xref: /linux/fs/bcachefs/sb-clean.c (revision 1553a1c48281243359a9529a10ddb551f3b967ab)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "bcachefs.h"
4 #include "btree_update_interior.h"
5 #include "buckets.h"
6 #include "error.h"
7 #include "journal_io.h"
8 #include "replicas.h"
9 #include "sb-clean.h"
10 #include "super-io.h"
11 
12 /*
13  * BCH_SB_FIELD_clean:
14  *
15  * Btree roots, and a few other things, are recovered from the journal after an
16  * unclean shutdown - but after a clean shutdown, to avoid having to read the
17  * journal, we can store them in the superblock.
18  *
19  * bch_sb_field_clean simply contains a list of journal entries, stored exactly
20  * as they would be in the journal:
21  */
22 
23 int bch2_sb_clean_validate_late(struct bch_fs *c, struct bch_sb_field_clean *clean,
24 				int write)
25 {
26 	struct jset_entry *entry;
27 	int ret;
28 
29 	for (entry = clean->start;
30 	     entry < (struct jset_entry *) vstruct_end(&clean->field);
31 	     entry = vstruct_next(entry)) {
32 		ret = bch2_journal_entry_validate(c, NULL, entry,
33 						  le16_to_cpu(c->disk_sb.sb->version),
34 						  BCH_SB_BIG_ENDIAN(c->disk_sb.sb),
35 						  write);
36 		if (ret)
37 			return ret;
38 	}
39 
40 	return 0;
41 }
42 
43 static struct bkey_i *btree_root_find(struct bch_fs *c,
44 				      struct bch_sb_field_clean *clean,
45 				      struct jset *j,
46 				      enum btree_id id, unsigned *level)
47 {
48 	struct bkey_i *k;
49 	struct jset_entry *entry, *start, *end;
50 
51 	if (clean) {
52 		start = clean->start;
53 		end = vstruct_end(&clean->field);
54 	} else {
55 		start = j->start;
56 		end = vstruct_last(j);
57 	}
58 
59 	for (entry = start; entry < end; entry = vstruct_next(entry))
60 		if (entry->type == BCH_JSET_ENTRY_btree_root &&
61 		    entry->btree_id == id)
62 			goto found;
63 
64 	return NULL;
65 found:
66 	if (!entry->u64s)
67 		return ERR_PTR(-EINVAL);
68 
69 	k = entry->start;
70 	*level = entry->level;
71 	return k;
72 }
73 
74 int bch2_verify_superblock_clean(struct bch_fs *c,
75 				 struct bch_sb_field_clean **cleanp,
76 				 struct jset *j)
77 {
78 	unsigned i;
79 	struct bch_sb_field_clean *clean = *cleanp;
80 	struct printbuf buf1 = PRINTBUF;
81 	struct printbuf buf2 = PRINTBUF;
82 	int ret = 0;
83 
84 	if (mustfix_fsck_err_on(j->seq != clean->journal_seq, c,
85 			sb_clean_journal_seq_mismatch,
86 			"superblock journal seq (%llu) doesn't match journal (%llu) after clean shutdown",
87 			le64_to_cpu(clean->journal_seq),
88 			le64_to_cpu(j->seq))) {
89 		kfree(clean);
90 		*cleanp = NULL;
91 		return 0;
92 	}
93 
94 	for (i = 0; i < BTREE_ID_NR; i++) {
95 		struct bkey_i *k1, *k2;
96 		unsigned l1 = 0, l2 = 0;
97 
98 		k1 = btree_root_find(c, clean, NULL, i, &l1);
99 		k2 = btree_root_find(c, NULL, j, i, &l2);
100 
101 		if (!k1 && !k2)
102 			continue;
103 
104 		printbuf_reset(&buf1);
105 		printbuf_reset(&buf2);
106 
107 		if (k1)
108 			bch2_bkey_val_to_text(&buf1, c, bkey_i_to_s_c(k1));
109 		else
110 			prt_printf(&buf1, "(none)");
111 
112 		if (k2)
113 			bch2_bkey_val_to_text(&buf2, c, bkey_i_to_s_c(k2));
114 		else
115 			prt_printf(&buf2, "(none)");
116 
117 		mustfix_fsck_err_on(!k1 || !k2 ||
118 				    IS_ERR(k1) ||
119 				    IS_ERR(k2) ||
120 				    k1->k.u64s != k2->k.u64s ||
121 				    memcmp(k1, k2, bkey_bytes(&k1->k)) ||
122 				    l1 != l2, c,
123 			sb_clean_btree_root_mismatch,
124 			"superblock btree root %u doesn't match journal after clean shutdown\n"
125 			"sb:      l=%u %s\n"
126 			"journal: l=%u %s\n", i,
127 			l1, buf1.buf,
128 			l2, buf2.buf);
129 	}
130 fsck_err:
131 	printbuf_exit(&buf2);
132 	printbuf_exit(&buf1);
133 	return ret;
134 }
135 
136 struct bch_sb_field_clean *bch2_read_superblock_clean(struct bch_fs *c)
137 {
138 	struct bch_sb_field_clean *clean, *sb_clean;
139 	int ret;
140 
141 	mutex_lock(&c->sb_lock);
142 	sb_clean = bch2_sb_field_get(c->disk_sb.sb, clean);
143 
144 	if (fsck_err_on(!sb_clean, c,
145 			sb_clean_missing,
146 			"superblock marked clean but clean section not present")) {
147 		SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
148 		c->sb.clean = false;
149 		mutex_unlock(&c->sb_lock);
150 		return NULL;
151 	}
152 
153 	clean = kmemdup(sb_clean, vstruct_bytes(&sb_clean->field),
154 			GFP_KERNEL);
155 	if (!clean) {
156 		mutex_unlock(&c->sb_lock);
157 		return ERR_PTR(-BCH_ERR_ENOMEM_read_superblock_clean);
158 	}
159 
160 	ret = bch2_sb_clean_validate_late(c, clean, READ);
161 	if (ret) {
162 		mutex_unlock(&c->sb_lock);
163 		return ERR_PTR(ret);
164 	}
165 
166 	mutex_unlock(&c->sb_lock);
167 
168 	return clean;
169 fsck_err:
170 	mutex_unlock(&c->sb_lock);
171 	return ERR_PTR(ret);
172 }
173 
174 void bch2_journal_super_entries_add_common(struct bch_fs *c,
175 					   struct jset_entry **end,
176 					   u64 journal_seq)
177 {
178 	percpu_down_read(&c->mark_lock);
179 
180 	if (!journal_seq) {
181 		for (unsigned i = 0; i < ARRAY_SIZE(c->usage); i++)
182 			bch2_fs_usage_acc_to_base(c, i);
183 	} else {
184 		bch2_fs_usage_acc_to_base(c, journal_seq & JOURNAL_BUF_MASK);
185 	}
186 
187 	{
188 		struct jset_entry_usage *u =
189 			container_of(jset_entry_init(end, sizeof(*u)),
190 				     struct jset_entry_usage, entry);
191 
192 		u->entry.type	= BCH_JSET_ENTRY_usage;
193 		u->entry.btree_id = BCH_FS_USAGE_inodes;
194 		u->v		= cpu_to_le64(c->usage_base->b.nr_inodes);
195 	}
196 
197 	{
198 		struct jset_entry_usage *u =
199 			container_of(jset_entry_init(end, sizeof(*u)),
200 				     struct jset_entry_usage, entry);
201 
202 		u->entry.type	= BCH_JSET_ENTRY_usage;
203 		u->entry.btree_id = BCH_FS_USAGE_key_version;
204 		u->v		= cpu_to_le64(atomic64_read(&c->key_version));
205 	}
206 
207 	for (unsigned i = 0; i < BCH_REPLICAS_MAX; i++) {
208 		struct jset_entry_usage *u =
209 			container_of(jset_entry_init(end, sizeof(*u)),
210 				     struct jset_entry_usage, entry);
211 
212 		u->entry.type	= BCH_JSET_ENTRY_usage;
213 		u->entry.btree_id = BCH_FS_USAGE_reserved;
214 		u->entry.level	= i;
215 		u->v		= cpu_to_le64(c->usage_base->persistent_reserved[i]);
216 	}
217 
218 	for (unsigned i = 0; i < c->replicas.nr; i++) {
219 		struct bch_replicas_entry_v1 *e =
220 			cpu_replicas_entry(&c->replicas, i);
221 		struct jset_entry_data_usage *u =
222 			container_of(jset_entry_init(end, sizeof(*u) + e->nr_devs),
223 				     struct jset_entry_data_usage, entry);
224 
225 		u->entry.type	= BCH_JSET_ENTRY_data_usage;
226 		u->v		= cpu_to_le64(c->usage_base->replicas[i]);
227 		unsafe_memcpy(&u->r, e, replicas_entry_bytes(e),
228 			      "embedded variable length struct");
229 	}
230 
231 	for_each_member_device(c, ca) {
232 		unsigned b = sizeof(struct jset_entry_dev_usage) +
233 			sizeof(struct jset_entry_dev_usage_type) * BCH_DATA_NR;
234 		struct jset_entry_dev_usage *u =
235 			container_of(jset_entry_init(end, b),
236 				     struct jset_entry_dev_usage, entry);
237 
238 		u->entry.type = BCH_JSET_ENTRY_dev_usage;
239 		u->dev = cpu_to_le32(ca->dev_idx);
240 
241 		for (unsigned i = 0; i < BCH_DATA_NR; i++) {
242 			u->d[i].buckets = cpu_to_le64(ca->usage_base->d[i].buckets);
243 			u->d[i].sectors	= cpu_to_le64(ca->usage_base->d[i].sectors);
244 			u->d[i].fragmented = cpu_to_le64(ca->usage_base->d[i].fragmented);
245 		}
246 	}
247 
248 	percpu_up_read(&c->mark_lock);
249 
250 	for (unsigned i = 0; i < 2; i++) {
251 		struct jset_entry_clock *clock =
252 			container_of(jset_entry_init(end, sizeof(*clock)),
253 				     struct jset_entry_clock, entry);
254 
255 		clock->entry.type = BCH_JSET_ENTRY_clock;
256 		clock->rw	= i;
257 		clock->time	= cpu_to_le64(atomic64_read(&c->io_clock[i].now));
258 	}
259 }
260 
261 static int bch2_sb_clean_validate(struct bch_sb *sb,
262 				  struct bch_sb_field *f,
263 				  struct printbuf *err)
264 {
265 	struct bch_sb_field_clean *clean = field_to_type(f, clean);
266 
267 	if (vstruct_bytes(&clean->field) < sizeof(*clean)) {
268 		prt_printf(err, "wrong size (got %zu should be %zu)",
269 		       vstruct_bytes(&clean->field), sizeof(*clean));
270 		return -BCH_ERR_invalid_sb_clean;
271 	}
272 
273 	return 0;
274 }
275 
276 static void bch2_sb_clean_to_text(struct printbuf *out, struct bch_sb *sb,
277 				  struct bch_sb_field *f)
278 {
279 	struct bch_sb_field_clean *clean = field_to_type(f, clean);
280 	struct jset_entry *entry;
281 
282 	prt_printf(out, "flags:          %x",	le32_to_cpu(clean->flags));
283 	prt_newline(out);
284 	prt_printf(out, "journal_seq:    %llu",	le64_to_cpu(clean->journal_seq));
285 	prt_newline(out);
286 
287 	for (entry = clean->start;
288 	     entry != vstruct_end(&clean->field);
289 	     entry = vstruct_next(entry)) {
290 		if (entry->type == BCH_JSET_ENTRY_btree_keys &&
291 		    !entry->u64s)
292 			continue;
293 
294 		bch2_journal_entry_to_text(out, NULL, entry);
295 		prt_newline(out);
296 	}
297 }
298 
299 const struct bch_sb_field_ops bch_sb_field_ops_clean = {
300 	.validate	= bch2_sb_clean_validate,
301 	.to_text	= bch2_sb_clean_to_text,
302 };
303 
304 int bch2_fs_mark_dirty(struct bch_fs *c)
305 {
306 	int ret;
307 
308 	/*
309 	 * Unconditionally write superblock, to verify it hasn't changed before
310 	 * we go rw:
311 	 */
312 
313 	mutex_lock(&c->sb_lock);
314 	SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
315 	c->disk_sb.sb->features[0] |= cpu_to_le64(BCH_SB_FEATURES_ALWAYS);
316 
317 	ret = bch2_write_super(c);
318 	mutex_unlock(&c->sb_lock);
319 
320 	return ret;
321 }
322 
323 void bch2_fs_mark_clean(struct bch_fs *c)
324 {
325 	struct bch_sb_field_clean *sb_clean;
326 	struct jset_entry *entry;
327 	unsigned u64s;
328 	int ret;
329 
330 	mutex_lock(&c->sb_lock);
331 	if (BCH_SB_CLEAN(c->disk_sb.sb))
332 		goto out;
333 
334 	SET_BCH_SB_CLEAN(c->disk_sb.sb, true);
335 
336 	c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_alloc_info);
337 	c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_alloc_metadata);
338 	c->disk_sb.sb->features[0] &= cpu_to_le64(~(1ULL << BCH_FEATURE_extents_above_btree_updates));
339 	c->disk_sb.sb->features[0] &= cpu_to_le64(~(1ULL << BCH_FEATURE_btree_updates_journalled));
340 
341 	u64s = sizeof(*sb_clean) / sizeof(u64) + c->journal.entry_u64s_reserved;
342 
343 	sb_clean = bch2_sb_field_resize(&c->disk_sb, clean, u64s);
344 	if (!sb_clean) {
345 		bch_err(c, "error resizing superblock while setting filesystem clean");
346 		goto out;
347 	}
348 
349 	sb_clean->flags		= 0;
350 	sb_clean->journal_seq	= cpu_to_le64(atomic64_read(&c->journal.seq));
351 
352 	/* Trying to catch outstanding bug: */
353 	BUG_ON(le64_to_cpu(sb_clean->journal_seq) > S64_MAX);
354 
355 	entry = sb_clean->start;
356 	bch2_journal_super_entries_add_common(c, &entry, 0);
357 	entry = bch2_btree_roots_to_journal_entries(c, entry, 0);
358 	BUG_ON((void *) entry > vstruct_end(&sb_clean->field));
359 
360 	memset(entry, 0,
361 	       vstruct_end(&sb_clean->field) - (void *) entry);
362 
363 	/*
364 	 * this should be in the write path, and we should be validating every
365 	 * superblock section:
366 	 */
367 	ret = bch2_sb_clean_validate_late(c, sb_clean, WRITE);
368 	if (ret) {
369 		bch_err(c, "error writing marking filesystem clean: validate error");
370 		goto out;
371 	}
372 
373 	bch2_write_super(c);
374 out:
375 	mutex_unlock(&c->sb_lock);
376 }
377