xref: /linux/fs/bcachefs/six.c (revision c7546e2c3cb739a3c1a2f5acaf9bb629d401afe5)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/export.h>
4 #include <linux/log2.h>
5 #include <linux/percpu.h>
6 #include <linux/preempt.h>
7 #include <linux/rcupdate.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/sched/rt.h>
11 #include <linux/sched/task.h>
12 #include <linux/slab.h>
13 
14 #include <trace/events/lock.h>
15 
16 #include "six.h"
17 
18 #ifdef DEBUG
19 #define EBUG_ON(cond)			BUG_ON(cond)
20 #else
21 #define EBUG_ON(cond)			do {} while (0)
22 #endif
23 
24 #define six_acquire(l, t, r, ip)	lock_acquire(l, 0, t, r, 1, NULL, ip)
25 #define six_release(l, ip)		lock_release(l, ip)
26 
27 static void do_six_unlock_type(struct six_lock *lock, enum six_lock_type type);
28 
29 #define SIX_LOCK_HELD_read_OFFSET	0
30 #define SIX_LOCK_HELD_read		~(~0U << 26)
31 #define SIX_LOCK_HELD_intent		(1U << 26)
32 #define SIX_LOCK_HELD_write		(1U << 27)
33 #define SIX_LOCK_WAITING_read		(1U << (28 + SIX_LOCK_read))
34 #define SIX_LOCK_WAITING_write		(1U << (28 + SIX_LOCK_write))
35 #define SIX_LOCK_NOSPIN			(1U << 31)
36 
37 struct six_lock_vals {
38 	/* Value we add to the lock in order to take the lock: */
39 	u32			lock_val;
40 
41 	/* If the lock has this value (used as a mask), taking the lock fails: */
42 	u32			lock_fail;
43 
44 	/* Mask that indicates lock is held for this type: */
45 	u32			held_mask;
46 
47 	/* Waitlist we wakeup when releasing the lock: */
48 	enum six_lock_type	unlock_wakeup;
49 };
50 
51 static const struct six_lock_vals l[] = {
52 	[SIX_LOCK_read] = {
53 		.lock_val	= 1U << SIX_LOCK_HELD_read_OFFSET,
54 		.lock_fail	= SIX_LOCK_HELD_write,
55 		.held_mask	= SIX_LOCK_HELD_read,
56 		.unlock_wakeup	= SIX_LOCK_write,
57 	},
58 	[SIX_LOCK_intent] = {
59 		.lock_val	= SIX_LOCK_HELD_intent,
60 		.lock_fail	= SIX_LOCK_HELD_intent,
61 		.held_mask	= SIX_LOCK_HELD_intent,
62 		.unlock_wakeup	= SIX_LOCK_intent,
63 	},
64 	[SIX_LOCK_write] = {
65 		.lock_val	= SIX_LOCK_HELD_write,
66 		.lock_fail	= SIX_LOCK_HELD_read,
67 		.held_mask	= SIX_LOCK_HELD_write,
68 		.unlock_wakeup	= SIX_LOCK_read,
69 	},
70 };
71 
72 static inline void six_set_bitmask(struct six_lock *lock, u32 mask)
73 {
74 	if ((atomic_read(&lock->state) & mask) != mask)
75 		atomic_or(mask, &lock->state);
76 }
77 
78 static inline void six_clear_bitmask(struct six_lock *lock, u32 mask)
79 {
80 	if (atomic_read(&lock->state) & mask)
81 		atomic_and(~mask, &lock->state);
82 }
83 
84 static inline void six_set_owner(struct six_lock *lock, enum six_lock_type type,
85 				 u32 old, struct task_struct *owner)
86 {
87 	if (type != SIX_LOCK_intent)
88 		return;
89 
90 	if (!(old & SIX_LOCK_HELD_intent)) {
91 		EBUG_ON(lock->owner);
92 		lock->owner = owner;
93 	} else {
94 		EBUG_ON(lock->owner != current);
95 	}
96 }
97 
98 static inline unsigned pcpu_read_count(struct six_lock *lock)
99 {
100 	unsigned read_count = 0;
101 	int cpu;
102 
103 	for_each_possible_cpu(cpu)
104 		read_count += *per_cpu_ptr(lock->readers, cpu);
105 	return read_count;
106 }
107 
108 /*
109  * __do_six_trylock() - main trylock routine
110  *
111  * Returns 1 on success, 0 on failure
112  *
113  * In percpu reader mode, a failed trylock may cause a spurious trylock failure
114  * for anoter thread taking the competing lock type, and we may havve to do a
115  * wakeup: when a wakeup is required, we return -1 - wakeup_type.
116  */
117 static int __do_six_trylock(struct six_lock *lock, enum six_lock_type type,
118 			    struct task_struct *task, bool try)
119 {
120 	int ret;
121 	u32 old;
122 
123 	EBUG_ON(type == SIX_LOCK_write && lock->owner != task);
124 	EBUG_ON(type == SIX_LOCK_write &&
125 		(try != !(atomic_read(&lock->state) & SIX_LOCK_HELD_write)));
126 
127 	/*
128 	 * Percpu reader mode:
129 	 *
130 	 * The basic idea behind this algorithm is that you can implement a lock
131 	 * between two threads without any atomics, just memory barriers:
132 	 *
133 	 * For two threads you'll need two variables, one variable for "thread a
134 	 * has the lock" and another for "thread b has the lock".
135 	 *
136 	 * To take the lock, a thread sets its variable indicating that it holds
137 	 * the lock, then issues a full memory barrier, then reads from the
138 	 * other thread's variable to check if the other thread thinks it has
139 	 * the lock. If we raced, we backoff and retry/sleep.
140 	 *
141 	 * Failure to take the lock may cause a spurious trylock failure in
142 	 * another thread, because we temporarily set the lock to indicate that
143 	 * we held it. This would be a problem for a thread in six_lock(), when
144 	 * they are calling trylock after adding themself to the waitlist and
145 	 * prior to sleeping.
146 	 *
147 	 * Therefore, if we fail to get the lock, and there were waiters of the
148 	 * type we conflict with, we will have to issue a wakeup.
149 	 *
150 	 * Since we may be called under wait_lock (and by the wakeup code
151 	 * itself), we return that the wakeup has to be done instead of doing it
152 	 * here.
153 	 */
154 	if (type == SIX_LOCK_read && lock->readers) {
155 		preempt_disable();
156 		this_cpu_inc(*lock->readers); /* signal that we own lock */
157 
158 		smp_mb();
159 
160 		old = atomic_read(&lock->state);
161 		ret = !(old & l[type].lock_fail);
162 
163 		this_cpu_sub(*lock->readers, !ret);
164 		preempt_enable();
165 
166 		if (!ret) {
167 			smp_mb();
168 			if (atomic_read(&lock->state) & SIX_LOCK_WAITING_write)
169 				ret = -1 - SIX_LOCK_write;
170 		}
171 	} else if (type == SIX_LOCK_write && lock->readers) {
172 		if (try)
173 			atomic_add(SIX_LOCK_HELD_write, &lock->state);
174 
175 		/*
176 		 * Make sure atomic_add happens before pcpu_read_count and
177 		 * six_set_bitmask in slow path happens before pcpu_read_count.
178 		 *
179 		 * Paired with the smp_mb() in read lock fast path (per-cpu mode)
180 		 * and the one before atomic_read in read unlock path.
181 		 */
182 		smp_mb();
183 		ret = !pcpu_read_count(lock);
184 
185 		if (try && !ret) {
186 			old = atomic_sub_return(SIX_LOCK_HELD_write, &lock->state);
187 			if (old & SIX_LOCK_WAITING_read)
188 				ret = -1 - SIX_LOCK_read;
189 		}
190 	} else {
191 		old = atomic_read(&lock->state);
192 		do {
193 			ret = !(old & l[type].lock_fail);
194 			if (!ret || (type == SIX_LOCK_write && !try)) {
195 				smp_mb();
196 				break;
197 			}
198 		} while (!atomic_try_cmpxchg_acquire(&lock->state, &old, old + l[type].lock_val));
199 
200 		EBUG_ON(ret && !(atomic_read(&lock->state) & l[type].held_mask));
201 	}
202 
203 	if (ret > 0)
204 		six_set_owner(lock, type, old, task);
205 
206 	EBUG_ON(type == SIX_LOCK_write && try && ret <= 0 &&
207 		(atomic_read(&lock->state) & SIX_LOCK_HELD_write));
208 
209 	return ret;
210 }
211 
212 static void __six_lock_wakeup(struct six_lock *lock, enum six_lock_type lock_type)
213 {
214 	struct six_lock_waiter *w, *next;
215 	struct task_struct *task;
216 	bool saw_one;
217 	int ret;
218 again:
219 	ret = 0;
220 	saw_one = false;
221 	raw_spin_lock(&lock->wait_lock);
222 
223 	list_for_each_entry_safe(w, next, &lock->wait_list, list) {
224 		if (w->lock_want != lock_type)
225 			continue;
226 
227 		if (saw_one && lock_type != SIX_LOCK_read)
228 			goto unlock;
229 		saw_one = true;
230 
231 		ret = __do_six_trylock(lock, lock_type, w->task, false);
232 		if (ret <= 0)
233 			goto unlock;
234 
235 		/*
236 		 * Similar to percpu_rwsem_wake_function(), we need to guard
237 		 * against the wakee noticing w->lock_acquired, returning, and
238 		 * then exiting before we do the wakeup:
239 		 */
240 		task = get_task_struct(w->task);
241 		__list_del(w->list.prev, w->list.next);
242 		/*
243 		 * The release barrier here ensures the ordering of the
244 		 * __list_del before setting w->lock_acquired; @w is on the
245 		 * stack of the thread doing the waiting and will be reused
246 		 * after it sees w->lock_acquired with no other locking:
247 		 * pairs with smp_load_acquire() in six_lock_slowpath()
248 		 */
249 		smp_store_release(&w->lock_acquired, true);
250 		wake_up_process(task);
251 		put_task_struct(task);
252 	}
253 
254 	six_clear_bitmask(lock, SIX_LOCK_WAITING_read << lock_type);
255 unlock:
256 	raw_spin_unlock(&lock->wait_lock);
257 
258 	if (ret < 0) {
259 		lock_type = -ret - 1;
260 		goto again;
261 	}
262 }
263 
264 __always_inline
265 static void six_lock_wakeup(struct six_lock *lock, u32 state,
266 			    enum six_lock_type lock_type)
267 {
268 	if (lock_type == SIX_LOCK_write && (state & SIX_LOCK_HELD_read))
269 		return;
270 
271 	if (!(state & (SIX_LOCK_WAITING_read << lock_type)))
272 		return;
273 
274 	__six_lock_wakeup(lock, lock_type);
275 }
276 
277 __always_inline
278 static bool do_six_trylock(struct six_lock *lock, enum six_lock_type type, bool try)
279 {
280 	int ret;
281 
282 	ret = __do_six_trylock(lock, type, current, try);
283 	if (ret < 0)
284 		__six_lock_wakeup(lock, -ret - 1);
285 
286 	return ret > 0;
287 }
288 
289 /**
290  * six_trylock_ip - attempt to take a six lock without blocking
291  * @lock:	lock to take
292  * @type:	SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write
293  * @ip:		ip parameter for lockdep/lockstat, i.e. _THIS_IP_
294  *
295  * Return: true on success, false on failure.
296  */
297 bool six_trylock_ip(struct six_lock *lock, enum six_lock_type type, unsigned long ip)
298 {
299 	if (!do_six_trylock(lock, type, true))
300 		return false;
301 
302 	if (type != SIX_LOCK_write)
303 		six_acquire(&lock->dep_map, 1, type == SIX_LOCK_read, ip);
304 	return true;
305 }
306 EXPORT_SYMBOL_GPL(six_trylock_ip);
307 
308 /**
309  * six_relock_ip - attempt to re-take a lock that was held previously
310  * @lock:	lock to take
311  * @type:	SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write
312  * @seq:	lock sequence number obtained from six_lock_seq() while lock was
313  *		held previously
314  * @ip:		ip parameter for lockdep/lockstat, i.e. _THIS_IP_
315  *
316  * Return: true on success, false on failure.
317  */
318 bool six_relock_ip(struct six_lock *lock, enum six_lock_type type,
319 		   unsigned seq, unsigned long ip)
320 {
321 	if (six_lock_seq(lock) != seq || !six_trylock_ip(lock, type, ip))
322 		return false;
323 
324 	if (six_lock_seq(lock) != seq) {
325 		six_unlock_ip(lock, type, ip);
326 		return false;
327 	}
328 
329 	return true;
330 }
331 EXPORT_SYMBOL_GPL(six_relock_ip);
332 
333 #ifdef CONFIG_BCACHEFS_SIX_OPTIMISTIC_SPIN
334 
335 static inline bool six_owner_running(struct six_lock *lock)
336 {
337 	/*
338 	 * When there's no owner, we might have preempted between the owner
339 	 * acquiring the lock and setting the owner field. If we're an RT task
340 	 * that will live-lock because we won't let the owner complete.
341 	 */
342 	rcu_read_lock();
343 	struct task_struct *owner = READ_ONCE(lock->owner);
344 	bool ret = owner ? owner_on_cpu(owner) : !rt_or_dl_task(current);
345 	rcu_read_unlock();
346 
347 	return ret;
348 }
349 
350 static inline bool six_optimistic_spin(struct six_lock *lock,
351 				       struct six_lock_waiter *wait,
352 				       enum six_lock_type type)
353 {
354 	unsigned loop = 0;
355 	u64 end_time;
356 
357 	if (type == SIX_LOCK_write)
358 		return false;
359 
360 	if (lock->wait_list.next != &wait->list)
361 		return false;
362 
363 	if (atomic_read(&lock->state) & SIX_LOCK_NOSPIN)
364 		return false;
365 
366 	preempt_disable();
367 	end_time = sched_clock() + 10 * NSEC_PER_USEC;
368 
369 	while (!need_resched() && six_owner_running(lock)) {
370 		/*
371 		 * Ensures that writes to the waitlist entry happen after we see
372 		 * wait->lock_acquired: pairs with the smp_store_release in
373 		 * __six_lock_wakeup
374 		 */
375 		if (smp_load_acquire(&wait->lock_acquired)) {
376 			preempt_enable();
377 			return true;
378 		}
379 
380 		if (!(++loop & 0xf) && (time_after64(sched_clock(), end_time))) {
381 			six_set_bitmask(lock, SIX_LOCK_NOSPIN);
382 			break;
383 		}
384 
385 		/*
386 		 * The cpu_relax() call is a compiler barrier which forces
387 		 * everything in this loop to be re-loaded. We don't need
388 		 * memory barriers as we'll eventually observe the right
389 		 * values at the cost of a few extra spins.
390 		 */
391 		cpu_relax();
392 	}
393 
394 	preempt_enable();
395 	return false;
396 }
397 
398 #else /* CONFIG_LOCK_SPIN_ON_OWNER */
399 
400 static inline bool six_optimistic_spin(struct six_lock *lock,
401 				       struct six_lock_waiter *wait,
402 				       enum six_lock_type type)
403 {
404 	return false;
405 }
406 
407 #endif
408 
409 noinline
410 static int six_lock_slowpath(struct six_lock *lock, enum six_lock_type type,
411 			     struct six_lock_waiter *wait,
412 			     six_lock_should_sleep_fn should_sleep_fn, void *p,
413 			     unsigned long ip)
414 {
415 	int ret = 0;
416 
417 	if (type == SIX_LOCK_write) {
418 		EBUG_ON(atomic_read(&lock->state) & SIX_LOCK_HELD_write);
419 		atomic_add(SIX_LOCK_HELD_write, &lock->state);
420 		smp_mb__after_atomic();
421 	}
422 
423 	trace_contention_begin(lock, 0);
424 	lock_contended(&lock->dep_map, ip);
425 
426 	wait->task		= current;
427 	wait->lock_want		= type;
428 	wait->lock_acquired	= false;
429 
430 	raw_spin_lock(&lock->wait_lock);
431 	six_set_bitmask(lock, SIX_LOCK_WAITING_read << type);
432 	/*
433 	 * Retry taking the lock after taking waitlist lock, in case we raced
434 	 * with an unlock:
435 	 */
436 	ret = __do_six_trylock(lock, type, current, false);
437 	if (ret <= 0) {
438 		wait->start_time = local_clock();
439 
440 		if (!list_empty(&lock->wait_list)) {
441 			struct six_lock_waiter *last =
442 				list_last_entry(&lock->wait_list,
443 					struct six_lock_waiter, list);
444 
445 			if (time_before_eq64(wait->start_time, last->start_time))
446 				wait->start_time = last->start_time + 1;
447 		}
448 
449 		list_add_tail(&wait->list, &lock->wait_list);
450 	}
451 	raw_spin_unlock(&lock->wait_lock);
452 
453 	if (unlikely(ret > 0)) {
454 		ret = 0;
455 		goto out;
456 	}
457 
458 	if (unlikely(ret < 0)) {
459 		__six_lock_wakeup(lock, -ret - 1);
460 		ret = 0;
461 	}
462 
463 	if (six_optimistic_spin(lock, wait, type))
464 		goto out;
465 
466 	while (1) {
467 		set_current_state(TASK_UNINTERRUPTIBLE);
468 
469 		/*
470 		 * Ensures that writes to the waitlist entry happen after we see
471 		 * wait->lock_acquired: pairs with the smp_store_release in
472 		 * __six_lock_wakeup
473 		 */
474 		if (smp_load_acquire(&wait->lock_acquired))
475 			break;
476 
477 		ret = should_sleep_fn ? should_sleep_fn(lock, p) : 0;
478 		if (unlikely(ret)) {
479 			bool acquired;
480 
481 			/*
482 			 * If should_sleep_fn() returns an error, we are
483 			 * required to return that error even if we already
484 			 * acquired the lock - should_sleep_fn() might have
485 			 * modified external state (e.g. when the deadlock cycle
486 			 * detector in bcachefs issued a transaction restart)
487 			 */
488 			raw_spin_lock(&lock->wait_lock);
489 			acquired = wait->lock_acquired;
490 			if (!acquired)
491 				list_del(&wait->list);
492 			raw_spin_unlock(&lock->wait_lock);
493 
494 			if (unlikely(acquired))
495 				do_six_unlock_type(lock, type);
496 			break;
497 		}
498 
499 		schedule();
500 	}
501 
502 	__set_current_state(TASK_RUNNING);
503 out:
504 	if (ret && type == SIX_LOCK_write) {
505 		six_clear_bitmask(lock, SIX_LOCK_HELD_write);
506 		six_lock_wakeup(lock, atomic_read(&lock->state), SIX_LOCK_read);
507 	}
508 	trace_contention_end(lock, 0);
509 
510 	return ret;
511 }
512 
513 /**
514  * six_lock_ip_waiter - take a lock, with full waitlist interface
515  * @lock:	lock to take
516  * @type:	SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write
517  * @wait:	pointer to wait object, which will be added to lock's waitlist
518  * @should_sleep_fn: callback run after adding to waitlist, immediately prior
519  *		to scheduling
520  * @p:		passed through to @should_sleep_fn
521  * @ip:		ip parameter for lockdep/lockstat, i.e. _THIS_IP_
522  *
523  * This is the most general six_lock() variant, with parameters to support full
524  * cycle detection for deadlock avoidance.
525  *
526  * The code calling this function must implement tracking of held locks, and the
527  * @wait object should be embedded into the struct that tracks held locks -
528  * which must also be accessible in a thread-safe way.
529  *
530  * @should_sleep_fn should invoke the cycle detector; it should walk each
531  * lock's waiters, and for each waiter recursively walk their held locks.
532  *
533  * When this function must block, @wait will be added to @lock's waitlist before
534  * calling trylock, and before calling @should_sleep_fn, and @wait will not be
535  * removed from the lock waitlist until the lock has been successfully acquired,
536  * or we abort.
537  *
538  * @wait.start_time will be monotonically increasing for any given waitlist, and
539  * thus may be used as a loop cursor.
540  *
541  * Return: 0 on success, or the return code from @should_sleep_fn on failure.
542  */
543 int six_lock_ip_waiter(struct six_lock *lock, enum six_lock_type type,
544 		       struct six_lock_waiter *wait,
545 		       six_lock_should_sleep_fn should_sleep_fn, void *p,
546 		       unsigned long ip)
547 {
548 	int ret;
549 
550 	wait->start_time = 0;
551 
552 	if (type != SIX_LOCK_write)
553 		six_acquire(&lock->dep_map, 0, type == SIX_LOCK_read, ip);
554 
555 	ret = do_six_trylock(lock, type, true) ? 0
556 		: six_lock_slowpath(lock, type, wait, should_sleep_fn, p, ip);
557 
558 	if (ret && type != SIX_LOCK_write)
559 		six_release(&lock->dep_map, ip);
560 	if (!ret)
561 		lock_acquired(&lock->dep_map, ip);
562 
563 	return ret;
564 }
565 EXPORT_SYMBOL_GPL(six_lock_ip_waiter);
566 
567 __always_inline
568 static void do_six_unlock_type(struct six_lock *lock, enum six_lock_type type)
569 {
570 	u32 state;
571 
572 	if (type == SIX_LOCK_intent)
573 		lock->owner = NULL;
574 
575 	if (type == SIX_LOCK_read &&
576 	    lock->readers) {
577 		smp_mb(); /* unlock barrier */
578 		this_cpu_dec(*lock->readers);
579 		smp_mb(); /* between unlocking and checking for waiters */
580 		state = atomic_read(&lock->state);
581 	} else {
582 		u32 v = l[type].lock_val;
583 
584 		if (type != SIX_LOCK_read)
585 			v += atomic_read(&lock->state) & SIX_LOCK_NOSPIN;
586 
587 		EBUG_ON(!(atomic_read(&lock->state) & l[type].held_mask));
588 		state = atomic_sub_return_release(v, &lock->state);
589 	}
590 
591 	six_lock_wakeup(lock, state, l[type].unlock_wakeup);
592 }
593 
594 /**
595  * six_unlock_ip - drop a six lock
596  * @lock:	lock to unlock
597  * @type:	SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write
598  * @ip:		ip parameter for lockdep/lockstat, i.e. _THIS_IP_
599  *
600  * When a lock is held multiple times (because six_lock_incement()) was used),
601  * this decrements the 'lock held' counter by one.
602  *
603  * For example:
604  * six_lock_read(&foo->lock);				read count 1
605  * six_lock_increment(&foo->lock, SIX_LOCK_read);	read count 2
606  * six_lock_unlock(&foo->lock, SIX_LOCK_read);		read count 1
607  * six_lock_unlock(&foo->lock, SIX_LOCK_read);		read count 0
608  */
609 void six_unlock_ip(struct six_lock *lock, enum six_lock_type type, unsigned long ip)
610 {
611 	EBUG_ON(type == SIX_LOCK_write &&
612 		!(atomic_read(&lock->state) & SIX_LOCK_HELD_intent));
613 	EBUG_ON((type == SIX_LOCK_write ||
614 		 type == SIX_LOCK_intent) &&
615 		lock->owner != current);
616 
617 	if (type != SIX_LOCK_write)
618 		six_release(&lock->dep_map, ip);
619 	else
620 		lock->seq++;
621 
622 	if (type == SIX_LOCK_intent &&
623 	    lock->intent_lock_recurse) {
624 		--lock->intent_lock_recurse;
625 		return;
626 	}
627 
628 	do_six_unlock_type(lock, type);
629 }
630 EXPORT_SYMBOL_GPL(six_unlock_ip);
631 
632 /**
633  * six_lock_downgrade - convert an intent lock to a read lock
634  * @lock:	lock to dowgrade
635  *
636  * @lock will have read count incremented and intent count decremented
637  */
638 void six_lock_downgrade(struct six_lock *lock)
639 {
640 	six_lock_increment(lock, SIX_LOCK_read);
641 	six_unlock_intent(lock);
642 }
643 EXPORT_SYMBOL_GPL(six_lock_downgrade);
644 
645 /**
646  * six_lock_tryupgrade - attempt to convert read lock to an intent lock
647  * @lock:	lock to upgrade
648  *
649  * On success, @lock will have intent count incremented and read count
650  * decremented
651  *
652  * Return: true on success, false on failure
653  */
654 bool six_lock_tryupgrade(struct six_lock *lock)
655 {
656 	u32 old = atomic_read(&lock->state), new;
657 
658 	do {
659 		new = old;
660 
661 		if (new & SIX_LOCK_HELD_intent)
662 			return false;
663 
664 		if (!lock->readers) {
665 			EBUG_ON(!(new & SIX_LOCK_HELD_read));
666 			new -= l[SIX_LOCK_read].lock_val;
667 		}
668 
669 		new |= SIX_LOCK_HELD_intent;
670 	} while (!atomic_try_cmpxchg_acquire(&lock->state, &old, new));
671 
672 	if (lock->readers)
673 		this_cpu_dec(*lock->readers);
674 
675 	six_set_owner(lock, SIX_LOCK_intent, old, current);
676 
677 	return true;
678 }
679 EXPORT_SYMBOL_GPL(six_lock_tryupgrade);
680 
681 /**
682  * six_trylock_convert - attempt to convert a held lock from one type to another
683  * @lock:	lock to upgrade
684  * @from:	SIX_LOCK_read or SIX_LOCK_intent
685  * @to:		SIX_LOCK_read or SIX_LOCK_intent
686  *
687  * On success, @lock will have intent count incremented and read count
688  * decremented
689  *
690  * Return: true on success, false on failure
691  */
692 bool six_trylock_convert(struct six_lock *lock,
693 			 enum six_lock_type from,
694 			 enum six_lock_type to)
695 {
696 	EBUG_ON(to == SIX_LOCK_write || from == SIX_LOCK_write);
697 
698 	if (to == from)
699 		return true;
700 
701 	if (to == SIX_LOCK_read) {
702 		six_lock_downgrade(lock);
703 		return true;
704 	} else {
705 		return six_lock_tryupgrade(lock);
706 	}
707 }
708 EXPORT_SYMBOL_GPL(six_trylock_convert);
709 
710 /**
711  * six_lock_increment - increase held lock count on a lock that is already held
712  * @lock:	lock to increment
713  * @type:	SIX_LOCK_read or SIX_LOCK_intent
714  *
715  * @lock must already be held, with a lock type that is greater than or equal to
716  * @type
717  *
718  * A corresponding six_unlock_type() call will be required for @lock to be fully
719  * unlocked.
720  */
721 void six_lock_increment(struct six_lock *lock, enum six_lock_type type)
722 {
723 	six_acquire(&lock->dep_map, 0, type == SIX_LOCK_read, _RET_IP_);
724 
725 	/* XXX: assert already locked, and that we don't overflow: */
726 
727 	switch (type) {
728 	case SIX_LOCK_read:
729 		if (lock->readers) {
730 			this_cpu_inc(*lock->readers);
731 		} else {
732 			EBUG_ON(!(atomic_read(&lock->state) &
733 				  (SIX_LOCK_HELD_read|
734 				   SIX_LOCK_HELD_intent)));
735 			atomic_add(l[type].lock_val, &lock->state);
736 		}
737 		break;
738 	case SIX_LOCK_intent:
739 		EBUG_ON(!(atomic_read(&lock->state) & SIX_LOCK_HELD_intent));
740 		lock->intent_lock_recurse++;
741 		break;
742 	case SIX_LOCK_write:
743 		BUG();
744 		break;
745 	}
746 }
747 EXPORT_SYMBOL_GPL(six_lock_increment);
748 
749 /**
750  * six_lock_wakeup_all - wake up all waiters on @lock
751  * @lock:	lock to wake up waiters for
752  *
753  * Wakeing up waiters will cause them to re-run should_sleep_fn, which may then
754  * abort the lock operation.
755  *
756  * This function is never needed in a bug-free program; it's only useful in
757  * debug code, e.g. to determine if a cycle detector is at fault.
758  */
759 void six_lock_wakeup_all(struct six_lock *lock)
760 {
761 	u32 state = atomic_read(&lock->state);
762 	struct six_lock_waiter *w;
763 
764 	six_lock_wakeup(lock, state, SIX_LOCK_read);
765 	six_lock_wakeup(lock, state, SIX_LOCK_intent);
766 	six_lock_wakeup(lock, state, SIX_LOCK_write);
767 
768 	raw_spin_lock(&lock->wait_lock);
769 	list_for_each_entry(w, &lock->wait_list, list)
770 		wake_up_process(w->task);
771 	raw_spin_unlock(&lock->wait_lock);
772 }
773 EXPORT_SYMBOL_GPL(six_lock_wakeup_all);
774 
775 /**
776  * six_lock_counts - return held lock counts, for each lock type
777  * @lock:	lock to return counters for
778  *
779  * Return: the number of times a lock is held for read, intent and write.
780  */
781 struct six_lock_count six_lock_counts(struct six_lock *lock)
782 {
783 	struct six_lock_count ret;
784 
785 	ret.n[SIX_LOCK_read]	= !lock->readers
786 		? atomic_read(&lock->state) & SIX_LOCK_HELD_read
787 		: pcpu_read_count(lock);
788 	ret.n[SIX_LOCK_intent]	= !!(atomic_read(&lock->state) & SIX_LOCK_HELD_intent) +
789 		lock->intent_lock_recurse;
790 	ret.n[SIX_LOCK_write]	= !!(atomic_read(&lock->state) & SIX_LOCK_HELD_write);
791 
792 	return ret;
793 }
794 EXPORT_SYMBOL_GPL(six_lock_counts);
795 
796 /**
797  * six_lock_readers_add - directly manipulate reader count of a lock
798  * @lock:	lock to add/subtract readers for
799  * @nr:		reader count to add/subtract
800  *
801  * When an upper layer is implementing lock reentrency, we may have both read
802  * and intent locks on the same lock.
803  *
804  * When we need to take a write lock, the read locks will cause self-deadlock,
805  * because six locks themselves do not track which read locks are held by the
806  * current thread and which are held by a different thread - it does no
807  * per-thread tracking of held locks.
808  *
809  * The upper layer that is tracking held locks may however, if trylock() has
810  * failed, count up its own read locks, subtract them, take the write lock, and
811  * then re-add them.
812  *
813  * As in any other situation when taking a write lock, @lock must be held for
814  * intent one (or more) times, so @lock will never be left unlocked.
815  */
816 void six_lock_readers_add(struct six_lock *lock, int nr)
817 {
818 	if (lock->readers) {
819 		this_cpu_add(*lock->readers, nr);
820 	} else {
821 		EBUG_ON((int) (atomic_read(&lock->state) & SIX_LOCK_HELD_read) + nr < 0);
822 		/* reader count starts at bit 0 */
823 		atomic_add(nr, &lock->state);
824 	}
825 }
826 EXPORT_SYMBOL_GPL(six_lock_readers_add);
827 
828 /**
829  * six_lock_exit - release resources held by a lock prior to freeing
830  * @lock:	lock to exit
831  *
832  * When a lock was initialized in percpu mode (SIX_OLCK_INIT_PCPU), this is
833  * required to free the percpu read counts.
834  */
835 void six_lock_exit(struct six_lock *lock)
836 {
837 	WARN_ON(lock->readers && pcpu_read_count(lock));
838 	WARN_ON(atomic_read(&lock->state) & SIX_LOCK_HELD_read);
839 
840 	free_percpu(lock->readers);
841 	lock->readers = NULL;
842 }
843 EXPORT_SYMBOL_GPL(six_lock_exit);
844 
845 void __six_lock_init(struct six_lock *lock, const char *name,
846 		     struct lock_class_key *key, enum six_lock_init_flags flags)
847 {
848 	atomic_set(&lock->state, 0);
849 	raw_spin_lock_init(&lock->wait_lock);
850 	INIT_LIST_HEAD(&lock->wait_list);
851 #ifdef CONFIG_DEBUG_LOCK_ALLOC
852 	debug_check_no_locks_freed((void *) lock, sizeof(*lock));
853 	lockdep_init_map(&lock->dep_map, name, key, 0);
854 #endif
855 
856 	/*
857 	 * Don't assume that we have real percpu variables available in
858 	 * userspace:
859 	 */
860 #ifdef __KERNEL__
861 	if (flags & SIX_LOCK_INIT_PCPU) {
862 		/*
863 		 * We don't return an error here on memory allocation failure
864 		 * since percpu is an optimization, and locks will work with the
865 		 * same semantics in non-percpu mode: callers can check for
866 		 * failure if they wish by checking lock->readers, but generally
867 		 * will not want to treat it as an error.
868 		 */
869 		lock->readers = alloc_percpu(unsigned);
870 	}
871 #endif
872 }
873 EXPORT_SYMBOL_GPL(__six_lock_init);
874