xref: /linux/fs/bcachefs/six.c (revision 1e73427f66353b7fe21c138787ff2b711ca1c0dd)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/export.h>
4 #include <linux/log2.h>
5 #include <linux/percpu.h>
6 #include <linux/preempt.h>
7 #include <linux/rcupdate.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/sched/rt.h>
11 #include <linux/sched/task.h>
12 #include <linux/slab.h>
13 
14 #include <trace/events/lock.h>
15 
16 #include "six.h"
17 
18 #ifdef DEBUG
19 #define EBUG_ON(cond)			BUG_ON(cond)
20 #else
21 #define EBUG_ON(cond)			do {} while (0)
22 #endif
23 
24 #define six_acquire(l, t, r, ip)	lock_acquire(l, 0, t, r, 1, NULL, ip)
25 #define six_release(l, ip)		lock_release(l, ip)
26 
27 static void do_six_unlock_type(struct six_lock *lock, enum six_lock_type type);
28 
29 #define SIX_LOCK_HELD_read_OFFSET	0
30 #define SIX_LOCK_HELD_read		~(~0U << 26)
31 #define SIX_LOCK_HELD_intent		(1U << 26)
32 #define SIX_LOCK_HELD_write		(1U << 27)
33 #define SIX_LOCK_WAITING_read		(1U << (28 + SIX_LOCK_read))
34 #define SIX_LOCK_WAITING_write		(1U << (28 + SIX_LOCK_write))
35 #define SIX_LOCK_NOSPIN			(1U << 31)
36 
37 struct six_lock_vals {
38 	/* Value we add to the lock in order to take the lock: */
39 	u32			lock_val;
40 
41 	/* If the lock has this value (used as a mask), taking the lock fails: */
42 	u32			lock_fail;
43 
44 	/* Mask that indicates lock is held for this type: */
45 	u32			held_mask;
46 
47 	/* Waitlist we wakeup when releasing the lock: */
48 	enum six_lock_type	unlock_wakeup;
49 };
50 
51 static const struct six_lock_vals l[] = {
52 	[SIX_LOCK_read] = {
53 		.lock_val	= 1U << SIX_LOCK_HELD_read_OFFSET,
54 		.lock_fail	= SIX_LOCK_HELD_write,
55 		.held_mask	= SIX_LOCK_HELD_read,
56 		.unlock_wakeup	= SIX_LOCK_write,
57 	},
58 	[SIX_LOCK_intent] = {
59 		.lock_val	= SIX_LOCK_HELD_intent,
60 		.lock_fail	= SIX_LOCK_HELD_intent,
61 		.held_mask	= SIX_LOCK_HELD_intent,
62 		.unlock_wakeup	= SIX_LOCK_intent,
63 	},
64 	[SIX_LOCK_write] = {
65 		.lock_val	= SIX_LOCK_HELD_write,
66 		.lock_fail	= SIX_LOCK_HELD_read,
67 		.held_mask	= SIX_LOCK_HELD_write,
68 		.unlock_wakeup	= SIX_LOCK_read,
69 	},
70 };
71 
72 static inline void six_set_bitmask(struct six_lock *lock, u32 mask)
73 {
74 	if ((atomic_read(&lock->state) & mask) != mask)
75 		atomic_or(mask, &lock->state);
76 }
77 
78 static inline void six_clear_bitmask(struct six_lock *lock, u32 mask)
79 {
80 	if (atomic_read(&lock->state) & mask)
81 		atomic_and(~mask, &lock->state);
82 }
83 
84 static inline void six_set_owner(struct six_lock *lock, enum six_lock_type type,
85 				 u32 old, struct task_struct *owner)
86 {
87 	if (type != SIX_LOCK_intent)
88 		return;
89 
90 	if (!(old & SIX_LOCK_HELD_intent)) {
91 		EBUG_ON(lock->owner);
92 		lock->owner = owner;
93 	} else {
94 		EBUG_ON(lock->owner != current);
95 	}
96 }
97 
98 static inline unsigned pcpu_read_count(struct six_lock *lock)
99 {
100 	unsigned read_count = 0;
101 	int cpu;
102 
103 	for_each_possible_cpu(cpu)
104 		read_count += *per_cpu_ptr(lock->readers, cpu);
105 	return read_count;
106 }
107 
108 /*
109  * __do_six_trylock() - main trylock routine
110  *
111  * Returns 1 on success, 0 on failure
112  *
113  * In percpu reader mode, a failed trylock may cause a spurious trylock failure
114  * for anoter thread taking the competing lock type, and we may havve to do a
115  * wakeup: when a wakeup is required, we return -1 - wakeup_type.
116  */
117 static int __do_six_trylock(struct six_lock *lock, enum six_lock_type type,
118 			    struct task_struct *task, bool try)
119 {
120 	int ret;
121 	u32 old;
122 
123 	EBUG_ON(type == SIX_LOCK_write && lock->owner != task);
124 	EBUG_ON(type == SIX_LOCK_write &&
125 		(try != !(atomic_read(&lock->state) & SIX_LOCK_HELD_write)));
126 
127 	/*
128 	 * Percpu reader mode:
129 	 *
130 	 * The basic idea behind this algorithm is that you can implement a lock
131 	 * between two threads without any atomics, just memory barriers:
132 	 *
133 	 * For two threads you'll need two variables, one variable for "thread a
134 	 * has the lock" and another for "thread b has the lock".
135 	 *
136 	 * To take the lock, a thread sets its variable indicating that it holds
137 	 * the lock, then issues a full memory barrier, then reads from the
138 	 * other thread's variable to check if the other thread thinks it has
139 	 * the lock. If we raced, we backoff and retry/sleep.
140 	 *
141 	 * Failure to take the lock may cause a spurious trylock failure in
142 	 * another thread, because we temporarily set the lock to indicate that
143 	 * we held it. This would be a problem for a thread in six_lock(), when
144 	 * they are calling trylock after adding themself to the waitlist and
145 	 * prior to sleeping.
146 	 *
147 	 * Therefore, if we fail to get the lock, and there were waiters of the
148 	 * type we conflict with, we will have to issue a wakeup.
149 	 *
150 	 * Since we may be called under wait_lock (and by the wakeup code
151 	 * itself), we return that the wakeup has to be done instead of doing it
152 	 * here.
153 	 */
154 	if (type == SIX_LOCK_read && lock->readers) {
155 		preempt_disable();
156 		this_cpu_inc(*lock->readers); /* signal that we own lock */
157 
158 		smp_mb();
159 
160 		old = atomic_read(&lock->state);
161 		ret = !(old & l[type].lock_fail);
162 
163 		this_cpu_sub(*lock->readers, !ret);
164 		preempt_enable();
165 
166 		if (!ret) {
167 			smp_mb();
168 			if (atomic_read(&lock->state) & SIX_LOCK_WAITING_write)
169 				ret = -1 - SIX_LOCK_write;
170 		}
171 	} else if (type == SIX_LOCK_write && lock->readers) {
172 		if (try) {
173 			atomic_add(SIX_LOCK_HELD_write, &lock->state);
174 			smp_mb__after_atomic();
175 		}
176 
177 		ret = !pcpu_read_count(lock);
178 
179 		if (try && !ret) {
180 			old = atomic_sub_return(SIX_LOCK_HELD_write, &lock->state);
181 			if (old & SIX_LOCK_WAITING_read)
182 				ret = -1 - SIX_LOCK_read;
183 		}
184 	} else {
185 		old = atomic_read(&lock->state);
186 		do {
187 			ret = !(old & l[type].lock_fail);
188 			if (!ret || (type == SIX_LOCK_write && !try)) {
189 				smp_mb();
190 				break;
191 			}
192 		} while (!atomic_try_cmpxchg_acquire(&lock->state, &old, old + l[type].lock_val));
193 
194 		EBUG_ON(ret && !(atomic_read(&lock->state) & l[type].held_mask));
195 	}
196 
197 	if (ret > 0)
198 		six_set_owner(lock, type, old, task);
199 
200 	EBUG_ON(type == SIX_LOCK_write && try && ret <= 0 &&
201 		(atomic_read(&lock->state) & SIX_LOCK_HELD_write));
202 
203 	return ret;
204 }
205 
206 static void __six_lock_wakeup(struct six_lock *lock, enum six_lock_type lock_type)
207 {
208 	struct six_lock_waiter *w, *next;
209 	struct task_struct *task;
210 	bool saw_one;
211 	int ret;
212 again:
213 	ret = 0;
214 	saw_one = false;
215 	raw_spin_lock(&lock->wait_lock);
216 
217 	list_for_each_entry_safe(w, next, &lock->wait_list, list) {
218 		if (w->lock_want != lock_type)
219 			continue;
220 
221 		if (saw_one && lock_type != SIX_LOCK_read)
222 			goto unlock;
223 		saw_one = true;
224 
225 		ret = __do_six_trylock(lock, lock_type, w->task, false);
226 		if (ret <= 0)
227 			goto unlock;
228 
229 		/*
230 		 * Similar to percpu_rwsem_wake_function(), we need to guard
231 		 * against the wakee noticing w->lock_acquired, returning, and
232 		 * then exiting before we do the wakeup:
233 		 */
234 		task = get_task_struct(w->task);
235 		__list_del(w->list.prev, w->list.next);
236 		/*
237 		 * The release barrier here ensures the ordering of the
238 		 * __list_del before setting w->lock_acquired; @w is on the
239 		 * stack of the thread doing the waiting and will be reused
240 		 * after it sees w->lock_acquired with no other locking:
241 		 * pairs with smp_load_acquire() in six_lock_slowpath()
242 		 */
243 		smp_store_release(&w->lock_acquired, true);
244 		wake_up_process(task);
245 		put_task_struct(task);
246 	}
247 
248 	six_clear_bitmask(lock, SIX_LOCK_WAITING_read << lock_type);
249 unlock:
250 	raw_spin_unlock(&lock->wait_lock);
251 
252 	if (ret < 0) {
253 		lock_type = -ret - 1;
254 		goto again;
255 	}
256 }
257 
258 __always_inline
259 static void six_lock_wakeup(struct six_lock *lock, u32 state,
260 			    enum six_lock_type lock_type)
261 {
262 	if (lock_type == SIX_LOCK_write && (state & SIX_LOCK_HELD_read))
263 		return;
264 
265 	if (!(state & (SIX_LOCK_WAITING_read << lock_type)))
266 		return;
267 
268 	__six_lock_wakeup(lock, lock_type);
269 }
270 
271 __always_inline
272 static bool do_six_trylock(struct six_lock *lock, enum six_lock_type type, bool try)
273 {
274 	int ret;
275 
276 	ret = __do_six_trylock(lock, type, current, try);
277 	if (ret < 0)
278 		__six_lock_wakeup(lock, -ret - 1);
279 
280 	return ret > 0;
281 }
282 
283 /**
284  * six_trylock_ip - attempt to take a six lock without blocking
285  * @lock:	lock to take
286  * @type:	SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write
287  * @ip:		ip parameter for lockdep/lockstat, i.e. _THIS_IP_
288  *
289  * Return: true on success, false on failure.
290  */
291 bool six_trylock_ip(struct six_lock *lock, enum six_lock_type type, unsigned long ip)
292 {
293 	if (!do_six_trylock(lock, type, true))
294 		return false;
295 
296 	if (type != SIX_LOCK_write)
297 		six_acquire(&lock->dep_map, 1, type == SIX_LOCK_read, ip);
298 	return true;
299 }
300 EXPORT_SYMBOL_GPL(six_trylock_ip);
301 
302 /**
303  * six_relock_ip - attempt to re-take a lock that was held previously
304  * @lock:	lock to take
305  * @type:	SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write
306  * @seq:	lock sequence number obtained from six_lock_seq() while lock was
307  *		held previously
308  * @ip:		ip parameter for lockdep/lockstat, i.e. _THIS_IP_
309  *
310  * Return: true on success, false on failure.
311  */
312 bool six_relock_ip(struct six_lock *lock, enum six_lock_type type,
313 		   unsigned seq, unsigned long ip)
314 {
315 	if (six_lock_seq(lock) != seq || !six_trylock_ip(lock, type, ip))
316 		return false;
317 
318 	if (six_lock_seq(lock) != seq) {
319 		six_unlock_ip(lock, type, ip);
320 		return false;
321 	}
322 
323 	return true;
324 }
325 EXPORT_SYMBOL_GPL(six_relock_ip);
326 
327 #ifdef CONFIG_SIX_LOCK_SPIN_ON_OWNER
328 
329 static inline bool six_can_spin_on_owner(struct six_lock *lock)
330 {
331 	struct task_struct *owner;
332 	bool ret;
333 
334 	if (need_resched())
335 		return false;
336 
337 	rcu_read_lock();
338 	owner = READ_ONCE(lock->owner);
339 	ret = !owner || owner_on_cpu(owner);
340 	rcu_read_unlock();
341 
342 	return ret;
343 }
344 
345 static inline bool six_spin_on_owner(struct six_lock *lock,
346 				     struct task_struct *owner,
347 				     u64 end_time)
348 {
349 	bool ret = true;
350 	unsigned loop = 0;
351 
352 	rcu_read_lock();
353 	while (lock->owner == owner) {
354 		/*
355 		 * Ensure we emit the owner->on_cpu, dereference _after_
356 		 * checking lock->owner still matches owner. If that fails,
357 		 * owner might point to freed memory. If it still matches,
358 		 * the rcu_read_lock() ensures the memory stays valid.
359 		 */
360 		barrier();
361 
362 		if (!owner_on_cpu(owner) || need_resched()) {
363 			ret = false;
364 			break;
365 		}
366 
367 		if (!(++loop & 0xf) && (time_after64(sched_clock(), end_time))) {
368 			six_set_bitmask(lock, SIX_LOCK_NOSPIN);
369 			ret = false;
370 			break;
371 		}
372 
373 		cpu_relax();
374 	}
375 	rcu_read_unlock();
376 
377 	return ret;
378 }
379 
380 static inline bool six_optimistic_spin(struct six_lock *lock, enum six_lock_type type)
381 {
382 	struct task_struct *task = current;
383 	u64 end_time;
384 
385 	if (type == SIX_LOCK_write)
386 		return false;
387 
388 	preempt_disable();
389 	if (!six_can_spin_on_owner(lock))
390 		goto fail;
391 
392 	if (!osq_lock(&lock->osq))
393 		goto fail;
394 
395 	end_time = sched_clock() + 10 * NSEC_PER_USEC;
396 
397 	while (1) {
398 		struct task_struct *owner;
399 
400 		/*
401 		 * If there's an owner, wait for it to either
402 		 * release the lock or go to sleep.
403 		 */
404 		owner = READ_ONCE(lock->owner);
405 		if (owner && !six_spin_on_owner(lock, owner, end_time))
406 			break;
407 
408 		if (do_six_trylock(lock, type, false)) {
409 			osq_unlock(&lock->osq);
410 			preempt_enable();
411 			return true;
412 		}
413 
414 		/*
415 		 * When there's no owner, we might have preempted between the
416 		 * owner acquiring the lock and setting the owner field. If
417 		 * we're an RT task that will live-lock because we won't let
418 		 * the owner complete.
419 		 */
420 		if (!owner && (need_resched() || rt_task(task)))
421 			break;
422 
423 		/*
424 		 * The cpu_relax() call is a compiler barrier which forces
425 		 * everything in this loop to be re-loaded. We don't need
426 		 * memory barriers as we'll eventually observe the right
427 		 * values at the cost of a few extra spins.
428 		 */
429 		cpu_relax();
430 	}
431 
432 	osq_unlock(&lock->osq);
433 fail:
434 	preempt_enable();
435 
436 	/*
437 	 * If we fell out of the spin path because of need_resched(),
438 	 * reschedule now, before we try-lock again. This avoids getting
439 	 * scheduled out right after we obtained the lock.
440 	 */
441 	if (need_resched())
442 		schedule();
443 
444 	return false;
445 }
446 
447 #else /* CONFIG_SIX_LOCK_SPIN_ON_OWNER */
448 
449 static inline bool six_optimistic_spin(struct six_lock *lock, enum six_lock_type type)
450 {
451 	return false;
452 }
453 
454 #endif
455 
456 noinline
457 static int six_lock_slowpath(struct six_lock *lock, enum six_lock_type type,
458 			     struct six_lock_waiter *wait,
459 			     six_lock_should_sleep_fn should_sleep_fn, void *p,
460 			     unsigned long ip)
461 {
462 	int ret = 0;
463 
464 	if (type == SIX_LOCK_write) {
465 		EBUG_ON(atomic_read(&lock->state) & SIX_LOCK_HELD_write);
466 		atomic_add(SIX_LOCK_HELD_write, &lock->state);
467 		smp_mb__after_atomic();
468 	}
469 
470 	trace_contention_begin(lock, 0);
471 	lock_contended(&lock->dep_map, ip);
472 
473 	if (six_optimistic_spin(lock, type))
474 		goto out;
475 
476 	wait->task		= current;
477 	wait->lock_want		= type;
478 	wait->lock_acquired	= false;
479 
480 	raw_spin_lock(&lock->wait_lock);
481 	six_set_bitmask(lock, SIX_LOCK_WAITING_read << type);
482 	/*
483 	 * Retry taking the lock after taking waitlist lock, in case we raced
484 	 * with an unlock:
485 	 */
486 	ret = __do_six_trylock(lock, type, current, false);
487 	if (ret <= 0) {
488 		wait->start_time = local_clock();
489 
490 		if (!list_empty(&lock->wait_list)) {
491 			struct six_lock_waiter *last =
492 				list_last_entry(&lock->wait_list,
493 					struct six_lock_waiter, list);
494 
495 			if (time_before_eq64(wait->start_time, last->start_time))
496 				wait->start_time = last->start_time + 1;
497 		}
498 
499 		list_add_tail(&wait->list, &lock->wait_list);
500 	}
501 	raw_spin_unlock(&lock->wait_lock);
502 
503 	if (unlikely(ret > 0)) {
504 		ret = 0;
505 		goto out;
506 	}
507 
508 	if (unlikely(ret < 0)) {
509 		__six_lock_wakeup(lock, -ret - 1);
510 		ret = 0;
511 	}
512 
513 	while (1) {
514 		set_current_state(TASK_UNINTERRUPTIBLE);
515 
516 		/*
517 		 * Ensures that writes to the waitlist entry happen after we see
518 		 * wait->lock_acquired: pairs with the smp_store_release in
519 		 * __six_lock_wakeup
520 		 */
521 		if (smp_load_acquire(&wait->lock_acquired))
522 			break;
523 
524 		ret = should_sleep_fn ? should_sleep_fn(lock, p) : 0;
525 		if (unlikely(ret)) {
526 			bool acquired;
527 
528 			/*
529 			 * If should_sleep_fn() returns an error, we are
530 			 * required to return that error even if we already
531 			 * acquired the lock - should_sleep_fn() might have
532 			 * modified external state (e.g. when the deadlock cycle
533 			 * detector in bcachefs issued a transaction restart)
534 			 */
535 			raw_spin_lock(&lock->wait_lock);
536 			acquired = wait->lock_acquired;
537 			if (!acquired)
538 				list_del(&wait->list);
539 			raw_spin_unlock(&lock->wait_lock);
540 
541 			if (unlikely(acquired))
542 				do_six_unlock_type(lock, type);
543 			break;
544 		}
545 
546 		schedule();
547 	}
548 
549 	__set_current_state(TASK_RUNNING);
550 out:
551 	if (ret && type == SIX_LOCK_write) {
552 		six_clear_bitmask(lock, SIX_LOCK_HELD_write);
553 		six_lock_wakeup(lock, atomic_read(&lock->state), SIX_LOCK_read);
554 	}
555 	trace_contention_end(lock, 0);
556 
557 	return ret;
558 }
559 
560 /**
561  * six_lock_ip_waiter - take a lock, with full waitlist interface
562  * @lock:	lock to take
563  * @type:	SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write
564  * @wait:	pointer to wait object, which will be added to lock's waitlist
565  * @should_sleep_fn: callback run after adding to waitlist, immediately prior
566  *		to scheduling
567  * @p:		passed through to @should_sleep_fn
568  * @ip:		ip parameter for lockdep/lockstat, i.e. _THIS_IP_
569  *
570  * This is the most general six_lock() variant, with parameters to support full
571  * cycle detection for deadlock avoidance.
572  *
573  * The code calling this function must implement tracking of held locks, and the
574  * @wait object should be embedded into the struct that tracks held locks -
575  * which must also be accessible in a thread-safe way.
576  *
577  * @should_sleep_fn should invoke the cycle detector; it should walk each
578  * lock's waiters, and for each waiter recursively walk their held locks.
579  *
580  * When this function must block, @wait will be added to @lock's waitlist before
581  * calling trylock, and before calling @should_sleep_fn, and @wait will not be
582  * removed from the lock waitlist until the lock has been successfully acquired,
583  * or we abort.
584  *
585  * @wait.start_time will be monotonically increasing for any given waitlist, and
586  * thus may be used as a loop cursor.
587  *
588  * Return: 0 on success, or the return code from @should_sleep_fn on failure.
589  */
590 int six_lock_ip_waiter(struct six_lock *lock, enum six_lock_type type,
591 		       struct six_lock_waiter *wait,
592 		       six_lock_should_sleep_fn should_sleep_fn, void *p,
593 		       unsigned long ip)
594 {
595 	int ret;
596 
597 	wait->start_time = 0;
598 
599 	if (type != SIX_LOCK_write)
600 		six_acquire(&lock->dep_map, 0, type == SIX_LOCK_read, ip);
601 
602 	ret = do_six_trylock(lock, type, true) ? 0
603 		: six_lock_slowpath(lock, type, wait, should_sleep_fn, p, ip);
604 
605 	if (ret && type != SIX_LOCK_write)
606 		six_release(&lock->dep_map, ip);
607 	if (!ret)
608 		lock_acquired(&lock->dep_map, ip);
609 
610 	return ret;
611 }
612 EXPORT_SYMBOL_GPL(six_lock_ip_waiter);
613 
614 __always_inline
615 static void do_six_unlock_type(struct six_lock *lock, enum six_lock_type type)
616 {
617 	u32 state;
618 
619 	if (type == SIX_LOCK_intent)
620 		lock->owner = NULL;
621 
622 	if (type == SIX_LOCK_read &&
623 	    lock->readers) {
624 		smp_mb(); /* unlock barrier */
625 		this_cpu_dec(*lock->readers);
626 		smp_mb(); /* between unlocking and checking for waiters */
627 		state = atomic_read(&lock->state);
628 	} else {
629 		u32 v = l[type].lock_val;
630 
631 		if (type != SIX_LOCK_read)
632 			v += atomic_read(&lock->state) & SIX_LOCK_NOSPIN;
633 
634 		EBUG_ON(!(atomic_read(&lock->state) & l[type].held_mask));
635 		state = atomic_sub_return_release(v, &lock->state);
636 	}
637 
638 	six_lock_wakeup(lock, state, l[type].unlock_wakeup);
639 }
640 
641 /**
642  * six_unlock_ip - drop a six lock
643  * @lock:	lock to unlock
644  * @type:	SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write
645  * @ip:		ip parameter for lockdep/lockstat, i.e. _THIS_IP_
646  *
647  * When a lock is held multiple times (because six_lock_incement()) was used),
648  * this decrements the 'lock held' counter by one.
649  *
650  * For example:
651  * six_lock_read(&foo->lock);				read count 1
652  * six_lock_increment(&foo->lock, SIX_LOCK_read);	read count 2
653  * six_lock_unlock(&foo->lock, SIX_LOCK_read);		read count 1
654  * six_lock_unlock(&foo->lock, SIX_LOCK_read);		read count 0
655  */
656 void six_unlock_ip(struct six_lock *lock, enum six_lock_type type, unsigned long ip)
657 {
658 	EBUG_ON(type == SIX_LOCK_write &&
659 		!(atomic_read(&lock->state) & SIX_LOCK_HELD_intent));
660 	EBUG_ON((type == SIX_LOCK_write ||
661 		 type == SIX_LOCK_intent) &&
662 		lock->owner != current);
663 
664 	if (type != SIX_LOCK_write)
665 		six_release(&lock->dep_map, ip);
666 	else
667 		lock->seq++;
668 
669 	if (type == SIX_LOCK_intent &&
670 	    lock->intent_lock_recurse) {
671 		--lock->intent_lock_recurse;
672 		return;
673 	}
674 
675 	do_six_unlock_type(lock, type);
676 }
677 EXPORT_SYMBOL_GPL(six_unlock_ip);
678 
679 /**
680  * six_lock_downgrade - convert an intent lock to a read lock
681  * @lock:	lock to dowgrade
682  *
683  * @lock will have read count incremented and intent count decremented
684  */
685 void six_lock_downgrade(struct six_lock *lock)
686 {
687 	six_lock_increment(lock, SIX_LOCK_read);
688 	six_unlock_intent(lock);
689 }
690 EXPORT_SYMBOL_GPL(six_lock_downgrade);
691 
692 /**
693  * six_lock_tryupgrade - attempt to convert read lock to an intent lock
694  * @lock:	lock to upgrade
695  *
696  * On success, @lock will have intent count incremented and read count
697  * decremented
698  *
699  * Return: true on success, false on failure
700  */
701 bool six_lock_tryupgrade(struct six_lock *lock)
702 {
703 	u32 old = atomic_read(&lock->state), new;
704 
705 	do {
706 		new = old;
707 
708 		if (new & SIX_LOCK_HELD_intent)
709 			return false;
710 
711 		if (!lock->readers) {
712 			EBUG_ON(!(new & SIX_LOCK_HELD_read));
713 			new -= l[SIX_LOCK_read].lock_val;
714 		}
715 
716 		new |= SIX_LOCK_HELD_intent;
717 	} while (!atomic_try_cmpxchg_acquire(&lock->state, &old, new));
718 
719 	if (lock->readers)
720 		this_cpu_dec(*lock->readers);
721 
722 	six_set_owner(lock, SIX_LOCK_intent, old, current);
723 
724 	return true;
725 }
726 EXPORT_SYMBOL_GPL(six_lock_tryupgrade);
727 
728 /**
729  * six_trylock_convert - attempt to convert a held lock from one type to another
730  * @lock:	lock to upgrade
731  * @from:	SIX_LOCK_read or SIX_LOCK_intent
732  * @to:		SIX_LOCK_read or SIX_LOCK_intent
733  *
734  * On success, @lock will have intent count incremented and read count
735  * decremented
736  *
737  * Return: true on success, false on failure
738  */
739 bool six_trylock_convert(struct six_lock *lock,
740 			 enum six_lock_type from,
741 			 enum six_lock_type to)
742 {
743 	EBUG_ON(to == SIX_LOCK_write || from == SIX_LOCK_write);
744 
745 	if (to == from)
746 		return true;
747 
748 	if (to == SIX_LOCK_read) {
749 		six_lock_downgrade(lock);
750 		return true;
751 	} else {
752 		return six_lock_tryupgrade(lock);
753 	}
754 }
755 EXPORT_SYMBOL_GPL(six_trylock_convert);
756 
757 /**
758  * six_lock_increment - increase held lock count on a lock that is already held
759  * @lock:	lock to increment
760  * @type:	SIX_LOCK_read or SIX_LOCK_intent
761  *
762  * @lock must already be held, with a lock type that is greater than or equal to
763  * @type
764  *
765  * A corresponding six_unlock_type() call will be required for @lock to be fully
766  * unlocked.
767  */
768 void six_lock_increment(struct six_lock *lock, enum six_lock_type type)
769 {
770 	six_acquire(&lock->dep_map, 0, type == SIX_LOCK_read, _RET_IP_);
771 
772 	/* XXX: assert already locked, and that we don't overflow: */
773 
774 	switch (type) {
775 	case SIX_LOCK_read:
776 		if (lock->readers) {
777 			this_cpu_inc(*lock->readers);
778 		} else {
779 			EBUG_ON(!(atomic_read(&lock->state) &
780 				  (SIX_LOCK_HELD_read|
781 				   SIX_LOCK_HELD_intent)));
782 			atomic_add(l[type].lock_val, &lock->state);
783 		}
784 		break;
785 	case SIX_LOCK_intent:
786 		EBUG_ON(!(atomic_read(&lock->state) & SIX_LOCK_HELD_intent));
787 		lock->intent_lock_recurse++;
788 		break;
789 	case SIX_LOCK_write:
790 		BUG();
791 		break;
792 	}
793 }
794 EXPORT_SYMBOL_GPL(six_lock_increment);
795 
796 /**
797  * six_lock_wakeup_all - wake up all waiters on @lock
798  * @lock:	lock to wake up waiters for
799  *
800  * Wakeing up waiters will cause them to re-run should_sleep_fn, which may then
801  * abort the lock operation.
802  *
803  * This function is never needed in a bug-free program; it's only useful in
804  * debug code, e.g. to determine if a cycle detector is at fault.
805  */
806 void six_lock_wakeup_all(struct six_lock *lock)
807 {
808 	u32 state = atomic_read(&lock->state);
809 	struct six_lock_waiter *w;
810 
811 	six_lock_wakeup(lock, state, SIX_LOCK_read);
812 	six_lock_wakeup(lock, state, SIX_LOCK_intent);
813 	six_lock_wakeup(lock, state, SIX_LOCK_write);
814 
815 	raw_spin_lock(&lock->wait_lock);
816 	list_for_each_entry(w, &lock->wait_list, list)
817 		wake_up_process(w->task);
818 	raw_spin_unlock(&lock->wait_lock);
819 }
820 EXPORT_SYMBOL_GPL(six_lock_wakeup_all);
821 
822 /**
823  * six_lock_counts - return held lock counts, for each lock type
824  * @lock:	lock to return counters for
825  *
826  * Return: the number of times a lock is held for read, intent and write.
827  */
828 struct six_lock_count six_lock_counts(struct six_lock *lock)
829 {
830 	struct six_lock_count ret;
831 
832 	ret.n[SIX_LOCK_read]	= !lock->readers
833 		? atomic_read(&lock->state) & SIX_LOCK_HELD_read
834 		: pcpu_read_count(lock);
835 	ret.n[SIX_LOCK_intent]	= !!(atomic_read(&lock->state) & SIX_LOCK_HELD_intent) +
836 		lock->intent_lock_recurse;
837 	ret.n[SIX_LOCK_write]	= !!(atomic_read(&lock->state) & SIX_LOCK_HELD_write);
838 
839 	return ret;
840 }
841 EXPORT_SYMBOL_GPL(six_lock_counts);
842 
843 /**
844  * six_lock_readers_add - directly manipulate reader count of a lock
845  * @lock:	lock to add/subtract readers for
846  * @nr:		reader count to add/subtract
847  *
848  * When an upper layer is implementing lock reentrency, we may have both read
849  * and intent locks on the same lock.
850  *
851  * When we need to take a write lock, the read locks will cause self-deadlock,
852  * because six locks themselves do not track which read locks are held by the
853  * current thread and which are held by a different thread - it does no
854  * per-thread tracking of held locks.
855  *
856  * The upper layer that is tracking held locks may however, if trylock() has
857  * failed, count up its own read locks, subtract them, take the write lock, and
858  * then re-add them.
859  *
860  * As in any other situation when taking a write lock, @lock must be held for
861  * intent one (or more) times, so @lock will never be left unlocked.
862  */
863 void six_lock_readers_add(struct six_lock *lock, int nr)
864 {
865 	if (lock->readers) {
866 		this_cpu_add(*lock->readers, nr);
867 	} else {
868 		EBUG_ON((int) (atomic_read(&lock->state) & SIX_LOCK_HELD_read) + nr < 0);
869 		/* reader count starts at bit 0 */
870 		atomic_add(nr, &lock->state);
871 	}
872 }
873 EXPORT_SYMBOL_GPL(six_lock_readers_add);
874 
875 /**
876  * six_lock_exit - release resources held by a lock prior to freeing
877  * @lock:	lock to exit
878  *
879  * When a lock was initialized in percpu mode (SIX_OLCK_INIT_PCPU), this is
880  * required to free the percpu read counts.
881  */
882 void six_lock_exit(struct six_lock *lock)
883 {
884 	WARN_ON(lock->readers && pcpu_read_count(lock));
885 	WARN_ON(atomic_read(&lock->state) & SIX_LOCK_HELD_read);
886 
887 	free_percpu(lock->readers);
888 	lock->readers = NULL;
889 }
890 EXPORT_SYMBOL_GPL(six_lock_exit);
891 
892 void __six_lock_init(struct six_lock *lock, const char *name,
893 		     struct lock_class_key *key, enum six_lock_init_flags flags)
894 {
895 	atomic_set(&lock->state, 0);
896 	raw_spin_lock_init(&lock->wait_lock);
897 	INIT_LIST_HEAD(&lock->wait_list);
898 #ifdef CONFIG_DEBUG_LOCK_ALLOC
899 	debug_check_no_locks_freed((void *) lock, sizeof(*lock));
900 	lockdep_init_map(&lock->dep_map, name, key, 0);
901 #endif
902 
903 	/*
904 	 * Don't assume that we have real percpu variables available in
905 	 * userspace:
906 	 */
907 #ifdef __KERNEL__
908 	if (flags & SIX_LOCK_INIT_PCPU) {
909 		/*
910 		 * We don't return an error here on memory allocation failure
911 		 * since percpu is an optimization, and locks will work with the
912 		 * same semantics in non-percpu mode: callers can check for
913 		 * failure if they wish by checking lock->readers, but generally
914 		 * will not want to treat it as an error.
915 		 */
916 		lock->readers = alloc_percpu(unsigned);
917 	}
918 #endif
919 }
920 EXPORT_SYMBOL_GPL(__six_lock_init);
921