xref: /linux/fs/bcachefs/movinggc.c (revision 983b32a29ea1e424caaf39d067c5883f6ab9aef3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Moving/copying garbage collector
4  *
5  * Copyright 2012 Google, Inc.
6  */
7 
8 #include "bcachefs.h"
9 #include "alloc_background.h"
10 #include "alloc_foreground.h"
11 #include "btree_iter.h"
12 #include "btree_update.h"
13 #include "btree_write_buffer.h"
14 #include "buckets.h"
15 #include "clock.h"
16 #include "errcode.h"
17 #include "error.h"
18 #include "lru.h"
19 #include "move.h"
20 #include "movinggc.h"
21 #include "trace.h"
22 
23 #include <linux/freezer.h>
24 #include <linux/kthread.h>
25 #include <linux/math64.h>
26 #include <linux/sched/task.h>
27 #include <linux/wait.h>
28 
29 struct buckets_in_flight {
30 	struct rhashtable		table;
31 	struct move_bucket_in_flight	*first;
32 	struct move_bucket_in_flight	*last;
33 	size_t				nr;
34 	size_t				sectors;
35 };
36 
37 static const struct rhashtable_params bch_move_bucket_params = {
38 	.head_offset		= offsetof(struct move_bucket_in_flight, hash),
39 	.key_offset		= offsetof(struct move_bucket_in_flight, bucket.k),
40 	.key_len		= sizeof(struct move_bucket_key),
41 	.automatic_shrinking	= true,
42 };
43 
44 static struct move_bucket_in_flight *
45 move_bucket_in_flight_add(struct buckets_in_flight *list, struct move_bucket b)
46 {
47 	struct move_bucket_in_flight *new = kzalloc(sizeof(*new), GFP_KERNEL);
48 	int ret;
49 
50 	if (!new)
51 		return ERR_PTR(-ENOMEM);
52 
53 	new->bucket = b;
54 
55 	ret = rhashtable_lookup_insert_fast(&list->table, &new->hash,
56 					    bch_move_bucket_params);
57 	if (ret) {
58 		kfree(new);
59 		return ERR_PTR(ret);
60 	}
61 
62 	if (!list->first)
63 		list->first = new;
64 	else
65 		list->last->next = new;
66 
67 	list->last = new;
68 	list->nr++;
69 	list->sectors += b.sectors;
70 	return new;
71 }
72 
73 static int bch2_bucket_is_movable(struct btree_trans *trans,
74 				  struct move_bucket *b, u64 time)
75 {
76 	struct btree_iter iter;
77 	struct bkey_s_c k;
78 	struct bch_alloc_v4 _a;
79 	const struct bch_alloc_v4 *a;
80 	int ret;
81 
82 	if (bch2_bucket_is_open(trans->c,
83 				b->k.bucket.inode,
84 				b->k.bucket.offset))
85 		return 0;
86 
87 	k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_alloc,
88 			       b->k.bucket, BTREE_ITER_cached);
89 	ret = bkey_err(k);
90 	if (ret)
91 		return ret;
92 
93 	a = bch2_alloc_to_v4(k, &_a);
94 	b->k.gen	= a->gen;
95 	b->sectors	= bch2_bucket_sectors_dirty(*a);
96 
97 	ret = data_type_movable(a->data_type) &&
98 		a->fragmentation_lru &&
99 		a->fragmentation_lru <= time;
100 
101 	bch2_trans_iter_exit(trans, &iter);
102 	return ret;
103 }
104 
105 static void move_buckets_wait(struct moving_context *ctxt,
106 			      struct buckets_in_flight *list,
107 			      bool flush)
108 {
109 	struct move_bucket_in_flight *i;
110 	int ret;
111 
112 	while ((i = list->first)) {
113 		if (flush)
114 			move_ctxt_wait_event(ctxt, !atomic_read(&i->count));
115 
116 		if (atomic_read(&i->count))
117 			break;
118 
119 		list->first = i->next;
120 		if (!list->first)
121 			list->last = NULL;
122 
123 		list->nr--;
124 		list->sectors -= i->bucket.sectors;
125 
126 		ret = rhashtable_remove_fast(&list->table, &i->hash,
127 					     bch_move_bucket_params);
128 		BUG_ON(ret);
129 		kfree(i);
130 	}
131 
132 	bch2_trans_unlock_long(ctxt->trans);
133 }
134 
135 static bool bucket_in_flight(struct buckets_in_flight *list,
136 			     struct move_bucket_key k)
137 {
138 	return rhashtable_lookup_fast(&list->table, &k, bch_move_bucket_params);
139 }
140 
141 typedef DARRAY(struct move_bucket) move_buckets;
142 
143 static int bch2_copygc_get_buckets(struct moving_context *ctxt,
144 			struct buckets_in_flight *buckets_in_flight,
145 			move_buckets *buckets)
146 {
147 	struct btree_trans *trans = ctxt->trans;
148 	struct bch_fs *c = trans->c;
149 	size_t nr_to_get = max_t(size_t, 16U, buckets_in_flight->nr / 4);
150 	size_t saw = 0, in_flight = 0, not_movable = 0, sectors = 0;
151 	int ret;
152 
153 	move_buckets_wait(ctxt, buckets_in_flight, false);
154 
155 	ret = bch2_btree_write_buffer_tryflush(trans);
156 	if (bch2_err_matches(ret, EROFS))
157 		return ret;
158 
159 	if (bch2_fs_fatal_err_on(ret, c, "%s: from bch2_btree_write_buffer_tryflush()", bch2_err_str(ret)))
160 		return ret;
161 
162 	bch2_trans_begin(trans);
163 
164 	ret = for_each_btree_key_upto(trans, iter, BTREE_ID_lru,
165 				  lru_pos(BCH_LRU_FRAGMENTATION_START, 0, 0),
166 				  lru_pos(BCH_LRU_FRAGMENTATION_START, U64_MAX, LRU_TIME_MAX),
167 				  0, k, ({
168 		struct move_bucket b = { .k.bucket = u64_to_bucket(k.k->p.offset) };
169 		int ret2 = 0;
170 
171 		saw++;
172 
173 		ret2 = bch2_bucket_is_movable(trans, &b, lru_pos_time(k.k->p));
174 		if (ret2 < 0)
175 			goto err;
176 
177 		if (!ret2)
178 			not_movable++;
179 		else if (bucket_in_flight(buckets_in_flight, b.k))
180 			in_flight++;
181 		else {
182 			ret2 = darray_push(buckets, b);
183 			if (ret2)
184 				goto err;
185 			sectors += b.sectors;
186 		}
187 
188 		ret2 = buckets->nr >= nr_to_get;
189 err:
190 		ret2;
191 	}));
192 
193 	pr_debug("have: %zu (%zu) saw %zu in flight %zu not movable %zu got %zu (%zu)/%zu buckets ret %i",
194 		 buckets_in_flight->nr, buckets_in_flight->sectors,
195 		 saw, in_flight, not_movable, buckets->nr, sectors, nr_to_get, ret);
196 
197 	return ret < 0 ? ret : 0;
198 }
199 
200 noinline
201 static int bch2_copygc(struct moving_context *ctxt,
202 		       struct buckets_in_flight *buckets_in_flight,
203 		       bool *did_work)
204 {
205 	struct btree_trans *trans = ctxt->trans;
206 	struct bch_fs *c = trans->c;
207 	struct data_update_opts data_opts = {
208 		.btree_insert_flags = BCH_WATERMARK_copygc,
209 	};
210 	move_buckets buckets = { 0 };
211 	struct move_bucket_in_flight *f;
212 	u64 moved = atomic64_read(&ctxt->stats->sectors_moved);
213 	int ret = 0;
214 
215 	ret = bch2_copygc_get_buckets(ctxt, buckets_in_flight, &buckets);
216 	if (ret)
217 		goto err;
218 
219 	darray_for_each(buckets, i) {
220 		if (kthread_should_stop() || freezing(current))
221 			break;
222 
223 		f = move_bucket_in_flight_add(buckets_in_flight, *i);
224 		ret = PTR_ERR_OR_ZERO(f);
225 		if (ret == -EEXIST) { /* rare race: copygc_get_buckets returned same bucket more than once */
226 			ret = 0;
227 			continue;
228 		}
229 		if (ret == -ENOMEM) { /* flush IO, continue later */
230 			ret = 0;
231 			break;
232 		}
233 
234 		ret = bch2_evacuate_bucket(ctxt, f, f->bucket.k.bucket,
235 					     f->bucket.k.gen, data_opts);
236 		if (ret)
237 			goto err;
238 
239 		*did_work = true;
240 	}
241 err:
242 	darray_exit(&buckets);
243 
244 	/* no entries in LRU btree found, or got to end: */
245 	if (bch2_err_matches(ret, ENOENT))
246 		ret = 0;
247 
248 	if (ret < 0 && !bch2_err_matches(ret, EROFS))
249 		bch_err_msg(c, ret, "from bch2_move_data()");
250 
251 	moved = atomic64_read(&ctxt->stats->sectors_moved) - moved;
252 	trace_and_count(c, copygc, c, moved, 0, 0, 0);
253 	return ret;
254 }
255 
256 /*
257  * Copygc runs when the amount of fragmented data is above some arbitrary
258  * threshold:
259  *
260  * The threshold at the limit - when the device is full - is the amount of space
261  * we reserved in bch2_recalc_capacity; we can't have more than that amount of
262  * disk space stranded due to fragmentation and store everything we have
263  * promised to store.
264  *
265  * But we don't want to be running copygc unnecessarily when the device still
266  * has plenty of free space - rather, we want copygc to smoothly run every so
267  * often and continually reduce the amount of fragmented space as the device
268  * fills up. So, we increase the threshold by half the current free space.
269  */
270 unsigned long bch2_copygc_wait_amount(struct bch_fs *c)
271 {
272 	s64 wait = S64_MAX, fragmented_allowed, fragmented;
273 
274 	for_each_rw_member(c, ca) {
275 		struct bch_dev_usage usage = bch2_dev_usage_read(ca);
276 
277 		fragmented_allowed = ((__dev_buckets_available(ca, usage, BCH_WATERMARK_stripe) *
278 				       ca->mi.bucket_size) >> 1);
279 		fragmented = 0;
280 
281 		for (unsigned i = 0; i < BCH_DATA_NR; i++)
282 			if (data_type_movable(i))
283 				fragmented += usage.d[i].fragmented;
284 
285 		wait = min(wait, max(0LL, fragmented_allowed - fragmented));
286 	}
287 
288 	return wait;
289 }
290 
291 void bch2_copygc_wait_to_text(struct printbuf *out, struct bch_fs *c)
292 {
293 	printbuf_tabstop_push(out, 32);
294 	prt_printf(out, "running:\t%u\n",		c->copygc_running);
295 	prt_printf(out, "copygc_wait:\t%llu\n",		c->copygc_wait);
296 	prt_printf(out, "copygc_wait_at:\t%llu\n",	c->copygc_wait_at);
297 
298 	prt_printf(out, "Currently waiting for:\t");
299 	prt_human_readable_u64(out, max(0LL, c->copygc_wait -
300 					atomic64_read(&c->io_clock[WRITE].now)) << 9);
301 	prt_newline(out);
302 
303 	prt_printf(out, "Currently waiting since:\t");
304 	prt_human_readable_u64(out, max(0LL,
305 					atomic64_read(&c->io_clock[WRITE].now) -
306 					c->copygc_wait_at) << 9);
307 	prt_newline(out);
308 
309 	prt_printf(out, "Currently calculated wait:\t");
310 	prt_human_readable_u64(out, bch2_copygc_wait_amount(c));
311 	prt_newline(out);
312 }
313 
314 static int bch2_copygc_thread(void *arg)
315 {
316 	struct bch_fs *c = arg;
317 	struct moving_context ctxt;
318 	struct bch_move_stats move_stats;
319 	struct io_clock *clock = &c->io_clock[WRITE];
320 	struct buckets_in_flight *buckets;
321 	u64 last, wait;
322 	int ret = 0;
323 
324 	buckets = kzalloc(sizeof(struct buckets_in_flight), GFP_KERNEL);
325 	if (!buckets)
326 		return -ENOMEM;
327 	ret = rhashtable_init(&buckets->table, &bch_move_bucket_params);
328 	bch_err_msg(c, ret, "allocating copygc buckets in flight");
329 	if (ret) {
330 		kfree(buckets);
331 		return ret;
332 	}
333 
334 	set_freezable();
335 
336 	bch2_move_stats_init(&move_stats, "copygc");
337 	bch2_moving_ctxt_init(&ctxt, c, NULL, &move_stats,
338 			      writepoint_ptr(&c->copygc_write_point),
339 			      false);
340 
341 	while (!ret && !kthread_should_stop()) {
342 		bool did_work = false;
343 
344 		bch2_trans_unlock_long(ctxt.trans);
345 		cond_resched();
346 
347 		if (!c->copy_gc_enabled) {
348 			move_buckets_wait(&ctxt, buckets, true);
349 			kthread_wait_freezable(c->copy_gc_enabled ||
350 					       kthread_should_stop());
351 		}
352 
353 		if (unlikely(freezing(current))) {
354 			move_buckets_wait(&ctxt, buckets, true);
355 			__refrigerator(false);
356 			continue;
357 		}
358 
359 		last = atomic64_read(&clock->now);
360 		wait = bch2_copygc_wait_amount(c);
361 
362 		if (wait > clock->max_slop) {
363 			c->copygc_wait_at = last;
364 			c->copygc_wait = last + wait;
365 			move_buckets_wait(&ctxt, buckets, true);
366 			trace_and_count(c, copygc_wait, c, wait, last + wait);
367 			bch2_kthread_io_clock_wait(clock, last + wait,
368 					MAX_SCHEDULE_TIMEOUT);
369 			continue;
370 		}
371 
372 		c->copygc_wait = 0;
373 
374 		c->copygc_running = true;
375 		ret = bch2_copygc(&ctxt, buckets, &did_work);
376 		c->copygc_running = false;
377 
378 		wake_up(&c->copygc_running_wq);
379 
380 		if (!wait && !did_work) {
381 			u64 min_member_capacity = bch2_min_rw_member_capacity(c);
382 
383 			if (min_member_capacity == U64_MAX)
384 				min_member_capacity = 128 * 2048;
385 
386 			bch2_trans_unlock_long(ctxt.trans);
387 			bch2_kthread_io_clock_wait(clock, last + (min_member_capacity >> 6),
388 					MAX_SCHEDULE_TIMEOUT);
389 		}
390 	}
391 
392 	move_buckets_wait(&ctxt, buckets, true);
393 
394 	rhashtable_destroy(&buckets->table);
395 	kfree(buckets);
396 	bch2_moving_ctxt_exit(&ctxt);
397 	bch2_move_stats_exit(&move_stats, c);
398 
399 	return 0;
400 }
401 
402 void bch2_copygc_stop(struct bch_fs *c)
403 {
404 	if (c->copygc_thread) {
405 		kthread_stop(c->copygc_thread);
406 		put_task_struct(c->copygc_thread);
407 	}
408 	c->copygc_thread = NULL;
409 }
410 
411 int bch2_copygc_start(struct bch_fs *c)
412 {
413 	struct task_struct *t;
414 	int ret;
415 
416 	if (c->copygc_thread)
417 		return 0;
418 
419 	if (c->opts.nochanges)
420 		return 0;
421 
422 	if (bch2_fs_init_fault("copygc_start"))
423 		return -ENOMEM;
424 
425 	t = kthread_create(bch2_copygc_thread, c, "bch-copygc/%s", c->name);
426 	ret = PTR_ERR_OR_ZERO(t);
427 	bch_err_msg(c, ret, "creating copygc thread");
428 	if (ret)
429 		return ret;
430 
431 	get_task_struct(t);
432 
433 	c->copygc_thread = t;
434 	wake_up_process(c->copygc_thread);
435 
436 	return 0;
437 }
438 
439 void bch2_fs_copygc_init(struct bch_fs *c)
440 {
441 	init_waitqueue_head(&c->copygc_running_wq);
442 	c->copygc_running = false;
443 }
444