xref: /linux/fs/bcachefs/six.c (revision d26270061ae66b915138af7cd73ca6f8b85e6b44)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/export.h>
4 #include <linux/log2.h>
5 #include <linux/percpu.h>
6 #include <linux/preempt.h>
7 #include <linux/rcupdate.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/sched/rt.h>
11 #include <linux/sched/task.h>
12 #include <linux/slab.h>
13 
14 #include <trace/events/lock.h>
15 
16 #include "six.h"
17 
18 #ifdef DEBUG
19 #define EBUG_ON(cond)			BUG_ON(cond)
20 #else
21 #define EBUG_ON(cond)			do {} while (0)
22 #endif
23 
24 #define six_acquire(l, t, r, ip)	lock_acquire(l, 0, t, r, 1, NULL, ip)
25 #define six_release(l, ip)		lock_release(l, ip)
26 
27 static void do_six_unlock_type(struct six_lock *lock, enum six_lock_type type);
28 
29 #define SIX_LOCK_HELD_read_OFFSET	0
30 #define SIX_LOCK_HELD_read		~(~0U << 26)
31 #define SIX_LOCK_HELD_intent		(1U << 26)
32 #define SIX_LOCK_HELD_write		(1U << 27)
33 #define SIX_LOCK_WAITING_read		(1U << (28 + SIX_LOCK_read))
34 #define SIX_LOCK_WAITING_write		(1U << (28 + SIX_LOCK_write))
35 #define SIX_LOCK_NOSPIN			(1U << 31)
36 
37 struct six_lock_vals {
38 	/* Value we add to the lock in order to take the lock: */
39 	u32			lock_val;
40 
41 	/* If the lock has this value (used as a mask), taking the lock fails: */
42 	u32			lock_fail;
43 
44 	/* Mask that indicates lock is held for this type: */
45 	u32			held_mask;
46 
47 	/* Waitlist we wakeup when releasing the lock: */
48 	enum six_lock_type	unlock_wakeup;
49 };
50 
51 static const struct six_lock_vals l[] = {
52 	[SIX_LOCK_read] = {
53 		.lock_val	= 1U << SIX_LOCK_HELD_read_OFFSET,
54 		.lock_fail	= SIX_LOCK_HELD_write,
55 		.held_mask	= SIX_LOCK_HELD_read,
56 		.unlock_wakeup	= SIX_LOCK_write,
57 	},
58 	[SIX_LOCK_intent] = {
59 		.lock_val	= SIX_LOCK_HELD_intent,
60 		.lock_fail	= SIX_LOCK_HELD_intent,
61 		.held_mask	= SIX_LOCK_HELD_intent,
62 		.unlock_wakeup	= SIX_LOCK_intent,
63 	},
64 	[SIX_LOCK_write] = {
65 		.lock_val	= SIX_LOCK_HELD_write,
66 		.lock_fail	= SIX_LOCK_HELD_read,
67 		.held_mask	= SIX_LOCK_HELD_write,
68 		.unlock_wakeup	= SIX_LOCK_read,
69 	},
70 };
71 
72 static inline void six_set_bitmask(struct six_lock *lock, u32 mask)
73 {
74 	if ((atomic_read(&lock->state) & mask) != mask)
75 		atomic_or(mask, &lock->state);
76 }
77 
78 static inline void six_clear_bitmask(struct six_lock *lock, u32 mask)
79 {
80 	if (atomic_read(&lock->state) & mask)
81 		atomic_and(~mask, &lock->state);
82 }
83 
84 static inline void six_set_owner(struct six_lock *lock, enum six_lock_type type,
85 				 u32 old, struct task_struct *owner)
86 {
87 	if (type != SIX_LOCK_intent)
88 		return;
89 
90 	if (!(old & SIX_LOCK_HELD_intent)) {
91 		EBUG_ON(lock->owner);
92 		lock->owner = owner;
93 	} else {
94 		EBUG_ON(lock->owner != current);
95 	}
96 }
97 
98 static inline unsigned pcpu_read_count(struct six_lock *lock)
99 {
100 	unsigned read_count = 0;
101 	int cpu;
102 
103 	for_each_possible_cpu(cpu)
104 		read_count += *per_cpu_ptr(lock->readers, cpu);
105 	return read_count;
106 }
107 
108 /*
109  * __do_six_trylock() - main trylock routine
110  *
111  * Returns 1 on success, 0 on failure
112  *
113  * In percpu reader mode, a failed trylock may cause a spurious trylock failure
114  * for anoter thread taking the competing lock type, and we may havve to do a
115  * wakeup: when a wakeup is required, we return -1 - wakeup_type.
116  */
117 static int __do_six_trylock(struct six_lock *lock, enum six_lock_type type,
118 			    struct task_struct *task, bool try)
119 {
120 	int ret;
121 	u32 old;
122 
123 	EBUG_ON(type == SIX_LOCK_write && lock->owner != task);
124 	EBUG_ON(type == SIX_LOCK_write &&
125 		(try != !(atomic_read(&lock->state) & SIX_LOCK_HELD_write)));
126 
127 	/*
128 	 * Percpu reader mode:
129 	 *
130 	 * The basic idea behind this algorithm is that you can implement a lock
131 	 * between two threads without any atomics, just memory barriers:
132 	 *
133 	 * For two threads you'll need two variables, one variable for "thread a
134 	 * has the lock" and another for "thread b has the lock".
135 	 *
136 	 * To take the lock, a thread sets its variable indicating that it holds
137 	 * the lock, then issues a full memory barrier, then reads from the
138 	 * other thread's variable to check if the other thread thinks it has
139 	 * the lock. If we raced, we backoff and retry/sleep.
140 	 *
141 	 * Failure to take the lock may cause a spurious trylock failure in
142 	 * another thread, because we temporarily set the lock to indicate that
143 	 * we held it. This would be a problem for a thread in six_lock(), when
144 	 * they are calling trylock after adding themself to the waitlist and
145 	 * prior to sleeping.
146 	 *
147 	 * Therefore, if we fail to get the lock, and there were waiters of the
148 	 * type we conflict with, we will have to issue a wakeup.
149 	 *
150 	 * Since we may be called under wait_lock (and by the wakeup code
151 	 * itself), we return that the wakeup has to be done instead of doing it
152 	 * here.
153 	 */
154 	if (type == SIX_LOCK_read && lock->readers) {
155 		preempt_disable();
156 		this_cpu_inc(*lock->readers); /* signal that we own lock */
157 
158 		smp_mb();
159 
160 		old = atomic_read(&lock->state);
161 		ret = !(old & l[type].lock_fail);
162 
163 		this_cpu_sub(*lock->readers, !ret);
164 		preempt_enable();
165 
166 		if (!ret) {
167 			smp_mb();
168 			if (atomic_read(&lock->state) & SIX_LOCK_WAITING_write)
169 				ret = -1 - SIX_LOCK_write;
170 		}
171 	} else if (type == SIX_LOCK_write && lock->readers) {
172 		if (try) {
173 			atomic_add(SIX_LOCK_HELD_write, &lock->state);
174 			smp_mb__after_atomic();
175 		}
176 
177 		ret = !pcpu_read_count(lock);
178 
179 		if (try && !ret) {
180 			old = atomic_sub_return(SIX_LOCK_HELD_write, &lock->state);
181 			if (old & SIX_LOCK_WAITING_read)
182 				ret = -1 - SIX_LOCK_read;
183 		}
184 	} else {
185 		old = atomic_read(&lock->state);
186 		do {
187 			ret = !(old & l[type].lock_fail);
188 			if (!ret || (type == SIX_LOCK_write && !try)) {
189 				smp_mb();
190 				break;
191 			}
192 		} while (!atomic_try_cmpxchg_acquire(&lock->state, &old, old + l[type].lock_val));
193 
194 		EBUG_ON(ret && !(atomic_read(&lock->state) & l[type].held_mask));
195 	}
196 
197 	if (ret > 0)
198 		six_set_owner(lock, type, old, task);
199 
200 	EBUG_ON(type == SIX_LOCK_write && try && ret <= 0 &&
201 		(atomic_read(&lock->state) & SIX_LOCK_HELD_write));
202 
203 	return ret;
204 }
205 
206 static void __six_lock_wakeup(struct six_lock *lock, enum six_lock_type lock_type)
207 {
208 	struct six_lock_waiter *w, *next;
209 	struct task_struct *task;
210 	bool saw_one;
211 	int ret;
212 again:
213 	ret = 0;
214 	saw_one = false;
215 	raw_spin_lock(&lock->wait_lock);
216 
217 	list_for_each_entry_safe(w, next, &lock->wait_list, list) {
218 		if (w->lock_want != lock_type)
219 			continue;
220 
221 		if (saw_one && lock_type != SIX_LOCK_read)
222 			goto unlock;
223 		saw_one = true;
224 
225 		ret = __do_six_trylock(lock, lock_type, w->task, false);
226 		if (ret <= 0)
227 			goto unlock;
228 
229 		/*
230 		 * Similar to percpu_rwsem_wake_function(), we need to guard
231 		 * against the wakee noticing w->lock_acquired, returning, and
232 		 * then exiting before we do the wakeup:
233 		 */
234 		task = get_task_struct(w->task);
235 		__list_del(w->list.prev, w->list.next);
236 		/*
237 		 * The release barrier here ensures the ordering of the
238 		 * __list_del before setting w->lock_acquired; @w is on the
239 		 * stack of the thread doing the waiting and will be reused
240 		 * after it sees w->lock_acquired with no other locking:
241 		 * pairs with smp_load_acquire() in six_lock_slowpath()
242 		 */
243 		smp_store_release(&w->lock_acquired, true);
244 		wake_up_process(task);
245 		put_task_struct(task);
246 	}
247 
248 	six_clear_bitmask(lock, SIX_LOCK_WAITING_read << lock_type);
249 unlock:
250 	raw_spin_unlock(&lock->wait_lock);
251 
252 	if (ret < 0) {
253 		lock_type = -ret - 1;
254 		goto again;
255 	}
256 }
257 
258 __always_inline
259 static void six_lock_wakeup(struct six_lock *lock, u32 state,
260 			    enum six_lock_type lock_type)
261 {
262 	if (lock_type == SIX_LOCK_write && (state & SIX_LOCK_HELD_read))
263 		return;
264 
265 	if (!(state & (SIX_LOCK_WAITING_read << lock_type)))
266 		return;
267 
268 	__six_lock_wakeup(lock, lock_type);
269 }
270 
271 __always_inline
272 static bool do_six_trylock(struct six_lock *lock, enum six_lock_type type, bool try)
273 {
274 	int ret;
275 
276 	ret = __do_six_trylock(lock, type, current, try);
277 	if (ret < 0)
278 		__six_lock_wakeup(lock, -ret - 1);
279 
280 	return ret > 0;
281 }
282 
283 /**
284  * six_trylock_ip - attempt to take a six lock without blocking
285  * @lock:	lock to take
286  * @type:	SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write
287  * @ip:		ip parameter for lockdep/lockstat, i.e. _THIS_IP_
288  *
289  * Return: true on success, false on failure.
290  */
291 bool six_trylock_ip(struct six_lock *lock, enum six_lock_type type, unsigned long ip)
292 {
293 	if (!do_six_trylock(lock, type, true))
294 		return false;
295 
296 	if (type != SIX_LOCK_write)
297 		six_acquire(&lock->dep_map, 1, type == SIX_LOCK_read, ip);
298 	return true;
299 }
300 EXPORT_SYMBOL_GPL(six_trylock_ip);
301 
302 /**
303  * six_relock_ip - attempt to re-take a lock that was held previously
304  * @lock:	lock to take
305  * @type:	SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write
306  * @seq:	lock sequence number obtained from six_lock_seq() while lock was
307  *		held previously
308  * @ip:		ip parameter for lockdep/lockstat, i.e. _THIS_IP_
309  *
310  * Return: true on success, false on failure.
311  */
312 bool six_relock_ip(struct six_lock *lock, enum six_lock_type type,
313 		   unsigned seq, unsigned long ip)
314 {
315 	if (six_lock_seq(lock) != seq || !six_trylock_ip(lock, type, ip))
316 		return false;
317 
318 	if (six_lock_seq(lock) != seq) {
319 		six_unlock_ip(lock, type, ip);
320 		return false;
321 	}
322 
323 	return true;
324 }
325 EXPORT_SYMBOL_GPL(six_relock_ip);
326 
327 #ifdef CONFIG_BCACHEFS_SIX_OPTIMISTIC_SPIN
328 
329 static inline bool six_owner_running(struct six_lock *lock)
330 {
331 	/*
332 	 * When there's no owner, we might have preempted between the owner
333 	 * acquiring the lock and setting the owner field. If we're an RT task
334 	 * that will live-lock because we won't let the owner complete.
335 	 */
336 	rcu_read_lock();
337 	struct task_struct *owner = READ_ONCE(lock->owner);
338 	bool ret = owner ? owner_on_cpu(owner) : !rt_task(current);
339 	rcu_read_unlock();
340 
341 	return ret;
342 }
343 
344 static inline bool six_optimistic_spin(struct six_lock *lock,
345 				       struct six_lock_waiter *wait,
346 				       enum six_lock_type type)
347 {
348 	unsigned loop = 0;
349 	u64 end_time;
350 
351 	if (type == SIX_LOCK_write)
352 		return false;
353 
354 	if (lock->wait_list.next != &wait->list)
355 		return false;
356 
357 	if (atomic_read(&lock->state) & SIX_LOCK_NOSPIN)
358 		return false;
359 
360 	preempt_disable();
361 	end_time = sched_clock() + 10 * NSEC_PER_USEC;
362 
363 	while (!need_resched() && six_owner_running(lock)) {
364 		/*
365 		 * Ensures that writes to the waitlist entry happen after we see
366 		 * wait->lock_acquired: pairs with the smp_store_release in
367 		 * __six_lock_wakeup
368 		 */
369 		if (smp_load_acquire(&wait->lock_acquired)) {
370 			preempt_enable();
371 			return true;
372 		}
373 
374 		if (!(++loop & 0xf) && (time_after64(sched_clock(), end_time))) {
375 			six_set_bitmask(lock, SIX_LOCK_NOSPIN);
376 			break;
377 		}
378 
379 		/*
380 		 * The cpu_relax() call is a compiler barrier which forces
381 		 * everything in this loop to be re-loaded. We don't need
382 		 * memory barriers as we'll eventually observe the right
383 		 * values at the cost of a few extra spins.
384 		 */
385 		cpu_relax();
386 	}
387 
388 	preempt_enable();
389 	return false;
390 }
391 
392 #else /* CONFIG_LOCK_SPIN_ON_OWNER */
393 
394 static inline bool six_optimistic_spin(struct six_lock *lock,
395 				       struct six_lock_waiter *wait,
396 				       enum six_lock_type type)
397 {
398 	return false;
399 }
400 
401 #endif
402 
403 noinline
404 static int six_lock_slowpath(struct six_lock *lock, enum six_lock_type type,
405 			     struct six_lock_waiter *wait,
406 			     six_lock_should_sleep_fn should_sleep_fn, void *p,
407 			     unsigned long ip)
408 {
409 	int ret = 0;
410 
411 	if (type == SIX_LOCK_write) {
412 		EBUG_ON(atomic_read(&lock->state) & SIX_LOCK_HELD_write);
413 		atomic_add(SIX_LOCK_HELD_write, &lock->state);
414 		smp_mb__after_atomic();
415 	}
416 
417 	trace_contention_begin(lock, 0);
418 	lock_contended(&lock->dep_map, ip);
419 
420 	wait->task		= current;
421 	wait->lock_want		= type;
422 	wait->lock_acquired	= false;
423 
424 	raw_spin_lock(&lock->wait_lock);
425 	six_set_bitmask(lock, SIX_LOCK_WAITING_read << type);
426 	/*
427 	 * Retry taking the lock after taking waitlist lock, in case we raced
428 	 * with an unlock:
429 	 */
430 	ret = __do_six_trylock(lock, type, current, false);
431 	if (ret <= 0) {
432 		wait->start_time = local_clock();
433 
434 		if (!list_empty(&lock->wait_list)) {
435 			struct six_lock_waiter *last =
436 				list_last_entry(&lock->wait_list,
437 					struct six_lock_waiter, list);
438 
439 			if (time_before_eq64(wait->start_time, last->start_time))
440 				wait->start_time = last->start_time + 1;
441 		}
442 
443 		list_add_tail(&wait->list, &lock->wait_list);
444 	}
445 	raw_spin_unlock(&lock->wait_lock);
446 
447 	if (unlikely(ret > 0)) {
448 		ret = 0;
449 		goto out;
450 	}
451 
452 	if (unlikely(ret < 0)) {
453 		__six_lock_wakeup(lock, -ret - 1);
454 		ret = 0;
455 	}
456 
457 	if (six_optimistic_spin(lock, wait, type))
458 		goto out;
459 
460 	while (1) {
461 		set_current_state(TASK_UNINTERRUPTIBLE);
462 
463 		/*
464 		 * Ensures that writes to the waitlist entry happen after we see
465 		 * wait->lock_acquired: pairs with the smp_store_release in
466 		 * __six_lock_wakeup
467 		 */
468 		if (smp_load_acquire(&wait->lock_acquired))
469 			break;
470 
471 		ret = should_sleep_fn ? should_sleep_fn(lock, p) : 0;
472 		if (unlikely(ret)) {
473 			bool acquired;
474 
475 			/*
476 			 * If should_sleep_fn() returns an error, we are
477 			 * required to return that error even if we already
478 			 * acquired the lock - should_sleep_fn() might have
479 			 * modified external state (e.g. when the deadlock cycle
480 			 * detector in bcachefs issued a transaction restart)
481 			 */
482 			raw_spin_lock(&lock->wait_lock);
483 			acquired = wait->lock_acquired;
484 			if (!acquired)
485 				list_del(&wait->list);
486 			raw_spin_unlock(&lock->wait_lock);
487 
488 			if (unlikely(acquired))
489 				do_six_unlock_type(lock, type);
490 			break;
491 		}
492 
493 		schedule();
494 	}
495 
496 	__set_current_state(TASK_RUNNING);
497 out:
498 	if (ret && type == SIX_LOCK_write) {
499 		six_clear_bitmask(lock, SIX_LOCK_HELD_write);
500 		six_lock_wakeup(lock, atomic_read(&lock->state), SIX_LOCK_read);
501 	}
502 	trace_contention_end(lock, 0);
503 
504 	return ret;
505 }
506 
507 /**
508  * six_lock_ip_waiter - take a lock, with full waitlist interface
509  * @lock:	lock to take
510  * @type:	SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write
511  * @wait:	pointer to wait object, which will be added to lock's waitlist
512  * @should_sleep_fn: callback run after adding to waitlist, immediately prior
513  *		to scheduling
514  * @p:		passed through to @should_sleep_fn
515  * @ip:		ip parameter for lockdep/lockstat, i.e. _THIS_IP_
516  *
517  * This is the most general six_lock() variant, with parameters to support full
518  * cycle detection for deadlock avoidance.
519  *
520  * The code calling this function must implement tracking of held locks, and the
521  * @wait object should be embedded into the struct that tracks held locks -
522  * which must also be accessible in a thread-safe way.
523  *
524  * @should_sleep_fn should invoke the cycle detector; it should walk each
525  * lock's waiters, and for each waiter recursively walk their held locks.
526  *
527  * When this function must block, @wait will be added to @lock's waitlist before
528  * calling trylock, and before calling @should_sleep_fn, and @wait will not be
529  * removed from the lock waitlist until the lock has been successfully acquired,
530  * or we abort.
531  *
532  * @wait.start_time will be monotonically increasing for any given waitlist, and
533  * thus may be used as a loop cursor.
534  *
535  * Return: 0 on success, or the return code from @should_sleep_fn on failure.
536  */
537 int six_lock_ip_waiter(struct six_lock *lock, enum six_lock_type type,
538 		       struct six_lock_waiter *wait,
539 		       six_lock_should_sleep_fn should_sleep_fn, void *p,
540 		       unsigned long ip)
541 {
542 	int ret;
543 
544 	wait->start_time = 0;
545 
546 	if (type != SIX_LOCK_write)
547 		six_acquire(&lock->dep_map, 0, type == SIX_LOCK_read, ip);
548 
549 	ret = do_six_trylock(lock, type, true) ? 0
550 		: six_lock_slowpath(lock, type, wait, should_sleep_fn, p, ip);
551 
552 	if (ret && type != SIX_LOCK_write)
553 		six_release(&lock->dep_map, ip);
554 	if (!ret)
555 		lock_acquired(&lock->dep_map, ip);
556 
557 	return ret;
558 }
559 EXPORT_SYMBOL_GPL(six_lock_ip_waiter);
560 
561 __always_inline
562 static void do_six_unlock_type(struct six_lock *lock, enum six_lock_type type)
563 {
564 	u32 state;
565 
566 	if (type == SIX_LOCK_intent)
567 		lock->owner = NULL;
568 
569 	if (type == SIX_LOCK_read &&
570 	    lock->readers) {
571 		smp_mb(); /* unlock barrier */
572 		this_cpu_dec(*lock->readers);
573 		smp_mb(); /* between unlocking and checking for waiters */
574 		state = atomic_read(&lock->state);
575 	} else {
576 		u32 v = l[type].lock_val;
577 
578 		if (type != SIX_LOCK_read)
579 			v += atomic_read(&lock->state) & SIX_LOCK_NOSPIN;
580 
581 		EBUG_ON(!(atomic_read(&lock->state) & l[type].held_mask));
582 		state = atomic_sub_return_release(v, &lock->state);
583 	}
584 
585 	six_lock_wakeup(lock, state, l[type].unlock_wakeup);
586 }
587 
588 /**
589  * six_unlock_ip - drop a six lock
590  * @lock:	lock to unlock
591  * @type:	SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write
592  * @ip:		ip parameter for lockdep/lockstat, i.e. _THIS_IP_
593  *
594  * When a lock is held multiple times (because six_lock_incement()) was used),
595  * this decrements the 'lock held' counter by one.
596  *
597  * For example:
598  * six_lock_read(&foo->lock);				read count 1
599  * six_lock_increment(&foo->lock, SIX_LOCK_read);	read count 2
600  * six_lock_unlock(&foo->lock, SIX_LOCK_read);		read count 1
601  * six_lock_unlock(&foo->lock, SIX_LOCK_read);		read count 0
602  */
603 void six_unlock_ip(struct six_lock *lock, enum six_lock_type type, unsigned long ip)
604 {
605 	EBUG_ON(type == SIX_LOCK_write &&
606 		!(atomic_read(&lock->state) & SIX_LOCK_HELD_intent));
607 	EBUG_ON((type == SIX_LOCK_write ||
608 		 type == SIX_LOCK_intent) &&
609 		lock->owner != current);
610 
611 	if (type != SIX_LOCK_write)
612 		six_release(&lock->dep_map, ip);
613 	else
614 		lock->seq++;
615 
616 	if (type == SIX_LOCK_intent &&
617 	    lock->intent_lock_recurse) {
618 		--lock->intent_lock_recurse;
619 		return;
620 	}
621 
622 	do_six_unlock_type(lock, type);
623 }
624 EXPORT_SYMBOL_GPL(six_unlock_ip);
625 
626 /**
627  * six_lock_downgrade - convert an intent lock to a read lock
628  * @lock:	lock to dowgrade
629  *
630  * @lock will have read count incremented and intent count decremented
631  */
632 void six_lock_downgrade(struct six_lock *lock)
633 {
634 	six_lock_increment(lock, SIX_LOCK_read);
635 	six_unlock_intent(lock);
636 }
637 EXPORT_SYMBOL_GPL(six_lock_downgrade);
638 
639 /**
640  * six_lock_tryupgrade - attempt to convert read lock to an intent lock
641  * @lock:	lock to upgrade
642  *
643  * On success, @lock will have intent count incremented and read count
644  * decremented
645  *
646  * Return: true on success, false on failure
647  */
648 bool six_lock_tryupgrade(struct six_lock *lock)
649 {
650 	u32 old = atomic_read(&lock->state), new;
651 
652 	do {
653 		new = old;
654 
655 		if (new & SIX_LOCK_HELD_intent)
656 			return false;
657 
658 		if (!lock->readers) {
659 			EBUG_ON(!(new & SIX_LOCK_HELD_read));
660 			new -= l[SIX_LOCK_read].lock_val;
661 		}
662 
663 		new |= SIX_LOCK_HELD_intent;
664 	} while (!atomic_try_cmpxchg_acquire(&lock->state, &old, new));
665 
666 	if (lock->readers)
667 		this_cpu_dec(*lock->readers);
668 
669 	six_set_owner(lock, SIX_LOCK_intent, old, current);
670 
671 	return true;
672 }
673 EXPORT_SYMBOL_GPL(six_lock_tryupgrade);
674 
675 /**
676  * six_trylock_convert - attempt to convert a held lock from one type to another
677  * @lock:	lock to upgrade
678  * @from:	SIX_LOCK_read or SIX_LOCK_intent
679  * @to:		SIX_LOCK_read or SIX_LOCK_intent
680  *
681  * On success, @lock will have intent count incremented and read count
682  * decremented
683  *
684  * Return: true on success, false on failure
685  */
686 bool six_trylock_convert(struct six_lock *lock,
687 			 enum six_lock_type from,
688 			 enum six_lock_type to)
689 {
690 	EBUG_ON(to == SIX_LOCK_write || from == SIX_LOCK_write);
691 
692 	if (to == from)
693 		return true;
694 
695 	if (to == SIX_LOCK_read) {
696 		six_lock_downgrade(lock);
697 		return true;
698 	} else {
699 		return six_lock_tryupgrade(lock);
700 	}
701 }
702 EXPORT_SYMBOL_GPL(six_trylock_convert);
703 
704 /**
705  * six_lock_increment - increase held lock count on a lock that is already held
706  * @lock:	lock to increment
707  * @type:	SIX_LOCK_read or SIX_LOCK_intent
708  *
709  * @lock must already be held, with a lock type that is greater than or equal to
710  * @type
711  *
712  * A corresponding six_unlock_type() call will be required for @lock to be fully
713  * unlocked.
714  */
715 void six_lock_increment(struct six_lock *lock, enum six_lock_type type)
716 {
717 	six_acquire(&lock->dep_map, 0, type == SIX_LOCK_read, _RET_IP_);
718 
719 	/* XXX: assert already locked, and that we don't overflow: */
720 
721 	switch (type) {
722 	case SIX_LOCK_read:
723 		if (lock->readers) {
724 			this_cpu_inc(*lock->readers);
725 		} else {
726 			EBUG_ON(!(atomic_read(&lock->state) &
727 				  (SIX_LOCK_HELD_read|
728 				   SIX_LOCK_HELD_intent)));
729 			atomic_add(l[type].lock_val, &lock->state);
730 		}
731 		break;
732 	case SIX_LOCK_intent:
733 		EBUG_ON(!(atomic_read(&lock->state) & SIX_LOCK_HELD_intent));
734 		lock->intent_lock_recurse++;
735 		break;
736 	case SIX_LOCK_write:
737 		BUG();
738 		break;
739 	}
740 }
741 EXPORT_SYMBOL_GPL(six_lock_increment);
742 
743 /**
744  * six_lock_wakeup_all - wake up all waiters on @lock
745  * @lock:	lock to wake up waiters for
746  *
747  * Wakeing up waiters will cause them to re-run should_sleep_fn, which may then
748  * abort the lock operation.
749  *
750  * This function is never needed in a bug-free program; it's only useful in
751  * debug code, e.g. to determine if a cycle detector is at fault.
752  */
753 void six_lock_wakeup_all(struct six_lock *lock)
754 {
755 	u32 state = atomic_read(&lock->state);
756 	struct six_lock_waiter *w;
757 
758 	six_lock_wakeup(lock, state, SIX_LOCK_read);
759 	six_lock_wakeup(lock, state, SIX_LOCK_intent);
760 	six_lock_wakeup(lock, state, SIX_LOCK_write);
761 
762 	raw_spin_lock(&lock->wait_lock);
763 	list_for_each_entry(w, &lock->wait_list, list)
764 		wake_up_process(w->task);
765 	raw_spin_unlock(&lock->wait_lock);
766 }
767 EXPORT_SYMBOL_GPL(six_lock_wakeup_all);
768 
769 /**
770  * six_lock_counts - return held lock counts, for each lock type
771  * @lock:	lock to return counters for
772  *
773  * Return: the number of times a lock is held for read, intent and write.
774  */
775 struct six_lock_count six_lock_counts(struct six_lock *lock)
776 {
777 	struct six_lock_count ret;
778 
779 	ret.n[SIX_LOCK_read]	= !lock->readers
780 		? atomic_read(&lock->state) & SIX_LOCK_HELD_read
781 		: pcpu_read_count(lock);
782 	ret.n[SIX_LOCK_intent]	= !!(atomic_read(&lock->state) & SIX_LOCK_HELD_intent) +
783 		lock->intent_lock_recurse;
784 	ret.n[SIX_LOCK_write]	= !!(atomic_read(&lock->state) & SIX_LOCK_HELD_write);
785 
786 	return ret;
787 }
788 EXPORT_SYMBOL_GPL(six_lock_counts);
789 
790 /**
791  * six_lock_readers_add - directly manipulate reader count of a lock
792  * @lock:	lock to add/subtract readers for
793  * @nr:		reader count to add/subtract
794  *
795  * When an upper layer is implementing lock reentrency, we may have both read
796  * and intent locks on the same lock.
797  *
798  * When we need to take a write lock, the read locks will cause self-deadlock,
799  * because six locks themselves do not track which read locks are held by the
800  * current thread and which are held by a different thread - it does no
801  * per-thread tracking of held locks.
802  *
803  * The upper layer that is tracking held locks may however, if trylock() has
804  * failed, count up its own read locks, subtract them, take the write lock, and
805  * then re-add them.
806  *
807  * As in any other situation when taking a write lock, @lock must be held for
808  * intent one (or more) times, so @lock will never be left unlocked.
809  */
810 void six_lock_readers_add(struct six_lock *lock, int nr)
811 {
812 	if (lock->readers) {
813 		this_cpu_add(*lock->readers, nr);
814 	} else {
815 		EBUG_ON((int) (atomic_read(&lock->state) & SIX_LOCK_HELD_read) + nr < 0);
816 		/* reader count starts at bit 0 */
817 		atomic_add(nr, &lock->state);
818 	}
819 }
820 EXPORT_SYMBOL_GPL(six_lock_readers_add);
821 
822 /**
823  * six_lock_exit - release resources held by a lock prior to freeing
824  * @lock:	lock to exit
825  *
826  * When a lock was initialized in percpu mode (SIX_OLCK_INIT_PCPU), this is
827  * required to free the percpu read counts.
828  */
829 void six_lock_exit(struct six_lock *lock)
830 {
831 	WARN_ON(lock->readers && pcpu_read_count(lock));
832 	WARN_ON(atomic_read(&lock->state) & SIX_LOCK_HELD_read);
833 
834 	free_percpu(lock->readers);
835 	lock->readers = NULL;
836 }
837 EXPORT_SYMBOL_GPL(six_lock_exit);
838 
839 void __six_lock_init(struct six_lock *lock, const char *name,
840 		     struct lock_class_key *key, enum six_lock_init_flags flags)
841 {
842 	atomic_set(&lock->state, 0);
843 	raw_spin_lock_init(&lock->wait_lock);
844 	INIT_LIST_HEAD(&lock->wait_list);
845 #ifdef CONFIG_DEBUG_LOCK_ALLOC
846 	debug_check_no_locks_freed((void *) lock, sizeof(*lock));
847 	lockdep_init_map(&lock->dep_map, name, key, 0);
848 #endif
849 
850 	/*
851 	 * Don't assume that we have real percpu variables available in
852 	 * userspace:
853 	 */
854 #ifdef __KERNEL__
855 	if (flags & SIX_LOCK_INIT_PCPU) {
856 		/*
857 		 * We don't return an error here on memory allocation failure
858 		 * since percpu is an optimization, and locks will work with the
859 		 * same semantics in non-percpu mode: callers can check for
860 		 * failure if they wish by checking lock->readers, but generally
861 		 * will not want to treat it as an error.
862 		 */
863 		lock->readers = alloc_percpu(unsigned);
864 	}
865 #endif
866 }
867 EXPORT_SYMBOL_GPL(__six_lock_init);
868