xref: /linux/fs/bcachefs/sb-clean.c (revision eed4edda910fe34dfae8c6bfbcf57f4593a54295)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "bcachefs.h"
4 #include "btree_update_interior.h"
5 #include "buckets.h"
6 #include "error.h"
7 #include "journal_io.h"
8 #include "replicas.h"
9 #include "sb-clean.h"
10 #include "super-io.h"
11 
12 /*
13  * BCH_SB_FIELD_clean:
14  *
15  * Btree roots, and a few other things, are recovered from the journal after an
16  * unclean shutdown - but after a clean shutdown, to avoid having to read the
17  * journal, we can store them in the superblock.
18  *
19  * bch_sb_field_clean simply contains a list of journal entries, stored exactly
20  * as they would be in the journal:
21  */
22 
23 int bch2_sb_clean_validate_late(struct bch_fs *c, struct bch_sb_field_clean *clean,
24 				int write)
25 {
26 	struct jset_entry *entry;
27 	int ret;
28 
29 	for (entry = clean->start;
30 	     entry < (struct jset_entry *) vstruct_end(&clean->field);
31 	     entry = vstruct_next(entry)) {
32 		ret = bch2_journal_entry_validate(c, NULL, entry,
33 						  le16_to_cpu(c->disk_sb.sb->version),
34 						  BCH_SB_BIG_ENDIAN(c->disk_sb.sb),
35 						  write);
36 		if (ret)
37 			return ret;
38 	}
39 
40 	return 0;
41 }
42 
43 static struct bkey_i *btree_root_find(struct bch_fs *c,
44 				      struct bch_sb_field_clean *clean,
45 				      struct jset *j,
46 				      enum btree_id id, unsigned *level)
47 {
48 	struct bkey_i *k;
49 	struct jset_entry *entry, *start, *end;
50 
51 	if (clean) {
52 		start = clean->start;
53 		end = vstruct_end(&clean->field);
54 	} else {
55 		start = j->start;
56 		end = vstruct_last(j);
57 	}
58 
59 	for (entry = start; entry < end; entry = vstruct_next(entry))
60 		if (entry->type == BCH_JSET_ENTRY_btree_root &&
61 		    entry->btree_id == id)
62 			goto found;
63 
64 	return NULL;
65 found:
66 	if (!entry->u64s)
67 		return ERR_PTR(-EINVAL);
68 
69 	k = entry->start;
70 	*level = entry->level;
71 	return k;
72 }
73 
74 int bch2_verify_superblock_clean(struct bch_fs *c,
75 				 struct bch_sb_field_clean **cleanp,
76 				 struct jset *j)
77 {
78 	unsigned i;
79 	struct bch_sb_field_clean *clean = *cleanp;
80 	struct printbuf buf1 = PRINTBUF;
81 	struct printbuf buf2 = PRINTBUF;
82 	int ret = 0;
83 
84 	if (mustfix_fsck_err_on(j->seq != clean->journal_seq, c,
85 			sb_clean_journal_seq_mismatch,
86 			"superblock journal seq (%llu) doesn't match journal (%llu) after clean shutdown",
87 			le64_to_cpu(clean->journal_seq),
88 			le64_to_cpu(j->seq))) {
89 		kfree(clean);
90 		*cleanp = NULL;
91 		return 0;
92 	}
93 
94 	for (i = 0; i < BTREE_ID_NR; i++) {
95 		struct bkey_i *k1, *k2;
96 		unsigned l1 = 0, l2 = 0;
97 
98 		k1 = btree_root_find(c, clean, NULL, i, &l1);
99 		k2 = btree_root_find(c, NULL, j, i, &l2);
100 
101 		if (!k1 && !k2)
102 			continue;
103 
104 		printbuf_reset(&buf1);
105 		printbuf_reset(&buf2);
106 
107 		if (k1)
108 			bch2_bkey_val_to_text(&buf1, c, bkey_i_to_s_c(k1));
109 		else
110 			prt_printf(&buf1, "(none)");
111 
112 		if (k2)
113 			bch2_bkey_val_to_text(&buf2, c, bkey_i_to_s_c(k2));
114 		else
115 			prt_printf(&buf2, "(none)");
116 
117 		mustfix_fsck_err_on(!k1 || !k2 ||
118 				    IS_ERR(k1) ||
119 				    IS_ERR(k2) ||
120 				    k1->k.u64s != k2->k.u64s ||
121 				    memcmp(k1, k2, bkey_bytes(&k1->k)) ||
122 				    l1 != l2, c,
123 			sb_clean_btree_root_mismatch,
124 			"superblock btree root %u doesn't match journal after clean shutdown\n"
125 			"sb:      l=%u %s\n"
126 			"journal: l=%u %s\n", i,
127 			l1, buf1.buf,
128 			l2, buf2.buf);
129 	}
130 fsck_err:
131 	printbuf_exit(&buf2);
132 	printbuf_exit(&buf1);
133 	return ret;
134 }
135 
136 struct bch_sb_field_clean *bch2_read_superblock_clean(struct bch_fs *c)
137 {
138 	struct bch_sb_field_clean *clean, *sb_clean;
139 	int ret;
140 
141 	mutex_lock(&c->sb_lock);
142 	sb_clean = bch2_sb_field_get(c->disk_sb.sb, clean);
143 
144 	if (fsck_err_on(!sb_clean, c,
145 			sb_clean_missing,
146 			"superblock marked clean but clean section not present")) {
147 		SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
148 		c->sb.clean = false;
149 		mutex_unlock(&c->sb_lock);
150 		return NULL;
151 	}
152 
153 	clean = kmemdup(sb_clean, vstruct_bytes(&sb_clean->field),
154 			GFP_KERNEL);
155 	if (!clean) {
156 		mutex_unlock(&c->sb_lock);
157 		return ERR_PTR(-BCH_ERR_ENOMEM_read_superblock_clean);
158 	}
159 
160 	ret = bch2_sb_clean_validate_late(c, clean, READ);
161 	if (ret) {
162 		mutex_unlock(&c->sb_lock);
163 		return ERR_PTR(ret);
164 	}
165 
166 	mutex_unlock(&c->sb_lock);
167 
168 	return clean;
169 fsck_err:
170 	mutex_unlock(&c->sb_lock);
171 	return ERR_PTR(ret);
172 }
173 
174 static struct jset_entry *jset_entry_init(struct jset_entry **end, size_t size)
175 {
176 	struct jset_entry *entry = *end;
177 	unsigned u64s = DIV_ROUND_UP(size, sizeof(u64));
178 
179 	memset(entry, 0, u64s * sizeof(u64));
180 	/*
181 	 * The u64s field counts from the start of data, ignoring the shared
182 	 * fields.
183 	 */
184 	entry->u64s = cpu_to_le16(u64s - 1);
185 
186 	*end = vstruct_next(*end);
187 	return entry;
188 }
189 
190 void bch2_journal_super_entries_add_common(struct bch_fs *c,
191 					   struct jset_entry **end,
192 					   u64 journal_seq)
193 {
194 	percpu_down_read(&c->mark_lock);
195 
196 	if (!journal_seq) {
197 		for (unsigned i = 0; i < ARRAY_SIZE(c->usage); i++)
198 			bch2_fs_usage_acc_to_base(c, i);
199 	} else {
200 		bch2_fs_usage_acc_to_base(c, journal_seq & JOURNAL_BUF_MASK);
201 	}
202 
203 	{
204 		struct jset_entry_usage *u =
205 			container_of(jset_entry_init(end, sizeof(*u)),
206 				     struct jset_entry_usage, entry);
207 
208 		u->entry.type	= BCH_JSET_ENTRY_usage;
209 		u->entry.btree_id = BCH_FS_USAGE_inodes;
210 		u->v		= cpu_to_le64(c->usage_base->b.nr_inodes);
211 	}
212 
213 	{
214 		struct jset_entry_usage *u =
215 			container_of(jset_entry_init(end, sizeof(*u)),
216 				     struct jset_entry_usage, entry);
217 
218 		u->entry.type	= BCH_JSET_ENTRY_usage;
219 		u->entry.btree_id = BCH_FS_USAGE_key_version;
220 		u->v		= cpu_to_le64(atomic64_read(&c->key_version));
221 	}
222 
223 	for (unsigned i = 0; i < BCH_REPLICAS_MAX; i++) {
224 		struct jset_entry_usage *u =
225 			container_of(jset_entry_init(end, sizeof(*u)),
226 				     struct jset_entry_usage, entry);
227 
228 		u->entry.type	= BCH_JSET_ENTRY_usage;
229 		u->entry.btree_id = BCH_FS_USAGE_reserved;
230 		u->entry.level	= i;
231 		u->v		= cpu_to_le64(c->usage_base->persistent_reserved[i]);
232 	}
233 
234 	for (unsigned i = 0; i < c->replicas.nr; i++) {
235 		struct bch_replicas_entry_v1 *e =
236 			cpu_replicas_entry(&c->replicas, i);
237 		struct jset_entry_data_usage *u =
238 			container_of(jset_entry_init(end, sizeof(*u) + e->nr_devs),
239 				     struct jset_entry_data_usage, entry);
240 
241 		u->entry.type	= BCH_JSET_ENTRY_data_usage;
242 		u->v		= cpu_to_le64(c->usage_base->replicas[i]);
243 		unsafe_memcpy(&u->r, e, replicas_entry_bytes(e),
244 			      "embedded variable length struct");
245 	}
246 
247 	for_each_member_device(c, ca) {
248 		unsigned b = sizeof(struct jset_entry_dev_usage) +
249 			sizeof(struct jset_entry_dev_usage_type) * BCH_DATA_NR;
250 		struct jset_entry_dev_usage *u =
251 			container_of(jset_entry_init(end, b),
252 				     struct jset_entry_dev_usage, entry);
253 
254 		u->entry.type = BCH_JSET_ENTRY_dev_usage;
255 		u->dev = cpu_to_le32(ca->dev_idx);
256 
257 		for (unsigned i = 0; i < BCH_DATA_NR; i++) {
258 			u->d[i].buckets = cpu_to_le64(ca->usage_base->d[i].buckets);
259 			u->d[i].sectors	= cpu_to_le64(ca->usage_base->d[i].sectors);
260 			u->d[i].fragmented = cpu_to_le64(ca->usage_base->d[i].fragmented);
261 		}
262 	}
263 
264 	percpu_up_read(&c->mark_lock);
265 
266 	for (unsigned i = 0; i < 2; i++) {
267 		struct jset_entry_clock *clock =
268 			container_of(jset_entry_init(end, sizeof(*clock)),
269 				     struct jset_entry_clock, entry);
270 
271 		clock->entry.type = BCH_JSET_ENTRY_clock;
272 		clock->rw	= i;
273 		clock->time	= cpu_to_le64(atomic64_read(&c->io_clock[i].now));
274 	}
275 }
276 
277 static int bch2_sb_clean_validate(struct bch_sb *sb,
278 				  struct bch_sb_field *f,
279 				  struct printbuf *err)
280 {
281 	struct bch_sb_field_clean *clean = field_to_type(f, clean);
282 
283 	if (vstruct_bytes(&clean->field) < sizeof(*clean)) {
284 		prt_printf(err, "wrong size (got %zu should be %zu)",
285 		       vstruct_bytes(&clean->field), sizeof(*clean));
286 		return -BCH_ERR_invalid_sb_clean;
287 	}
288 
289 	return 0;
290 }
291 
292 static void bch2_sb_clean_to_text(struct printbuf *out, struct bch_sb *sb,
293 				  struct bch_sb_field *f)
294 {
295 	struct bch_sb_field_clean *clean = field_to_type(f, clean);
296 	struct jset_entry *entry;
297 
298 	prt_printf(out, "flags:          %x",	le32_to_cpu(clean->flags));
299 	prt_newline(out);
300 	prt_printf(out, "journal_seq:    %llu",	le64_to_cpu(clean->journal_seq));
301 	prt_newline(out);
302 
303 	for (entry = clean->start;
304 	     entry != vstruct_end(&clean->field);
305 	     entry = vstruct_next(entry)) {
306 		if (entry->type == BCH_JSET_ENTRY_btree_keys &&
307 		    !entry->u64s)
308 			continue;
309 
310 		bch2_journal_entry_to_text(out, NULL, entry);
311 		prt_newline(out);
312 	}
313 }
314 
315 const struct bch_sb_field_ops bch_sb_field_ops_clean = {
316 	.validate	= bch2_sb_clean_validate,
317 	.to_text	= bch2_sb_clean_to_text,
318 };
319 
320 int bch2_fs_mark_dirty(struct bch_fs *c)
321 {
322 	int ret;
323 
324 	/*
325 	 * Unconditionally write superblock, to verify it hasn't changed before
326 	 * we go rw:
327 	 */
328 
329 	mutex_lock(&c->sb_lock);
330 	SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
331 	c->disk_sb.sb->features[0] |= cpu_to_le64(BCH_SB_FEATURES_ALWAYS);
332 
333 	ret = bch2_write_super(c);
334 	mutex_unlock(&c->sb_lock);
335 
336 	return ret;
337 }
338 
339 void bch2_fs_mark_clean(struct bch_fs *c)
340 {
341 	struct bch_sb_field_clean *sb_clean;
342 	struct jset_entry *entry;
343 	unsigned u64s;
344 	int ret;
345 
346 	mutex_lock(&c->sb_lock);
347 	if (BCH_SB_CLEAN(c->disk_sb.sb))
348 		goto out;
349 
350 	SET_BCH_SB_CLEAN(c->disk_sb.sb, true);
351 
352 	c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_alloc_info);
353 	c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_alloc_metadata);
354 	c->disk_sb.sb->features[0] &= cpu_to_le64(~(1ULL << BCH_FEATURE_extents_above_btree_updates));
355 	c->disk_sb.sb->features[0] &= cpu_to_le64(~(1ULL << BCH_FEATURE_btree_updates_journalled));
356 
357 	u64s = sizeof(*sb_clean) / sizeof(u64) + c->journal.entry_u64s_reserved;
358 
359 	sb_clean = bch2_sb_field_resize(&c->disk_sb, clean, u64s);
360 	if (!sb_clean) {
361 		bch_err(c, "error resizing superblock while setting filesystem clean");
362 		goto out;
363 	}
364 
365 	sb_clean->flags		= 0;
366 	sb_clean->journal_seq	= cpu_to_le64(atomic64_read(&c->journal.seq));
367 
368 	/* Trying to catch outstanding bug: */
369 	BUG_ON(le64_to_cpu(sb_clean->journal_seq) > S64_MAX);
370 
371 	entry = sb_clean->start;
372 	bch2_journal_super_entries_add_common(c, &entry, 0);
373 	entry = bch2_btree_roots_to_journal_entries(c, entry, 0);
374 	BUG_ON((void *) entry > vstruct_end(&sb_clean->field));
375 
376 	memset(entry, 0,
377 	       vstruct_end(&sb_clean->field) - (void *) entry);
378 
379 	/*
380 	 * this should be in the write path, and we should be validating every
381 	 * superblock section:
382 	 */
383 	ret = bch2_sb_clean_validate_late(c, sb_clean, WRITE);
384 	if (ret) {
385 		bch_err(c, "error writing marking filesystem clean: validate error");
386 		goto out;
387 	}
388 
389 	bch2_write_super(c);
390 out:
391 	mutex_unlock(&c->sb_lock);
392 }
393