xref: /linux/fs/bcachefs/sb-clean.c (revision 79ac11393328fb1717d17c12e3c0eef0e9fa0647)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "bcachefs.h"
4 #include "btree_update_interior.h"
5 #include "buckets.h"
6 #include "error.h"
7 #include "journal_io.h"
8 #include "replicas.h"
9 #include "sb-clean.h"
10 #include "super-io.h"
11 
12 /*
13  * BCH_SB_FIELD_clean:
14  *
15  * Btree roots, and a few other things, are recovered from the journal after an
16  * unclean shutdown - but after a clean shutdown, to avoid having to read the
17  * journal, we can store them in the superblock.
18  *
19  * bch_sb_field_clean simply contains a list of journal entries, stored exactly
20  * as they would be in the journal:
21  */
22 
23 int bch2_sb_clean_validate_late(struct bch_fs *c, struct bch_sb_field_clean *clean,
24 				int write)
25 {
26 	struct jset_entry *entry;
27 	int ret;
28 
29 	for (entry = clean->start;
30 	     entry < (struct jset_entry *) vstruct_end(&clean->field);
31 	     entry = vstruct_next(entry)) {
32 		ret = bch2_journal_entry_validate(c, NULL, entry,
33 						  le16_to_cpu(c->disk_sb.sb->version),
34 						  BCH_SB_BIG_ENDIAN(c->disk_sb.sb),
35 						  write);
36 		if (ret)
37 			return ret;
38 	}
39 
40 	return 0;
41 }
42 
43 static struct bkey_i *btree_root_find(struct bch_fs *c,
44 				      struct bch_sb_field_clean *clean,
45 				      struct jset *j,
46 				      enum btree_id id, unsigned *level)
47 {
48 	struct bkey_i *k;
49 	struct jset_entry *entry, *start, *end;
50 
51 	if (clean) {
52 		start = clean->start;
53 		end = vstruct_end(&clean->field);
54 	} else {
55 		start = j->start;
56 		end = vstruct_last(j);
57 	}
58 
59 	for (entry = start; entry < end; entry = vstruct_next(entry))
60 		if (entry->type == BCH_JSET_ENTRY_btree_root &&
61 		    entry->btree_id == id)
62 			goto found;
63 
64 	return NULL;
65 found:
66 	if (!entry->u64s)
67 		return ERR_PTR(-EINVAL);
68 
69 	k = entry->start;
70 	*level = entry->level;
71 	return k;
72 }
73 
74 int bch2_verify_superblock_clean(struct bch_fs *c,
75 				 struct bch_sb_field_clean **cleanp,
76 				 struct jset *j)
77 {
78 	unsigned i;
79 	struct bch_sb_field_clean *clean = *cleanp;
80 	struct printbuf buf1 = PRINTBUF;
81 	struct printbuf buf2 = PRINTBUF;
82 	int ret = 0;
83 
84 	if (mustfix_fsck_err_on(j->seq != clean->journal_seq, c,
85 			sb_clean_journal_seq_mismatch,
86 			"superblock journal seq (%llu) doesn't match journal (%llu) after clean shutdown",
87 			le64_to_cpu(clean->journal_seq),
88 			le64_to_cpu(j->seq))) {
89 		kfree(clean);
90 		*cleanp = NULL;
91 		return 0;
92 	}
93 
94 	for (i = 0; i < BTREE_ID_NR; i++) {
95 		struct bkey_i *k1, *k2;
96 		unsigned l1 = 0, l2 = 0;
97 
98 		k1 = btree_root_find(c, clean, NULL, i, &l1);
99 		k2 = btree_root_find(c, NULL, j, i, &l2);
100 
101 		if (!k1 && !k2)
102 			continue;
103 
104 		printbuf_reset(&buf1);
105 		printbuf_reset(&buf2);
106 
107 		if (k1)
108 			bch2_bkey_val_to_text(&buf1, c, bkey_i_to_s_c(k1));
109 		else
110 			prt_printf(&buf1, "(none)");
111 
112 		if (k2)
113 			bch2_bkey_val_to_text(&buf2, c, bkey_i_to_s_c(k2));
114 		else
115 			prt_printf(&buf2, "(none)");
116 
117 		mustfix_fsck_err_on(!k1 || !k2 ||
118 				    IS_ERR(k1) ||
119 				    IS_ERR(k2) ||
120 				    k1->k.u64s != k2->k.u64s ||
121 				    memcmp(k1, k2, bkey_bytes(&k1->k)) ||
122 				    l1 != l2, c,
123 			sb_clean_btree_root_mismatch,
124 			"superblock btree root %u doesn't match journal after clean shutdown\n"
125 			"sb:      l=%u %s\n"
126 			"journal: l=%u %s\n", i,
127 			l1, buf1.buf,
128 			l2, buf2.buf);
129 	}
130 fsck_err:
131 	printbuf_exit(&buf2);
132 	printbuf_exit(&buf1);
133 	return ret;
134 }
135 
136 struct bch_sb_field_clean *bch2_read_superblock_clean(struct bch_fs *c)
137 {
138 	struct bch_sb_field_clean *clean, *sb_clean;
139 	int ret;
140 
141 	mutex_lock(&c->sb_lock);
142 	sb_clean = bch2_sb_field_get(c->disk_sb.sb, clean);
143 
144 	if (fsck_err_on(!sb_clean, c,
145 			sb_clean_missing,
146 			"superblock marked clean but clean section not present")) {
147 		SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
148 		c->sb.clean = false;
149 		mutex_unlock(&c->sb_lock);
150 		return NULL;
151 	}
152 
153 	clean = kmemdup(sb_clean, vstruct_bytes(&sb_clean->field),
154 			GFP_KERNEL);
155 	if (!clean) {
156 		mutex_unlock(&c->sb_lock);
157 		return ERR_PTR(-BCH_ERR_ENOMEM_read_superblock_clean);
158 	}
159 
160 	ret = bch2_sb_clean_validate_late(c, clean, READ);
161 	if (ret) {
162 		mutex_unlock(&c->sb_lock);
163 		return ERR_PTR(ret);
164 	}
165 
166 	mutex_unlock(&c->sb_lock);
167 
168 	return clean;
169 fsck_err:
170 	mutex_unlock(&c->sb_lock);
171 	return ERR_PTR(ret);
172 }
173 
174 static struct jset_entry *jset_entry_init(struct jset_entry **end, size_t size)
175 {
176 	struct jset_entry *entry = *end;
177 	unsigned u64s = DIV_ROUND_UP(size, sizeof(u64));
178 
179 	memset(entry, 0, u64s * sizeof(u64));
180 	/*
181 	 * The u64s field counts from the start of data, ignoring the shared
182 	 * fields.
183 	 */
184 	entry->u64s = cpu_to_le16(u64s - 1);
185 
186 	*end = vstruct_next(*end);
187 	return entry;
188 }
189 
190 void bch2_journal_super_entries_add_common(struct bch_fs *c,
191 					   struct jset_entry **end,
192 					   u64 journal_seq)
193 {
194 	struct bch_dev *ca;
195 	unsigned i, dev;
196 
197 	percpu_down_read(&c->mark_lock);
198 
199 	if (!journal_seq) {
200 		for (i = 0; i < ARRAY_SIZE(c->usage); i++)
201 			bch2_fs_usage_acc_to_base(c, i);
202 	} else {
203 		bch2_fs_usage_acc_to_base(c, journal_seq & JOURNAL_BUF_MASK);
204 	}
205 
206 	{
207 		struct jset_entry_usage *u =
208 			container_of(jset_entry_init(end, sizeof(*u)),
209 				     struct jset_entry_usage, entry);
210 
211 		u->entry.type	= BCH_JSET_ENTRY_usage;
212 		u->entry.btree_id = BCH_FS_USAGE_inodes;
213 		u->v		= cpu_to_le64(c->usage_base->nr_inodes);
214 	}
215 
216 	{
217 		struct jset_entry_usage *u =
218 			container_of(jset_entry_init(end, sizeof(*u)),
219 				     struct jset_entry_usage, entry);
220 
221 		u->entry.type	= BCH_JSET_ENTRY_usage;
222 		u->entry.btree_id = BCH_FS_USAGE_key_version;
223 		u->v		= cpu_to_le64(atomic64_read(&c->key_version));
224 	}
225 
226 	for (i = 0; i < BCH_REPLICAS_MAX; i++) {
227 		struct jset_entry_usage *u =
228 			container_of(jset_entry_init(end, sizeof(*u)),
229 				     struct jset_entry_usage, entry);
230 
231 		u->entry.type	= BCH_JSET_ENTRY_usage;
232 		u->entry.btree_id = BCH_FS_USAGE_reserved;
233 		u->entry.level	= i;
234 		u->v		= cpu_to_le64(c->usage_base->persistent_reserved[i]);
235 	}
236 
237 	for (i = 0; i < c->replicas.nr; i++) {
238 		struct bch_replicas_entry *e =
239 			cpu_replicas_entry(&c->replicas, i);
240 		struct jset_entry_data_usage *u =
241 			container_of(jset_entry_init(end, sizeof(*u) + e->nr_devs),
242 				     struct jset_entry_data_usage, entry);
243 
244 		u->entry.type	= BCH_JSET_ENTRY_data_usage;
245 		u->v		= cpu_to_le64(c->usage_base->replicas[i]);
246 		unsafe_memcpy(&u->r, e, replicas_entry_bytes(e),
247 			      "embedded variable length struct");
248 	}
249 
250 	for_each_member_device(ca, c, dev) {
251 		unsigned b = sizeof(struct jset_entry_dev_usage) +
252 			sizeof(struct jset_entry_dev_usage_type) * BCH_DATA_NR;
253 		struct jset_entry_dev_usage *u =
254 			container_of(jset_entry_init(end, b),
255 				     struct jset_entry_dev_usage, entry);
256 
257 		u->entry.type = BCH_JSET_ENTRY_dev_usage;
258 		u->dev = cpu_to_le32(dev);
259 		u->buckets_ec		= cpu_to_le64(ca->usage_base->buckets_ec);
260 
261 		for (i = 0; i < BCH_DATA_NR; i++) {
262 			u->d[i].buckets = cpu_to_le64(ca->usage_base->d[i].buckets);
263 			u->d[i].sectors	= cpu_to_le64(ca->usage_base->d[i].sectors);
264 			u->d[i].fragmented = cpu_to_le64(ca->usage_base->d[i].fragmented);
265 		}
266 	}
267 
268 	percpu_up_read(&c->mark_lock);
269 
270 	for (i = 0; i < 2; i++) {
271 		struct jset_entry_clock *clock =
272 			container_of(jset_entry_init(end, sizeof(*clock)),
273 				     struct jset_entry_clock, entry);
274 
275 		clock->entry.type = BCH_JSET_ENTRY_clock;
276 		clock->rw	= i;
277 		clock->time	= cpu_to_le64(atomic64_read(&c->io_clock[i].now));
278 	}
279 }
280 
281 static int bch2_sb_clean_validate(struct bch_sb *sb,
282 				  struct bch_sb_field *f,
283 				  struct printbuf *err)
284 {
285 	struct bch_sb_field_clean *clean = field_to_type(f, clean);
286 
287 	if (vstruct_bytes(&clean->field) < sizeof(*clean)) {
288 		prt_printf(err, "wrong size (got %zu should be %zu)",
289 		       vstruct_bytes(&clean->field), sizeof(*clean));
290 		return -BCH_ERR_invalid_sb_clean;
291 	}
292 
293 	return 0;
294 }
295 
296 static void bch2_sb_clean_to_text(struct printbuf *out, struct bch_sb *sb,
297 				  struct bch_sb_field *f)
298 {
299 	struct bch_sb_field_clean *clean = field_to_type(f, clean);
300 	struct jset_entry *entry;
301 
302 	prt_printf(out, "flags:          %x",	le32_to_cpu(clean->flags));
303 	prt_newline(out);
304 	prt_printf(out, "journal_seq:    %llu",	le64_to_cpu(clean->journal_seq));
305 	prt_newline(out);
306 
307 	for (entry = clean->start;
308 	     entry != vstruct_end(&clean->field);
309 	     entry = vstruct_next(entry)) {
310 		if (entry->type == BCH_JSET_ENTRY_btree_keys &&
311 		    !entry->u64s)
312 			continue;
313 
314 		bch2_journal_entry_to_text(out, NULL, entry);
315 		prt_newline(out);
316 	}
317 }
318 
319 const struct bch_sb_field_ops bch_sb_field_ops_clean = {
320 	.validate	= bch2_sb_clean_validate,
321 	.to_text	= bch2_sb_clean_to_text,
322 };
323 
324 int bch2_fs_mark_dirty(struct bch_fs *c)
325 {
326 	int ret;
327 
328 	/*
329 	 * Unconditionally write superblock, to verify it hasn't changed before
330 	 * we go rw:
331 	 */
332 
333 	mutex_lock(&c->sb_lock);
334 	SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
335 
336 	bch2_sb_maybe_downgrade(c);
337 	c->disk_sb.sb->features[0] |= cpu_to_le64(BCH_SB_FEATURES_ALWAYS);
338 
339 	ret = bch2_write_super(c);
340 	mutex_unlock(&c->sb_lock);
341 
342 	return ret;
343 }
344 
345 void bch2_fs_mark_clean(struct bch_fs *c)
346 {
347 	struct bch_sb_field_clean *sb_clean;
348 	struct jset_entry *entry;
349 	unsigned u64s;
350 	int ret;
351 
352 	mutex_lock(&c->sb_lock);
353 	if (BCH_SB_CLEAN(c->disk_sb.sb))
354 		goto out;
355 
356 	SET_BCH_SB_CLEAN(c->disk_sb.sb, true);
357 
358 	c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_alloc_info);
359 	c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_alloc_metadata);
360 	c->disk_sb.sb->features[0] &= cpu_to_le64(~(1ULL << BCH_FEATURE_extents_above_btree_updates));
361 	c->disk_sb.sb->features[0] &= cpu_to_le64(~(1ULL << BCH_FEATURE_btree_updates_journalled));
362 
363 	u64s = sizeof(*sb_clean) / sizeof(u64) + c->journal.entry_u64s_reserved;
364 
365 	sb_clean = bch2_sb_field_resize(&c->disk_sb, clean, u64s);
366 	if (!sb_clean) {
367 		bch_err(c, "error resizing superblock while setting filesystem clean");
368 		goto out;
369 	}
370 
371 	sb_clean->flags		= 0;
372 	sb_clean->journal_seq	= cpu_to_le64(atomic64_read(&c->journal.seq));
373 
374 	/* Trying to catch outstanding bug: */
375 	BUG_ON(le64_to_cpu(sb_clean->journal_seq) > S64_MAX);
376 
377 	entry = sb_clean->start;
378 	bch2_journal_super_entries_add_common(c, &entry, 0);
379 	entry = bch2_btree_roots_to_journal_entries(c, entry, 0);
380 	BUG_ON((void *) entry > vstruct_end(&sb_clean->field));
381 
382 	memset(entry, 0,
383 	       vstruct_end(&sb_clean->field) - (void *) entry);
384 
385 	/*
386 	 * this should be in the write path, and we should be validating every
387 	 * superblock section:
388 	 */
389 	ret = bch2_sb_clean_validate_late(c, sb_clean, WRITE);
390 	if (ret) {
391 		bch_err(c, "error writing marking filesystem clean: validate error");
392 		goto out;
393 	}
394 
395 	bch2_write_super(c);
396 out:
397 	mutex_unlock(&c->sb_lock);
398 }
399