xref: /linux/fs/bcachefs/recovery.c (revision eb7cca1faf9883d7b4da792281147dbedc449238)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "bcachefs.h"
4 #include "backpointers.h"
5 #include "bkey_buf.h"
6 #include "alloc_background.h"
7 #include "btree_gc.h"
8 #include "btree_journal_iter.h"
9 #include "btree_update.h"
10 #include "btree_update_interior.h"
11 #include "btree_io.h"
12 #include "buckets.h"
13 #include "dirent.h"
14 #include "ec.h"
15 #include "errcode.h"
16 #include "error.h"
17 #include "fs-common.h"
18 #include "fsck.h"
19 #include "journal_io.h"
20 #include "journal_reclaim.h"
21 #include "journal_seq_blacklist.h"
22 #include "lru.h"
23 #include "logged_ops.h"
24 #include "move.h"
25 #include "quota.h"
26 #include "rebalance.h"
27 #include "recovery.h"
28 #include "replicas.h"
29 #include "sb-clean.h"
30 #include "sb-downgrade.h"
31 #include "snapshot.h"
32 #include "subvolume.h"
33 #include "super-io.h"
34 
35 #include <linux/sort.h>
36 #include <linux/stat.h>
37 
38 #define QSTR(n) { { { .len = strlen(n) } }, .name = n }
39 
40 static bool btree_id_is_alloc(enum btree_id id)
41 {
42 	switch (id) {
43 	case BTREE_ID_alloc:
44 	case BTREE_ID_backpointers:
45 	case BTREE_ID_need_discard:
46 	case BTREE_ID_freespace:
47 	case BTREE_ID_bucket_gens:
48 		return true;
49 	default:
50 		return false;
51 	}
52 }
53 
54 /* for -o reconstruct_alloc: */
55 static void do_reconstruct_alloc(struct bch_fs *c)
56 {
57 	bch2_journal_log_msg(c, "dropping alloc info");
58 	bch_info(c, "dropping and reconstructing all alloc info");
59 
60 	mutex_lock(&c->sb_lock);
61 	struct bch_sb_field_ext *ext = bch2_sb_field_get(c->disk_sb.sb, ext);
62 
63 	__set_bit_le64(BCH_RECOVERY_PASS_STABLE_check_allocations, ext->recovery_passes_required);
64 	__set_bit_le64(BCH_RECOVERY_PASS_STABLE_check_alloc_info, ext->recovery_passes_required);
65 	__set_bit_le64(BCH_RECOVERY_PASS_STABLE_check_lrus, ext->recovery_passes_required);
66 	__set_bit_le64(BCH_RECOVERY_PASS_STABLE_check_extents_to_backpointers, ext->recovery_passes_required);
67 	__set_bit_le64(BCH_RECOVERY_PASS_STABLE_check_alloc_to_lru_refs, ext->recovery_passes_required);
68 
69 	__set_bit_le64(BCH_FSCK_ERR_ptr_to_missing_alloc_key, ext->errors_silent);
70 	__set_bit_le64(BCH_FSCK_ERR_ptr_gen_newer_than_bucket_gen, ext->errors_silent);
71 	__set_bit_le64(BCH_FSCK_ERR_stale_dirty_ptr, ext->errors_silent);
72 	__set_bit_le64(BCH_FSCK_ERR_alloc_key_data_type_wrong, ext->errors_silent);
73 	__set_bit_le64(BCH_FSCK_ERR_alloc_key_gen_wrong, ext->errors_silent);
74 	__set_bit_le64(BCH_FSCK_ERR_alloc_key_dirty_sectors_wrong, ext->errors_silent);
75 	__set_bit_le64(BCH_FSCK_ERR_alloc_key_stripe_wrong, ext->errors_silent);
76 	__set_bit_le64(BCH_FSCK_ERR_alloc_key_stripe_redundancy_wrong, ext->errors_silent);
77 	__set_bit_le64(BCH_FSCK_ERR_need_discard_key_wrong, ext->errors_silent);
78 	__set_bit_le64(BCH_FSCK_ERR_freespace_key_wrong, ext->errors_silent);
79 	__set_bit_le64(BCH_FSCK_ERR_bucket_gens_key_wrong, ext->errors_silent);
80 	__set_bit_le64(BCH_FSCK_ERR_freespace_hole_missing, ext->errors_silent);
81 	__set_bit_le64(BCH_FSCK_ERR_ptr_to_missing_backpointer, ext->errors_silent);
82 	__set_bit_le64(BCH_FSCK_ERR_lru_entry_bad, ext->errors_silent);
83 	c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
84 
85 	bch2_write_super(c);
86 	mutex_unlock(&c->sb_lock);
87 
88 	c->recovery_passes_explicit |= bch2_recovery_passes_from_stable(le64_to_cpu(ext->recovery_passes_required[0]));
89 
90 	struct journal_keys *keys = &c->journal_keys;
91 	size_t src, dst;
92 
93 	for (src = 0, dst = 0; src < keys->nr; src++)
94 		if (!btree_id_is_alloc(keys->data[src].btree_id))
95 			keys->data[dst++] = keys->data[src];
96 	keys->nr = dst;
97 }
98 
99 /*
100  * Btree node pointers have a field to stack a pointer to the in memory btree
101  * node; we need to zero out this field when reading in btree nodes, or when
102  * reading in keys from the journal:
103  */
104 static void zero_out_btree_mem_ptr(struct journal_keys *keys)
105 {
106 	darray_for_each(*keys, i)
107 		if (i->k->k.type == KEY_TYPE_btree_ptr_v2)
108 			bkey_i_to_btree_ptr_v2(i->k)->v.mem_ptr = 0;
109 }
110 
111 /* journal replay: */
112 
113 static void replay_now_at(struct journal *j, u64 seq)
114 {
115 	BUG_ON(seq < j->replay_journal_seq);
116 
117 	seq = min(seq, j->replay_journal_seq_end);
118 
119 	while (j->replay_journal_seq < seq)
120 		bch2_journal_pin_put(j, j->replay_journal_seq++);
121 }
122 
123 static int bch2_journal_replay_key(struct btree_trans *trans,
124 				   struct journal_key *k)
125 {
126 	struct btree_iter iter;
127 	unsigned iter_flags =
128 		BTREE_ITER_INTENT|
129 		BTREE_ITER_NOT_EXTENTS;
130 	unsigned update_flags = BTREE_TRIGGER_NORUN;
131 	int ret;
132 
133 	if (k->overwritten)
134 		return 0;
135 
136 	trans->journal_res.seq = k->journal_seq;
137 
138 	/*
139 	 * BTREE_UPDATE_KEY_CACHE_RECLAIM disables key cache lookup/update to
140 	 * keep the key cache coherent with the underlying btree. Nothing
141 	 * besides the allocator is doing updates yet so we don't need key cache
142 	 * coherency for non-alloc btrees, and key cache fills for snapshots
143 	 * btrees use BTREE_ITER_FILTER_SNAPSHOTS, which isn't available until
144 	 * the snapshots recovery pass runs.
145 	 */
146 	if (!k->level && k->btree_id == BTREE_ID_alloc)
147 		iter_flags |= BTREE_ITER_CACHED;
148 	else
149 		update_flags |= BTREE_UPDATE_KEY_CACHE_RECLAIM;
150 
151 	bch2_trans_node_iter_init(trans, &iter, k->btree_id, k->k->k.p,
152 				  BTREE_MAX_DEPTH, k->level,
153 				  iter_flags);
154 	ret = bch2_btree_iter_traverse(&iter);
155 	if (ret)
156 		goto out;
157 
158 	struct btree_path *path = btree_iter_path(trans, &iter);
159 	if (unlikely(!btree_path_node(path, k->level))) {
160 		bch2_trans_iter_exit(trans, &iter);
161 		bch2_trans_node_iter_init(trans, &iter, k->btree_id, k->k->k.p,
162 					  BTREE_MAX_DEPTH, 0, iter_flags);
163 		ret =   bch2_btree_iter_traverse(&iter) ?:
164 			bch2_btree_increase_depth(trans, iter.path, 0) ?:
165 			-BCH_ERR_transaction_restart_nested;
166 		goto out;
167 	}
168 
169 	/* Must be checked with btree locked: */
170 	if (k->overwritten)
171 		goto out;
172 
173 	ret = bch2_trans_update(trans, &iter, k->k, update_flags);
174 out:
175 	bch2_trans_iter_exit(trans, &iter);
176 	return ret;
177 }
178 
179 static int journal_sort_seq_cmp(const void *_l, const void *_r)
180 {
181 	const struct journal_key *l = *((const struct journal_key **)_l);
182 	const struct journal_key *r = *((const struct journal_key **)_r);
183 
184 	return cmp_int(l->journal_seq, r->journal_seq);
185 }
186 
187 static int bch2_journal_replay(struct bch_fs *c)
188 {
189 	struct journal_keys *keys = &c->journal_keys;
190 	DARRAY(struct journal_key *) keys_sorted = { 0 };
191 	struct journal *j = &c->journal;
192 	u64 start_seq	= c->journal_replay_seq_start;
193 	u64 end_seq	= c->journal_replay_seq_start;
194 	struct btree_trans *trans = bch2_trans_get(c);
195 	int ret = 0;
196 
197 	if (keys->nr) {
198 		ret = bch2_journal_log_msg(c, "Starting journal replay (%zu keys in entries %llu-%llu)",
199 					   keys->nr, start_seq, end_seq);
200 		if (ret)
201 			goto err;
202 	}
203 
204 	BUG_ON(!atomic_read(&keys->ref));
205 
206 	/*
207 	 * First, attempt to replay keys in sorted order. This is more
208 	 * efficient - better locality of btree access -  but some might fail if
209 	 * that would cause a journal deadlock.
210 	 */
211 	darray_for_each(*keys, k) {
212 		cond_resched();
213 
214 		/* Skip fastpath if we're low on space in the journal */
215 		ret = c->journal.watermark ? -1 :
216 			commit_do(trans, NULL, NULL,
217 				  BCH_TRANS_COMMIT_no_enospc|
218 				  BCH_TRANS_COMMIT_journal_reclaim|
219 				  (!k->allocated ? BCH_TRANS_COMMIT_no_journal_res : 0),
220 			     bch2_journal_replay_key(trans, k));
221 		BUG_ON(!ret && !k->overwritten);
222 		if (ret) {
223 			ret = darray_push(&keys_sorted, k);
224 			if (ret)
225 				goto err;
226 		}
227 	}
228 
229 	/*
230 	 * Now, replay any remaining keys in the order in which they appear in
231 	 * the journal, unpinning those journal entries as we go:
232 	 */
233 	sort(keys_sorted.data, keys_sorted.nr,
234 	     sizeof(keys_sorted.data[0]),
235 	     journal_sort_seq_cmp, NULL);
236 
237 	darray_for_each(keys_sorted, kp) {
238 		cond_resched();
239 
240 		struct journal_key *k = *kp;
241 
242 		replay_now_at(j, k->journal_seq);
243 
244 		ret = commit_do(trans, NULL, NULL,
245 				BCH_TRANS_COMMIT_no_enospc|
246 				(!k->allocated
247 				 ? BCH_TRANS_COMMIT_no_journal_res|BCH_WATERMARK_reclaim
248 				 : 0),
249 			     bch2_journal_replay_key(trans, k));
250 		bch_err_msg(c, ret, "while replaying key at btree %s level %u:",
251 			    bch2_btree_id_str(k->btree_id), k->level);
252 		if (ret)
253 			goto err;
254 
255 		BUG_ON(!k->overwritten);
256 	}
257 
258 	/*
259 	 * We need to put our btree_trans before calling flush_all_pins(), since
260 	 * that will use a btree_trans internally
261 	 */
262 	bch2_trans_put(trans);
263 	trans = NULL;
264 
265 	if (!c->opts.keep_journal)
266 		bch2_journal_keys_put_initial(c);
267 
268 	replay_now_at(j, j->replay_journal_seq_end);
269 	j->replay_journal_seq = 0;
270 
271 	bch2_journal_set_replay_done(j);
272 
273 	if (keys->nr)
274 		bch2_journal_log_msg(c, "journal replay finished");
275 err:
276 	if (trans)
277 		bch2_trans_put(trans);
278 	darray_exit(&keys_sorted);
279 	bch_err_fn(c, ret);
280 	return ret;
281 }
282 
283 /* journal replay early: */
284 
285 static int journal_replay_entry_early(struct bch_fs *c,
286 				      struct jset_entry *entry)
287 {
288 	int ret = 0;
289 
290 	switch (entry->type) {
291 	case BCH_JSET_ENTRY_btree_root: {
292 		struct btree_root *r;
293 
294 		while (entry->btree_id >= c->btree_roots_extra.nr + BTREE_ID_NR) {
295 			ret = darray_push(&c->btree_roots_extra, (struct btree_root) { NULL });
296 			if (ret)
297 				return ret;
298 		}
299 
300 		r = bch2_btree_id_root(c, entry->btree_id);
301 
302 		if (entry->u64s) {
303 			r->level = entry->level;
304 			bkey_copy(&r->key, (struct bkey_i *) entry->start);
305 			r->error = 0;
306 		} else {
307 			r->error = -BCH_ERR_btree_node_read_error;
308 		}
309 		r->alive = true;
310 		break;
311 	}
312 	case BCH_JSET_ENTRY_usage: {
313 		struct jset_entry_usage *u =
314 			container_of(entry, struct jset_entry_usage, entry);
315 
316 		switch (entry->btree_id) {
317 		case BCH_FS_USAGE_reserved:
318 			if (entry->level < BCH_REPLICAS_MAX)
319 				c->usage_base->persistent_reserved[entry->level] =
320 					le64_to_cpu(u->v);
321 			break;
322 		case BCH_FS_USAGE_inodes:
323 			c->usage_base->b.nr_inodes = le64_to_cpu(u->v);
324 			break;
325 		case BCH_FS_USAGE_key_version:
326 			atomic64_set(&c->key_version,
327 				     le64_to_cpu(u->v));
328 			break;
329 		}
330 
331 		break;
332 	}
333 	case BCH_JSET_ENTRY_data_usage: {
334 		struct jset_entry_data_usage *u =
335 			container_of(entry, struct jset_entry_data_usage, entry);
336 
337 		ret = bch2_replicas_set_usage(c, &u->r,
338 					      le64_to_cpu(u->v));
339 		break;
340 	}
341 	case BCH_JSET_ENTRY_dev_usage: {
342 		struct jset_entry_dev_usage *u =
343 			container_of(entry, struct jset_entry_dev_usage, entry);
344 		struct bch_dev *ca = bch_dev_bkey_exists(c, le32_to_cpu(u->dev));
345 		unsigned i, nr_types = jset_entry_dev_usage_nr_types(u);
346 
347 		for (i = 0; i < min_t(unsigned, nr_types, BCH_DATA_NR); i++) {
348 			ca->usage_base->d[i].buckets	= le64_to_cpu(u->d[i].buckets);
349 			ca->usage_base->d[i].sectors	= le64_to_cpu(u->d[i].sectors);
350 			ca->usage_base->d[i].fragmented	= le64_to_cpu(u->d[i].fragmented);
351 		}
352 
353 		break;
354 	}
355 	case BCH_JSET_ENTRY_blacklist: {
356 		struct jset_entry_blacklist *bl_entry =
357 			container_of(entry, struct jset_entry_blacklist, entry);
358 
359 		ret = bch2_journal_seq_blacklist_add(c,
360 				le64_to_cpu(bl_entry->seq),
361 				le64_to_cpu(bl_entry->seq) + 1);
362 		break;
363 	}
364 	case BCH_JSET_ENTRY_blacklist_v2: {
365 		struct jset_entry_blacklist_v2 *bl_entry =
366 			container_of(entry, struct jset_entry_blacklist_v2, entry);
367 
368 		ret = bch2_journal_seq_blacklist_add(c,
369 				le64_to_cpu(bl_entry->start),
370 				le64_to_cpu(bl_entry->end) + 1);
371 		break;
372 	}
373 	case BCH_JSET_ENTRY_clock: {
374 		struct jset_entry_clock *clock =
375 			container_of(entry, struct jset_entry_clock, entry);
376 
377 		atomic64_set(&c->io_clock[clock->rw].now, le64_to_cpu(clock->time));
378 	}
379 	}
380 
381 	return ret;
382 }
383 
384 static int journal_replay_early(struct bch_fs *c,
385 				struct bch_sb_field_clean *clean)
386 {
387 	if (clean) {
388 		for (struct jset_entry *entry = clean->start;
389 		     entry != vstruct_end(&clean->field);
390 		     entry = vstruct_next(entry)) {
391 			int ret = journal_replay_entry_early(c, entry);
392 			if (ret)
393 				return ret;
394 		}
395 	} else {
396 		struct genradix_iter iter;
397 		struct journal_replay *i, **_i;
398 
399 		genradix_for_each(&c->journal_entries, iter, _i) {
400 			i = *_i;
401 
402 			if (journal_replay_ignore(i))
403 				continue;
404 
405 			vstruct_for_each(&i->j, entry) {
406 				int ret = journal_replay_entry_early(c, entry);
407 				if (ret)
408 					return ret;
409 			}
410 		}
411 	}
412 
413 	bch2_fs_usage_initialize(c);
414 
415 	return 0;
416 }
417 
418 /* sb clean section: */
419 
420 static int read_btree_roots(struct bch_fs *c)
421 {
422 	unsigned i;
423 	int ret = 0;
424 
425 	for (i = 0; i < btree_id_nr_alive(c); i++) {
426 		struct btree_root *r = bch2_btree_id_root(c, i);
427 
428 		if (!r->alive)
429 			continue;
430 
431 		if (btree_id_is_alloc(i) && c->opts.reconstruct_alloc)
432 			continue;
433 
434 		if (r->error) {
435 			__fsck_err(c,
436 				   btree_id_is_alloc(i)
437 				   ? FSCK_CAN_IGNORE : 0,
438 				   btree_root_bkey_invalid,
439 				   "invalid btree root %s",
440 				   bch2_btree_id_str(i));
441 			if (i == BTREE_ID_alloc)
442 				c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
443 		}
444 
445 		ret = bch2_btree_root_read(c, i, &r->key, r->level);
446 		if (ret) {
447 			fsck_err(c,
448 				 btree_root_read_error,
449 				 "error reading btree root %s",
450 				 bch2_btree_id_str(i));
451 			if (btree_id_is_alloc(i))
452 				c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
453 			ret = 0;
454 		}
455 	}
456 
457 	for (i = 0; i < BTREE_ID_NR; i++) {
458 		struct btree_root *r = bch2_btree_id_root(c, i);
459 
460 		if (!r->b) {
461 			r->alive = false;
462 			r->level = 0;
463 			bch2_btree_root_alloc(c, i);
464 		}
465 	}
466 fsck_err:
467 	return ret;
468 }
469 
470 static int bch2_initialize_subvolumes(struct bch_fs *c)
471 {
472 	struct bkey_i_snapshot_tree	root_tree;
473 	struct bkey_i_snapshot		root_snapshot;
474 	struct bkey_i_subvolume		root_volume;
475 	int ret;
476 
477 	bkey_snapshot_tree_init(&root_tree.k_i);
478 	root_tree.k.p.offset		= 1;
479 	root_tree.v.master_subvol	= cpu_to_le32(1);
480 	root_tree.v.root_snapshot	= cpu_to_le32(U32_MAX);
481 
482 	bkey_snapshot_init(&root_snapshot.k_i);
483 	root_snapshot.k.p.offset = U32_MAX;
484 	root_snapshot.v.flags	= 0;
485 	root_snapshot.v.parent	= 0;
486 	root_snapshot.v.subvol	= cpu_to_le32(BCACHEFS_ROOT_SUBVOL);
487 	root_snapshot.v.tree	= cpu_to_le32(1);
488 	SET_BCH_SNAPSHOT_SUBVOL(&root_snapshot.v, true);
489 
490 	bkey_subvolume_init(&root_volume.k_i);
491 	root_volume.k.p.offset = BCACHEFS_ROOT_SUBVOL;
492 	root_volume.v.flags	= 0;
493 	root_volume.v.snapshot	= cpu_to_le32(U32_MAX);
494 	root_volume.v.inode	= cpu_to_le64(BCACHEFS_ROOT_INO);
495 
496 	ret =   bch2_btree_insert(c, BTREE_ID_snapshot_trees,	&root_tree.k_i, NULL, 0) ?:
497 		bch2_btree_insert(c, BTREE_ID_snapshots,	&root_snapshot.k_i, NULL, 0) ?:
498 		bch2_btree_insert(c, BTREE_ID_subvolumes,	&root_volume.k_i, NULL, 0);
499 	bch_err_fn(c, ret);
500 	return ret;
501 }
502 
503 static int __bch2_fs_upgrade_for_subvolumes(struct btree_trans *trans)
504 {
505 	struct btree_iter iter;
506 	struct bkey_s_c k;
507 	struct bch_inode_unpacked inode;
508 	int ret;
509 
510 	k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_inodes,
511 			       SPOS(0, BCACHEFS_ROOT_INO, U32_MAX), 0);
512 	ret = bkey_err(k);
513 	if (ret)
514 		return ret;
515 
516 	if (!bkey_is_inode(k.k)) {
517 		bch_err(trans->c, "root inode not found");
518 		ret = -BCH_ERR_ENOENT_inode;
519 		goto err;
520 	}
521 
522 	ret = bch2_inode_unpack(k, &inode);
523 	BUG_ON(ret);
524 
525 	inode.bi_subvol = BCACHEFS_ROOT_SUBVOL;
526 
527 	ret = bch2_inode_write(trans, &iter, &inode);
528 err:
529 	bch2_trans_iter_exit(trans, &iter);
530 	return ret;
531 }
532 
533 /* set bi_subvol on root inode */
534 noinline_for_stack
535 static int bch2_fs_upgrade_for_subvolumes(struct bch_fs *c)
536 {
537 	int ret = bch2_trans_do(c, NULL, NULL, BCH_TRANS_COMMIT_lazy_rw,
538 				__bch2_fs_upgrade_for_subvolumes(trans));
539 	bch_err_fn(c, ret);
540 	return ret;
541 }
542 
543 const char * const bch2_recovery_passes[] = {
544 #define x(_fn, ...)	#_fn,
545 	BCH_RECOVERY_PASSES()
546 #undef x
547 	NULL
548 };
549 
550 static int bch2_check_allocations(struct bch_fs *c)
551 {
552 	return bch2_gc(c, true, c->opts.norecovery);
553 }
554 
555 static int bch2_set_may_go_rw(struct bch_fs *c)
556 {
557 	struct journal_keys *keys = &c->journal_keys;
558 
559 	/*
560 	 * After we go RW, the journal keys buffer can't be modified (except for
561 	 * setting journal_key->overwritten: it will be accessed by multiple
562 	 * threads
563 	 */
564 	move_gap(keys, keys->nr);
565 
566 	set_bit(BCH_FS_may_go_rw, &c->flags);
567 
568 	if (keys->nr || c->opts.fsck || !c->sb.clean)
569 		return bch2_fs_read_write_early(c);
570 	return 0;
571 }
572 
573 struct recovery_pass_fn {
574 	int		(*fn)(struct bch_fs *);
575 	unsigned	when;
576 };
577 
578 static struct recovery_pass_fn recovery_pass_fns[] = {
579 #define x(_fn, _id, _when)	{ .fn = bch2_##_fn, .when = _when },
580 	BCH_RECOVERY_PASSES()
581 #undef x
582 };
583 
584 u64 bch2_recovery_passes_to_stable(u64 v)
585 {
586 	static const u8 map[] = {
587 #define x(n, id, ...)	[BCH_RECOVERY_PASS_##n] = BCH_RECOVERY_PASS_STABLE_##n,
588 	BCH_RECOVERY_PASSES()
589 #undef x
590 	};
591 
592 	u64 ret = 0;
593 	for (unsigned i = 0; i < ARRAY_SIZE(map); i++)
594 		if (v & BIT_ULL(i))
595 			ret |= BIT_ULL(map[i]);
596 	return ret;
597 }
598 
599 u64 bch2_recovery_passes_from_stable(u64 v)
600 {
601 	static const u8 map[] = {
602 #define x(n, id, ...)	[BCH_RECOVERY_PASS_STABLE_##n] = BCH_RECOVERY_PASS_##n,
603 	BCH_RECOVERY_PASSES()
604 #undef x
605 	};
606 
607 	u64 ret = 0;
608 	for (unsigned i = 0; i < ARRAY_SIZE(map); i++)
609 		if (v & BIT_ULL(i))
610 			ret |= BIT_ULL(map[i]);
611 	return ret;
612 }
613 
614 static bool check_version_upgrade(struct bch_fs *c)
615 {
616 	unsigned latest_version	= bcachefs_metadata_version_current;
617 	unsigned latest_compatible = min(latest_version,
618 					 bch2_latest_compatible_version(c->sb.version));
619 	unsigned old_version = c->sb.version_upgrade_complete ?: c->sb.version;
620 	unsigned new_version = 0;
621 
622 	if (old_version < bcachefs_metadata_required_upgrade_below) {
623 		if (c->opts.version_upgrade == BCH_VERSION_UPGRADE_incompatible ||
624 		    latest_compatible < bcachefs_metadata_required_upgrade_below)
625 			new_version = latest_version;
626 		else
627 			new_version = latest_compatible;
628 	} else {
629 		switch (c->opts.version_upgrade) {
630 		case BCH_VERSION_UPGRADE_compatible:
631 			new_version = latest_compatible;
632 			break;
633 		case BCH_VERSION_UPGRADE_incompatible:
634 			new_version = latest_version;
635 			break;
636 		case BCH_VERSION_UPGRADE_none:
637 			new_version = min(old_version, latest_version);
638 			break;
639 		}
640 	}
641 
642 	if (new_version > old_version) {
643 		struct printbuf buf = PRINTBUF;
644 
645 		if (old_version < bcachefs_metadata_required_upgrade_below)
646 			prt_str(&buf, "Version upgrade required:\n");
647 
648 		if (old_version != c->sb.version) {
649 			prt_str(&buf, "Version upgrade from ");
650 			bch2_version_to_text(&buf, c->sb.version_upgrade_complete);
651 			prt_str(&buf, " to ");
652 			bch2_version_to_text(&buf, c->sb.version);
653 			prt_str(&buf, " incomplete\n");
654 		}
655 
656 		prt_printf(&buf, "Doing %s version upgrade from ",
657 			   BCH_VERSION_MAJOR(old_version) != BCH_VERSION_MAJOR(new_version)
658 			   ? "incompatible" : "compatible");
659 		bch2_version_to_text(&buf, old_version);
660 		prt_str(&buf, " to ");
661 		bch2_version_to_text(&buf, new_version);
662 		prt_newline(&buf);
663 
664 		struct bch_sb_field_ext *ext = bch2_sb_field_get(c->disk_sb.sb, ext);
665 		__le64 passes = ext->recovery_passes_required[0];
666 		bch2_sb_set_upgrade(c, old_version, new_version);
667 		passes = ext->recovery_passes_required[0] & ~passes;
668 
669 		if (passes) {
670 			prt_str(&buf, "  running recovery passes: ");
671 			prt_bitflags(&buf, bch2_recovery_passes,
672 				     bch2_recovery_passes_from_stable(le64_to_cpu(passes)));
673 		}
674 
675 		bch_info(c, "%s", buf.buf);
676 
677 		bch2_sb_upgrade(c, new_version);
678 
679 		printbuf_exit(&buf);
680 		return true;
681 	}
682 
683 	return false;
684 }
685 
686 u64 bch2_fsck_recovery_passes(void)
687 {
688 	u64 ret = 0;
689 
690 	for (unsigned i = 0; i < ARRAY_SIZE(recovery_pass_fns); i++)
691 		if (recovery_pass_fns[i].when & PASS_FSCK)
692 			ret |= BIT_ULL(i);
693 	return ret;
694 }
695 
696 static bool should_run_recovery_pass(struct bch_fs *c, enum bch_recovery_pass pass)
697 {
698 	struct recovery_pass_fn *p = recovery_pass_fns + pass;
699 
700 	if (c->opts.norecovery && pass > BCH_RECOVERY_PASS_snapshots_read)
701 		return false;
702 	if (c->recovery_passes_explicit & BIT_ULL(pass))
703 		return true;
704 	if ((p->when & PASS_FSCK) && c->opts.fsck)
705 		return true;
706 	if ((p->when & PASS_UNCLEAN) && !c->sb.clean)
707 		return true;
708 	if (p->when & PASS_ALWAYS)
709 		return true;
710 	return false;
711 }
712 
713 static int bch2_run_recovery_pass(struct bch_fs *c, enum bch_recovery_pass pass)
714 {
715 	struct recovery_pass_fn *p = recovery_pass_fns + pass;
716 	int ret;
717 
718 	if (!(p->when & PASS_SILENT))
719 		bch2_print(c, KERN_INFO bch2_log_msg(c, "%s..."),
720 			   bch2_recovery_passes[pass]);
721 	ret = p->fn(c);
722 	if (ret)
723 		return ret;
724 	if (!(p->when & PASS_SILENT))
725 		bch2_print(c, KERN_CONT " done\n");
726 
727 	return 0;
728 }
729 
730 static int bch2_run_recovery_passes(struct bch_fs *c)
731 {
732 	int ret = 0;
733 
734 	while (c->curr_recovery_pass < ARRAY_SIZE(recovery_pass_fns)) {
735 		if (should_run_recovery_pass(c, c->curr_recovery_pass)) {
736 			unsigned pass = c->curr_recovery_pass;
737 
738 			ret = bch2_run_recovery_pass(c, c->curr_recovery_pass);
739 			if (bch2_err_matches(ret, BCH_ERR_restart_recovery) ||
740 			    (ret && c->curr_recovery_pass < pass))
741 				continue;
742 			if (ret)
743 				break;
744 
745 			c->recovery_passes_complete |= BIT_ULL(c->curr_recovery_pass);
746 		}
747 		c->curr_recovery_pass++;
748 		c->recovery_pass_done = max(c->recovery_pass_done, c->curr_recovery_pass);
749 	}
750 
751 	return ret;
752 }
753 
754 int bch2_run_online_recovery_passes(struct bch_fs *c)
755 {
756 	int ret = 0;
757 
758 	for (unsigned i = 0; i < ARRAY_SIZE(recovery_pass_fns); i++) {
759 		struct recovery_pass_fn *p = recovery_pass_fns + i;
760 
761 		if (!(p->when & PASS_ONLINE))
762 			continue;
763 
764 		ret = bch2_run_recovery_pass(c, i);
765 		if (bch2_err_matches(ret, BCH_ERR_restart_recovery)) {
766 			i = c->curr_recovery_pass;
767 			continue;
768 		}
769 		if (ret)
770 			break;
771 	}
772 
773 	return ret;
774 }
775 
776 int bch2_fs_recovery(struct bch_fs *c)
777 {
778 	struct bch_sb_field_clean *clean = NULL;
779 	struct jset *last_journal_entry = NULL;
780 	u64 last_seq = 0, blacklist_seq, journal_seq;
781 	int ret = 0;
782 
783 	if (c->sb.clean) {
784 		clean = bch2_read_superblock_clean(c);
785 		ret = PTR_ERR_OR_ZERO(clean);
786 		if (ret)
787 			goto err;
788 
789 		bch_info(c, "recovering from clean shutdown, journal seq %llu",
790 			 le64_to_cpu(clean->journal_seq));
791 	} else {
792 		bch_info(c, "recovering from unclean shutdown");
793 	}
794 
795 	if (!(c->sb.features & (1ULL << BCH_FEATURE_new_extent_overwrite))) {
796 		bch_err(c, "feature new_extent_overwrite not set, filesystem no longer supported");
797 		ret = -EINVAL;
798 		goto err;
799 	}
800 
801 	if (!c->sb.clean &&
802 	    !(c->sb.features & (1ULL << BCH_FEATURE_extents_above_btree_updates))) {
803 		bch_err(c, "filesystem needs recovery from older version; run fsck from older bcachefs-tools to fix");
804 		ret = -EINVAL;
805 		goto err;
806 	}
807 
808 	if (c->opts.fsck && c->opts.norecovery) {
809 		bch_err(c, "cannot select both norecovery and fsck");
810 		ret = -EINVAL;
811 		goto err;
812 	}
813 
814 	if (!c->opts.nochanges) {
815 		mutex_lock(&c->sb_lock);
816 		bool write_sb = false;
817 
818 		struct bch_sb_field_ext *ext =
819 			bch2_sb_field_get_minsize(&c->disk_sb, ext, sizeof(*ext) / sizeof(u64));
820 		if (!ext) {
821 			ret = -BCH_ERR_ENOSPC_sb;
822 			mutex_unlock(&c->sb_lock);
823 			goto err;
824 		}
825 
826 		if (BCH_SB_HAS_TOPOLOGY_ERRORS(c->disk_sb.sb)) {
827 			ext->recovery_passes_required[0] |=
828 				cpu_to_le64(bch2_recovery_passes_to_stable(BIT_ULL(BCH_RECOVERY_PASS_check_topology)));
829 			write_sb = true;
830 		}
831 
832 		u64 sb_passes = bch2_recovery_passes_from_stable(le64_to_cpu(ext->recovery_passes_required[0]));
833 		if (sb_passes) {
834 			struct printbuf buf = PRINTBUF;
835 			prt_str(&buf, "superblock requires following recovery passes to be run:\n  ");
836 			prt_bitflags(&buf, bch2_recovery_passes, sb_passes);
837 			bch_info(c, "%s", buf.buf);
838 			printbuf_exit(&buf);
839 		}
840 
841 		if (bch2_check_version_downgrade(c)) {
842 			struct printbuf buf = PRINTBUF;
843 
844 			prt_str(&buf, "Version downgrade required:");
845 
846 			__le64 passes = ext->recovery_passes_required[0];
847 			bch2_sb_set_downgrade(c,
848 					BCH_VERSION_MINOR(bcachefs_metadata_version_current),
849 					BCH_VERSION_MINOR(c->sb.version));
850 			passes = ext->recovery_passes_required[0] & ~passes;
851 			if (passes) {
852 				prt_str(&buf, "\n  running recovery passes: ");
853 				prt_bitflags(&buf, bch2_recovery_passes,
854 					     bch2_recovery_passes_from_stable(le64_to_cpu(passes)));
855 			}
856 
857 			bch_info(c, "%s", buf.buf);
858 			printbuf_exit(&buf);
859 			write_sb = true;
860 		}
861 
862 		if (check_version_upgrade(c))
863 			write_sb = true;
864 
865 		if (write_sb)
866 			bch2_write_super(c);
867 
868 		c->recovery_passes_explicit |= bch2_recovery_passes_from_stable(le64_to_cpu(ext->recovery_passes_required[0]));
869 		mutex_unlock(&c->sb_lock);
870 	}
871 
872 	if (c->opts.fsck && IS_ENABLED(CONFIG_BCACHEFS_DEBUG))
873 		c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_topology);
874 
875 	if (c->opts.fsck)
876 		set_bit(BCH_FS_fsck_running, &c->flags);
877 
878 	ret = bch2_blacklist_table_initialize(c);
879 	if (ret) {
880 		bch_err(c, "error initializing blacklist table");
881 		goto err;
882 	}
883 
884 	if (!c->sb.clean || c->opts.fsck || c->opts.keep_journal) {
885 		struct genradix_iter iter;
886 		struct journal_replay **i;
887 
888 		bch_verbose(c, "starting journal read");
889 		ret = bch2_journal_read(c, &last_seq, &blacklist_seq, &journal_seq);
890 		if (ret)
891 			goto err;
892 
893 		/*
894 		 * note: cmd_list_journal needs the blacklist table fully up to date so
895 		 * it can asterisk ignored journal entries:
896 		 */
897 		if (c->opts.read_journal_only)
898 			goto out;
899 
900 		genradix_for_each_reverse(&c->journal_entries, iter, i)
901 			if (!journal_replay_ignore(*i)) {
902 				last_journal_entry = &(*i)->j;
903 				break;
904 			}
905 
906 		if (mustfix_fsck_err_on(c->sb.clean &&
907 					last_journal_entry &&
908 					!journal_entry_empty(last_journal_entry), c,
909 				clean_but_journal_not_empty,
910 				"filesystem marked clean but journal not empty")) {
911 			c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
912 			SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
913 			c->sb.clean = false;
914 		}
915 
916 		if (!last_journal_entry) {
917 			fsck_err_on(!c->sb.clean, c,
918 				    dirty_but_no_journal_entries,
919 				    "no journal entries found");
920 			if (clean)
921 				goto use_clean;
922 
923 			genradix_for_each_reverse(&c->journal_entries, iter, i)
924 				if (*i) {
925 					last_journal_entry = &(*i)->j;
926 					(*i)->ignore_blacklisted = false;
927 					(*i)->ignore_not_dirty= false;
928 					/*
929 					 * This was probably a NO_FLUSH entry,
930 					 * so last_seq was garbage - but we know
931 					 * we're only using a single journal
932 					 * entry, set it here:
933 					 */
934 					(*i)->j.last_seq = (*i)->j.seq;
935 					break;
936 				}
937 		}
938 
939 		ret = bch2_journal_keys_sort(c);
940 		if (ret)
941 			goto err;
942 
943 		if (c->sb.clean && last_journal_entry) {
944 			ret = bch2_verify_superblock_clean(c, &clean,
945 						      last_journal_entry);
946 			if (ret)
947 				goto err;
948 		}
949 	} else {
950 use_clean:
951 		if (!clean) {
952 			bch_err(c, "no superblock clean section found");
953 			ret = -BCH_ERR_fsck_repair_impossible;
954 			goto err;
955 
956 		}
957 		blacklist_seq = journal_seq = le64_to_cpu(clean->journal_seq) + 1;
958 	}
959 
960 	c->journal_replay_seq_start	= last_seq;
961 	c->journal_replay_seq_end	= blacklist_seq - 1;
962 
963 	if (c->opts.reconstruct_alloc)
964 		do_reconstruct_alloc(c);
965 
966 	zero_out_btree_mem_ptr(&c->journal_keys);
967 
968 	ret = journal_replay_early(c, clean);
969 	if (ret)
970 		goto err;
971 
972 	/*
973 	 * After an unclean shutdown, skip then next few journal sequence
974 	 * numbers as they may have been referenced by btree writes that
975 	 * happened before their corresponding journal writes - those btree
976 	 * writes need to be ignored, by skipping and blacklisting the next few
977 	 * journal sequence numbers:
978 	 */
979 	if (!c->sb.clean)
980 		journal_seq += 8;
981 
982 	if (blacklist_seq != journal_seq) {
983 		ret =   bch2_journal_log_msg(c, "blacklisting entries %llu-%llu",
984 					     blacklist_seq, journal_seq) ?:
985 			bch2_journal_seq_blacklist_add(c,
986 					blacklist_seq, journal_seq);
987 		if (ret) {
988 			bch_err_msg(c, ret, "error creating new journal seq blacklist entry");
989 			goto err;
990 		}
991 	}
992 
993 	ret =   bch2_journal_log_msg(c, "starting journal at entry %llu, replaying %llu-%llu",
994 				     journal_seq, last_seq, blacklist_seq - 1) ?:
995 		bch2_fs_journal_start(&c->journal, journal_seq);
996 	if (ret)
997 		goto err;
998 
999 	/*
1000 	 * Skip past versions that might have possibly been used (as nonces),
1001 	 * but hadn't had their pointers written:
1002 	 */
1003 	if (c->sb.encryption_type && !c->sb.clean)
1004 		atomic64_add(1 << 16, &c->key_version);
1005 
1006 	ret = read_btree_roots(c);
1007 	if (ret)
1008 		goto err;
1009 
1010 	ret = bch2_run_recovery_passes(c);
1011 	if (ret)
1012 		goto err;
1013 
1014 	clear_bit(BCH_FS_fsck_running, &c->flags);
1015 
1016 	/* If we fixed errors, verify that fs is actually clean now: */
1017 	if (IS_ENABLED(CONFIG_BCACHEFS_DEBUG) &&
1018 	    test_bit(BCH_FS_errors_fixed, &c->flags) &&
1019 	    !test_bit(BCH_FS_errors_not_fixed, &c->flags) &&
1020 	    !test_bit(BCH_FS_error, &c->flags)) {
1021 		bch2_flush_fsck_errs(c);
1022 
1023 		bch_info(c, "Fixed errors, running fsck a second time to verify fs is clean");
1024 		clear_bit(BCH_FS_errors_fixed, &c->flags);
1025 
1026 		c->curr_recovery_pass = BCH_RECOVERY_PASS_check_alloc_info;
1027 
1028 		ret = bch2_run_recovery_passes(c);
1029 		if (ret)
1030 			goto err;
1031 
1032 		if (test_bit(BCH_FS_errors_fixed, &c->flags) ||
1033 		    test_bit(BCH_FS_errors_not_fixed, &c->flags)) {
1034 			bch_err(c, "Second fsck run was not clean");
1035 			set_bit(BCH_FS_errors_not_fixed, &c->flags);
1036 		}
1037 
1038 		set_bit(BCH_FS_errors_fixed, &c->flags);
1039 	}
1040 
1041 	if (enabled_qtypes(c)) {
1042 		bch_verbose(c, "reading quotas");
1043 		ret = bch2_fs_quota_read(c);
1044 		if (ret)
1045 			goto err;
1046 		bch_verbose(c, "quotas done");
1047 	}
1048 
1049 	mutex_lock(&c->sb_lock);
1050 	bool write_sb = false;
1051 
1052 	if (BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb) != le16_to_cpu(c->disk_sb.sb->version)) {
1053 		SET_BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb, le16_to_cpu(c->disk_sb.sb->version));
1054 		write_sb = true;
1055 	}
1056 
1057 	if (!test_bit(BCH_FS_error, &c->flags) &&
1058 	    !(c->disk_sb.sb->compat[0] & cpu_to_le64(1ULL << BCH_COMPAT_alloc_info))) {
1059 		c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_alloc_info);
1060 		write_sb = true;
1061 	}
1062 
1063 	if (!test_bit(BCH_FS_error, &c->flags)) {
1064 		struct bch_sb_field_ext *ext = bch2_sb_field_get(c->disk_sb.sb, ext);
1065 		if (ext &&
1066 		    (!bch2_is_zero(ext->recovery_passes_required, sizeof(ext->recovery_passes_required)) ||
1067 		     !bch2_is_zero(ext->errors_silent, sizeof(ext->errors_silent)))) {
1068 			memset(ext->recovery_passes_required, 0, sizeof(ext->recovery_passes_required));
1069 			memset(ext->errors_silent, 0, sizeof(ext->errors_silent));
1070 			write_sb = true;
1071 		}
1072 	}
1073 
1074 	if (c->opts.fsck &&
1075 	    !test_bit(BCH_FS_error, &c->flags) &&
1076 	    !test_bit(BCH_FS_errors_not_fixed, &c->flags)) {
1077 		SET_BCH_SB_HAS_ERRORS(c->disk_sb.sb, 0);
1078 		SET_BCH_SB_HAS_TOPOLOGY_ERRORS(c->disk_sb.sb, 0);
1079 		write_sb = true;
1080 	}
1081 
1082 	if (write_sb)
1083 		bch2_write_super(c);
1084 	mutex_unlock(&c->sb_lock);
1085 
1086 	if (!(c->sb.compat & (1ULL << BCH_COMPAT_extents_above_btree_updates_done)) ||
1087 	    c->sb.version_min < bcachefs_metadata_version_btree_ptr_sectors_written) {
1088 		struct bch_move_stats stats;
1089 
1090 		bch2_move_stats_init(&stats, "recovery");
1091 
1092 		struct printbuf buf = PRINTBUF;
1093 		bch2_version_to_text(&buf, c->sb.version_min);
1094 		bch_info(c, "scanning for old btree nodes: min_version %s", buf.buf);
1095 		printbuf_exit(&buf);
1096 
1097 		ret =   bch2_fs_read_write_early(c) ?:
1098 			bch2_scan_old_btree_nodes(c, &stats);
1099 		if (ret)
1100 			goto err;
1101 		bch_info(c, "scanning for old btree nodes done");
1102 	}
1103 
1104 	if (c->journal_seq_blacklist_table &&
1105 	    c->journal_seq_blacklist_table->nr > 128)
1106 		queue_work(system_long_wq, &c->journal_seq_blacklist_gc_work);
1107 
1108 	ret = 0;
1109 out:
1110 	bch2_flush_fsck_errs(c);
1111 
1112 	if (!c->opts.keep_journal &&
1113 	    test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))
1114 		bch2_journal_keys_put_initial(c);
1115 	kfree(clean);
1116 
1117 	if (!ret &&
1118 	    test_bit(BCH_FS_need_delete_dead_snapshots, &c->flags) &&
1119 	    !c->opts.nochanges) {
1120 		bch2_fs_read_write_early(c);
1121 		bch2_delete_dead_snapshots_async(c);
1122 	}
1123 
1124 	bch_err_fn(c, ret);
1125 	return ret;
1126 err:
1127 fsck_err:
1128 	bch2_fs_emergency_read_only(c);
1129 	goto out;
1130 }
1131 
1132 int bch2_fs_initialize(struct bch_fs *c)
1133 {
1134 	struct bch_inode_unpacked root_inode, lostfound_inode;
1135 	struct bkey_inode_buf packed_inode;
1136 	struct qstr lostfound = QSTR("lost+found");
1137 	int ret;
1138 
1139 	bch_notice(c, "initializing new filesystem");
1140 
1141 	mutex_lock(&c->sb_lock);
1142 	c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_extents_above_btree_updates_done);
1143 	c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_bformat_overflow_done);
1144 
1145 	bch2_check_version_downgrade(c);
1146 
1147 	if (c->opts.version_upgrade != BCH_VERSION_UPGRADE_none) {
1148 		bch2_sb_upgrade(c, bcachefs_metadata_version_current);
1149 		SET_BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb, bcachefs_metadata_version_current);
1150 		bch2_write_super(c);
1151 	}
1152 	mutex_unlock(&c->sb_lock);
1153 
1154 	c->curr_recovery_pass = ARRAY_SIZE(recovery_pass_fns);
1155 	set_bit(BCH_FS_may_go_rw, &c->flags);
1156 
1157 	for (unsigned i = 0; i < BTREE_ID_NR; i++)
1158 		bch2_btree_root_alloc(c, i);
1159 
1160 	for_each_member_device(c, ca)
1161 		bch2_dev_usage_init(ca);
1162 
1163 	ret = bch2_fs_journal_alloc(c);
1164 	if (ret)
1165 		goto err;
1166 
1167 	/*
1168 	 * journal_res_get() will crash if called before this has
1169 	 * set up the journal.pin FIFO and journal.cur pointer:
1170 	 */
1171 	bch2_fs_journal_start(&c->journal, 1);
1172 	bch2_journal_set_replay_done(&c->journal);
1173 
1174 	ret = bch2_fs_read_write_early(c);
1175 	if (ret)
1176 		goto err;
1177 
1178 	/*
1179 	 * Write out the superblock and journal buckets, now that we can do
1180 	 * btree updates
1181 	 */
1182 	bch_verbose(c, "marking superblocks");
1183 	ret = bch2_trans_mark_dev_sbs(c);
1184 	bch_err_msg(c, ret, "marking superblocks");
1185 	if (ret)
1186 		goto err;
1187 
1188 	for_each_online_member(c, ca)
1189 		ca->new_fs_bucket_idx = 0;
1190 
1191 	ret = bch2_fs_freespace_init(c);
1192 	if (ret)
1193 		goto err;
1194 
1195 	ret = bch2_initialize_subvolumes(c);
1196 	if (ret)
1197 		goto err;
1198 
1199 	bch_verbose(c, "reading snapshots table");
1200 	ret = bch2_snapshots_read(c);
1201 	if (ret)
1202 		goto err;
1203 	bch_verbose(c, "reading snapshots done");
1204 
1205 	bch2_inode_init(c, &root_inode, 0, 0, S_IFDIR|0755, 0, NULL);
1206 	root_inode.bi_inum	= BCACHEFS_ROOT_INO;
1207 	root_inode.bi_subvol	= BCACHEFS_ROOT_SUBVOL;
1208 	bch2_inode_pack(&packed_inode, &root_inode);
1209 	packed_inode.inode.k.p.snapshot = U32_MAX;
1210 
1211 	ret = bch2_btree_insert(c, BTREE_ID_inodes, &packed_inode.inode.k_i, NULL, 0);
1212 	bch_err_msg(c, ret, "creating root directory");
1213 	if (ret)
1214 		goto err;
1215 
1216 	bch2_inode_init_early(c, &lostfound_inode);
1217 
1218 	ret = bch2_trans_do(c, NULL, NULL, 0,
1219 		bch2_create_trans(trans,
1220 				  BCACHEFS_ROOT_SUBVOL_INUM,
1221 				  &root_inode, &lostfound_inode,
1222 				  &lostfound,
1223 				  0, 0, S_IFDIR|0700, 0,
1224 				  NULL, NULL, (subvol_inum) { 0 }, 0));
1225 	bch_err_msg(c, ret, "creating lost+found");
1226 	if (ret)
1227 		goto err;
1228 
1229 	c->recovery_pass_done = ARRAY_SIZE(recovery_pass_fns) - 1;
1230 
1231 	if (enabled_qtypes(c)) {
1232 		ret = bch2_fs_quota_read(c);
1233 		if (ret)
1234 			goto err;
1235 	}
1236 
1237 	ret = bch2_journal_flush(&c->journal);
1238 	bch_err_msg(c, ret, "writing first journal entry");
1239 	if (ret)
1240 		goto err;
1241 
1242 	mutex_lock(&c->sb_lock);
1243 	SET_BCH_SB_INITIALIZED(c->disk_sb.sb, true);
1244 	SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
1245 
1246 	bch2_write_super(c);
1247 	mutex_unlock(&c->sb_lock);
1248 
1249 	return 0;
1250 err:
1251 	bch_err_fn(c, ret);
1252 	return ret;
1253 }
1254