btree_update_wq);
534 
535 	bch2_free_super(&c->disk_sb);
536 	kvpfree(c, sizeof(*c));
537 	module_put(THIS_MODULE);
538 }
539 
540 static void bch2_fs_release(struct kobject *kobj)
541 {
542 	struct bch_fs *c = container_of(kobj, struct bch_fs, kobj);
543 
544 	__bch2_fs_free(c);
545 }
546 
547 void __bch2_fs_stop(struct bch_fs *c)
548 {
549 	struct bch_dev *ca;
550 	unsigned i;
551 
552 	bch_verbose(c, "shutting down");
553 
554 	set_bit(BCH_FS_STOPPING, &c->flags);
555 
556 	cancel_work_sync(&c->journal_seq_blacklist_gc_work);
557 
558 	down_write(&c->state_lock);
559 	bch2_fs_read_only(c);
560 	up_write(&c->state_lock);
561 
562 	for_each_member_device(ca, c, i)
563 		if (ca->kobj.state_in_sysfs &&
564 		    ca->disk_sb.bdev)
565 			sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs");
566 
567 	if (c->kobj.state_in_sysfs)
568 		kobject_del(&c->kobj);
569 
570 	bch2_fs_debug_exit(c);
571 	bch2_fs_chardev_exit(c);
572 
573 	kobject_put(&c->counters_kobj);
574 	kobject_put(&c->time_stats);
575 	kobject_put(&c->opts_dir);
576 	kobject_put(&c->internal);
577 
578 	/* btree prefetch might have kicked off reads in the background: */
579 	bch2_btree_flush_all_reads(c);
580 
581 	for_each_member_device(ca, c, i)
582 		cancel_work_sync(&ca->io_error_work);
583 
584 	cancel_work_sync(&c->read_only_work);
585 }
586 
587 void bch2_fs_free(struct bch_fs *c)
588 {
589 	unsigned i;
590 
591 	mutex_lock(&bch_fs_list_lock);
592 	list_del(&c->list);
593 	mutex_unlock(&bch_fs_list_lock);
594 
595 	closure_sync(&c->cl);
596 	closure_debug_destroy(&c->cl);
597 
598 	for (i = 0; i < c->sb.nr_devices; i++) {
599 		struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true);
600 
601 		if (ca) {
602 			bch2_free_super(&ca->disk_sb);
603 			bch2_dev_free(ca);
604 		}
605 	}
606 
607 	bch_verbose(c, "shutdown complete");
608 
609 	kobject_put(&c->kobj);
610 }
611 
612 void bch2_fs_stop(struct bch_fs *c)
613 {
614 	__bch2_fs_stop(c);
615 	bch2_fs_free(c);
616 }
617 
618 static int bch2_fs_online(struct bch_fs *c)
619 {
620 	struct bch_dev *ca;
621 	unsigned i;
622 	int ret = 0;
623 
624 	lockdep_assert_held(&bch_fs_list_lock);
625 
626 	if (__bch2_uuid_to_fs(c->sb.uuid)) {
627 		bch_err(c, "filesystem UUID already open");
628 		return -EINVAL;
629 	}
630 
631 	ret = bch2_fs_chardev_init(c);
632 	if (ret) {
633 		bch_err(c, "error creating character device");
634 		return ret;
635 	}
636 
637 	bch2_fs_debug_init(c);
638 
639 	ret = kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ?:
640 	    kobject_add(&c->internal, &c->kobj, "internal") ?:
641 	    kobject_add(&c->opts_dir, &c->kobj, "options") ?:
642 	    kobject_add(&c->time_stats, &c->kobj, "time_stats") ?:
643 	    kobject_add(&c->counters_kobj, &c->kobj, "counters") ?:
644 	    bch2_opts_create_sysfs_files(&c->opts_dir);
645 	if (ret) {
646 		bch_err(c, "error creating sysfs objects");
647 		return ret;
648 	}
649 
650 	down_write(&c->state_lock);
651 
652 	for_each_member_device(ca, c, i) {
653 		ret = bch2_dev_sysfs_online(c, ca);
654 		if (ret) {
655 			bch_err(c, "error creating sysfs objects");
656 			percpu_ref_put(&ca->ref);
657 			goto err;
658 		}
659 	}
660 
661 	BUG_ON(!list_empty(&c->list));
662 	list_add(&c->list, &bch_fs_list);
663 err:
664 	up_write(&c->state_lock);
665 	return ret;
666 }
667 
668 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts)
669 {
670 	struct bch_fs *c;
671 	struct printbuf name = PRINTBUF;
672 	unsigned i, iter_size;
673 	int ret = 0;
674 
675 	c = kvpmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO);
676 	if (!c) {
677 		c = ERR_PTR(-BCH_ERR_ENOMEM_fs_alloc);
678 		goto out;
679 	}
680 
681 	__module_get(THIS_MODULE);
682 
683 	closure_init(&c->cl, NULL);
684 
685 	c->kobj.kset = bcachefs_kset;
686 	kobject_init(&c->kobj, &bch2_fs_ktype);
687 	kobject_init(&c->internal, &bch2_fs_internal_ktype);
688 	kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype);
689 	kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype);
690 	kobject_init(&c->counters_kobj, &bch2_fs_counters_ktype);
691 
692 	c->minor		= -1;
693 	c->disk_sb.fs_sb	= true;
694 
695 	init_rwsem(&c->state_lock);
696 	mutex_init(&c->sb_lock);
697 	mutex_init(&c->replicas_gc_lock);
698 	mutex_init(&c->btree_root_lock);
699 	INIT_WORK(&c->read_only_work, bch2_fs_read_only_work);
700 
701 	init_rwsem(&c->gc_lock);
702 	mutex_init(&c->gc_gens_lock);
703 
704 	for (i = 0; i < BCH_TIME_STAT_NR; i++)
705 		bch2_time_stats_init(&c->times[i]);
706 
707 	bch2_fs_copygc_init(c);
708 	bch2_fs_btree_key_cache_init_early(&c->btree_key_cache);
709 	bch2_fs_btree_interior_update_init_early(c);
710 	bch2_fs_allocator_background_init(c);
711 	bch2_fs_allocator_foreground_init(c);
712 	bch2_fs_rebalance_init(c);
713 	bch2_fs_quota_init(c);
714 	bch2_fs_ec_init_early(c);
715 	bch2_fs_move_init(c);
716 
717 	INIT_LIST_HEAD(&c->list);
718 
719 	mutex_init(&c->usage_scratch_lock);
720 
721 	mutex_init(&c->bio_bounce_pages_lock);
722 	mutex_init(&c->snapshot_table_lock);
723 	init_rwsem(&c->snapshot_create_lock);
724 
725 	spin_lock_init(&c->btree_write_error_lock);
726 
727 	INIT_WORK(&c->journal_seq_blacklist_gc_work,
728 		  bch2_blacklist_entries_gc);
729 
730 	INIT_LIST_HEAD(&c->journal_iters);
731 
732 	INIT_LIST_HEAD(&c->fsck_errors);
733 	mutex_init(&c->fsck_error_lock);
734 
735 	seqcount_init(&c->gc_pos_lock);
736 
737 	seqcount_init(&c->usage_lock);
738 
739 	sema_init(&c->io_in_flight, 128);
740 
741 	INIT_LIST_HEAD(&c->vfs_inodes_list);
742 	mutex_init(&c->vfs_inodes_lock);
743 
744 	c->copy_gc_enabled		= 1;
745 	c->rebalance.enabled		= 1;
746 	c->promote_whole_extents	= true;
747 
748 	c->journal.flush_write_time	= &c->times[BCH_TIME_journal_flush_write];
749 	c->journal.noflush_write_time	= &c->times[BCH_TIME_journal_noflush_write];
750 	c->journal.blocked_time		= &c->times[BCH_TIME_blocked_journal];
751 	c->journal.flush_seq_time	= &c->times[BCH_TIME_journal_flush_seq];
752 
753 	bch2_fs_btree_cache_init_early(&c->btree_cache);
754 
755 	mutex_init(&c->sectors_available_lock);
756 
757 	ret = percpu_init_rwsem(&c->mark_lock);
758 	if (ret)
759 		goto err;
760 
761 	mutex_lock(&c->sb_lock);
762 	ret = bch2_sb_to_fs(c, sb);
763 	mutex_unlock(&c->sb_lock);
764 
765 	if (ret)
766 		goto err;
767 
768 	pr_uuid(&name, c->sb.user_uuid.b);
769 	strscpy(c->name, name.buf, sizeof(c->name));
770 	printbuf_exit(&name);
771 
772 	ret = name.allocation_failure ? -BCH_ERR_ENOMEM_fs_name_alloc : 0;
773 	if (ret)
774 		goto err;
775 
776 	/* Compat: */
777 	if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 &&
778 	    !BCH_SB_JOURNAL_FLUSH_DELAY(sb))
779 		SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000);
780 
781 	if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 &&
782 	    !BCH_SB_JOURNAL_RECLAIM_DELAY(sb))
783 		SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 100);
784 
785 	c->opts = bch2_opts_default;
786 	ret = bch2_opts_from_sb(&c->opts, sb);
787 	if (ret)
788 		goto err;
789 
790 	bch2_opts_apply(&c->opts, opts);
791 
792 	c->btree_key_cache_btrees |= 1U << BTREE_ID_alloc;
793 	if (c->opts.inodes_use_key_cache)
794 		c->btree_key_cache_btrees |= 1U << BTREE_ID_inodes;
795 	c->btree_key_cache_btrees |= 1U << BTREE_ID_logged_ops;
796 
797 	c->block_bits		= ilog2(block_sectors(c));
798 	c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c);
799 
800 	if (bch2_fs_init_fault("fs_alloc")) {
801 		bch_err(c, "fs_alloc fault injected");
802 		ret = -EFAULT;
803 		goto err;
804 	}
805 
806 	iter_size = sizeof(struct sort_iter) +
807 		(btree_blocks(c) + 1) * 2 *
808 		sizeof(struct sort_iter_set);
809 
810 	c->inode_shard_bits = ilog2(roundup_pow_of_two(num_possible_cpus()));
811 
812 	if (!(c->btree_update_wq = alloc_workqueue("bcachefs",
813 				WQ_FREEZABLE|WQ_UNBOUND|WQ_MEM_RECLAIM, 512)) ||
814 	    !(c->btree_io_complete_wq = alloc_workqueue("bcachefs_btree_io",
815 				WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) ||
816 	    !(c->copygc_wq = alloc_workqueue("bcachefs_copygc",
817 				WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) ||
818 	    !(c->io_complete_wq = alloc_workqueue("bcachefs_io",
819 				WQ_FREEZABLE|WQ_HIGHPRI|WQ_MEM_RECLAIM, 1)) ||
820 	    !(c->write_ref_wq = alloc_workqueue("bcachefs_write_ref",
821 				WQ_FREEZABLE, 0)) ||
822 #ifndef BCH_WRITE_REF_DEBUG
823 	    percpu_ref_init(&c->writes, bch2_writes_disabled,
824 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
825 #endif
826 	    mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
827 	    bioset_init(&c->btree_bio, 1,
828 			max(offsetof(struct btree_read_bio, bio),
829 			    offsetof(struct btree_write_bio, wbio.bio)),
830 			BIOSET_NEED_BVECS) ||
831 	    !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) ||
832 	    !(c->online_reserved = alloc_percpu(u64)) ||
833 	    mempool_init_kvpmalloc_pool(&c->btree_bounce_pool, 1,
834 					btree_bytes(c)) ||
835 	    mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048) ||
836 	    !(c->unused_inode_hints = kcalloc(1U << c->inode_shard_bits,
837 					      sizeof(u64), GFP_KERNEL))) {
838 		ret = -BCH_ERR_ENOMEM_fs_other_alloc;
839 		goto err;
840 	}
841 
842 	ret = bch2_fs_counters_init(c) ?:
843 	    bch2_io_clock_init(&c->io_clock[READ]) ?:
844 	    bch2_io_clock_init(&c->io_clock[WRITE]) ?:
845 	    bch2_fs_journal_init(&c->journal) ?:
846 	    bch2_fs_replicas_init(c) ?:
847 	    bch2_fs_btree_cache_init(c) ?:
848 	    bch2_fs_btree_key_cache_init(&c->btree_key_cache) ?:
849 	    bch2_fs_btree_iter_init(c) ?:
850 	    bch2_fs_btree_interior_update_init(c) ?:
851 	    bch2_fs_buckets_waiting_for_journal_init(c) ?:
852 	    bch2_fs_btree_write_buffer_init(c) ?:
853 	    bch2_fs_subvolumes_init(c) ?:
854 	    bch2_fs_io_read_init(c) ?:
855 	    bch2_fs_io_write_init(c) ?:
856 	    bch2_fs_nocow_locking_init(c) ?:
857 	    bch2_fs_encryption_init(c) ?:
858 	    bch2_fs_compress_init(c) ?:
859 	    bch2_fs_ec_init(c) ?:
860 	    bch2_fs_fsio_init(c) ?:
861 	    bch2_fs_fs_io_buffered_init(c) ?:
862 	    bch2_fs_fs_io_direct_init(c);
863 	if (ret)
864 		goto err;
865 
866 	for (i = 0; i < c->sb.nr_devices; i++)
867 		if (bch2_dev_exists(c->disk_sb.sb, i) &&
868 		    bch2_dev_alloc(c, i)) {
869 			ret = -EEXIST;
870 			goto err;
871 		}
872 
873 	bch2_journal_entry_res_resize(&c->journal,
874 			&c->btree_root_journal_res,
875 			BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX));
876 	bch2_dev_usage_journal_reserve(c);
877 	bch2_journal_entry_res_resize(&c->journal,
878 			&c->clock_journal_res,
879 			(sizeof(struct jset_entry_clock) / sizeof(u64)) * 2);
880 
881 	mutex_lock(&bch_fs_list_lock);
882 	ret = bch2_fs_online(c);
883 	mutex_unlock(&bch_fs_list_lock);
884 
885 	if (ret)
886 		goto err;
887 out:
888 	return c;
889 err:
890 	bch2_fs_free(c);
891 	c = ERR_PTR(ret);
892 	goto out;
893 }
894 
895 noinline_for_stack
896 static void print_mount_opts(struct bch_fs *c)
897 {
898 	enum bch_opt_id i;
899 	struct printbuf p = PRINTBUF;
900 	bool first = true;
901 
902 	prt_str(&p, "mounting version ");
903 	bch2_version_to_text(&p, c->sb.version);
904 
905 	if (c->opts.read_only) {
906 		prt_str(&p, " opts=");
907 		first = false;
908 		prt_printf(&p, "ro");
909 	}
910 
911 	for (i = 0; i < bch2_opts_nr; i++) {
912 		const struct bch_option *opt = &bch2_opt_table[i];
913 		u64 v = bch2_opt_get_by_id(&c->opts, i);
914 
915 		if (!(opt->flags & OPT_MOUNT))
916 			continue;
917 
918 		if (v == bch2_opt_get_by_id(&bch2_opts_default, i))
919 			continue;
920 
921 		prt_str(&p, first ? " opts=" : ",");
922 		first = false;
923 		bch2_opt_to_text(&p, c, c->disk_sb.sb, opt, v, OPT_SHOW_MOUNT_STYLE);
924 	}
925 
926 	bch_info(c, "%s", p.buf);
927 	printbuf_exit(&p);
928 }
929 
930 int bch2_fs_start(struct bch_fs *c)
931 {
932 	struct bch_dev *ca;
933 	time64_t now = ktime_get_real_seconds();
934 	unsigned i;
935 	int ret;
936 
937 	print_mount_opts(c);
938 
939 	down_write(&c->state_lock);
940 
941 	BUG_ON(test_bit(BCH_FS_STARTED, &c->flags));
942 
943 	mutex_lock(&c->sb_lock);
944 
945 	ret = bch2_members_v2_init(c);
946 	if (ret) {
947 		mutex_unlock(&c->sb_lock);
948 		goto err;
949 	}
950 
951 	for_each_online_member(ca, c, i)
952 		bch2_sb_from_fs(c, ca);
953 
954 	for_each_online_member(ca, c, i)
955 		bch2_members_v2_get_mut(c->disk_sb.sb, i)->last_mount = cpu_to_le64(now);
956 
957 	mutex_unlock(&c->sb_lock);
958 
959 	for_each_rw_member(ca, c, i)
960 		bch2_dev_allocator_add(c, ca);
961 	bch2_recalc_capacity(c);
962 
963 	for (i = 0; i < BCH_TRANSACTIONS_NR; i++) {
964 		mutex_lock(&c->btree_transaction_stats[i].lock);
965 		bch2_time_stats_init(&c->btree_transaction_stats[i].lock_hold_times);
966 		mutex_unlock(&c->btree_transaction_stats[i].lock);
967 	}
968 
969 	ret = BCH_SB_INITIALIZED(c->disk_sb.sb)
970 		? bch2_fs_recovery(c)
971 		: bch2_fs_initialize(c);
972 	if (ret)
973 		goto err;
974 
975 	ret = bch2_opts_check_may_set(c);
976 	if (ret)
977 		goto err;
978 
979 	if (bch2_fs_init_fault("fs_start")) {
980 		bch_err(c, "fs_start fault injected");
981 		ret = -EINVAL;
982 		goto err;
983 	}
984 
985 	set_bit(BCH_FS_STARTED, &c->flags);
986 
987 	if (c->opts.read_only || c->opts.nochanges) {
988 		bch2_fs_read_only(c);
989 	} else {
990 		ret = !test_bit(BCH_FS_RW, &c->flags)
991 			? bch2_fs_read_write(c)
992 			: bch2_fs_read_write_late(c);
993 		if (ret)
994 			goto err;
995 	}
996 
997 	ret = 0;
998 out:
999 	up_write(&c->state_lock);
1000 	return ret;
1001 err:
1002 	bch_err_msg(c, ret, "starting filesystem");
1003 	goto out;
1004 }
1005 
1006 static int bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c)
1007 {
1008 	struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx);
1009 
1010 	if (le16_to_cpu(sb->block_size) != block_sectors(c))
1011 		return -BCH_ERR_mismatched_block_size;
1012 
1013 	if (le16_to_cpu(m.bucket_size) <
1014 	    BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb))
1015 		return -BCH_ERR_bucket_size_too_small;
1016 
1017 	return 0;
1018 }
1019 
1020 static int bch2_dev_in_fs(struct bch_sb *fs, struct bch_sb *sb)
1021 {
1022 	struct bch_sb *newest =
1023 		le64_to_cpu(fs->seq) > le64_to_cpu(sb->seq) ? fs : sb;
1024 
1025 	if (!uuid_equal(&fs->uuid, &sb->uuid))
1026 		return -BCH_ERR_device_not_a_member_of_filesystem;
1027 
1028 	if (!bch2_dev_exists(newest, sb->dev_idx))
1029 		return -BCH_ERR_device_has_been_removed;
1030 
1031 	if (fs->block_size != sb->block_size)
1032 		return -BCH_ERR_mismatched_block_size;
1033 
1034 	return 0;
1035 }
1036 
1037 /* Device startup/shutdown: */
1038 
1039 static void bch2_dev_release(struct kobject *kobj)
1040 {
1041 	struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj);
1042 
1043 	kfree(ca);
1044 }
1045 
1046 static void bch2_dev_free(struct bch_dev *ca)
1047 {
1048 	cancel_work_sync(&ca->io_error_work);
1049 
1050 	if (ca->kobj.state_in_sysfs &&
1051 	    ca->disk_sb.bdev)
1052 		sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs");
1053 
1054 	if (ca->kobj.state_in_sysfs)
1055 		kobject_del(&ca->kobj);
1056 
1057 	bch2_free_super(&ca->disk_sb);
1058 	bch2_dev_journal_exit(ca);
1059 
1060 	free_percpu(ca->io_done);
1061 	bioset_exit(&ca->replica_set);
1062 	bch2_dev_buckets_free(ca);
1063 	free_page((unsigned long) ca->sb_read_scratch);
1064 
1065 	bch2_time_stats_exit(&ca->io_latency[WRITE]);
1066 	bch2_time_stats_exit(&ca->io_latency[READ]);
1067 
1068 	percpu_ref_exit(&ca->io_ref);
1069 	percpu_ref_exit(&ca->ref);
1070 	kobject_put(&ca->kobj);
1071 }
1072 
1073 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca)
1074 {
1075 
1076 	lockdep_assert_held(&c->state_lock);
1077 
1078 	if (percpu_ref_is_zero(&ca->io_ref))
1079 		return;
1080 
1081 	__bch2_dev_read_only(c, ca);
1082 
1083 	reinit_completion(&ca->io_ref_completion);
1084 	percpu_ref_kill(&ca->io_ref);
1085 	wait_for_completion(&ca->io_ref_completion);
1086 
1087 	if (ca->kobj.state_in_sysfs) {
1088 		sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs");
1089 		sysfs_remove_link(&ca->kobj, "block");
1090 	}
1091 
1092 	bch2_free_super(&ca->disk_sb);
1093 	bch2_dev_journal_exit(ca);
1094 }
1095 
1096 static void bch2_dev_ref_complete(struct percpu_ref *ref)
1097 {
1098 	struct bch_dev *ca = container_of(ref, struct bch_dev, ref);
1099 
1100 	complete(&ca->ref_completion);
1101 }
1102 
1103 static void bch2_dev_io_ref_complete(struct percpu_ref *ref)
1104 {
1105 	struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref);
1106 
1107 	complete(&ca->io_ref_completion);
1108 }
1109 
1110 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca)
1111 {
1112 	int ret;
1113 
1114 	if (!c->kobj.state_in_sysfs)
1115 		return 0;
1116 
1117 	if (!ca->kobj.state_in_sysfs) {
1118 		ret = kobject_add(&ca->kobj, &c->kobj,
1119 				  "dev-%u", ca->dev_idx);
1120 		if (ret)
1121 			return ret;
1122 	}
1123 
1124 	if (ca->disk_sb.bdev) {
1125 		struct kobject *block = bdev_kobj(ca->disk_sb.bdev);
1126 
1127 		ret = sysfs_create_link(block, &ca->kobj, "bcachefs");
1128 		if (ret)
1129 			return ret;
1130 
1131 		ret = sysfs_create_link(&ca->kobj, block, "block");
1132 		if (ret)
1133 			return ret;
1134 	}
1135 
1136 	return 0;
1137 }
1138 
1139 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c,
1140 					struct bch_member *member)
1141 {
1142 	struct bch_dev *ca;
1143 
1144 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1145 	if (!ca)
1146 		return NULL;
1147 
1148 	kobject_init(&ca->kobj, &bch2_dev_ktype);
1149 	init_completion(&ca->ref_completion);
1150 	init_completion(&ca->io_ref_completion);
1151 
1152 	init_rwsem(&ca->bucket_lock);
1153 
1154 	INIT_WORK(&ca->io_error_work, bch2_io_error_work);
1155 
1156 	bch2_time_stats_init(&ca->io_latency[READ]);
1157 	bch2_time_stats_init(&ca->io_latency[WRITE]);
1158 
1159 	ca->mi = bch2_mi_to_cpu(member);
1160 	ca->uuid = member->uuid;
1161 
1162 	ca->nr_btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE,
1163 			     ca->mi.bucket_size / btree_sectors(c));
1164 
1165 	if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete,
1166 			    0, GFP_KERNEL) ||
1167 	    percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete,
1168 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
1169 	    !(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) ||
1170 	    bch2_dev_buckets_alloc(c, ca) ||
1171 	    bioset_init(&ca->replica_set, 4,
1172 			offsetof(struct bch_write_bio, bio), 0) ||
1173 	    !(ca->io_done	= alloc_percpu(*ca->io_done)))
1174 		goto err;
1175 
1176 	return ca;
1177 err:
1178 	bch2_dev_free(ca);
1179 	return NULL;
1180 }
1181 
1182 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca,
1183 			    unsigned dev_idx)
1184 {
1185 	ca->dev_idx = dev_idx;
1186 	__set_bit(ca->dev_idx, ca->self.d);
1187 	scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx);
1188 
1189 	ca->fs = c;
1190 	rcu_assign_pointer(c->devs[ca->dev_idx], ca);
1191 
1192 	if (bch2_dev_sysfs_online(c, ca))
1193 		pr_warn("error creating sysfs objects");
1194 }
1195 
1196 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx)
1197 {
1198 	struct bch_member member = bch2_sb_member_get(c->disk_sb.sb, dev_idx);
1199 	struct bch_dev *ca = NULL;
1200 	int ret = 0;
1201 
1202 	if (bch2_fs_init_fault("dev_alloc"))
1203 		goto err;
1204 
1205 	ca = __bch2_dev_alloc(c, &member);
1206 	if (!ca)
1207 		goto err;
1208 
1209 	ca->fs = c;
1210 
1211 	bch2_dev_attach(c, ca, dev_idx);
1212 	return ret;
1213 err:
1214 	if (ca)
1215 		bch2_dev_free(ca);
1216 	return -BCH_ERR_ENOMEM_dev_alloc;
1217 }
1218 
1219 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb)
1220 {
1221 	unsigned ret;
1222 
1223 	if (bch2_dev_is_online(ca)) {
1224 		bch_err(ca, "already have device online in slot %u",
1225 			sb->sb->dev_idx);
1226 		return -BCH_ERR_device_already_online;
1227 	}
1228 
1229 	if (get_capacity(sb->bdev->bd_disk) <
1230 	    ca->mi.bucket_size * ca->mi.nbuckets) {
1231 		bch_err(ca, "cannot online: device too small");
1232 		return -BCH_ERR_device_size_too_small;
1233 	}
1234 
1235 	BUG_ON(!percpu_ref_is_zero(&ca->io_ref));
1236 
1237 	ret = bch2_dev_journal_init(ca, sb->sb);
1238 	if (ret)
1239 		return ret;
1240 
1241 	/* Commit: */
1242 	ca->disk_sb = *sb;
1243 	memset(sb, 0, sizeof(*sb));
1244 
1245 	ca->dev = ca->disk_sb.bdev->bd_dev;
1246 
1247 	percpu_ref_reinit(&ca->io_ref);
1248 
1249 	return 0;
1250 }
1251 
1252 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb)
1253 {
1254 	struct bch_dev *ca;
1255 	int ret;
1256 
1257 	lockdep_assert_held(&c->state_lock);
1258 
1259 	if (le64_to_cpu(sb->sb->seq) >
1260 	    le64_to_cpu(c->disk_sb.sb->seq))
1261 		bch2_sb_to_fs(c, sb->sb);
1262 
1263 	BUG_ON(sb->sb->dev_idx >= c->sb.nr_devices ||
1264 	       !c->devs[sb->sb->dev_idx]);
1265 
1266 	ca = bch_dev_locked(c, sb->sb->dev_idx);
1267 
1268 	ret = __bch2_dev_attach_bdev(ca, sb);
1269 	if (ret)
1270 		return ret;
1271 
1272 	bch2_dev_sysfs_online(c, ca);
1273 
1274 	if (c->sb.nr_devices == 1)
1275 		snprintf(c->name, sizeof(c->name), "%pg", ca->disk_sb.bdev);
1276 	snprintf(ca->name, sizeof(ca->name), "%pg", ca->disk_sb.bdev);
1277 
1278 	rebalance_wakeup(c);
1279 	return 0;
1280 }
1281 
1282 /* Device management: */
1283 
1284 /*
1285  * Note: this function is also used by the error paths - when a particular
1286  * device sees an error, we call it to determine whether we can just set the
1287  * device RO, or - if this function returns false - we'll set the whole
1288  * filesystem RO:
1289  *
1290  * XXX: maybe we should be more explicit about whether we're changing state
1291  * because we got an error or what have you?
1292  */
1293 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca,
1294 			    enum bch_member_state new_state, int flags)
1295 {
1296 	struct bch_devs_mask new_online_devs;
1297 	struct bch_dev *ca2;
1298 	int i, nr_rw = 0, required;
1299 
1300 	lockdep_assert_held(&c->state_lock);
1301 
1302 	switch (new_state) {
1303 	case BCH_MEMBER_STATE_rw:
1304 		return true;
1305 	case BCH_MEMBER_STATE_ro:
1306 		if (ca->mi.state != BCH_MEMBER_STATE_rw)
1307 			return true;
1308 
1309 		/* do we have enough devices to write to?  */
1310 		for_each_member_device(ca2, c, i)
1311 			if (ca2 != ca)
1312 				nr_rw += ca2->mi.state == BCH_MEMBER_STATE_rw;
1313 
1314 		required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED)
1315 			       ? c->opts.metadata_replicas
1316 			       : c->opts.metadata_replicas_required,
1317 			       !(flags & BCH_FORCE_IF_DATA_DEGRADED)
1318 			       ? c->opts.data_replicas
1319 			       : c->opts.data_replicas_required);
1320 
1321 		return nr_rw >= required;
1322 	case BCH_MEMBER_STATE_failed:
1323 	case BCH_MEMBER_STATE_spare:
1324 		if (ca->mi.state != BCH_MEMBER_STATE_rw &&
1325 		    ca->mi.state != BCH_MEMBER_STATE_ro)
1326 			return true;
1327 
1328 		/* do we have enough devices to read from?  */
1329 		new_online_devs = bch2_online_devs(c);
1330 		__clear_bit(ca->dev_idx, new_online_devs.d);
1331 
1332 		return bch2_have_enough_devs(c, new_online_devs, flags, false);
1333 	default:
1334 		BUG();
1335 	}
1336 }
1337 
1338 static bool bch2_fs_may_start(struct bch_fs *c)
1339 {
1340 	struct bch_dev *ca;
1341 	unsigned i, flags = 0;
1342 
1343 	if (c->opts.very_degraded)
1344 		flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST;
1345 
1346 	if (c->opts.degraded)
1347 		flags |= BCH_FORCE_IF_DEGRADED;
1348 
1349 	if (!c->opts.degraded &&
1350 	    !c->opts.very_degraded) {
1351 		mutex_lock(&c->sb_lock);
1352 
1353 		for (i = 0; i < c->disk_sb.sb->nr_devices; i++) {
1354 			if (!bch2_dev_exists(c->disk_sb.sb, i))
1355 				continue;
1356 
1357 			ca = bch_dev_locked(c, i);
1358 
1359 			if (!bch2_dev_is_online(ca) &&
1360 			    (ca->mi.state == BCH_MEMBER_STATE_rw ||
1361 			     ca->mi.state == BCH_MEMBER_STATE_ro)) {
1362 				mutex_unlock(&c->sb_lock);
1363 				return false;
1364 			}
1365 		}
1366 		mutex_unlock(&c->sb_lock);
1367 	}
1368 
1369 	return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true);
1370 }
1371 
1372 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca)
1373 {
1374 	/*
1375 	 * The allocator thread itself allocates btree nodes, so stop it first:
1376 	 */
1377 	bch2_dev_allocator_remove(c, ca);
1378 	bch2_dev_journal_stop(&c->journal, ca);
1379 }
1380 
1381 static void __bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca)
1382 {
1383 	lockdep_assert_held(&c->state_lock);
1384 
1385 	BUG_ON(ca->mi.state != BCH_MEMBER_STATE_rw);
1386 
1387 	bch2_dev_allocator_add(c, ca);
1388 	bch2_recalc_capacity(c);
1389 }
1390 
1391 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1392 			 enum bch_member_state new_state, int flags)
1393 {
1394 	struct bch_member *m;
1395 	int ret = 0;
1396 
1397 	if (ca->mi.state == new_state)
1398 		return 0;
1399 
1400 	if (!bch2_dev_state_allowed(c, ca, new_state, flags))
1401 		return -BCH_ERR_device_state_not_allowed;
1402 
1403 	if (new_state != BCH_MEMBER_STATE_rw)
1404 		__bch2_dev_read_only(c, ca);
1405 
1406 	bch_notice(ca, "%s", bch2_member_states[new_state]);
1407 
1408 	mutex_lock(&c->sb_lock);
1409 	m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
1410 	SET_BCH_MEMBER_STATE(m, new_state);
1411 	bch2_write_super(c);
1412 	mutex_unlock(&c->sb_lock);
1413 
1414 	if (new_state == BCH_MEMBER_STATE_rw)
1415 		__bch2_dev_read_write(c, ca);
1416 
1417 	rebalance_wakeup(c);
1418 
1419 	return ret;
1420 }
1421 
1422 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1423 		       enum bch_member_state new_state, int flags)
1424 {
1425 	int ret;
1426 
1427 	down_write(&c->state_lock);
1428 	ret = __bch2_dev_set_state(c, ca, new_state, flags);
1429 	up_write(&c->state_lock);
1430 
1431 	return ret;
1432 }
1433 
1434 /* Device add/removal: */
1435 
1436 static int bch2_dev_remove_alloc(struct bch_fs *c, struct bch_dev *ca)
1437 {
1438 	struct bpos start	= POS(ca->dev_idx, 0);
1439 	struct bpos end		= POS(ca->dev_idx, U64_MAX);
1440 	int ret;
1441 
1442 	/*
1443 	 * We clear the LRU and need_discard btrees first so that we don't race
1444 	 * with bch2_do_invalidates() and bch2_do_discards()
1445 	 */
1446 	ret =   bch2_btree_delete_range(c, BTREE_ID_lru, start, end,
1447 					BTREE_TRIGGER_NORUN, NULL) ?:
1448 		bch2_btree_delete_range(c, BTREE_ID_need_discard, start, end,
1449 					BTREE_TRIGGER_NORUN, NULL) ?:
1450 		bch2_btree_delete_range(c, BTREE_ID_freespace, start, end,
1451 					BTREE_TRIGGER_NORUN, NULL) ?:
1452 		bch2_btree_delete_range(c, BTREE_ID_backpointers, start, end,
1453 					BTREE_TRIGGER_NORUN, NULL) ?:
1454 		bch2_btree_delete_range(c, BTREE_ID_alloc, start, end,
1455 					BTREE_TRIGGER_NORUN, NULL) ?:
1456 		bch2_btree_delete_range(c, BTREE_ID_bucket_gens, start, end,
1457 					BTREE_TRIGGER_NORUN, NULL);
1458 	if (ret)
1459 		bch_err_msg(c, ret, "removing dev alloc info");
1460 
1461 	return ret;
1462 }
1463 
1464 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags)
1465 {
1466 	struct bch_member *m;
1467 	unsigned dev_idx = ca->dev_idx, data;
1468 	int ret;
1469 
1470 	down_write(&c->state_lock);
1471 
1472 	/*
1473 	 * We consume a reference to ca->ref, regardless of whether we succeed
1474 	 * or fail:
1475 	 */
1476 	percpu_ref_put(&ca->ref);
1477 
1478 	if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) {
1479 		bch_err(ca, "Cannot remove without losing data");
1480 		ret = -BCH_ERR_device_state_not_allowed;
1481 		goto err;
1482 	}
1483 
1484 	__bch2_dev_read_only(c, ca);
1485 
1486 	ret = bch2_dev_data_drop(c, ca->dev_idx, flags);
1487 	if (ret) {
1488 		bch_err_msg(ca, ret, "dropping data");
1489 		goto err;
1490 	}
1491 
1492 	ret = bch2_dev_remove_alloc(c, ca);
1493 	if (ret) {
1494 		bch_err_msg(ca, ret, "deleting alloc info");
1495 		goto err;
1496 	}
1497 
1498 	ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx);
1499 	if (ret) {
1500 		bch_err_msg(ca, ret, "flushing journal");
1501 		goto err;
1502 	}
1503 
1504 	ret = bch2_journal_flush(&c->journal);
1505 	if (ret) {
1506 		bch_err(ca, "journal error");
1507 		goto err;
1508 	}
1509 
1510 	ret = bch2_replicas_gc2(c);
1511 	if (ret) {
1512 		bch_err_msg(ca, ret, "in replicas_gc2()");
1513 		goto err;
1514 	}
1515 
1516 	data = bch2_dev_has_data(c, ca);
1517 	if (data) {
1518 		struct printbuf data_has = PRINTBUF;
1519 
1520 		prt_bitflags(&data_has, bch2_data_types, data);
1521 		bch_err(ca, "Remove failed, still has data (%s)", data_has.buf);
1522 		printbuf_exit(&data_has);
1523 		ret = -EBUSY;
1524 		goto err;
1525 	}
1526 
1527 	__bch2_dev_offline(c, ca);
1528 
1529 	mutex_lock(&c->sb_lock);
1530 	rcu_assign_pointer(c->devs[ca->dev_idx], NULL);
1531 	mutex_unlock(&c->sb_lock);
1532 
1533 	percpu_ref_kill(&ca->ref);
1534 	wait_for_completion(&ca->ref_completion);
1535 
1536 	bch2_dev_free(ca);
1537 
1538 	/*
1539 	 * At this point the device object has been removed in-core, but the
1540 	 * on-disk journal might still refer to the device index via sb device
1541 	 * usage entries. Recovery fails if it sees usage information for an
1542 	 * invalid device. Flush journal pins to push the back of the journal
1543 	 * past now invalid device index references before we update the
1544 	 * superblock, but after the device object has been removed so any
1545 	 * further journal writes elide usage info for the device.
1546 	 */
1547 	bch2_journal_flush_all_pins(&c->journal);
1548 
1549 	/*
1550 	 * Free this device's slot in the bch_member array - all pointers to
1551 	 * this device must be gone:
1552 	 */
1553 	mutex_lock(&c->sb_lock);
1554 	m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx);
1555 	memset(&m->uuid, 0, sizeof(m->uuid));
1556 
1557 	bch2_write_super(c);
1558 
1559 	mutex_unlock(&c->sb_lock);
1560 	up_write(&c->state_lock);
1561 
1562 	bch2_dev_usage_journal_reserve(c);
1563 	return 0;
1564 err:
1565 	if (ca->mi.state == BCH_MEMBER_STATE_rw &&
1566 	    !percpu_ref_is_zero(&ca->io_ref))
1567 		__bch2_dev_read_write(c, ca);
1568 	up_write(&c->state_lock);
1569 	return ret;
1570 }
1571 
1572 /* Add new device to running filesystem: */
1573 int bch2_dev_add(struct bch_fs *c, const char *path)
1574 {
1575 	struct bch_opts opts = bch2_opts_empty();
1576 	struct bch_sb_handle sb;
1577 	struct bch_dev *ca = NULL;
1578 	struct bch_sb_field_members_v2 *mi;
1579 	struct bch_member dev_mi;
1580 	unsigned dev_idx, nr_devices, u64s;
1581 	struct printbuf errbuf = PRINTBUF;
1582 	struct printbuf label = PRINTBUF;
1583 	int ret;
1584 
1585 	ret = bch2_read_super(path, &opts, &sb);
1586 	if (ret) {
1587 		bch_err_msg(c, ret, "reading super");
1588 		goto err;
1589 	}
1590 
1591 	dev_mi = bch2_sb_member_get(sb.sb, sb.sb->dev_idx);
1592 
1593 	if (BCH_MEMBER_GROUP(&dev_mi)) {
1594 		bch2_disk_path_to_text(&label, sb.sb, BCH_MEMBER_GROUP(&dev_mi) - 1);
1595 		if (label.allocation_failure) {
1596 			ret = -ENOMEM;
1597 			goto err;
1598 		}
1599 	}
1600 
1601 	ret = bch2_dev_may_add(sb.sb, c);
1602 	if (ret) {
1603 		bch_err_fn(c, ret);
1604 		goto err;
1605 	}
1606 
1607 	ca = __bch2_dev_alloc(c, &dev_mi);
1608 	if (!ca) {
1609 		ret = -ENOMEM;
1610 		goto err;
1611 	}
1612 
1613 	bch2_dev_usage_init(ca);
1614 
1615 	ret = __bch2_dev_attach_bdev(ca, &sb);
1616 	if (ret)
1617 		goto err;
1618 
1619 	ret = bch2_dev_journal_alloc(ca);
1620 	if (ret) {
1621 		bch_err_msg(c, ret, "allocating journal");
1622 		goto err;
1623 	}
1624 
1625 	down_write(&c->state_lock);
1626 	mutex_lock(&c->sb_lock);
1627 
1628 	ret = bch2_sb_from_fs(c, ca);
1629 	if (ret) {
1630 		bch_err_msg(c, ret, "setting up new superblock");
1631 		goto err_unlock;
1632 	}
1633 
1634 	mi = bch2_sb_field_get(ca->disk_sb.sb, members_v2);
1635 
1636 	if (!bch2_sb_field_resize(&ca->disk_sb, members_v2,
1637 				le32_to_cpu(mi->field.u64s) +
1638 				sizeof(dev_mi) / sizeof(u64))) {
1639 		ret = -BCH_ERR_ENOSPC_sb_members;
1640 		bch_err_msg(c, ret, "setting up new superblock");
1641 		goto err_unlock;
1642 	}
1643 
1644 	if (dynamic_fault("bcachefs:add:no_slot"))
1645 		goto no_slot;
1646 
1647 	for (dev_idx = 0; dev_idx < BCH_SB_MEMBERS_MAX; dev_idx++)
1648 		if (!bch2_dev_exists(c->disk_sb.sb, dev_idx))
1649 			goto have_slot;
1650 no_slot:
1651 	ret = -BCH_ERR_ENOSPC_sb_members;
1652 	bch_err_msg(c, ret, "setting up new superblock");
1653 	goto err_unlock;
1654 
1655 have_slot:
1656 	nr_devices = max_t(unsigned, dev_idx + 1, c->sb.nr_devices);
1657 	u64s = DIV_ROUND_UP(sizeof(struct bch_sb_field_members_v2) +
1658 			    le16_to_cpu(mi->member_bytes) * nr_devices, sizeof(u64));
1659 
1660 	mi = bch2_sb_field_resize(&c->disk_sb, members_v2, u64s);
1661 	if (!mi) {
1662 		ret = -BCH_ERR_ENOSPC_sb_members;
1663 		bch_err_msg(c, ret, "setting up new superblock");
1664 		goto err_unlock;
1665 	}
1666 	struct bch_member *m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx);
1667 
1668 	/* success: */
1669 
1670 	*m = dev_mi;
1671 	m->last_mount = cpu_to_le64(ktime_get_real_seconds());
1672 	c->disk_sb.sb->nr_devices	= nr_devices;
1673 
1674 	ca->disk_sb.sb->dev_idx	= dev_idx;
1675 	bch2_dev_attach(c, ca, dev_idx);
1676 
1677 	if (BCH_MEMBER_GROUP(&dev_mi)) {
1678 		ret = __bch2_dev_group_set(c, ca, label.buf);
1679 		if (ret) {
1680 			bch_err_msg(c, ret, "creating new label");
1681 			goto err_unlock;
1682 		}
1683 	}
1684 
1685 	bch2_write_super(c);
1686 	mutex_unlock(&c->sb_lock);
1687 
1688 	bch2_dev_usage_journal_reserve(c);
1689 
1690 	ret = bch2_trans_mark_dev_sb(c, ca);
1691 	if (ret) {
1692 		bch_err_msg(c, ret, "marking new superblock");
1693 		goto err_late;
1694 	}
1695 
1696 	ret = bch2_fs_freespace_init(c);
1697 	if (ret) {
1698 		bch_err_msg(c, ret, "initializing free space");
1699 		goto err_late;
1700 	}
1701 
1702 	ca->new_fs_bucket_idx = 0;
1703 
1704 	if (ca->mi.state == BCH_MEMBER_STATE_rw)
1705 		__bch2_dev_read_write(c, ca);
1706 
1707 	up_write(&c->state_lock);
1708 	return 0;
1709 
1710 err_unlock:
1711 	mutex_unlock(&c->sb_lock);
1712 	up_write(&c->state_lock);
1713 err:
1714 	if (ca)
1715 		bch2_dev_free(ca);
1716 	bch2_free_super(&sb);
1717 	printbuf_exit(&label);
1718 	printbuf_exit(&errbuf);
1719 	return ret;
1720 err_late:
1721 	up_write(&c->state_lock);
1722 	ca = NULL;
1723 	goto err;
1724 }
1725 
1726 /* Hot add existing device to running filesystem: */
1727 int bch2_dev_online(struct bch_fs *c, const char *path)
1728 {
1729 	struct bch_opts opts = bch2_opts_empty();
1730 	struct bch_sb_handle sb = { NULL };
1731 	struct bch_dev *ca;
1732 	unsigned dev_idx;
1733 	int ret;
1734 
1735 	down_write(&c->state_lock);
1736 
1737 	ret = bch2_read_super(path, &opts, &sb);
1738 	if (ret) {
1739 		up_write(&c->state_lock);
1740 		return ret;
1741 	}
1742 
1743 	dev_idx = sb.sb->dev_idx;
1744 
1745 	ret = bch2_dev_in_fs(c->disk_sb.sb, sb.sb);
1746 	if (ret) {
1747 		bch_err_msg(c, ret, "bringing %s online", path);
1748 		goto err;
1749 	}
1750 
1751 	ret = bch2_dev_attach_bdev(c, &sb);
1752 	if (ret)
1753 		goto err;
1754 
1755 	ca = bch_dev_locked(c, dev_idx);
1756 
1757 	ret = bch2_trans_mark_dev_sb(c, ca);
1758 	if (ret) {
1759 		bch_err_msg(c, ret, "bringing %s online: error from bch2_trans_mark_dev_sb", path);
1760 		goto err;
1761 	}
1762 
1763 	if (ca->mi.state == BCH_MEMBER_STATE_rw)
1764 		__bch2_dev_read_write(c, ca);
1765 
1766 	mutex_lock(&c->sb_lock);
1767 	struct bch_member *m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
1768 
1769 	m->last_mount =
1770 		cpu_to_le64(ktime_get_real_seconds());
1771 
1772 	bch2_write_super(c);
1773 	mutex_unlock(&c->sb_lock);
1774 
1775 	ret = bch2_fs_freespace_init(c);
1776 	if (ret)
1777 		bch_err_msg(c, ret, "initializing free space");
1778 
1779 	up_write(&c->state_lock);
1780 	return 0;
1781 err:
1782 	up_write(&c->state_lock);
1783 	bch2_free_super(&sb);
1784 	return ret;
1785 }
1786 
1787 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags)
1788 {
1789 	down_write(&c->state_lock);
1790 
1791 	if (!bch2_dev_is_online(ca)) {
1792 		bch_err(ca, "Already offline");
1793 		up_write(&c->state_lock);
1794 		return 0;
1795 	}
1796 
1797 	if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) {
1798 		bch_err(ca, "Cannot offline required disk");
1799 		up_write(&c->state_lock);
1800 		return -BCH_ERR_device_state_not_allowed;
1801 	}
1802 
1803 	__bch2_dev_offline(c, ca);
1804 
1805 	up_write(&c->state_lock);
1806 	return 0;
1807 }
1808 
1809 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets)
1810 {
1811 	struct bch_member *m;
1812 	u64 old_nbuckets;
1813 	int ret = 0;
1814 
1815 	down_write(&c->state_lock);
1816 	old_nbuckets = ca->mi.nbuckets;
1817 
1818 	if (nbuckets < ca->mi.nbuckets) {
1819 		bch_err(ca, "Cannot shrink yet");
1820 		ret = -EINVAL;
1821 		goto err;
1822 	}
1823 
1824 	if (bch2_dev_is_online(ca) &&
1825 	    get_capacity(ca->disk_sb.bdev->bd_disk) <
1826 	    ca->mi.bucket_size * nbuckets) {
1827 		bch_err(ca, "New size larger than device");
1828 		ret = -BCH_ERR_device_size_too_small;
1829 		goto err;
1830 	}
1831 
1832 	ret = bch2_dev_buckets_resize(c, ca, nbuckets);
1833 	if (ret) {
1834 		bch_err_msg(ca, ret, "resizing buckets");
1835 		goto err;
1836 	}
1837 
1838 	ret = bch2_trans_mark_dev_sb(c, ca);
1839 	if (ret)
1840 		goto err;
1841 
1842 	mutex_lock(&c->sb_lock);
1843 	m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
1844 	m->nbuckets = cpu_to_le64(nbuckets);
1845 
1846 	bch2_write_super(c);
1847 	mutex_unlock(&c->sb_lock);
1848 
1849 	if (ca->mi.freespace_initialized) {
1850 		ret = bch2_dev_freespace_init(c, ca, old_nbuckets, nbuckets);
1851 		if (ret)
1852 			goto err;
1853 
1854 		/*
1855 		 * XXX: this is all wrong transactionally - we'll be able to do
1856 		 * this correctly after the disk space accounting rewrite
1857 		 */
1858 		ca->usage_base->d[BCH_DATA_free].buckets += nbuckets - old_nbuckets;
1859 	}
1860 
1861 	bch2_recalc_capacity(c);
1862 err:
1863 	up_write(&c->state_lock);
1864 	return ret;
1865 }
1866 
1867 /* return with ref on ca->ref: */
1868 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *name)
1869 {
1870 	struct bch_dev *ca;
1871 	unsigned i;
1872 
1873 	rcu_read_lock();
1874 	for_each_member_device_rcu(ca, c, i, NULL)
1875 		if (!strcmp(name, ca->name))
1876 			goto found;
1877 	ca = ERR_PTR(-BCH_ERR_ENOENT_dev_not_found);
1878 found:
1879 	rcu_read_unlock();
1880 
1881 	return ca;
1882 }
1883 
1884 /* Filesystem open: */
1885 
1886 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices,
1887 			    struct bch_opts opts)
1888 {
1889 	struct bch_sb_handle *sb = NULL;
1890 	struct bch_fs *c = NULL;
1891 	unsigned i, best_sb = 0;
1892 	struct printbuf errbuf = PRINTBUF;
1893 	int ret = 0;
1894 
1895 	if (!try_module_get(THIS_MODULE))
1896 		return ERR_PTR(-ENODEV);
1897 
1898 	if (!nr_devices) {
1899 		ret = -EINVAL;
1900 		goto err;
1901 	}
1902 
1903 	sb = kcalloc(nr_devices, sizeof(*sb), GFP_KERNEL);
1904 	if (!sb) {
1905 		ret = -ENOMEM;
1906 		goto err;
1907 	}
1908 
1909 	for (i = 0; i < nr_devices; i++) {
1910 		ret = bch2_read_super(devices[i], &opts, &sb[i]);
1911 		if (ret)
1912 			goto err;
1913 
1914 	}
1915 
1916 	for (i = 1; i < nr_devices; i++)
1917 		if (le64_to_cpu(sb[i].sb->seq) >
1918 		    le64_to_cpu(sb[best_sb].sb->seq))
1919 			best_sb = i;
1920 
1921 	i = 0;
1922 	while (i < nr_devices) {
1923 		if (i != best_sb &&
1924 		    !bch2_dev_exists(sb[best_sb].sb, sb[i].sb->dev_idx)) {
1925 			pr_info("%pg has been removed, skipping", sb[i].bdev);
1926 			bch2_free_super(&sb[i]);
1927 			array_remove_item(sb, nr_devices, i);
1928 			continue;
1929 		}
1930 
1931 		ret = bch2_dev_in_fs(sb[best_sb].sb, sb[i].sb);
1932 		if (ret)
1933 			goto err_print;
1934 		i++;
1935 	}
1936 
1937 	c = bch2_fs_alloc(sb[best_sb].sb, opts);
1938 	if (IS_ERR(c)) {
1939 		ret = PTR_ERR(c);
1940 		goto err;
1941 	}
1942 
1943 	down_write(&c->state_lock);
1944 	for (i = 0; i < nr_devices; i++) {
1945 		ret = bch2_dev_attach_bdev(c, &sb[i]);
1946 		if (ret) {
1947 			up_write(&c->state_lock);
1948 			goto err;
1949 		}
1950 	}
1951 	up_write(&c->state_lock);
1952 
1953 	if (!bch2_fs_may_start(c)) {
1954 		ret = -BCH_ERR_insufficient_devices_to_start;
1955 		goto err_print;
1956 	}
1957 
1958 	if (!c->opts.nostart) {
1959 		ret = bch2_fs_start(c);
1960 		if (ret)
1961 			goto err;
1962 	}
1963 out:
1964 	kfree(sb);
1965 	printbuf_exit(&errbuf);
1966 	module_put(THIS_MODULE);
1967 	return c;
1968 err_print:
1969 	pr_err("bch_fs_open err opening %s: %s",
1970 	       devices[0], bch2_err_str(ret));
1971 err:
1972 	if (!IS_ERR_OR_NULL(c))
1973 		bch2_fs_stop(c);
1974 	if (sb)
1975 		for (i = 0; i < nr_devices; i++)
1976 			bch2_free_super(&sb[i]);
1977 	c = ERR_PTR(ret);
1978 	goto out;
1979 }
1980 
1981 /* Global interfaces/init */
1982 
1983 static void bcachefs_exit(void)
1984 {
1985 	bch2_debug_exit();
1986 	bch2_vfs_exit();
1987 	bch2_chardev_exit();
1988 	bch2_btree_key_cache_exit();
1989 	if (bcachefs_kset)
1990 		kset_unregister(bcachefs_kset);
1991 }
1992 
1993 static int __init bcachefs_init(void)
1994 {
1995 	bch2_bkey_pack_test();
1996 
1997 	if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) ||
1998 	    bch2_btree_key_cache_init() ||
1999 	    bch2_chardev_init() ||
2000 	    bch2_vfs_init() ||
2001 	    bch2_debug_init())
2002 		goto err;
2003 
2004 	return 0;
2005 err:
2006 	bcachefs_exit();
2007 	return -ENOMEM;
2008 }
2009 
2010 #define BCH_DEBUG_PARAM(name, description)			\
2011 	bool bch2_##name;					\
2012 	module_param_named(name, bch2_##name, bool, 0644);	\
2013 	MODULE_PARM_DESC(name, description);
2014 BCH_DEBUG_PARAMS()
2015 #undef BCH_DEBUG_PARAM
2016 
2017 __maybe_unused
2018 static unsigned bch2_metadata_version = bcachefs_metadata_version_current;
2019 module_param_named(version, bch2_metadata_version, uint, 0400);
2020 
2021 module_exit(bcachefs_exit);
2022 module_init(bcachefs_init);
2023