xref: /linux/fs/bcachefs/movinggc.c (revision 249ebf3f65f8530beb2cbfb91bff1d83ba88d23c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Moving/copying garbage collector
4  *
5  * Copyright 2012 Google, Inc.
6  */
7 
8 #include "bcachefs.h"
9 #include "alloc_background.h"
10 #include "alloc_foreground.h"
11 #include "btree_iter.h"
12 #include "btree_update.h"
13 #include "btree_write_buffer.h"
14 #include "buckets.h"
15 #include "clock.h"
16 #include "errcode.h"
17 #include "error.h"
18 #include "lru.h"
19 #include "move.h"
20 #include "movinggc.h"
21 #include "trace.h"
22 
23 #include <linux/freezer.h>
24 #include <linux/kthread.h>
25 #include <linux/math64.h>
26 #include <linux/sched/task.h>
27 #include <linux/wait.h>
28 
29 struct buckets_in_flight {
30 	struct rhashtable		table;
31 	struct move_bucket_in_flight	*first;
32 	struct move_bucket_in_flight	*last;
33 	size_t				nr;
34 	size_t				sectors;
35 };
36 
37 static const struct rhashtable_params bch_move_bucket_params = {
38 	.head_offset	= offsetof(struct move_bucket_in_flight, hash),
39 	.key_offset	= offsetof(struct move_bucket_in_flight, bucket.k),
40 	.key_len	= sizeof(struct move_bucket_key),
41 };
42 
43 static struct move_bucket_in_flight *
44 move_bucket_in_flight_add(struct buckets_in_flight *list, struct move_bucket b)
45 {
46 	struct move_bucket_in_flight *new = kzalloc(sizeof(*new), GFP_KERNEL);
47 	int ret;
48 
49 	if (!new)
50 		return ERR_PTR(-ENOMEM);
51 
52 	new->bucket = b;
53 
54 	ret = rhashtable_lookup_insert_fast(&list->table, &new->hash,
55 					    bch_move_bucket_params);
56 	if (ret) {
57 		kfree(new);
58 		return ERR_PTR(ret);
59 	}
60 
61 	if (!list->first)
62 		list->first = new;
63 	else
64 		list->last->next = new;
65 
66 	list->last = new;
67 	list->nr++;
68 	list->sectors += b.sectors;
69 	return new;
70 }
71 
72 static int bch2_bucket_is_movable(struct btree_trans *trans,
73 				  struct move_bucket *b, u64 time)
74 {
75 	struct btree_iter iter;
76 	struct bkey_s_c k;
77 	struct bch_alloc_v4 _a;
78 	const struct bch_alloc_v4 *a;
79 	int ret;
80 
81 	if (bch2_bucket_is_open(trans->c,
82 				b->k.bucket.inode,
83 				b->k.bucket.offset))
84 		return 0;
85 
86 	k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_alloc,
87 			       b->k.bucket, BTREE_ITER_cached);
88 	ret = bkey_err(k);
89 	if (ret)
90 		return ret;
91 
92 	a = bch2_alloc_to_v4(k, &_a);
93 	b->k.gen	= a->gen;
94 	b->sectors	= bch2_bucket_sectors_dirty(*a);
95 
96 	ret = data_type_movable(a->data_type) &&
97 		a->fragmentation_lru &&
98 		a->fragmentation_lru <= time;
99 
100 	bch2_trans_iter_exit(trans, &iter);
101 	return ret;
102 }
103 
104 static void move_buckets_wait(struct moving_context *ctxt,
105 			      struct buckets_in_flight *list,
106 			      bool flush)
107 {
108 	struct move_bucket_in_flight *i;
109 	int ret;
110 
111 	while ((i = list->first)) {
112 		if (flush)
113 			move_ctxt_wait_event(ctxt, !atomic_read(&i->count));
114 
115 		if (atomic_read(&i->count))
116 			break;
117 
118 		list->first = i->next;
119 		if (!list->first)
120 			list->last = NULL;
121 
122 		list->nr--;
123 		list->sectors -= i->bucket.sectors;
124 
125 		ret = rhashtable_remove_fast(&list->table, &i->hash,
126 					     bch_move_bucket_params);
127 		BUG_ON(ret);
128 		kfree(i);
129 	}
130 
131 	bch2_trans_unlock_long(ctxt->trans);
132 }
133 
134 static bool bucket_in_flight(struct buckets_in_flight *list,
135 			     struct move_bucket_key k)
136 {
137 	return rhashtable_lookup_fast(&list->table, &k, bch_move_bucket_params);
138 }
139 
140 typedef DARRAY(struct move_bucket) move_buckets;
141 
142 static int bch2_copygc_get_buckets(struct moving_context *ctxt,
143 			struct buckets_in_flight *buckets_in_flight,
144 			move_buckets *buckets)
145 {
146 	struct btree_trans *trans = ctxt->trans;
147 	struct bch_fs *c = trans->c;
148 	size_t nr_to_get = max_t(size_t, 16U, buckets_in_flight->nr / 4);
149 	size_t saw = 0, in_flight = 0, not_movable = 0, sectors = 0;
150 	int ret;
151 
152 	move_buckets_wait(ctxt, buckets_in_flight, false);
153 
154 	ret = bch2_btree_write_buffer_tryflush(trans);
155 	if (bch2_err_matches(ret, EROFS))
156 		return ret;
157 
158 	if (bch2_fs_fatal_err_on(ret, c, "%s: from bch2_btree_write_buffer_tryflush()", bch2_err_str(ret)))
159 		return ret;
160 
161 	bch2_trans_begin(trans);
162 
163 	ret = for_each_btree_key_upto(trans, iter, BTREE_ID_lru,
164 				  lru_pos(BCH_LRU_FRAGMENTATION_START, 0, 0),
165 				  lru_pos(BCH_LRU_FRAGMENTATION_START, U64_MAX, LRU_TIME_MAX),
166 				  0, k, ({
167 		struct move_bucket b = { .k.bucket = u64_to_bucket(k.k->p.offset) };
168 		int ret2 = 0;
169 
170 		saw++;
171 
172 		ret2 = bch2_bucket_is_movable(trans, &b, lru_pos_time(k.k->p));
173 		if (ret2 < 0)
174 			goto err;
175 
176 		if (!ret2)
177 			not_movable++;
178 		else if (bucket_in_flight(buckets_in_flight, b.k))
179 			in_flight++;
180 		else {
181 			ret2 = darray_push(buckets, b);
182 			if (ret2)
183 				goto err;
184 			sectors += b.sectors;
185 		}
186 
187 		ret2 = buckets->nr >= nr_to_get;
188 err:
189 		ret2;
190 	}));
191 
192 	pr_debug("have: %zu (%zu) saw %zu in flight %zu not movable %zu got %zu (%zu)/%zu buckets ret %i",
193 		 buckets_in_flight->nr, buckets_in_flight->sectors,
194 		 saw, in_flight, not_movable, buckets->nr, sectors, nr_to_get, ret);
195 
196 	return ret < 0 ? ret : 0;
197 }
198 
199 noinline
200 static int bch2_copygc(struct moving_context *ctxt,
201 		       struct buckets_in_flight *buckets_in_flight,
202 		       bool *did_work)
203 {
204 	struct btree_trans *trans = ctxt->trans;
205 	struct bch_fs *c = trans->c;
206 	struct data_update_opts data_opts = {
207 		.btree_insert_flags = BCH_WATERMARK_copygc,
208 	};
209 	move_buckets buckets = { 0 };
210 	struct move_bucket_in_flight *f;
211 	u64 moved = atomic64_read(&ctxt->stats->sectors_moved);
212 	int ret = 0;
213 
214 	ret = bch2_copygc_get_buckets(ctxt, buckets_in_flight, &buckets);
215 	if (ret)
216 		goto err;
217 
218 	darray_for_each(buckets, i) {
219 		if (kthread_should_stop() || freezing(current))
220 			break;
221 
222 		f = move_bucket_in_flight_add(buckets_in_flight, *i);
223 		ret = PTR_ERR_OR_ZERO(f);
224 		if (ret == -EEXIST) { /* rare race: copygc_get_buckets returned same bucket more than once */
225 			ret = 0;
226 			continue;
227 		}
228 		if (ret == -ENOMEM) { /* flush IO, continue later */
229 			ret = 0;
230 			break;
231 		}
232 
233 		ret = bch2_evacuate_bucket(ctxt, f, f->bucket.k.bucket,
234 					     f->bucket.k.gen, data_opts);
235 		if (ret)
236 			goto err;
237 
238 		*did_work = true;
239 	}
240 err:
241 	darray_exit(&buckets);
242 
243 	/* no entries in LRU btree found, or got to end: */
244 	if (bch2_err_matches(ret, ENOENT))
245 		ret = 0;
246 
247 	if (ret < 0 && !bch2_err_matches(ret, EROFS))
248 		bch_err_msg(c, ret, "from bch2_move_data()");
249 
250 	moved = atomic64_read(&ctxt->stats->sectors_moved) - moved;
251 	trace_and_count(c, copygc, c, moved, 0, 0, 0);
252 	return ret;
253 }
254 
255 /*
256  * Copygc runs when the amount of fragmented data is above some arbitrary
257  * threshold:
258  *
259  * The threshold at the limit - when the device is full - is the amount of space
260  * we reserved in bch2_recalc_capacity; we can't have more than that amount of
261  * disk space stranded due to fragmentation and store everything we have
262  * promised to store.
263  *
264  * But we don't want to be running copygc unnecessarily when the device still
265  * has plenty of free space - rather, we want copygc to smoothly run every so
266  * often and continually reduce the amount of fragmented space as the device
267  * fills up. So, we increase the threshold by half the current free space.
268  */
269 unsigned long bch2_copygc_wait_amount(struct bch_fs *c)
270 {
271 	s64 wait = S64_MAX, fragmented_allowed, fragmented;
272 
273 	for_each_rw_member(c, ca) {
274 		struct bch_dev_usage usage = bch2_dev_usage_read(ca);
275 
276 		fragmented_allowed = ((__dev_buckets_available(ca, usage, BCH_WATERMARK_stripe) *
277 				       ca->mi.bucket_size) >> 1);
278 		fragmented = 0;
279 
280 		for (unsigned i = 0; i < BCH_DATA_NR; i++)
281 			if (data_type_movable(i))
282 				fragmented += usage.d[i].fragmented;
283 
284 		wait = min(wait, max(0LL, fragmented_allowed - fragmented));
285 	}
286 
287 	return wait;
288 }
289 
290 void bch2_copygc_wait_to_text(struct printbuf *out, struct bch_fs *c)
291 {
292 	prt_printf(out, "Currently waiting for:     ");
293 	prt_human_readable_u64(out, max(0LL, c->copygc_wait -
294 					atomic64_read(&c->io_clock[WRITE].now)) << 9);
295 	prt_newline(out);
296 
297 	prt_printf(out, "Currently waiting since:   ");
298 	prt_human_readable_u64(out, max(0LL,
299 					atomic64_read(&c->io_clock[WRITE].now) -
300 					c->copygc_wait_at) << 9);
301 	prt_newline(out);
302 
303 	prt_printf(out, "Currently calculated wait: ");
304 	prt_human_readable_u64(out, bch2_copygc_wait_amount(c));
305 	prt_newline(out);
306 }
307 
308 static int bch2_copygc_thread(void *arg)
309 {
310 	struct bch_fs *c = arg;
311 	struct moving_context ctxt;
312 	struct bch_move_stats move_stats;
313 	struct io_clock *clock = &c->io_clock[WRITE];
314 	struct buckets_in_flight *buckets;
315 	u64 last, wait;
316 	int ret = 0;
317 
318 	buckets = kzalloc(sizeof(struct buckets_in_flight), GFP_KERNEL);
319 	if (!buckets)
320 		return -ENOMEM;
321 	ret = rhashtable_init(&buckets->table, &bch_move_bucket_params);
322 	bch_err_msg(c, ret, "allocating copygc buckets in flight");
323 	if (ret) {
324 		kfree(buckets);
325 		return ret;
326 	}
327 
328 	set_freezable();
329 
330 	bch2_move_stats_init(&move_stats, "copygc");
331 	bch2_moving_ctxt_init(&ctxt, c, NULL, &move_stats,
332 			      writepoint_ptr(&c->copygc_write_point),
333 			      false);
334 
335 	while (!ret && !kthread_should_stop()) {
336 		bool did_work = false;
337 
338 		bch2_trans_unlock_long(ctxt.trans);
339 		cond_resched();
340 
341 		if (!c->copy_gc_enabled) {
342 			move_buckets_wait(&ctxt, buckets, true);
343 			kthread_wait_freezable(c->copy_gc_enabled ||
344 					       kthread_should_stop());
345 		}
346 
347 		if (unlikely(freezing(current))) {
348 			move_buckets_wait(&ctxt, buckets, true);
349 			__refrigerator(false);
350 			continue;
351 		}
352 
353 		last = atomic64_read(&clock->now);
354 		wait = bch2_copygc_wait_amount(c);
355 
356 		if (wait > clock->max_slop) {
357 			c->copygc_wait_at = last;
358 			c->copygc_wait = last + wait;
359 			move_buckets_wait(&ctxt, buckets, true);
360 			trace_and_count(c, copygc_wait, c, wait, last + wait);
361 			bch2_kthread_io_clock_wait(clock, last + wait,
362 					MAX_SCHEDULE_TIMEOUT);
363 			continue;
364 		}
365 
366 		c->copygc_wait = 0;
367 
368 		c->copygc_running = true;
369 		ret = bch2_copygc(&ctxt, buckets, &did_work);
370 		c->copygc_running = false;
371 
372 		wake_up(&c->copygc_running_wq);
373 
374 		if (!wait && !did_work) {
375 			u64 min_member_capacity = bch2_min_rw_member_capacity(c);
376 
377 			if (min_member_capacity == U64_MAX)
378 				min_member_capacity = 128 * 2048;
379 
380 			bch2_trans_unlock_long(ctxt.trans);
381 			bch2_kthread_io_clock_wait(clock, last + (min_member_capacity >> 6),
382 					MAX_SCHEDULE_TIMEOUT);
383 		}
384 	}
385 
386 	move_buckets_wait(&ctxt, buckets, true);
387 
388 	rhashtable_destroy(&buckets->table);
389 	kfree(buckets);
390 	bch2_moving_ctxt_exit(&ctxt);
391 	bch2_move_stats_exit(&move_stats, c);
392 
393 	return 0;
394 }
395 
396 void bch2_copygc_stop(struct bch_fs *c)
397 {
398 	if (c->copygc_thread) {
399 		kthread_stop(c->copygc_thread);
400 		put_task_struct(c->copygc_thread);
401 	}
402 	c->copygc_thread = NULL;
403 }
404 
405 int bch2_copygc_start(struct bch_fs *c)
406 {
407 	struct task_struct *t;
408 	int ret;
409 
410 	if (c->copygc_thread)
411 		return 0;
412 
413 	if (c->opts.nochanges)
414 		return 0;
415 
416 	if (bch2_fs_init_fault("copygc_start"))
417 		return -ENOMEM;
418 
419 	t = kthread_create(bch2_copygc_thread, c, "bch-copygc/%s", c->name);
420 	ret = PTR_ERR_OR_ZERO(t);
421 	bch_err_msg(c, ret, "creating copygc thread");
422 	if (ret)
423 		return ret;
424 
425 	get_task_struct(t);
426 
427 	c->copygc_thread = t;
428 	wake_up_process(c->copygc_thread);
429 
430 	return 0;
431 }
432 
433 void bch2_fs_copygc_init(struct bch_fs *c)
434 {
435 	init_waitqueue_head(&c->copygc_running_wq);
436 	c->copygc_running = false;
437 }
438