xref: /linux/fs/bcachefs/recovery.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "bcachefs.h"
4 #include "alloc_background.h"
5 #include "bkey_buf.h"
6 #include "btree_journal_iter.h"
7 #include "btree_node_scan.h"
8 #include "btree_update.h"
9 #include "btree_update_interior.h"
10 #include "btree_io.h"
11 #include "buckets.h"
12 #include "dirent.h"
13 #include "errcode.h"
14 #include "error.h"
15 #include "fs-common.h"
16 #include "journal_io.h"
17 #include "journal_reclaim.h"
18 #include "journal_seq_blacklist.h"
19 #include "logged_ops.h"
20 #include "move.h"
21 #include "quota.h"
22 #include "rebalance.h"
23 #include "recovery.h"
24 #include "recovery_passes.h"
25 #include "replicas.h"
26 #include "sb-clean.h"
27 #include "sb-downgrade.h"
28 #include "snapshot.h"
29 #include "super-io.h"
30 
31 #include <linux/sort.h>
32 #include <linux/stat.h>
33 
34 #define QSTR(n) { { { .len = strlen(n) } }, .name = n }
35 
36 void bch2_btree_lost_data(struct bch_fs *c, enum btree_id btree)
37 {
38 	if (btree >= BTREE_ID_NR_MAX)
39 		return;
40 
41 	u64 b = BIT_ULL(btree);
42 
43 	if (!(c->sb.btrees_lost_data & b)) {
44 		bch_err(c, "flagging btree %s lost data", bch2_btree_id_str(btree));
45 
46 		mutex_lock(&c->sb_lock);
47 		bch2_sb_field_get(c->disk_sb.sb, ext)->btrees_lost_data |= cpu_to_le64(b);
48 		bch2_write_super(c);
49 		mutex_unlock(&c->sb_lock);
50 	}
51 }
52 
53 /* for -o reconstruct_alloc: */
54 static void bch2_reconstruct_alloc(struct bch_fs *c)
55 {
56 	bch2_journal_log_msg(c, "dropping alloc info");
57 	bch_info(c, "dropping and reconstructing all alloc info");
58 
59 	mutex_lock(&c->sb_lock);
60 	struct bch_sb_field_ext *ext = bch2_sb_field_get(c->disk_sb.sb, ext);
61 
62 	__set_bit_le64(BCH_RECOVERY_PASS_STABLE_check_allocations, ext->recovery_passes_required);
63 	__set_bit_le64(BCH_RECOVERY_PASS_STABLE_check_alloc_info, ext->recovery_passes_required);
64 	__set_bit_le64(BCH_RECOVERY_PASS_STABLE_check_lrus, ext->recovery_passes_required);
65 	__set_bit_le64(BCH_RECOVERY_PASS_STABLE_check_extents_to_backpointers, ext->recovery_passes_required);
66 	__set_bit_le64(BCH_RECOVERY_PASS_STABLE_check_alloc_to_lru_refs, ext->recovery_passes_required);
67 
68 	__set_bit_le64(BCH_FSCK_ERR_ptr_to_missing_alloc_key, ext->errors_silent);
69 	__set_bit_le64(BCH_FSCK_ERR_ptr_gen_newer_than_bucket_gen, ext->errors_silent);
70 	__set_bit_le64(BCH_FSCK_ERR_stale_dirty_ptr, ext->errors_silent);
71 
72 	__set_bit_le64(BCH_FSCK_ERR_dev_usage_buckets_wrong, ext->errors_silent);
73 	__set_bit_le64(BCH_FSCK_ERR_dev_usage_sectors_wrong, ext->errors_silent);
74 	__set_bit_le64(BCH_FSCK_ERR_dev_usage_fragmented_wrong, ext->errors_silent);
75 
76 	__set_bit_le64(BCH_FSCK_ERR_fs_usage_btree_wrong, ext->errors_silent);
77 	__set_bit_le64(BCH_FSCK_ERR_fs_usage_cached_wrong, ext->errors_silent);
78 	__set_bit_le64(BCH_FSCK_ERR_fs_usage_persistent_reserved_wrong, ext->errors_silent);
79 	__set_bit_le64(BCH_FSCK_ERR_fs_usage_replicas_wrong, ext->errors_silent);
80 
81 	__set_bit_le64(BCH_FSCK_ERR_alloc_key_data_type_wrong, ext->errors_silent);
82 	__set_bit_le64(BCH_FSCK_ERR_alloc_key_gen_wrong, ext->errors_silent);
83 	__set_bit_le64(BCH_FSCK_ERR_alloc_key_dirty_sectors_wrong, ext->errors_silent);
84 	__set_bit_le64(BCH_FSCK_ERR_alloc_key_cached_sectors_wrong, ext->errors_silent);
85 	__set_bit_le64(BCH_FSCK_ERR_alloc_key_stripe_wrong, ext->errors_silent);
86 	__set_bit_le64(BCH_FSCK_ERR_alloc_key_stripe_redundancy_wrong, ext->errors_silent);
87 	__set_bit_le64(BCH_FSCK_ERR_need_discard_key_wrong, ext->errors_silent);
88 	__set_bit_le64(BCH_FSCK_ERR_freespace_key_wrong, ext->errors_silent);
89 	__set_bit_le64(BCH_FSCK_ERR_bucket_gens_key_wrong, ext->errors_silent);
90 	__set_bit_le64(BCH_FSCK_ERR_freespace_hole_missing, ext->errors_silent);
91 	__set_bit_le64(BCH_FSCK_ERR_ptr_to_missing_backpointer, ext->errors_silent);
92 	__set_bit_le64(BCH_FSCK_ERR_lru_entry_bad, ext->errors_silent);
93 	c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
94 
95 	bch2_write_super(c);
96 	mutex_unlock(&c->sb_lock);
97 
98 	c->recovery_passes_explicit |= bch2_recovery_passes_from_stable(le64_to_cpu(ext->recovery_passes_required[0]));
99 
100 
101 	bch2_shoot_down_journal_keys(c, BTREE_ID_alloc,
102 				     0, BTREE_MAX_DEPTH, POS_MIN, SPOS_MAX);
103 	bch2_shoot_down_journal_keys(c, BTREE_ID_backpointers,
104 				     0, BTREE_MAX_DEPTH, POS_MIN, SPOS_MAX);
105 	bch2_shoot_down_journal_keys(c, BTREE_ID_need_discard,
106 				     0, BTREE_MAX_DEPTH, POS_MIN, SPOS_MAX);
107 	bch2_shoot_down_journal_keys(c, BTREE_ID_freespace,
108 				     0, BTREE_MAX_DEPTH, POS_MIN, SPOS_MAX);
109 	bch2_shoot_down_journal_keys(c, BTREE_ID_bucket_gens,
110 				     0, BTREE_MAX_DEPTH, POS_MIN, SPOS_MAX);
111 }
112 
113 /*
114  * Btree node pointers have a field to stack a pointer to the in memory btree
115  * node; we need to zero out this field when reading in btree nodes, or when
116  * reading in keys from the journal:
117  */
118 static void zero_out_btree_mem_ptr(struct journal_keys *keys)
119 {
120 	darray_for_each(*keys, i)
121 		if (i->k->k.type == KEY_TYPE_btree_ptr_v2)
122 			bkey_i_to_btree_ptr_v2(i->k)->v.mem_ptr = 0;
123 }
124 
125 /* journal replay: */
126 
127 static void replay_now_at(struct journal *j, u64 seq)
128 {
129 	BUG_ON(seq < j->replay_journal_seq);
130 
131 	seq = min(seq, j->replay_journal_seq_end);
132 
133 	while (j->replay_journal_seq < seq)
134 		bch2_journal_pin_put(j, j->replay_journal_seq++);
135 }
136 
137 static int bch2_journal_replay_key(struct btree_trans *trans,
138 				   struct journal_key *k)
139 {
140 	struct btree_iter iter;
141 	unsigned iter_flags =
142 		BTREE_ITER_intent|
143 		BTREE_ITER_not_extents;
144 	unsigned update_flags = BTREE_TRIGGER_norun;
145 	int ret;
146 
147 	if (k->overwritten)
148 		return 0;
149 
150 	trans->journal_res.seq = k->journal_seq;
151 
152 	/*
153 	 * BTREE_UPDATE_key_cache_reclaim disables key cache lookup/update to
154 	 * keep the key cache coherent with the underlying btree. Nothing
155 	 * besides the allocator is doing updates yet so we don't need key cache
156 	 * coherency for non-alloc btrees, and key cache fills for snapshots
157 	 * btrees use BTREE_ITER_filter_snapshots, which isn't available until
158 	 * the snapshots recovery pass runs.
159 	 */
160 	if (!k->level && k->btree_id == BTREE_ID_alloc)
161 		iter_flags |= BTREE_ITER_cached;
162 	else
163 		update_flags |= BTREE_UPDATE_key_cache_reclaim;
164 
165 	bch2_trans_node_iter_init(trans, &iter, k->btree_id, k->k->k.p,
166 				  BTREE_MAX_DEPTH, k->level,
167 				  iter_flags);
168 	ret = bch2_btree_iter_traverse(&iter);
169 	if (ret)
170 		goto out;
171 
172 	struct btree_path *path = btree_iter_path(trans, &iter);
173 	if (unlikely(!btree_path_node(path, k->level))) {
174 		bch2_trans_iter_exit(trans, &iter);
175 		bch2_trans_node_iter_init(trans, &iter, k->btree_id, k->k->k.p,
176 					  BTREE_MAX_DEPTH, 0, iter_flags);
177 		ret =   bch2_btree_iter_traverse(&iter) ?:
178 			bch2_btree_increase_depth(trans, iter.path, 0) ?:
179 			-BCH_ERR_transaction_restart_nested;
180 		goto out;
181 	}
182 
183 	/* Must be checked with btree locked: */
184 	if (k->overwritten)
185 		goto out;
186 
187 	ret = bch2_trans_update(trans, &iter, k->k, update_flags);
188 out:
189 	bch2_trans_iter_exit(trans, &iter);
190 	return ret;
191 }
192 
193 static int journal_sort_seq_cmp(const void *_l, const void *_r)
194 {
195 	const struct journal_key *l = *((const struct journal_key **)_l);
196 	const struct journal_key *r = *((const struct journal_key **)_r);
197 
198 	return cmp_int(l->journal_seq, r->journal_seq);
199 }
200 
201 int bch2_journal_replay(struct bch_fs *c)
202 {
203 	struct journal_keys *keys = &c->journal_keys;
204 	DARRAY(struct journal_key *) keys_sorted = { 0 };
205 	struct journal *j = &c->journal;
206 	u64 start_seq	= c->journal_replay_seq_start;
207 	u64 end_seq	= c->journal_replay_seq_start;
208 	struct btree_trans *trans = NULL;
209 	bool immediate_flush = false;
210 	int ret = 0;
211 
212 	if (keys->nr) {
213 		ret = bch2_journal_log_msg(c, "Starting journal replay (%zu keys in entries %llu-%llu)",
214 					   keys->nr, start_seq, end_seq);
215 		if (ret)
216 			goto err;
217 	}
218 
219 	BUG_ON(!atomic_read(&keys->ref));
220 
221 	move_gap(keys, keys->nr);
222 	trans = bch2_trans_get(c);
223 
224 	/*
225 	 * First, attempt to replay keys in sorted order. This is more
226 	 * efficient - better locality of btree access -  but some might fail if
227 	 * that would cause a journal deadlock.
228 	 */
229 	darray_for_each(*keys, k) {
230 		cond_resched();
231 
232 		/*
233 		 * k->allocated means the key wasn't read in from the journal,
234 		 * rather it was from early repair code
235 		 */
236 		if (k->allocated)
237 			immediate_flush = true;
238 
239 		/* Skip fastpath if we're low on space in the journal */
240 		ret = c->journal.watermark ? -1 :
241 			commit_do(trans, NULL, NULL,
242 				  BCH_TRANS_COMMIT_no_enospc|
243 				  BCH_TRANS_COMMIT_journal_reclaim|
244 				  (!k->allocated ? BCH_TRANS_COMMIT_no_journal_res : 0),
245 			     bch2_journal_replay_key(trans, k));
246 		BUG_ON(!ret && !k->overwritten);
247 		if (ret) {
248 			ret = darray_push(&keys_sorted, k);
249 			if (ret)
250 				goto err;
251 		}
252 	}
253 
254 	/*
255 	 * Now, replay any remaining keys in the order in which they appear in
256 	 * the journal, unpinning those journal entries as we go:
257 	 */
258 	sort(keys_sorted.data, keys_sorted.nr,
259 	     sizeof(keys_sorted.data[0]),
260 	     journal_sort_seq_cmp, NULL);
261 
262 	darray_for_each(keys_sorted, kp) {
263 		cond_resched();
264 
265 		struct journal_key *k = *kp;
266 
267 		if (k->journal_seq)
268 			replay_now_at(j, k->journal_seq);
269 		else
270 			replay_now_at(j, j->replay_journal_seq_end);
271 
272 		ret = commit_do(trans, NULL, NULL,
273 				BCH_TRANS_COMMIT_no_enospc|
274 				(!k->allocated
275 				 ? BCH_TRANS_COMMIT_no_journal_res|BCH_WATERMARK_reclaim
276 				 : 0),
277 			     bch2_journal_replay_key(trans, k));
278 		bch_err_msg(c, ret, "while replaying key at btree %s level %u:",
279 			    bch2_btree_id_str(k->btree_id), k->level);
280 		if (ret)
281 			goto err;
282 
283 		BUG_ON(!k->overwritten);
284 	}
285 
286 	/*
287 	 * We need to put our btree_trans before calling flush_all_pins(), since
288 	 * that will use a btree_trans internally
289 	 */
290 	bch2_trans_put(trans);
291 	trans = NULL;
292 
293 	if (!c->opts.retain_recovery_info &&
294 	    c->recovery_pass_done >= BCH_RECOVERY_PASS_journal_replay)
295 		bch2_journal_keys_put_initial(c);
296 
297 	replay_now_at(j, j->replay_journal_seq_end);
298 	j->replay_journal_seq = 0;
299 
300 	bch2_journal_set_replay_done(j);
301 
302 	/* if we did any repair, flush it immediately */
303 	if (immediate_flush) {
304 		bch2_journal_flush_all_pins(&c->journal);
305 		ret = bch2_journal_meta(&c->journal);
306 	}
307 
308 	if (keys->nr)
309 		bch2_journal_log_msg(c, "journal replay finished");
310 err:
311 	if (trans)
312 		bch2_trans_put(trans);
313 	darray_exit(&keys_sorted);
314 	bch_err_fn(c, ret);
315 	return ret;
316 }
317 
318 /* journal replay early: */
319 
320 static int journal_replay_entry_early(struct bch_fs *c,
321 				      struct jset_entry *entry)
322 {
323 	int ret = 0;
324 
325 	switch (entry->type) {
326 	case BCH_JSET_ENTRY_btree_root: {
327 		struct btree_root *r;
328 
329 		while (entry->btree_id >= c->btree_roots_extra.nr + BTREE_ID_NR) {
330 			ret = darray_push(&c->btree_roots_extra, (struct btree_root) { NULL });
331 			if (ret)
332 				return ret;
333 		}
334 
335 		r = bch2_btree_id_root(c, entry->btree_id);
336 
337 		if (entry->u64s) {
338 			r->level = entry->level;
339 			bkey_copy(&r->key, (struct bkey_i *) entry->start);
340 			r->error = 0;
341 		} else {
342 			r->error = -BCH_ERR_btree_node_read_error;
343 		}
344 		r->alive = true;
345 		break;
346 	}
347 	case BCH_JSET_ENTRY_usage: {
348 		struct jset_entry_usage *u =
349 			container_of(entry, struct jset_entry_usage, entry);
350 
351 		switch (entry->btree_id) {
352 		case BCH_FS_USAGE_reserved:
353 			if (entry->level < BCH_REPLICAS_MAX)
354 				c->usage_base->persistent_reserved[entry->level] =
355 					le64_to_cpu(u->v);
356 			break;
357 		case BCH_FS_USAGE_inodes:
358 			c->usage_base->b.nr_inodes = le64_to_cpu(u->v);
359 			break;
360 		case BCH_FS_USAGE_key_version:
361 			atomic64_set(&c->key_version,
362 				     le64_to_cpu(u->v));
363 			break;
364 		}
365 
366 		break;
367 	}
368 	case BCH_JSET_ENTRY_data_usage: {
369 		struct jset_entry_data_usage *u =
370 			container_of(entry, struct jset_entry_data_usage, entry);
371 
372 		ret = bch2_replicas_set_usage(c, &u->r,
373 					      le64_to_cpu(u->v));
374 		break;
375 	}
376 	case BCH_JSET_ENTRY_dev_usage: {
377 		struct jset_entry_dev_usage *u =
378 			container_of(entry, struct jset_entry_dev_usage, entry);
379 		unsigned nr_types = jset_entry_dev_usage_nr_types(u);
380 
381 		rcu_read_lock();
382 		struct bch_dev *ca = bch2_dev_rcu(c, le32_to_cpu(u->dev));
383 		if (ca)
384 			for (unsigned i = 0; i < min_t(unsigned, nr_types, BCH_DATA_NR); i++) {
385 				ca->usage_base->d[i].buckets	= le64_to_cpu(u->d[i].buckets);
386 				ca->usage_base->d[i].sectors	= le64_to_cpu(u->d[i].sectors);
387 				ca->usage_base->d[i].fragmented	= le64_to_cpu(u->d[i].fragmented);
388 			}
389 		rcu_read_unlock();
390 
391 		break;
392 	}
393 	case BCH_JSET_ENTRY_blacklist: {
394 		struct jset_entry_blacklist *bl_entry =
395 			container_of(entry, struct jset_entry_blacklist, entry);
396 
397 		ret = bch2_journal_seq_blacklist_add(c,
398 				le64_to_cpu(bl_entry->seq),
399 				le64_to_cpu(bl_entry->seq) + 1);
400 		break;
401 	}
402 	case BCH_JSET_ENTRY_blacklist_v2: {
403 		struct jset_entry_blacklist_v2 *bl_entry =
404 			container_of(entry, struct jset_entry_blacklist_v2, entry);
405 
406 		ret = bch2_journal_seq_blacklist_add(c,
407 				le64_to_cpu(bl_entry->start),
408 				le64_to_cpu(bl_entry->end) + 1);
409 		break;
410 	}
411 	case BCH_JSET_ENTRY_clock: {
412 		struct jset_entry_clock *clock =
413 			container_of(entry, struct jset_entry_clock, entry);
414 
415 		atomic64_set(&c->io_clock[clock->rw].now, le64_to_cpu(clock->time));
416 	}
417 	}
418 
419 	return ret;
420 }
421 
422 static int journal_replay_early(struct bch_fs *c,
423 				struct bch_sb_field_clean *clean)
424 {
425 	if (clean) {
426 		for (struct jset_entry *entry = clean->start;
427 		     entry != vstruct_end(&clean->field);
428 		     entry = vstruct_next(entry)) {
429 			int ret = journal_replay_entry_early(c, entry);
430 			if (ret)
431 				return ret;
432 		}
433 	} else {
434 		struct genradix_iter iter;
435 		struct journal_replay *i, **_i;
436 
437 		genradix_for_each(&c->journal_entries, iter, _i) {
438 			i = *_i;
439 
440 			if (journal_replay_ignore(i))
441 				continue;
442 
443 			vstruct_for_each(&i->j, entry) {
444 				int ret = journal_replay_entry_early(c, entry);
445 				if (ret)
446 					return ret;
447 			}
448 		}
449 	}
450 
451 	bch2_fs_usage_initialize(c);
452 
453 	return 0;
454 }
455 
456 /* sb clean section: */
457 
458 static int read_btree_roots(struct bch_fs *c)
459 {
460 	int ret = 0;
461 
462 	for (unsigned i = 0; i < btree_id_nr_alive(c); i++) {
463 		struct btree_root *r = bch2_btree_id_root(c, i);
464 
465 		if (!r->alive)
466 			continue;
467 
468 		if (btree_id_is_alloc(i) && c->opts.reconstruct_alloc)
469 			continue;
470 
471 		if (mustfix_fsck_err_on((ret = r->error),
472 					c, btree_root_bkey_invalid,
473 					"invalid btree root %s",
474 					bch2_btree_id_str(i)) ||
475 		    mustfix_fsck_err_on((ret = r->error = bch2_btree_root_read(c, i, &r->key, r->level)),
476 					c, btree_root_read_error,
477 					"error reading btree root %s l=%u: %s",
478 					bch2_btree_id_str(i), r->level, bch2_err_str(ret))) {
479 			if (btree_id_is_alloc(i)) {
480 				c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_allocations);
481 				c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_alloc_info);
482 				c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_lrus);
483 				c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_extents_to_backpointers);
484 				c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_alloc_to_lru_refs);
485 				c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
486 				r->error = 0;
487 			} else if (!(c->recovery_passes_explicit & BIT_ULL(BCH_RECOVERY_PASS_scan_for_btree_nodes))) {
488 				bch_info(c, "will run btree node scan");
489 				c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_scan_for_btree_nodes);
490 				c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_topology);
491 			}
492 
493 			ret = 0;
494 			bch2_btree_lost_data(c, i);
495 		}
496 	}
497 
498 	for (unsigned i = 0; i < BTREE_ID_NR; i++) {
499 		struct btree_root *r = bch2_btree_id_root(c, i);
500 
501 		if (!r->b && !r->error) {
502 			r->alive = false;
503 			r->level = 0;
504 			bch2_btree_root_alloc_fake(c, i, 0);
505 		}
506 	}
507 fsck_err:
508 	return ret;
509 }
510 
511 static bool check_version_upgrade(struct bch_fs *c)
512 {
513 	unsigned latest_version	= bcachefs_metadata_version_current;
514 	unsigned latest_compatible = min(latest_version,
515 					 bch2_latest_compatible_version(c->sb.version));
516 	unsigned old_version = c->sb.version_upgrade_complete ?: c->sb.version;
517 	unsigned new_version = 0;
518 
519 	if (old_version < bcachefs_metadata_required_upgrade_below) {
520 		if (c->opts.version_upgrade == BCH_VERSION_UPGRADE_incompatible ||
521 		    latest_compatible < bcachefs_metadata_required_upgrade_below)
522 			new_version = latest_version;
523 		else
524 			new_version = latest_compatible;
525 	} else {
526 		switch (c->opts.version_upgrade) {
527 		case BCH_VERSION_UPGRADE_compatible:
528 			new_version = latest_compatible;
529 			break;
530 		case BCH_VERSION_UPGRADE_incompatible:
531 			new_version = latest_version;
532 			break;
533 		case BCH_VERSION_UPGRADE_none:
534 			new_version = min(old_version, latest_version);
535 			break;
536 		}
537 	}
538 
539 	if (new_version > old_version) {
540 		struct printbuf buf = PRINTBUF;
541 
542 		if (old_version < bcachefs_metadata_required_upgrade_below)
543 			prt_str(&buf, "Version upgrade required:\n");
544 
545 		if (old_version != c->sb.version) {
546 			prt_str(&buf, "Version upgrade from ");
547 			bch2_version_to_text(&buf, c->sb.version_upgrade_complete);
548 			prt_str(&buf, " to ");
549 			bch2_version_to_text(&buf, c->sb.version);
550 			prt_str(&buf, " incomplete\n");
551 		}
552 
553 		prt_printf(&buf, "Doing %s version upgrade from ",
554 			   BCH_VERSION_MAJOR(old_version) != BCH_VERSION_MAJOR(new_version)
555 			   ? "incompatible" : "compatible");
556 		bch2_version_to_text(&buf, old_version);
557 		prt_str(&buf, " to ");
558 		bch2_version_to_text(&buf, new_version);
559 		prt_newline(&buf);
560 
561 		struct bch_sb_field_ext *ext = bch2_sb_field_get(c->disk_sb.sb, ext);
562 		__le64 passes = ext->recovery_passes_required[0];
563 		bch2_sb_set_upgrade(c, old_version, new_version);
564 		passes = ext->recovery_passes_required[0] & ~passes;
565 
566 		if (passes) {
567 			prt_str(&buf, "  running recovery passes: ");
568 			prt_bitflags(&buf, bch2_recovery_passes,
569 				     bch2_recovery_passes_from_stable(le64_to_cpu(passes)));
570 		}
571 
572 		bch_info(c, "%s", buf.buf);
573 
574 		bch2_sb_upgrade(c, new_version);
575 
576 		printbuf_exit(&buf);
577 		return true;
578 	}
579 
580 	return false;
581 }
582 
583 int bch2_fs_recovery(struct bch_fs *c)
584 {
585 	struct bch_sb_field_clean *clean = NULL;
586 	struct jset *last_journal_entry = NULL;
587 	u64 last_seq = 0, blacklist_seq, journal_seq;
588 	int ret = 0;
589 
590 	if (c->sb.clean) {
591 		clean = bch2_read_superblock_clean(c);
592 		ret = PTR_ERR_OR_ZERO(clean);
593 		if (ret)
594 			goto err;
595 
596 		bch_info(c, "recovering from clean shutdown, journal seq %llu",
597 			 le64_to_cpu(clean->journal_seq));
598 	} else {
599 		bch_info(c, "recovering from unclean shutdown");
600 	}
601 
602 	if (!(c->sb.features & (1ULL << BCH_FEATURE_new_extent_overwrite))) {
603 		bch_err(c, "feature new_extent_overwrite not set, filesystem no longer supported");
604 		ret = -EINVAL;
605 		goto err;
606 	}
607 
608 	if (!c->sb.clean &&
609 	    !(c->sb.features & (1ULL << BCH_FEATURE_extents_above_btree_updates))) {
610 		bch_err(c, "filesystem needs recovery from older version; run fsck from older bcachefs-tools to fix");
611 		ret = -EINVAL;
612 		goto err;
613 	}
614 
615 	if (c->opts.norecovery)
616 		c->opts.recovery_pass_last = BCH_RECOVERY_PASS_journal_replay - 1;
617 
618 	mutex_lock(&c->sb_lock);
619 	struct bch_sb_field_ext *ext = bch2_sb_field_get(c->disk_sb.sb, ext);
620 	bool write_sb = false;
621 
622 	if (BCH_SB_HAS_TOPOLOGY_ERRORS(c->disk_sb.sb)) {
623 		ext->recovery_passes_required[0] |=
624 			cpu_to_le64(bch2_recovery_passes_to_stable(BIT_ULL(BCH_RECOVERY_PASS_check_topology)));
625 		write_sb = true;
626 	}
627 
628 	u64 sb_passes = bch2_recovery_passes_from_stable(le64_to_cpu(ext->recovery_passes_required[0]));
629 	if (sb_passes) {
630 		struct printbuf buf = PRINTBUF;
631 		prt_str(&buf, "superblock requires following recovery passes to be run:\n  ");
632 		prt_bitflags(&buf, bch2_recovery_passes, sb_passes);
633 		bch_info(c, "%s", buf.buf);
634 		printbuf_exit(&buf);
635 	}
636 
637 	if (bch2_check_version_downgrade(c)) {
638 		struct printbuf buf = PRINTBUF;
639 
640 		prt_str(&buf, "Version downgrade required:");
641 
642 		__le64 passes = ext->recovery_passes_required[0];
643 		bch2_sb_set_downgrade(c,
644 				      BCH_VERSION_MINOR(bcachefs_metadata_version_current),
645 				      BCH_VERSION_MINOR(c->sb.version));
646 		passes = ext->recovery_passes_required[0] & ~passes;
647 		if (passes) {
648 			prt_str(&buf, "\n  running recovery passes: ");
649 			prt_bitflags(&buf, bch2_recovery_passes,
650 				     bch2_recovery_passes_from_stable(le64_to_cpu(passes)));
651 		}
652 
653 		bch_info(c, "%s", buf.buf);
654 		printbuf_exit(&buf);
655 		write_sb = true;
656 	}
657 
658 	if (check_version_upgrade(c))
659 		write_sb = true;
660 
661 	if (write_sb)
662 		bch2_write_super(c);
663 
664 	c->recovery_passes_explicit |= bch2_recovery_passes_from_stable(le64_to_cpu(ext->recovery_passes_required[0]));
665 	mutex_unlock(&c->sb_lock);
666 
667 	if (c->opts.fsck && IS_ENABLED(CONFIG_BCACHEFS_DEBUG))
668 		c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_topology);
669 
670 	if (c->opts.fsck)
671 		set_bit(BCH_FS_fsck_running, &c->flags);
672 
673 	ret = bch2_blacklist_table_initialize(c);
674 	if (ret) {
675 		bch_err(c, "error initializing blacklist table");
676 		goto err;
677 	}
678 
679 	bch2_journal_pos_from_member_info_resume(c);
680 
681 	if (!c->sb.clean || c->opts.retain_recovery_info) {
682 		struct genradix_iter iter;
683 		struct journal_replay **i;
684 
685 		bch_verbose(c, "starting journal read");
686 		ret = bch2_journal_read(c, &last_seq, &blacklist_seq, &journal_seq);
687 		if (ret)
688 			goto err;
689 
690 		/*
691 		 * note: cmd_list_journal needs the blacklist table fully up to date so
692 		 * it can asterisk ignored journal entries:
693 		 */
694 		if (c->opts.read_journal_only)
695 			goto out;
696 
697 		genradix_for_each_reverse(&c->journal_entries, iter, i)
698 			if (!journal_replay_ignore(*i)) {
699 				last_journal_entry = &(*i)->j;
700 				break;
701 			}
702 
703 		if (mustfix_fsck_err_on(c->sb.clean &&
704 					last_journal_entry &&
705 					!journal_entry_empty(last_journal_entry), c,
706 				clean_but_journal_not_empty,
707 				"filesystem marked clean but journal not empty")) {
708 			c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
709 			SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
710 			c->sb.clean = false;
711 		}
712 
713 		if (!last_journal_entry) {
714 			fsck_err_on(!c->sb.clean, c,
715 				    dirty_but_no_journal_entries,
716 				    "no journal entries found");
717 			if (clean)
718 				goto use_clean;
719 
720 			genradix_for_each_reverse(&c->journal_entries, iter, i)
721 				if (*i) {
722 					last_journal_entry = &(*i)->j;
723 					(*i)->ignore_blacklisted = false;
724 					(*i)->ignore_not_dirty= false;
725 					/*
726 					 * This was probably a NO_FLUSH entry,
727 					 * so last_seq was garbage - but we know
728 					 * we're only using a single journal
729 					 * entry, set it here:
730 					 */
731 					(*i)->j.last_seq = (*i)->j.seq;
732 					break;
733 				}
734 		}
735 
736 		ret = bch2_journal_keys_sort(c);
737 		if (ret)
738 			goto err;
739 
740 		if (c->sb.clean && last_journal_entry) {
741 			ret = bch2_verify_superblock_clean(c, &clean,
742 						      last_journal_entry);
743 			if (ret)
744 				goto err;
745 		}
746 	} else {
747 use_clean:
748 		if (!clean) {
749 			bch_err(c, "no superblock clean section found");
750 			ret = -BCH_ERR_fsck_repair_impossible;
751 			goto err;
752 
753 		}
754 		blacklist_seq = journal_seq = le64_to_cpu(clean->journal_seq) + 1;
755 	}
756 
757 	c->journal_replay_seq_start	= last_seq;
758 	c->journal_replay_seq_end	= blacklist_seq - 1;
759 
760 	if (c->opts.reconstruct_alloc)
761 		bch2_reconstruct_alloc(c);
762 
763 	zero_out_btree_mem_ptr(&c->journal_keys);
764 
765 	ret = journal_replay_early(c, clean);
766 	if (ret)
767 		goto err;
768 
769 	/*
770 	 * After an unclean shutdown, skip then next few journal sequence
771 	 * numbers as they may have been referenced by btree writes that
772 	 * happened before their corresponding journal writes - those btree
773 	 * writes need to be ignored, by skipping and blacklisting the next few
774 	 * journal sequence numbers:
775 	 */
776 	if (!c->sb.clean)
777 		journal_seq += 8;
778 
779 	if (blacklist_seq != journal_seq) {
780 		ret =   bch2_journal_log_msg(c, "blacklisting entries %llu-%llu",
781 					     blacklist_seq, journal_seq) ?:
782 			bch2_journal_seq_blacklist_add(c,
783 					blacklist_seq, journal_seq);
784 		if (ret) {
785 			bch_err_msg(c, ret, "error creating new journal seq blacklist entry");
786 			goto err;
787 		}
788 	}
789 
790 	ret =   bch2_journal_log_msg(c, "starting journal at entry %llu, replaying %llu-%llu",
791 				     journal_seq, last_seq, blacklist_seq - 1) ?:
792 		bch2_fs_journal_start(&c->journal, journal_seq);
793 	if (ret)
794 		goto err;
795 
796 	/*
797 	 * Skip past versions that might have possibly been used (as nonces),
798 	 * but hadn't had their pointers written:
799 	 */
800 	if (c->sb.encryption_type && !c->sb.clean)
801 		atomic64_add(1 << 16, &c->key_version);
802 
803 	ret = read_btree_roots(c);
804 	if (ret)
805 		goto err;
806 
807 	ret = bch2_run_recovery_passes(c);
808 	if (ret)
809 		goto err;
810 
811 	clear_bit(BCH_FS_fsck_running, &c->flags);
812 
813 	/* fsync if we fixed errors */
814 	if (test_bit(BCH_FS_errors_fixed, &c->flags) &&
815 	    bch2_write_ref_tryget(c, BCH_WRITE_REF_fsync)) {
816 		bch2_journal_flush_all_pins(&c->journal);
817 		bch2_journal_meta(&c->journal);
818 		bch2_write_ref_put(c, BCH_WRITE_REF_fsync);
819 	}
820 
821 	/* If we fixed errors, verify that fs is actually clean now: */
822 	if (IS_ENABLED(CONFIG_BCACHEFS_DEBUG) &&
823 	    test_bit(BCH_FS_errors_fixed, &c->flags) &&
824 	    !test_bit(BCH_FS_errors_not_fixed, &c->flags) &&
825 	    !test_bit(BCH_FS_error, &c->flags)) {
826 		bch2_flush_fsck_errs(c);
827 
828 		bch_info(c, "Fixed errors, running fsck a second time to verify fs is clean");
829 		clear_bit(BCH_FS_errors_fixed, &c->flags);
830 
831 		c->curr_recovery_pass = BCH_RECOVERY_PASS_check_alloc_info;
832 
833 		ret = bch2_run_recovery_passes(c);
834 		if (ret)
835 			goto err;
836 
837 		if (test_bit(BCH_FS_errors_fixed, &c->flags) ||
838 		    test_bit(BCH_FS_errors_not_fixed, &c->flags)) {
839 			bch_err(c, "Second fsck run was not clean");
840 			set_bit(BCH_FS_errors_not_fixed, &c->flags);
841 		}
842 
843 		set_bit(BCH_FS_errors_fixed, &c->flags);
844 	}
845 
846 	if (enabled_qtypes(c)) {
847 		bch_verbose(c, "reading quotas");
848 		ret = bch2_fs_quota_read(c);
849 		if (ret)
850 			goto err;
851 		bch_verbose(c, "quotas done");
852 	}
853 
854 	mutex_lock(&c->sb_lock);
855 	ext = bch2_sb_field_get(c->disk_sb.sb, ext);
856 	write_sb = false;
857 
858 	if (BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb) != le16_to_cpu(c->disk_sb.sb->version)) {
859 		SET_BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb, le16_to_cpu(c->disk_sb.sb->version));
860 		write_sb = true;
861 	}
862 
863 	if (!test_bit(BCH_FS_error, &c->flags) &&
864 	    !(c->disk_sb.sb->compat[0] & cpu_to_le64(1ULL << BCH_COMPAT_alloc_info))) {
865 		c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_alloc_info);
866 		write_sb = true;
867 	}
868 
869 	if (!test_bit(BCH_FS_error, &c->flags) &&
870 	    !bch2_is_zero(ext->errors_silent, sizeof(ext->errors_silent))) {
871 		memset(ext->errors_silent, 0, sizeof(ext->errors_silent));
872 		write_sb = true;
873 	}
874 
875 	if (c->opts.fsck &&
876 	    !test_bit(BCH_FS_error, &c->flags) &&
877 	    c->recovery_pass_done == BCH_RECOVERY_PASS_NR - 1 &&
878 	    ext->btrees_lost_data) {
879 		ext->btrees_lost_data = 0;
880 		write_sb = true;
881 	}
882 
883 	if (c->opts.fsck &&
884 	    !test_bit(BCH_FS_error, &c->flags) &&
885 	    !test_bit(BCH_FS_errors_not_fixed, &c->flags)) {
886 		SET_BCH_SB_HAS_ERRORS(c->disk_sb.sb, 0);
887 		SET_BCH_SB_HAS_TOPOLOGY_ERRORS(c->disk_sb.sb, 0);
888 		write_sb = true;
889 	}
890 
891 	if (bch2_blacklist_entries_gc(c))
892 		write_sb = true;
893 
894 	if (write_sb)
895 		bch2_write_super(c);
896 	mutex_unlock(&c->sb_lock);
897 
898 	if (!(c->sb.compat & (1ULL << BCH_COMPAT_extents_above_btree_updates_done)) ||
899 	    c->sb.version_min < bcachefs_metadata_version_btree_ptr_sectors_written) {
900 		struct bch_move_stats stats;
901 
902 		bch2_move_stats_init(&stats, "recovery");
903 
904 		struct printbuf buf = PRINTBUF;
905 		bch2_version_to_text(&buf, c->sb.version_min);
906 		bch_info(c, "scanning for old btree nodes: min_version %s", buf.buf);
907 		printbuf_exit(&buf);
908 
909 		ret =   bch2_fs_read_write_early(c) ?:
910 			bch2_scan_old_btree_nodes(c, &stats);
911 		if (ret)
912 			goto err;
913 		bch_info(c, "scanning for old btree nodes done");
914 	}
915 
916 	ret = 0;
917 out:
918 	bch2_flush_fsck_errs(c);
919 
920 	if (!c->opts.retain_recovery_info) {
921 		bch2_journal_keys_put_initial(c);
922 		bch2_find_btree_nodes_exit(&c->found_btree_nodes);
923 	}
924 	if (!IS_ERR(clean))
925 		kfree(clean);
926 
927 	if (!ret &&
928 	    test_bit(BCH_FS_need_delete_dead_snapshots, &c->flags) &&
929 	    !c->opts.nochanges) {
930 		bch2_fs_read_write_early(c);
931 		bch2_delete_dead_snapshots_async(c);
932 	}
933 
934 	bch_err_fn(c, ret);
935 	return ret;
936 err:
937 fsck_err:
938 	bch2_fs_emergency_read_only(c);
939 	goto out;
940 }
941 
942 int bch2_fs_initialize(struct bch_fs *c)
943 {
944 	struct bch_inode_unpacked root_inode, lostfound_inode;
945 	struct bkey_inode_buf packed_inode;
946 	struct qstr lostfound = QSTR("lost+found");
947 	int ret;
948 
949 	bch_notice(c, "initializing new filesystem");
950 	set_bit(BCH_FS_new_fs, &c->flags);
951 
952 	mutex_lock(&c->sb_lock);
953 	c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_extents_above_btree_updates_done);
954 	c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_bformat_overflow_done);
955 
956 	bch2_check_version_downgrade(c);
957 
958 	if (c->opts.version_upgrade != BCH_VERSION_UPGRADE_none) {
959 		bch2_sb_upgrade(c, bcachefs_metadata_version_current);
960 		SET_BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb, bcachefs_metadata_version_current);
961 		bch2_write_super(c);
962 	}
963 	mutex_unlock(&c->sb_lock);
964 
965 	c->curr_recovery_pass = BCH_RECOVERY_PASS_NR;
966 	set_bit(BCH_FS_may_go_rw, &c->flags);
967 
968 	for (unsigned i = 0; i < BTREE_ID_NR; i++)
969 		bch2_btree_root_alloc_fake(c, i, 0);
970 
971 	for_each_member_device(c, ca)
972 		bch2_dev_usage_init(ca);
973 
974 	ret = bch2_fs_journal_alloc(c);
975 	if (ret)
976 		goto err;
977 
978 	/*
979 	 * journal_res_get() will crash if called before this has
980 	 * set up the journal.pin FIFO and journal.cur pointer:
981 	 */
982 	bch2_fs_journal_start(&c->journal, 1);
983 	bch2_journal_set_replay_done(&c->journal);
984 
985 	ret = bch2_fs_read_write_early(c);
986 	if (ret)
987 		goto err;
988 
989 	/*
990 	 * Write out the superblock and journal buckets, now that we can do
991 	 * btree updates
992 	 */
993 	bch_verbose(c, "marking superblocks");
994 	ret = bch2_trans_mark_dev_sbs(c);
995 	bch_err_msg(c, ret, "marking superblocks");
996 	if (ret)
997 		goto err;
998 
999 	for_each_online_member(c, ca)
1000 		ca->new_fs_bucket_idx = 0;
1001 
1002 	ret = bch2_fs_freespace_init(c);
1003 	if (ret)
1004 		goto err;
1005 
1006 	ret = bch2_initialize_subvolumes(c);
1007 	if (ret)
1008 		goto err;
1009 
1010 	bch_verbose(c, "reading snapshots table");
1011 	ret = bch2_snapshots_read(c);
1012 	if (ret)
1013 		goto err;
1014 	bch_verbose(c, "reading snapshots done");
1015 
1016 	bch2_inode_init(c, &root_inode, 0, 0, S_IFDIR|0755, 0, NULL);
1017 	root_inode.bi_inum	= BCACHEFS_ROOT_INO;
1018 	root_inode.bi_subvol	= BCACHEFS_ROOT_SUBVOL;
1019 	bch2_inode_pack(&packed_inode, &root_inode);
1020 	packed_inode.inode.k.p.snapshot = U32_MAX;
1021 
1022 	ret = bch2_btree_insert(c, BTREE_ID_inodes, &packed_inode.inode.k_i, NULL, 0);
1023 	bch_err_msg(c, ret, "creating root directory");
1024 	if (ret)
1025 		goto err;
1026 
1027 	bch2_inode_init_early(c, &lostfound_inode);
1028 
1029 	ret = bch2_trans_do(c, NULL, NULL, 0,
1030 		bch2_create_trans(trans,
1031 				  BCACHEFS_ROOT_SUBVOL_INUM,
1032 				  &root_inode, &lostfound_inode,
1033 				  &lostfound,
1034 				  0, 0, S_IFDIR|0700, 0,
1035 				  NULL, NULL, (subvol_inum) { 0 }, 0));
1036 	bch_err_msg(c, ret, "creating lost+found");
1037 	if (ret)
1038 		goto err;
1039 
1040 	c->recovery_pass_done = BCH_RECOVERY_PASS_NR - 1;
1041 
1042 	if (enabled_qtypes(c)) {
1043 		ret = bch2_fs_quota_read(c);
1044 		if (ret)
1045 			goto err;
1046 	}
1047 
1048 	ret = bch2_journal_flush(&c->journal);
1049 	bch_err_msg(c, ret, "writing first journal entry");
1050 	if (ret)
1051 		goto err;
1052 
1053 	mutex_lock(&c->sb_lock);
1054 	SET_BCH_SB_INITIALIZED(c->disk_sb.sb, true);
1055 	SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
1056 
1057 	bch2_write_super(c);
1058 	mutex_unlock(&c->sb_lock);
1059 
1060 	return 0;
1061 err:
1062 	bch_err_fn(c, ret);
1063 	return ret;
1064 }
1065