xref: /linux/fs/bcachefs/recovery.c (revision a1944676767e855869b6af8e1c7e185372feaf31)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "bcachefs.h"
4 #include "alloc_background.h"
5 #include "bkey_buf.h"
6 #include "btree_journal_iter.h"
7 #include "btree_node_scan.h"
8 #include "btree_update.h"
9 #include "btree_update_interior.h"
10 #include "btree_io.h"
11 #include "buckets.h"
12 #include "dirent.h"
13 #include "errcode.h"
14 #include "error.h"
15 #include "fs-common.h"
16 #include "journal_io.h"
17 #include "journal_reclaim.h"
18 #include "journal_seq_blacklist.h"
19 #include "logged_ops.h"
20 #include "move.h"
21 #include "quota.h"
22 #include "rebalance.h"
23 #include "recovery.h"
24 #include "recovery_passes.h"
25 #include "replicas.h"
26 #include "sb-clean.h"
27 #include "sb-downgrade.h"
28 #include "snapshot.h"
29 #include "super-io.h"
30 
31 #include <linux/sort.h>
32 #include <linux/stat.h>
33 
34 #define QSTR(n) { { { .len = strlen(n) } }, .name = n }
35 
36 void bch2_btree_lost_data(struct bch_fs *c, enum btree_id btree)
37 {
38 	if (btree >= BTREE_ID_NR_MAX)
39 		return;
40 
41 	u64 b = BIT_ULL(btree);
42 
43 	if (!(c->sb.btrees_lost_data & b)) {
44 		bch_err(c, "flagging btree %s lost data", bch2_btree_id_str(btree));
45 
46 		mutex_lock(&c->sb_lock);
47 		bch2_sb_field_get(c->disk_sb.sb, ext)->btrees_lost_data |= cpu_to_le64(b);
48 		bch2_write_super(c);
49 		mutex_unlock(&c->sb_lock);
50 	}
51 }
52 
53 /* for -o reconstruct_alloc: */
54 static void bch2_reconstruct_alloc(struct bch_fs *c)
55 {
56 	bch2_journal_log_msg(c, "dropping alloc info");
57 	bch_info(c, "dropping and reconstructing all alloc info");
58 
59 	mutex_lock(&c->sb_lock);
60 	struct bch_sb_field_ext *ext = bch2_sb_field_get(c->disk_sb.sb, ext);
61 
62 	__set_bit_le64(BCH_RECOVERY_PASS_STABLE_check_allocations, ext->recovery_passes_required);
63 	__set_bit_le64(BCH_RECOVERY_PASS_STABLE_check_alloc_info, ext->recovery_passes_required);
64 	__set_bit_le64(BCH_RECOVERY_PASS_STABLE_check_lrus, ext->recovery_passes_required);
65 	__set_bit_le64(BCH_RECOVERY_PASS_STABLE_check_extents_to_backpointers, ext->recovery_passes_required);
66 	__set_bit_le64(BCH_RECOVERY_PASS_STABLE_check_alloc_to_lru_refs, ext->recovery_passes_required);
67 
68 	__set_bit_le64(BCH_FSCK_ERR_ptr_to_missing_alloc_key, ext->errors_silent);
69 	__set_bit_le64(BCH_FSCK_ERR_ptr_gen_newer_than_bucket_gen, ext->errors_silent);
70 	__set_bit_le64(BCH_FSCK_ERR_stale_dirty_ptr, ext->errors_silent);
71 
72 	__set_bit_le64(BCH_FSCK_ERR_dev_usage_buckets_wrong, ext->errors_silent);
73 	__set_bit_le64(BCH_FSCK_ERR_dev_usage_sectors_wrong, ext->errors_silent);
74 	__set_bit_le64(BCH_FSCK_ERR_dev_usage_fragmented_wrong, ext->errors_silent);
75 
76 	__set_bit_le64(BCH_FSCK_ERR_fs_usage_btree_wrong, ext->errors_silent);
77 	__set_bit_le64(BCH_FSCK_ERR_fs_usage_cached_wrong, ext->errors_silent);
78 	__set_bit_le64(BCH_FSCK_ERR_fs_usage_persistent_reserved_wrong, ext->errors_silent);
79 	__set_bit_le64(BCH_FSCK_ERR_fs_usage_replicas_wrong, ext->errors_silent);
80 
81 	__set_bit_le64(BCH_FSCK_ERR_alloc_key_data_type_wrong, ext->errors_silent);
82 	__set_bit_le64(BCH_FSCK_ERR_alloc_key_gen_wrong, ext->errors_silent);
83 	__set_bit_le64(BCH_FSCK_ERR_alloc_key_dirty_sectors_wrong, ext->errors_silent);
84 	__set_bit_le64(BCH_FSCK_ERR_alloc_key_cached_sectors_wrong, ext->errors_silent);
85 	__set_bit_le64(BCH_FSCK_ERR_alloc_key_stripe_wrong, ext->errors_silent);
86 	__set_bit_le64(BCH_FSCK_ERR_alloc_key_stripe_redundancy_wrong, ext->errors_silent);
87 	__set_bit_le64(BCH_FSCK_ERR_need_discard_key_wrong, ext->errors_silent);
88 	__set_bit_le64(BCH_FSCK_ERR_freespace_key_wrong, ext->errors_silent);
89 	__set_bit_le64(BCH_FSCK_ERR_bucket_gens_key_wrong, ext->errors_silent);
90 	__set_bit_le64(BCH_FSCK_ERR_freespace_hole_missing, ext->errors_silent);
91 	__set_bit_le64(BCH_FSCK_ERR_ptr_to_missing_backpointer, ext->errors_silent);
92 	__set_bit_le64(BCH_FSCK_ERR_lru_entry_bad, ext->errors_silent);
93 	c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
94 
95 	bch2_write_super(c);
96 	mutex_unlock(&c->sb_lock);
97 
98 	c->recovery_passes_explicit |= bch2_recovery_passes_from_stable(le64_to_cpu(ext->recovery_passes_required[0]));
99 
100 
101 	bch2_shoot_down_journal_keys(c, BTREE_ID_alloc,
102 				     0, BTREE_MAX_DEPTH, POS_MIN, SPOS_MAX);
103 	bch2_shoot_down_journal_keys(c, BTREE_ID_backpointers,
104 				     0, BTREE_MAX_DEPTH, POS_MIN, SPOS_MAX);
105 	bch2_shoot_down_journal_keys(c, BTREE_ID_need_discard,
106 				     0, BTREE_MAX_DEPTH, POS_MIN, SPOS_MAX);
107 	bch2_shoot_down_journal_keys(c, BTREE_ID_freespace,
108 				     0, BTREE_MAX_DEPTH, POS_MIN, SPOS_MAX);
109 	bch2_shoot_down_journal_keys(c, BTREE_ID_bucket_gens,
110 				     0, BTREE_MAX_DEPTH, POS_MIN, SPOS_MAX);
111 }
112 
113 /*
114  * Btree node pointers have a field to stack a pointer to the in memory btree
115  * node; we need to zero out this field when reading in btree nodes, or when
116  * reading in keys from the journal:
117  */
118 static void zero_out_btree_mem_ptr(struct journal_keys *keys)
119 {
120 	darray_for_each(*keys, i)
121 		if (i->k->k.type == KEY_TYPE_btree_ptr_v2)
122 			bkey_i_to_btree_ptr_v2(i->k)->v.mem_ptr = 0;
123 }
124 
125 /* journal replay: */
126 
127 static void replay_now_at(struct journal *j, u64 seq)
128 {
129 	BUG_ON(seq < j->replay_journal_seq);
130 
131 	seq = min(seq, j->replay_journal_seq_end);
132 
133 	while (j->replay_journal_seq < seq)
134 		bch2_journal_pin_put(j, j->replay_journal_seq++);
135 }
136 
137 static int bch2_journal_replay_key(struct btree_trans *trans,
138 				   struct journal_key *k)
139 {
140 	struct btree_iter iter;
141 	unsigned iter_flags =
142 		BTREE_ITER_intent|
143 		BTREE_ITER_not_extents;
144 	unsigned update_flags = BTREE_TRIGGER_norun;
145 	int ret;
146 
147 	if (k->overwritten)
148 		return 0;
149 
150 	trans->journal_res.seq = k->journal_seq;
151 
152 	/*
153 	 * BTREE_UPDATE_key_cache_reclaim disables key cache lookup/update to
154 	 * keep the key cache coherent with the underlying btree. Nothing
155 	 * besides the allocator is doing updates yet so we don't need key cache
156 	 * coherency for non-alloc btrees, and key cache fills for snapshots
157 	 * btrees use BTREE_ITER_filter_snapshots, which isn't available until
158 	 * the snapshots recovery pass runs.
159 	 */
160 	if (!k->level && k->btree_id == BTREE_ID_alloc)
161 		iter_flags |= BTREE_ITER_cached;
162 	else
163 		update_flags |= BTREE_UPDATE_key_cache_reclaim;
164 
165 	bch2_trans_node_iter_init(trans, &iter, k->btree_id, k->k->k.p,
166 				  BTREE_MAX_DEPTH, k->level,
167 				  iter_flags);
168 	ret = bch2_btree_iter_traverse(&iter);
169 	if (ret)
170 		goto out;
171 
172 	struct btree_path *path = btree_iter_path(trans, &iter);
173 	if (unlikely(!btree_path_node(path, k->level))) {
174 		bch2_trans_iter_exit(trans, &iter);
175 		bch2_trans_node_iter_init(trans, &iter, k->btree_id, k->k->k.p,
176 					  BTREE_MAX_DEPTH, 0, iter_flags);
177 		ret =   bch2_btree_iter_traverse(&iter) ?:
178 			bch2_btree_increase_depth(trans, iter.path, 0) ?:
179 			-BCH_ERR_transaction_restart_nested;
180 		goto out;
181 	}
182 
183 	/* Must be checked with btree locked: */
184 	if (k->overwritten)
185 		goto out;
186 
187 	ret = bch2_trans_update(trans, &iter, k->k, update_flags);
188 out:
189 	bch2_trans_iter_exit(trans, &iter);
190 	return ret;
191 }
192 
193 static int journal_sort_seq_cmp(const void *_l, const void *_r)
194 {
195 	const struct journal_key *l = *((const struct journal_key **)_l);
196 	const struct journal_key *r = *((const struct journal_key **)_r);
197 
198 	return cmp_int(l->journal_seq, r->journal_seq);
199 }
200 
201 int bch2_journal_replay(struct bch_fs *c)
202 {
203 	struct journal_keys *keys = &c->journal_keys;
204 	DARRAY(struct journal_key *) keys_sorted = { 0 };
205 	struct journal *j = &c->journal;
206 	u64 start_seq	= c->journal_replay_seq_start;
207 	u64 end_seq	= c->journal_replay_seq_start;
208 	struct btree_trans *trans = NULL;
209 	bool immediate_flush = false;
210 	int ret = 0;
211 
212 	if (keys->nr) {
213 		ret = bch2_journal_log_msg(c, "Starting journal replay (%zu keys in entries %llu-%llu)",
214 					   keys->nr, start_seq, end_seq);
215 		if (ret)
216 			goto err;
217 	}
218 
219 	BUG_ON(!atomic_read(&keys->ref));
220 
221 	move_gap(keys, keys->nr);
222 	trans = bch2_trans_get(c);
223 
224 	/*
225 	 * First, attempt to replay keys in sorted order. This is more
226 	 * efficient - better locality of btree access -  but some might fail if
227 	 * that would cause a journal deadlock.
228 	 */
229 	darray_for_each(*keys, k) {
230 		cond_resched();
231 
232 		/*
233 		 * k->allocated means the key wasn't read in from the journal,
234 		 * rather it was from early repair code
235 		 */
236 		if (k->allocated)
237 			immediate_flush = true;
238 
239 		/* Skip fastpath if we're low on space in the journal */
240 		ret = c->journal.watermark ? -1 :
241 			commit_do(trans, NULL, NULL,
242 				  BCH_TRANS_COMMIT_no_enospc|
243 				  BCH_TRANS_COMMIT_journal_reclaim|
244 				  (!k->allocated ? BCH_TRANS_COMMIT_no_journal_res : 0),
245 			     bch2_journal_replay_key(trans, k));
246 		BUG_ON(!ret && !k->overwritten);
247 		if (ret) {
248 			ret = darray_push(&keys_sorted, k);
249 			if (ret)
250 				goto err;
251 		}
252 	}
253 
254 	/*
255 	 * Now, replay any remaining keys in the order in which they appear in
256 	 * the journal, unpinning those journal entries as we go:
257 	 */
258 	sort(keys_sorted.data, keys_sorted.nr,
259 	     sizeof(keys_sorted.data[0]),
260 	     journal_sort_seq_cmp, NULL);
261 
262 	darray_for_each(keys_sorted, kp) {
263 		cond_resched();
264 
265 		struct journal_key *k = *kp;
266 
267 		if (k->journal_seq)
268 			replay_now_at(j, k->journal_seq);
269 		else
270 			replay_now_at(j, j->replay_journal_seq_end);
271 
272 		ret = commit_do(trans, NULL, NULL,
273 				BCH_TRANS_COMMIT_no_enospc|
274 				(!k->allocated
275 				 ? BCH_TRANS_COMMIT_no_journal_res|BCH_WATERMARK_reclaim
276 				 : 0),
277 			     bch2_journal_replay_key(trans, k));
278 		bch_err_msg(c, ret, "while replaying key at btree %s level %u:",
279 			    bch2_btree_id_str(k->btree_id), k->level);
280 		if (ret)
281 			goto err;
282 
283 		BUG_ON(!k->overwritten);
284 	}
285 
286 	/*
287 	 * We need to put our btree_trans before calling flush_all_pins(), since
288 	 * that will use a btree_trans internally
289 	 */
290 	bch2_trans_put(trans);
291 	trans = NULL;
292 
293 	if (!c->opts.retain_recovery_info &&
294 	    c->recovery_pass_done >= BCH_RECOVERY_PASS_journal_replay)
295 		bch2_journal_keys_put_initial(c);
296 
297 	replay_now_at(j, j->replay_journal_seq_end);
298 	j->replay_journal_seq = 0;
299 
300 	bch2_journal_set_replay_done(j);
301 
302 	/* if we did any repair, flush it immediately */
303 	if (immediate_flush) {
304 		bch2_journal_flush_all_pins(&c->journal);
305 		ret = bch2_journal_meta(&c->journal);
306 	}
307 
308 	if (keys->nr)
309 		bch2_journal_log_msg(c, "journal replay finished");
310 err:
311 	if (trans)
312 		bch2_trans_put(trans);
313 	darray_exit(&keys_sorted);
314 	bch_err_fn(c, ret);
315 	return ret;
316 }
317 
318 /* journal replay early: */
319 
320 static int journal_replay_entry_early(struct bch_fs *c,
321 				      struct jset_entry *entry)
322 {
323 	int ret = 0;
324 
325 	switch (entry->type) {
326 	case BCH_JSET_ENTRY_btree_root: {
327 		struct btree_root *r;
328 
329 		if (fsck_err_on(entry->btree_id >= BTREE_ID_NR_MAX,
330 				c, invalid_btree_id,
331 				"invalid btree id %u (max %u)",
332 				entry->btree_id, BTREE_ID_NR_MAX))
333 			return 0;
334 
335 		while (entry->btree_id >= c->btree_roots_extra.nr + BTREE_ID_NR) {
336 			ret = darray_push(&c->btree_roots_extra, (struct btree_root) { NULL });
337 			if (ret)
338 				return ret;
339 		}
340 
341 		r = bch2_btree_id_root(c, entry->btree_id);
342 
343 		if (entry->u64s) {
344 			r->level = entry->level;
345 			bkey_copy(&r->key, (struct bkey_i *) entry->start);
346 			r->error = 0;
347 		} else {
348 			r->error = -BCH_ERR_btree_node_read_error;
349 		}
350 		r->alive = true;
351 		break;
352 	}
353 	case BCH_JSET_ENTRY_usage: {
354 		struct jset_entry_usage *u =
355 			container_of(entry, struct jset_entry_usage, entry);
356 
357 		switch (entry->btree_id) {
358 		case BCH_FS_USAGE_reserved:
359 			if (entry->level < BCH_REPLICAS_MAX)
360 				c->usage_base->persistent_reserved[entry->level] =
361 					le64_to_cpu(u->v);
362 			break;
363 		case BCH_FS_USAGE_inodes:
364 			c->usage_base->b.nr_inodes = le64_to_cpu(u->v);
365 			break;
366 		case BCH_FS_USAGE_key_version:
367 			atomic64_set(&c->key_version,
368 				     le64_to_cpu(u->v));
369 			break;
370 		}
371 
372 		break;
373 	}
374 	case BCH_JSET_ENTRY_data_usage: {
375 		struct jset_entry_data_usage *u =
376 			container_of(entry, struct jset_entry_data_usage, entry);
377 
378 		ret = bch2_replicas_set_usage(c, &u->r,
379 					      le64_to_cpu(u->v));
380 		break;
381 	}
382 	case BCH_JSET_ENTRY_dev_usage: {
383 		struct jset_entry_dev_usage *u =
384 			container_of(entry, struct jset_entry_dev_usage, entry);
385 		unsigned nr_types = jset_entry_dev_usage_nr_types(u);
386 
387 		rcu_read_lock();
388 		struct bch_dev *ca = bch2_dev_rcu(c, le32_to_cpu(u->dev));
389 		if (ca)
390 			for (unsigned i = 0; i < min_t(unsigned, nr_types, BCH_DATA_NR); i++) {
391 				ca->usage_base->d[i].buckets	= le64_to_cpu(u->d[i].buckets);
392 				ca->usage_base->d[i].sectors	= le64_to_cpu(u->d[i].sectors);
393 				ca->usage_base->d[i].fragmented	= le64_to_cpu(u->d[i].fragmented);
394 			}
395 		rcu_read_unlock();
396 
397 		break;
398 	}
399 	case BCH_JSET_ENTRY_blacklist: {
400 		struct jset_entry_blacklist *bl_entry =
401 			container_of(entry, struct jset_entry_blacklist, entry);
402 
403 		ret = bch2_journal_seq_blacklist_add(c,
404 				le64_to_cpu(bl_entry->seq),
405 				le64_to_cpu(bl_entry->seq) + 1);
406 		break;
407 	}
408 	case BCH_JSET_ENTRY_blacklist_v2: {
409 		struct jset_entry_blacklist_v2 *bl_entry =
410 			container_of(entry, struct jset_entry_blacklist_v2, entry);
411 
412 		ret = bch2_journal_seq_blacklist_add(c,
413 				le64_to_cpu(bl_entry->start),
414 				le64_to_cpu(bl_entry->end) + 1);
415 		break;
416 	}
417 	case BCH_JSET_ENTRY_clock: {
418 		struct jset_entry_clock *clock =
419 			container_of(entry, struct jset_entry_clock, entry);
420 
421 		atomic64_set(&c->io_clock[clock->rw].now, le64_to_cpu(clock->time));
422 	}
423 	}
424 fsck_err:
425 	return ret;
426 }
427 
428 static int journal_replay_early(struct bch_fs *c,
429 				struct bch_sb_field_clean *clean)
430 {
431 	if (clean) {
432 		for (struct jset_entry *entry = clean->start;
433 		     entry != vstruct_end(&clean->field);
434 		     entry = vstruct_next(entry)) {
435 			int ret = journal_replay_entry_early(c, entry);
436 			if (ret)
437 				return ret;
438 		}
439 	} else {
440 		struct genradix_iter iter;
441 		struct journal_replay *i, **_i;
442 
443 		genradix_for_each(&c->journal_entries, iter, _i) {
444 			i = *_i;
445 
446 			if (journal_replay_ignore(i))
447 				continue;
448 
449 			vstruct_for_each(&i->j, entry) {
450 				int ret = journal_replay_entry_early(c, entry);
451 				if (ret)
452 					return ret;
453 			}
454 		}
455 	}
456 
457 	bch2_fs_usage_initialize(c);
458 
459 	return 0;
460 }
461 
462 /* sb clean section: */
463 
464 static int read_btree_roots(struct bch_fs *c)
465 {
466 	int ret = 0;
467 
468 	for (unsigned i = 0; i < btree_id_nr_alive(c); i++) {
469 		struct btree_root *r = bch2_btree_id_root(c, i);
470 
471 		if (!r->alive)
472 			continue;
473 
474 		if (btree_id_is_alloc(i) && c->opts.reconstruct_alloc)
475 			continue;
476 
477 		if (mustfix_fsck_err_on((ret = r->error),
478 					c, btree_root_bkey_invalid,
479 					"invalid btree root %s",
480 					bch2_btree_id_str(i)) ||
481 		    mustfix_fsck_err_on((ret = r->error = bch2_btree_root_read(c, i, &r->key, r->level)),
482 					c, btree_root_read_error,
483 					"error reading btree root %s l=%u: %s",
484 					bch2_btree_id_str(i), r->level, bch2_err_str(ret))) {
485 			if (btree_id_is_alloc(i)) {
486 				c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_allocations);
487 				c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_alloc_info);
488 				c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_lrus);
489 				c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_extents_to_backpointers);
490 				c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_alloc_to_lru_refs);
491 				c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
492 				r->error = 0;
493 			} else if (!(c->recovery_passes_explicit & BIT_ULL(BCH_RECOVERY_PASS_scan_for_btree_nodes))) {
494 				bch_info(c, "will run btree node scan");
495 				c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_scan_for_btree_nodes);
496 				c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_topology);
497 			}
498 
499 			ret = 0;
500 			bch2_btree_lost_data(c, i);
501 		}
502 	}
503 
504 	for (unsigned i = 0; i < BTREE_ID_NR; i++) {
505 		struct btree_root *r = bch2_btree_id_root(c, i);
506 
507 		if (!r->b && !r->error) {
508 			r->alive = false;
509 			r->level = 0;
510 			bch2_btree_root_alloc_fake(c, i, 0);
511 		}
512 	}
513 fsck_err:
514 	return ret;
515 }
516 
517 static bool check_version_upgrade(struct bch_fs *c)
518 {
519 	unsigned latest_version	= bcachefs_metadata_version_current;
520 	unsigned latest_compatible = min(latest_version,
521 					 bch2_latest_compatible_version(c->sb.version));
522 	unsigned old_version = c->sb.version_upgrade_complete ?: c->sb.version;
523 	unsigned new_version = 0;
524 
525 	if (old_version < bcachefs_metadata_required_upgrade_below) {
526 		if (c->opts.version_upgrade == BCH_VERSION_UPGRADE_incompatible ||
527 		    latest_compatible < bcachefs_metadata_required_upgrade_below)
528 			new_version = latest_version;
529 		else
530 			new_version = latest_compatible;
531 	} else {
532 		switch (c->opts.version_upgrade) {
533 		case BCH_VERSION_UPGRADE_compatible:
534 			new_version = latest_compatible;
535 			break;
536 		case BCH_VERSION_UPGRADE_incompatible:
537 			new_version = latest_version;
538 			break;
539 		case BCH_VERSION_UPGRADE_none:
540 			new_version = min(old_version, latest_version);
541 			break;
542 		}
543 	}
544 
545 	if (new_version > old_version) {
546 		struct printbuf buf = PRINTBUF;
547 
548 		if (old_version < bcachefs_metadata_required_upgrade_below)
549 			prt_str(&buf, "Version upgrade required:\n");
550 
551 		if (old_version != c->sb.version) {
552 			prt_str(&buf, "Version upgrade from ");
553 			bch2_version_to_text(&buf, c->sb.version_upgrade_complete);
554 			prt_str(&buf, " to ");
555 			bch2_version_to_text(&buf, c->sb.version);
556 			prt_str(&buf, " incomplete\n");
557 		}
558 
559 		prt_printf(&buf, "Doing %s version upgrade from ",
560 			   BCH_VERSION_MAJOR(old_version) != BCH_VERSION_MAJOR(new_version)
561 			   ? "incompatible" : "compatible");
562 		bch2_version_to_text(&buf, old_version);
563 		prt_str(&buf, " to ");
564 		bch2_version_to_text(&buf, new_version);
565 		prt_newline(&buf);
566 
567 		struct bch_sb_field_ext *ext = bch2_sb_field_get(c->disk_sb.sb, ext);
568 		__le64 passes = ext->recovery_passes_required[0];
569 		bch2_sb_set_upgrade(c, old_version, new_version);
570 		passes = ext->recovery_passes_required[0] & ~passes;
571 
572 		if (passes) {
573 			prt_str(&buf, "  running recovery passes: ");
574 			prt_bitflags(&buf, bch2_recovery_passes,
575 				     bch2_recovery_passes_from_stable(le64_to_cpu(passes)));
576 		}
577 
578 		bch_info(c, "%s", buf.buf);
579 
580 		bch2_sb_upgrade(c, new_version);
581 
582 		printbuf_exit(&buf);
583 		return true;
584 	}
585 
586 	return false;
587 }
588 
589 int bch2_fs_recovery(struct bch_fs *c)
590 {
591 	struct bch_sb_field_clean *clean = NULL;
592 	struct jset *last_journal_entry = NULL;
593 	u64 last_seq = 0, blacklist_seq, journal_seq;
594 	int ret = 0;
595 
596 	if (c->sb.clean) {
597 		clean = bch2_read_superblock_clean(c);
598 		ret = PTR_ERR_OR_ZERO(clean);
599 		if (ret)
600 			goto err;
601 
602 		bch_info(c, "recovering from clean shutdown, journal seq %llu",
603 			 le64_to_cpu(clean->journal_seq));
604 	} else {
605 		bch_info(c, "recovering from unclean shutdown");
606 	}
607 
608 	if (!(c->sb.features & (1ULL << BCH_FEATURE_new_extent_overwrite))) {
609 		bch_err(c, "feature new_extent_overwrite not set, filesystem no longer supported");
610 		ret = -EINVAL;
611 		goto err;
612 	}
613 
614 	if (!c->sb.clean &&
615 	    !(c->sb.features & (1ULL << BCH_FEATURE_extents_above_btree_updates))) {
616 		bch_err(c, "filesystem needs recovery from older version; run fsck from older bcachefs-tools to fix");
617 		ret = -EINVAL;
618 		goto err;
619 	}
620 
621 	if (c->opts.norecovery)
622 		c->opts.recovery_pass_last = BCH_RECOVERY_PASS_journal_replay - 1;
623 
624 	mutex_lock(&c->sb_lock);
625 	struct bch_sb_field_ext *ext = bch2_sb_field_get(c->disk_sb.sb, ext);
626 	bool write_sb = false;
627 
628 	if (BCH_SB_HAS_TOPOLOGY_ERRORS(c->disk_sb.sb)) {
629 		ext->recovery_passes_required[0] |=
630 			cpu_to_le64(bch2_recovery_passes_to_stable(BIT_ULL(BCH_RECOVERY_PASS_check_topology)));
631 		write_sb = true;
632 	}
633 
634 	u64 sb_passes = bch2_recovery_passes_from_stable(le64_to_cpu(ext->recovery_passes_required[0]));
635 	if (sb_passes) {
636 		struct printbuf buf = PRINTBUF;
637 		prt_str(&buf, "superblock requires following recovery passes to be run:\n  ");
638 		prt_bitflags(&buf, bch2_recovery_passes, sb_passes);
639 		bch_info(c, "%s", buf.buf);
640 		printbuf_exit(&buf);
641 	}
642 
643 	if (bch2_check_version_downgrade(c)) {
644 		struct printbuf buf = PRINTBUF;
645 
646 		prt_str(&buf, "Version downgrade required:");
647 
648 		__le64 passes = ext->recovery_passes_required[0];
649 		bch2_sb_set_downgrade(c,
650 				      BCH_VERSION_MINOR(bcachefs_metadata_version_current),
651 				      BCH_VERSION_MINOR(c->sb.version));
652 		passes = ext->recovery_passes_required[0] & ~passes;
653 		if (passes) {
654 			prt_str(&buf, "\n  running recovery passes: ");
655 			prt_bitflags(&buf, bch2_recovery_passes,
656 				     bch2_recovery_passes_from_stable(le64_to_cpu(passes)));
657 		}
658 
659 		bch_info(c, "%s", buf.buf);
660 		printbuf_exit(&buf);
661 		write_sb = true;
662 	}
663 
664 	if (check_version_upgrade(c))
665 		write_sb = true;
666 
667 	c->recovery_passes_explicit |= bch2_recovery_passes_from_stable(le64_to_cpu(ext->recovery_passes_required[0]));
668 
669 	if (write_sb)
670 		bch2_write_super(c);
671 	mutex_unlock(&c->sb_lock);
672 
673 	if (c->opts.fsck && IS_ENABLED(CONFIG_BCACHEFS_DEBUG))
674 		c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_topology);
675 
676 	if (c->opts.fsck)
677 		set_bit(BCH_FS_fsck_running, &c->flags);
678 
679 	ret = bch2_blacklist_table_initialize(c);
680 	if (ret) {
681 		bch_err(c, "error initializing blacklist table");
682 		goto err;
683 	}
684 
685 	bch2_journal_pos_from_member_info_resume(c);
686 
687 	if (!c->sb.clean || c->opts.retain_recovery_info) {
688 		struct genradix_iter iter;
689 		struct journal_replay **i;
690 
691 		bch_verbose(c, "starting journal read");
692 		ret = bch2_journal_read(c, &last_seq, &blacklist_seq, &journal_seq);
693 		if (ret)
694 			goto err;
695 
696 		/*
697 		 * note: cmd_list_journal needs the blacklist table fully up to date so
698 		 * it can asterisk ignored journal entries:
699 		 */
700 		if (c->opts.read_journal_only)
701 			goto out;
702 
703 		genradix_for_each_reverse(&c->journal_entries, iter, i)
704 			if (!journal_replay_ignore(*i)) {
705 				last_journal_entry = &(*i)->j;
706 				break;
707 			}
708 
709 		if (mustfix_fsck_err_on(c->sb.clean &&
710 					last_journal_entry &&
711 					!journal_entry_empty(last_journal_entry), c,
712 				clean_but_journal_not_empty,
713 				"filesystem marked clean but journal not empty")) {
714 			c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
715 			SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
716 			c->sb.clean = false;
717 		}
718 
719 		if (!last_journal_entry) {
720 			fsck_err_on(!c->sb.clean, c,
721 				    dirty_but_no_journal_entries,
722 				    "no journal entries found");
723 			if (clean)
724 				goto use_clean;
725 
726 			genradix_for_each_reverse(&c->journal_entries, iter, i)
727 				if (*i) {
728 					last_journal_entry = &(*i)->j;
729 					(*i)->ignore_blacklisted = false;
730 					(*i)->ignore_not_dirty= false;
731 					/*
732 					 * This was probably a NO_FLUSH entry,
733 					 * so last_seq was garbage - but we know
734 					 * we're only using a single journal
735 					 * entry, set it here:
736 					 */
737 					(*i)->j.last_seq = (*i)->j.seq;
738 					break;
739 				}
740 		}
741 
742 		ret = bch2_journal_keys_sort(c);
743 		if (ret)
744 			goto err;
745 
746 		if (c->sb.clean && last_journal_entry) {
747 			ret = bch2_verify_superblock_clean(c, &clean,
748 						      last_journal_entry);
749 			if (ret)
750 				goto err;
751 		}
752 	} else {
753 use_clean:
754 		if (!clean) {
755 			bch_err(c, "no superblock clean section found");
756 			ret = -BCH_ERR_fsck_repair_impossible;
757 			goto err;
758 
759 		}
760 		blacklist_seq = journal_seq = le64_to_cpu(clean->journal_seq) + 1;
761 	}
762 
763 	c->journal_replay_seq_start	= last_seq;
764 	c->journal_replay_seq_end	= blacklist_seq - 1;
765 
766 	if (c->opts.reconstruct_alloc)
767 		bch2_reconstruct_alloc(c);
768 
769 	zero_out_btree_mem_ptr(&c->journal_keys);
770 
771 	ret = journal_replay_early(c, clean);
772 	if (ret)
773 		goto err;
774 
775 	/*
776 	 * After an unclean shutdown, skip then next few journal sequence
777 	 * numbers as they may have been referenced by btree writes that
778 	 * happened before their corresponding journal writes - those btree
779 	 * writes need to be ignored, by skipping and blacklisting the next few
780 	 * journal sequence numbers:
781 	 */
782 	if (!c->sb.clean)
783 		journal_seq += 8;
784 
785 	if (blacklist_seq != journal_seq) {
786 		ret =   bch2_journal_log_msg(c, "blacklisting entries %llu-%llu",
787 					     blacklist_seq, journal_seq) ?:
788 			bch2_journal_seq_blacklist_add(c,
789 					blacklist_seq, journal_seq);
790 		if (ret) {
791 			bch_err_msg(c, ret, "error creating new journal seq blacklist entry");
792 			goto err;
793 		}
794 	}
795 
796 	ret =   bch2_journal_log_msg(c, "starting journal at entry %llu, replaying %llu-%llu",
797 				     journal_seq, last_seq, blacklist_seq - 1) ?:
798 		bch2_fs_journal_start(&c->journal, journal_seq);
799 	if (ret)
800 		goto err;
801 
802 	/*
803 	 * Skip past versions that might have possibly been used (as nonces),
804 	 * but hadn't had their pointers written:
805 	 */
806 	if (c->sb.encryption_type && !c->sb.clean)
807 		atomic64_add(1 << 16, &c->key_version);
808 
809 	ret = read_btree_roots(c);
810 	if (ret)
811 		goto err;
812 
813 	ret = bch2_run_recovery_passes(c);
814 	if (ret)
815 		goto err;
816 
817 	clear_bit(BCH_FS_fsck_running, &c->flags);
818 
819 	/* fsync if we fixed errors */
820 	if (test_bit(BCH_FS_errors_fixed, &c->flags) &&
821 	    bch2_write_ref_tryget(c, BCH_WRITE_REF_fsync)) {
822 		bch2_journal_flush_all_pins(&c->journal);
823 		bch2_journal_meta(&c->journal);
824 		bch2_write_ref_put(c, BCH_WRITE_REF_fsync);
825 	}
826 
827 	/* If we fixed errors, verify that fs is actually clean now: */
828 	if (IS_ENABLED(CONFIG_BCACHEFS_DEBUG) &&
829 	    test_bit(BCH_FS_errors_fixed, &c->flags) &&
830 	    !test_bit(BCH_FS_errors_not_fixed, &c->flags) &&
831 	    !test_bit(BCH_FS_error, &c->flags)) {
832 		bch2_flush_fsck_errs(c);
833 
834 		bch_info(c, "Fixed errors, running fsck a second time to verify fs is clean");
835 		clear_bit(BCH_FS_errors_fixed, &c->flags);
836 
837 		c->curr_recovery_pass = BCH_RECOVERY_PASS_check_alloc_info;
838 
839 		ret = bch2_run_recovery_passes(c);
840 		if (ret)
841 			goto err;
842 
843 		if (test_bit(BCH_FS_errors_fixed, &c->flags) ||
844 		    test_bit(BCH_FS_errors_not_fixed, &c->flags)) {
845 			bch_err(c, "Second fsck run was not clean");
846 			set_bit(BCH_FS_errors_not_fixed, &c->flags);
847 		}
848 
849 		set_bit(BCH_FS_errors_fixed, &c->flags);
850 	}
851 
852 	if (enabled_qtypes(c)) {
853 		bch_verbose(c, "reading quotas");
854 		ret = bch2_fs_quota_read(c);
855 		if (ret)
856 			goto err;
857 		bch_verbose(c, "quotas done");
858 	}
859 
860 	mutex_lock(&c->sb_lock);
861 	ext = bch2_sb_field_get(c->disk_sb.sb, ext);
862 	write_sb = false;
863 
864 	if (BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb) != le16_to_cpu(c->disk_sb.sb->version)) {
865 		SET_BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb, le16_to_cpu(c->disk_sb.sb->version));
866 		write_sb = true;
867 	}
868 
869 	if (!test_bit(BCH_FS_error, &c->flags) &&
870 	    !(c->disk_sb.sb->compat[0] & cpu_to_le64(1ULL << BCH_COMPAT_alloc_info))) {
871 		c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_alloc_info);
872 		write_sb = true;
873 	}
874 
875 	if (!test_bit(BCH_FS_error, &c->flags) &&
876 	    !bch2_is_zero(ext->errors_silent, sizeof(ext->errors_silent))) {
877 		memset(ext->errors_silent, 0, sizeof(ext->errors_silent));
878 		write_sb = true;
879 	}
880 
881 	if (c->opts.fsck &&
882 	    !test_bit(BCH_FS_error, &c->flags) &&
883 	    c->recovery_pass_done == BCH_RECOVERY_PASS_NR - 1 &&
884 	    ext->btrees_lost_data) {
885 		ext->btrees_lost_data = 0;
886 		write_sb = true;
887 	}
888 
889 	if (c->opts.fsck &&
890 	    !test_bit(BCH_FS_error, &c->flags) &&
891 	    !test_bit(BCH_FS_errors_not_fixed, &c->flags)) {
892 		SET_BCH_SB_HAS_ERRORS(c->disk_sb.sb, 0);
893 		SET_BCH_SB_HAS_TOPOLOGY_ERRORS(c->disk_sb.sb, 0);
894 		write_sb = true;
895 	}
896 
897 	if (bch2_blacklist_entries_gc(c))
898 		write_sb = true;
899 
900 	if (write_sb)
901 		bch2_write_super(c);
902 	mutex_unlock(&c->sb_lock);
903 
904 	if (!(c->sb.compat & (1ULL << BCH_COMPAT_extents_above_btree_updates_done)) ||
905 	    c->sb.version_min < bcachefs_metadata_version_btree_ptr_sectors_written) {
906 		struct bch_move_stats stats;
907 
908 		bch2_move_stats_init(&stats, "recovery");
909 
910 		struct printbuf buf = PRINTBUF;
911 		bch2_version_to_text(&buf, c->sb.version_min);
912 		bch_info(c, "scanning for old btree nodes: min_version %s", buf.buf);
913 		printbuf_exit(&buf);
914 
915 		ret =   bch2_fs_read_write_early(c) ?:
916 			bch2_scan_old_btree_nodes(c, &stats);
917 		if (ret)
918 			goto err;
919 		bch_info(c, "scanning for old btree nodes done");
920 	}
921 
922 	ret = 0;
923 out:
924 	bch2_flush_fsck_errs(c);
925 
926 	if (!c->opts.retain_recovery_info) {
927 		bch2_journal_keys_put_initial(c);
928 		bch2_find_btree_nodes_exit(&c->found_btree_nodes);
929 	}
930 	if (!IS_ERR(clean))
931 		kfree(clean);
932 
933 	if (!ret &&
934 	    test_bit(BCH_FS_need_delete_dead_snapshots, &c->flags) &&
935 	    !c->opts.nochanges) {
936 		bch2_fs_read_write_early(c);
937 		bch2_delete_dead_snapshots_async(c);
938 	}
939 
940 	bch_err_fn(c, ret);
941 	return ret;
942 err:
943 fsck_err:
944 	bch2_fs_emergency_read_only(c);
945 	goto out;
946 }
947 
948 int bch2_fs_initialize(struct bch_fs *c)
949 {
950 	struct bch_inode_unpacked root_inode, lostfound_inode;
951 	struct bkey_inode_buf packed_inode;
952 	struct qstr lostfound = QSTR("lost+found");
953 	int ret;
954 
955 	bch_notice(c, "initializing new filesystem");
956 	set_bit(BCH_FS_new_fs, &c->flags);
957 
958 	mutex_lock(&c->sb_lock);
959 	c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_extents_above_btree_updates_done);
960 	c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_bformat_overflow_done);
961 
962 	bch2_check_version_downgrade(c);
963 
964 	if (c->opts.version_upgrade != BCH_VERSION_UPGRADE_none) {
965 		bch2_sb_upgrade(c, bcachefs_metadata_version_current);
966 		SET_BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb, bcachefs_metadata_version_current);
967 		bch2_write_super(c);
968 	}
969 	mutex_unlock(&c->sb_lock);
970 
971 	c->curr_recovery_pass = BCH_RECOVERY_PASS_NR;
972 	set_bit(BCH_FS_may_go_rw, &c->flags);
973 
974 	for (unsigned i = 0; i < BTREE_ID_NR; i++)
975 		bch2_btree_root_alloc_fake(c, i, 0);
976 
977 	for_each_member_device(c, ca)
978 		bch2_dev_usage_init(ca);
979 
980 	ret = bch2_fs_journal_alloc(c);
981 	if (ret)
982 		goto err;
983 
984 	/*
985 	 * journal_res_get() will crash if called before this has
986 	 * set up the journal.pin FIFO and journal.cur pointer:
987 	 */
988 	bch2_fs_journal_start(&c->journal, 1);
989 	bch2_journal_set_replay_done(&c->journal);
990 
991 	ret = bch2_fs_read_write_early(c);
992 	if (ret)
993 		goto err;
994 
995 	/*
996 	 * Write out the superblock and journal buckets, now that we can do
997 	 * btree updates
998 	 */
999 	bch_verbose(c, "marking superblocks");
1000 	ret = bch2_trans_mark_dev_sbs(c);
1001 	bch_err_msg(c, ret, "marking superblocks");
1002 	if (ret)
1003 		goto err;
1004 
1005 	for_each_online_member(c, ca)
1006 		ca->new_fs_bucket_idx = 0;
1007 
1008 	ret = bch2_fs_freespace_init(c);
1009 	if (ret)
1010 		goto err;
1011 
1012 	ret = bch2_initialize_subvolumes(c);
1013 	if (ret)
1014 		goto err;
1015 
1016 	bch_verbose(c, "reading snapshots table");
1017 	ret = bch2_snapshots_read(c);
1018 	if (ret)
1019 		goto err;
1020 	bch_verbose(c, "reading snapshots done");
1021 
1022 	bch2_inode_init(c, &root_inode, 0, 0, S_IFDIR|0755, 0, NULL);
1023 	root_inode.bi_inum	= BCACHEFS_ROOT_INO;
1024 	root_inode.bi_subvol	= BCACHEFS_ROOT_SUBVOL;
1025 	bch2_inode_pack(&packed_inode, &root_inode);
1026 	packed_inode.inode.k.p.snapshot = U32_MAX;
1027 
1028 	ret = bch2_btree_insert(c, BTREE_ID_inodes, &packed_inode.inode.k_i, NULL, 0);
1029 	bch_err_msg(c, ret, "creating root directory");
1030 	if (ret)
1031 		goto err;
1032 
1033 	bch2_inode_init_early(c, &lostfound_inode);
1034 
1035 	ret = bch2_trans_do(c, NULL, NULL, 0,
1036 		bch2_create_trans(trans,
1037 				  BCACHEFS_ROOT_SUBVOL_INUM,
1038 				  &root_inode, &lostfound_inode,
1039 				  &lostfound,
1040 				  0, 0, S_IFDIR|0700, 0,
1041 				  NULL, NULL, (subvol_inum) { 0 }, 0));
1042 	bch_err_msg(c, ret, "creating lost+found");
1043 	if (ret)
1044 		goto err;
1045 
1046 	c->recovery_pass_done = BCH_RECOVERY_PASS_NR - 1;
1047 
1048 	if (enabled_qtypes(c)) {
1049 		ret = bch2_fs_quota_read(c);
1050 		if (ret)
1051 			goto err;
1052 	}
1053 
1054 	ret = bch2_journal_flush(&c->journal);
1055 	bch_err_msg(c, ret, "writing first journal entry");
1056 	if (ret)
1057 		goto err;
1058 
1059 	mutex_lock(&c->sb_lock);
1060 	SET_BCH_SB_INITIALIZED(c->disk_sb.sb, true);
1061 	SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
1062 
1063 	bch2_write_super(c);
1064 	mutex_unlock(&c->sb_lock);
1065 
1066 	return 0;
1067 err:
1068 	bch_err_fn(c, ret);
1069 	return ret;
1070 }
1071