1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "btree_key_cache.h" 5 #include "btree_update.h" 6 #include "btree_write_buffer.h" 7 #include "buckets.h" 8 #include "errcode.h" 9 #include "error.h" 10 #include "journal.h" 11 #include "journal_io.h" 12 #include "journal_reclaim.h" 13 #include "replicas.h" 14 #include "sb-members.h" 15 #include "trace.h" 16 17 #include <linux/kthread.h> 18 #include <linux/sched/mm.h> 19 20 /* Free space calculations: */ 21 22 static unsigned journal_space_from(struct journal_device *ja, 23 enum journal_space_from from) 24 { 25 switch (from) { 26 case journal_space_discarded: 27 return ja->discard_idx; 28 case journal_space_clean_ondisk: 29 return ja->dirty_idx_ondisk; 30 case journal_space_clean: 31 return ja->dirty_idx; 32 default: 33 BUG(); 34 } 35 } 36 37 unsigned bch2_journal_dev_buckets_available(struct journal *j, 38 struct journal_device *ja, 39 enum journal_space_from from) 40 { 41 if (!ja->nr) 42 return 0; 43 44 unsigned available = (journal_space_from(ja, from) - 45 ja->cur_idx - 1 + ja->nr) % ja->nr; 46 47 /* 48 * Don't use the last bucket unless writing the new last_seq 49 * will make another bucket available: 50 */ 51 if (available && ja->dirty_idx_ondisk == ja->dirty_idx) 52 --available; 53 54 return available; 55 } 56 57 void bch2_journal_set_watermark(struct journal *j) 58 { 59 struct bch_fs *c = container_of(j, struct bch_fs, journal); 60 bool low_on_space = j->space[journal_space_clean].total * 4 <= 61 j->space[journal_space_total].total; 62 bool low_on_pin = fifo_free(&j->pin) < j->pin.size / 4; 63 bool low_on_wb = bch2_btree_write_buffer_must_wait(c); 64 unsigned watermark = low_on_space || low_on_pin || low_on_wb 65 ? BCH_WATERMARK_reclaim 66 : BCH_WATERMARK_stripe; 67 68 if (track_event_change(&c->times[BCH_TIME_blocked_journal_low_on_space], low_on_space) || 69 track_event_change(&c->times[BCH_TIME_blocked_journal_low_on_pin], low_on_pin) || 70 track_event_change(&c->times[BCH_TIME_blocked_write_buffer_full], low_on_wb)) 71 trace_and_count(c, journal_full, c); 72 73 mod_bit(JOURNAL_space_low, &j->flags, low_on_space || low_on_pin); 74 75 swap(watermark, j->watermark); 76 if (watermark > j->watermark) 77 journal_wake(j); 78 } 79 80 static struct journal_space 81 journal_dev_space_available(struct journal *j, struct bch_dev *ca, 82 enum journal_space_from from) 83 { 84 struct journal_device *ja = &ca->journal; 85 unsigned sectors, buckets, unwritten; 86 u64 seq; 87 88 if (from == journal_space_total) 89 return (struct journal_space) { 90 .next_entry = ca->mi.bucket_size, 91 .total = ca->mi.bucket_size * ja->nr, 92 }; 93 94 buckets = bch2_journal_dev_buckets_available(j, ja, from); 95 sectors = ja->sectors_free; 96 97 /* 98 * We that we don't allocate the space for a journal entry 99 * until we write it out - thus, account for it here: 100 */ 101 for (seq = journal_last_unwritten_seq(j); 102 seq <= journal_cur_seq(j); 103 seq++) { 104 unwritten = j->buf[seq & JOURNAL_BUF_MASK].sectors; 105 106 if (!unwritten) 107 continue; 108 109 /* entry won't fit on this device, skip: */ 110 if (unwritten > ca->mi.bucket_size) 111 continue; 112 113 if (unwritten >= sectors) { 114 if (!buckets) { 115 sectors = 0; 116 break; 117 } 118 119 buckets--; 120 sectors = ca->mi.bucket_size; 121 } 122 123 sectors -= unwritten; 124 } 125 126 if (sectors < ca->mi.bucket_size && buckets) { 127 buckets--; 128 sectors = ca->mi.bucket_size; 129 } 130 131 return (struct journal_space) { 132 .next_entry = sectors, 133 .total = sectors + buckets * ca->mi.bucket_size, 134 }; 135 } 136 137 static struct journal_space __journal_space_available(struct journal *j, unsigned nr_devs_want, 138 enum journal_space_from from) 139 { 140 struct bch_fs *c = container_of(j, struct bch_fs, journal); 141 unsigned pos, nr_devs = 0; 142 struct journal_space space, dev_space[BCH_SB_MEMBERS_MAX]; 143 unsigned min_bucket_size = U32_MAX; 144 145 BUG_ON(nr_devs_want > ARRAY_SIZE(dev_space)); 146 147 rcu_read_lock(); 148 for_each_member_device_rcu(c, ca, &c->rw_devs[BCH_DATA_journal]) { 149 if (!ca->journal.nr || 150 !ca->mi.durability) 151 continue; 152 153 min_bucket_size = min(min_bucket_size, ca->mi.bucket_size); 154 155 space = journal_dev_space_available(j, ca, from); 156 if (!space.next_entry) 157 continue; 158 159 for (pos = 0; pos < nr_devs; pos++) 160 if (space.total > dev_space[pos].total) 161 break; 162 163 array_insert_item(dev_space, nr_devs, pos, space); 164 } 165 rcu_read_unlock(); 166 167 if (nr_devs < nr_devs_want) 168 return (struct journal_space) { 0, 0 }; 169 170 /* 171 * We sorted largest to smallest, and we want the smallest out of the 172 * @nr_devs_want largest devices: 173 */ 174 space = dev_space[nr_devs_want - 1]; 175 space.next_entry = min(space.next_entry, min_bucket_size); 176 return space; 177 } 178 179 void bch2_journal_space_available(struct journal *j) 180 { 181 struct bch_fs *c = container_of(j, struct bch_fs, journal); 182 unsigned clean, clean_ondisk, total; 183 unsigned max_entry_size = min(j->buf[0].buf_size >> 9, 184 j->buf[1].buf_size >> 9); 185 unsigned nr_online = 0, nr_devs_want; 186 bool can_discard = false; 187 int ret = 0; 188 189 lockdep_assert_held(&j->lock); 190 191 rcu_read_lock(); 192 for_each_member_device_rcu(c, ca, &c->rw_devs[BCH_DATA_journal]) { 193 struct journal_device *ja = &ca->journal; 194 195 if (!ja->nr) 196 continue; 197 198 while (ja->dirty_idx != ja->cur_idx && 199 ja->bucket_seq[ja->dirty_idx] < journal_last_seq(j)) 200 ja->dirty_idx = (ja->dirty_idx + 1) % ja->nr; 201 202 while (ja->dirty_idx_ondisk != ja->dirty_idx && 203 ja->bucket_seq[ja->dirty_idx_ondisk] < j->last_seq_ondisk) 204 ja->dirty_idx_ondisk = (ja->dirty_idx_ondisk + 1) % ja->nr; 205 206 if (ja->discard_idx != ja->dirty_idx_ondisk) 207 can_discard = true; 208 209 max_entry_size = min_t(unsigned, max_entry_size, ca->mi.bucket_size); 210 nr_online++; 211 } 212 rcu_read_unlock(); 213 214 j->can_discard = can_discard; 215 216 if (nr_online < metadata_replicas_required(c)) { 217 struct printbuf buf = PRINTBUF; 218 buf.atomic++; 219 prt_printf(&buf, "insufficient writeable journal devices available: have %u, need %u\n" 220 "rw journal devs:", nr_online, metadata_replicas_required(c)); 221 222 rcu_read_lock(); 223 for_each_member_device_rcu(c, ca, &c->rw_devs[BCH_DATA_journal]) 224 prt_printf(&buf, " %s", ca->name); 225 rcu_read_unlock(); 226 227 bch_err(c, "%s", buf.buf); 228 printbuf_exit(&buf); 229 ret = JOURNAL_ERR_insufficient_devices; 230 goto out; 231 } 232 233 nr_devs_want = min_t(unsigned, nr_online, c->opts.metadata_replicas); 234 235 for (unsigned i = 0; i < journal_space_nr; i++) 236 j->space[i] = __journal_space_available(j, nr_devs_want, i); 237 238 clean_ondisk = j->space[journal_space_clean_ondisk].total; 239 clean = j->space[journal_space_clean].total; 240 total = j->space[journal_space_total].total; 241 242 if (!j->space[journal_space_discarded].next_entry) 243 ret = JOURNAL_ERR_journal_full; 244 245 if ((j->space[journal_space_clean_ondisk].next_entry < 246 j->space[journal_space_clean_ondisk].total) && 247 (clean - clean_ondisk <= total / 8) && 248 (clean_ondisk * 2 > clean)) 249 set_bit(JOURNAL_may_skip_flush, &j->flags); 250 else 251 clear_bit(JOURNAL_may_skip_flush, &j->flags); 252 253 bch2_journal_set_watermark(j); 254 out: 255 j->cur_entry_sectors = !ret ? j->space[journal_space_discarded].next_entry : 0; 256 j->cur_entry_error = ret; 257 258 if (!ret) 259 journal_wake(j); 260 } 261 262 /* Discards - last part of journal reclaim: */ 263 264 static bool should_discard_bucket(struct journal *j, struct journal_device *ja) 265 { 266 bool ret; 267 268 spin_lock(&j->lock); 269 ret = ja->discard_idx != ja->dirty_idx_ondisk; 270 spin_unlock(&j->lock); 271 272 return ret; 273 } 274 275 /* 276 * Advance ja->discard_idx as long as it points to buckets that are no longer 277 * dirty, issuing discards if necessary: 278 */ 279 void bch2_journal_do_discards(struct journal *j) 280 { 281 struct bch_fs *c = container_of(j, struct bch_fs, journal); 282 283 mutex_lock(&j->discard_lock); 284 285 for_each_rw_member(c, ca) { 286 struct journal_device *ja = &ca->journal; 287 288 while (should_discard_bucket(j, ja)) { 289 if (!c->opts.nochanges && 290 ca->mi.discard && 291 bdev_max_discard_sectors(ca->disk_sb.bdev)) 292 blkdev_issue_discard(ca->disk_sb.bdev, 293 bucket_to_sector(ca, 294 ja->buckets[ja->discard_idx]), 295 ca->mi.bucket_size, GFP_NOFS); 296 297 spin_lock(&j->lock); 298 ja->discard_idx = (ja->discard_idx + 1) % ja->nr; 299 300 bch2_journal_space_available(j); 301 spin_unlock(&j->lock); 302 } 303 } 304 305 mutex_unlock(&j->discard_lock); 306 } 307 308 /* 309 * Journal entry pinning - machinery for holding a reference on a given journal 310 * entry, holding it open to ensure it gets replayed during recovery: 311 */ 312 313 void bch2_journal_reclaim_fast(struct journal *j) 314 { 315 bool popped = false; 316 317 lockdep_assert_held(&j->lock); 318 319 /* 320 * Unpin journal entries whose reference counts reached zero, meaning 321 * all btree nodes got written out 322 */ 323 while (!fifo_empty(&j->pin) && 324 j->pin.front <= j->seq_ondisk && 325 !atomic_read(&fifo_peek_front(&j->pin).count)) { 326 j->pin.front++; 327 popped = true; 328 } 329 330 if (popped) { 331 bch2_journal_space_available(j); 332 __closure_wake_up(&j->reclaim_flush_wait); 333 } 334 } 335 336 bool __bch2_journal_pin_put(struct journal *j, u64 seq) 337 { 338 struct journal_entry_pin_list *pin_list = journal_seq_pin(j, seq); 339 340 return atomic_dec_and_test(&pin_list->count); 341 } 342 343 void bch2_journal_pin_put(struct journal *j, u64 seq) 344 { 345 if (__bch2_journal_pin_put(j, seq)) { 346 spin_lock(&j->lock); 347 bch2_journal_reclaim_fast(j); 348 spin_unlock(&j->lock); 349 } 350 } 351 352 static inline bool __journal_pin_drop(struct journal *j, 353 struct journal_entry_pin *pin) 354 { 355 struct journal_entry_pin_list *pin_list; 356 357 if (!journal_pin_active(pin)) 358 return false; 359 360 if (j->flush_in_progress == pin) 361 j->flush_in_progress_dropped = true; 362 363 pin_list = journal_seq_pin(j, pin->seq); 364 pin->seq = 0; 365 list_del_init(&pin->list); 366 367 if (j->reclaim_flush_wait.list.first) 368 __closure_wake_up(&j->reclaim_flush_wait); 369 370 /* 371 * Unpinning a journal entry may make journal_next_bucket() succeed, if 372 * writing a new last_seq will now make another bucket available: 373 */ 374 return atomic_dec_and_test(&pin_list->count) && 375 pin_list == &fifo_peek_front(&j->pin); 376 } 377 378 void bch2_journal_pin_drop(struct journal *j, 379 struct journal_entry_pin *pin) 380 { 381 spin_lock(&j->lock); 382 if (__journal_pin_drop(j, pin)) 383 bch2_journal_reclaim_fast(j); 384 spin_unlock(&j->lock); 385 } 386 387 static enum journal_pin_type journal_pin_type(struct journal_entry_pin *pin, 388 journal_pin_flush_fn fn) 389 { 390 if (fn == bch2_btree_node_flush0 || 391 fn == bch2_btree_node_flush1) { 392 unsigned idx = fn == bch2_btree_node_flush1; 393 struct btree *b = container_of(pin, struct btree, writes[idx].journal); 394 395 return JOURNAL_PIN_TYPE_btree0 - b->c.level; 396 } else if (fn == bch2_btree_key_cache_journal_flush) 397 return JOURNAL_PIN_TYPE_key_cache; 398 else 399 return JOURNAL_PIN_TYPE_other; 400 } 401 402 static inline void bch2_journal_pin_set_locked(struct journal *j, u64 seq, 403 struct journal_entry_pin *pin, 404 journal_pin_flush_fn flush_fn, 405 enum journal_pin_type type) 406 { 407 struct journal_entry_pin_list *pin_list = journal_seq_pin(j, seq); 408 409 /* 410 * flush_fn is how we identify journal pins in debugfs, so must always 411 * exist, even if it doesn't do anything: 412 */ 413 BUG_ON(!flush_fn); 414 415 atomic_inc(&pin_list->count); 416 pin->seq = seq; 417 pin->flush = flush_fn; 418 419 if (list_empty(&pin_list->unflushed[type]) && 420 j->reclaim_flush_wait.list.first) 421 __closure_wake_up(&j->reclaim_flush_wait); 422 423 list_add(&pin->list, &pin_list->unflushed[type]); 424 } 425 426 void bch2_journal_pin_copy(struct journal *j, 427 struct journal_entry_pin *dst, 428 struct journal_entry_pin *src, 429 journal_pin_flush_fn flush_fn) 430 { 431 spin_lock(&j->lock); 432 433 u64 seq = READ_ONCE(src->seq); 434 435 if (seq < journal_last_seq(j)) { 436 /* 437 * bch2_journal_pin_copy() raced with bch2_journal_pin_drop() on 438 * the src pin - with the pin dropped, the entry to pin might no 439 * longer to exist, but that means there's no longer anything to 440 * copy and we can bail out here: 441 */ 442 spin_unlock(&j->lock); 443 return; 444 } 445 446 bool reclaim = __journal_pin_drop(j, dst); 447 448 bch2_journal_pin_set_locked(j, seq, dst, flush_fn, journal_pin_type(dst, flush_fn)); 449 450 if (reclaim) 451 bch2_journal_reclaim_fast(j); 452 453 /* 454 * If the journal is currently full, we might want to call flush_fn 455 * immediately: 456 */ 457 if (seq == journal_last_seq(j)) 458 journal_wake(j); 459 spin_unlock(&j->lock); 460 } 461 462 void bch2_journal_pin_set(struct journal *j, u64 seq, 463 struct journal_entry_pin *pin, 464 journal_pin_flush_fn flush_fn) 465 { 466 spin_lock(&j->lock); 467 468 BUG_ON(seq < journal_last_seq(j)); 469 470 bool reclaim = __journal_pin_drop(j, pin); 471 472 bch2_journal_pin_set_locked(j, seq, pin, flush_fn, journal_pin_type(pin, flush_fn)); 473 474 if (reclaim) 475 bch2_journal_reclaim_fast(j); 476 /* 477 * If the journal is currently full, we might want to call flush_fn 478 * immediately: 479 */ 480 if (seq == journal_last_seq(j)) 481 journal_wake(j); 482 483 spin_unlock(&j->lock); 484 } 485 486 /** 487 * bch2_journal_pin_flush: ensure journal pin callback is no longer running 488 * @j: journal object 489 * @pin: pin to flush 490 */ 491 void bch2_journal_pin_flush(struct journal *j, struct journal_entry_pin *pin) 492 { 493 BUG_ON(journal_pin_active(pin)); 494 495 wait_event(j->pin_flush_wait, j->flush_in_progress != pin); 496 } 497 498 /* 499 * Journal reclaim: flush references to open journal entries to reclaim space in 500 * the journal 501 * 502 * May be done by the journal code in the background as needed to free up space 503 * for more journal entries, or as part of doing a clean shutdown, or to migrate 504 * data off of a specific device: 505 */ 506 507 static struct journal_entry_pin * 508 journal_get_next_pin(struct journal *j, 509 u64 seq_to_flush, 510 unsigned allowed_below_seq, 511 unsigned allowed_above_seq, 512 u64 *seq) 513 { 514 struct journal_entry_pin_list *pin_list; 515 struct journal_entry_pin *ret = NULL; 516 517 fifo_for_each_entry_ptr(pin_list, &j->pin, *seq) { 518 if (*seq > seq_to_flush && !allowed_above_seq) 519 break; 520 521 for (unsigned i = 0; i < JOURNAL_PIN_TYPE_NR; i++) 522 if (((BIT(i) & allowed_below_seq) && *seq <= seq_to_flush) || 523 (BIT(i) & allowed_above_seq)) { 524 ret = list_first_entry_or_null(&pin_list->unflushed[i], 525 struct journal_entry_pin, list); 526 if (ret) 527 return ret; 528 } 529 } 530 531 return NULL; 532 } 533 534 /* returns true if we did work */ 535 static size_t journal_flush_pins(struct journal *j, 536 u64 seq_to_flush, 537 unsigned allowed_below_seq, 538 unsigned allowed_above_seq, 539 unsigned min_any, 540 unsigned min_key_cache) 541 { 542 struct journal_entry_pin *pin; 543 size_t nr_flushed = 0; 544 journal_pin_flush_fn flush_fn; 545 u64 seq; 546 int err; 547 548 lockdep_assert_held(&j->reclaim_lock); 549 550 while (1) { 551 unsigned allowed_above = allowed_above_seq; 552 unsigned allowed_below = allowed_below_seq; 553 554 if (min_any) { 555 allowed_above |= ~0; 556 allowed_below |= ~0; 557 } 558 559 if (min_key_cache) { 560 allowed_above |= BIT(JOURNAL_PIN_TYPE_key_cache); 561 allowed_below |= BIT(JOURNAL_PIN_TYPE_key_cache); 562 } 563 564 cond_resched(); 565 566 j->last_flushed = jiffies; 567 568 spin_lock(&j->lock); 569 pin = journal_get_next_pin(j, seq_to_flush, 570 allowed_below, 571 allowed_above, &seq); 572 if (pin) { 573 BUG_ON(j->flush_in_progress); 574 j->flush_in_progress = pin; 575 j->flush_in_progress_dropped = false; 576 flush_fn = pin->flush; 577 } 578 spin_unlock(&j->lock); 579 580 if (!pin) 581 break; 582 583 if (min_key_cache && pin->flush == bch2_btree_key_cache_journal_flush) 584 min_key_cache--; 585 586 if (min_any) 587 min_any--; 588 589 err = flush_fn(j, pin, seq); 590 591 spin_lock(&j->lock); 592 /* Pin might have been dropped or rearmed: */ 593 if (likely(!err && !j->flush_in_progress_dropped)) 594 list_move(&pin->list, &journal_seq_pin(j, seq)->flushed[journal_pin_type(pin, flush_fn)]); 595 j->flush_in_progress = NULL; 596 j->flush_in_progress_dropped = false; 597 spin_unlock(&j->lock); 598 599 wake_up(&j->pin_flush_wait); 600 601 if (err) 602 break; 603 604 nr_flushed++; 605 } 606 607 return nr_flushed; 608 } 609 610 static u64 journal_seq_to_flush(struct journal *j) 611 { 612 struct bch_fs *c = container_of(j, struct bch_fs, journal); 613 u64 seq_to_flush = 0; 614 615 spin_lock(&j->lock); 616 617 for_each_rw_member(c, ca) { 618 struct journal_device *ja = &ca->journal; 619 unsigned nr_buckets, bucket_to_flush; 620 621 if (!ja->nr) 622 continue; 623 624 /* Try to keep the journal at most half full: */ 625 nr_buckets = ja->nr / 2; 626 627 nr_buckets = min(nr_buckets, ja->nr); 628 629 bucket_to_flush = (ja->cur_idx + nr_buckets) % ja->nr; 630 seq_to_flush = max(seq_to_flush, 631 ja->bucket_seq[bucket_to_flush]); 632 } 633 634 /* Also flush if the pin fifo is more than half full */ 635 seq_to_flush = max_t(s64, seq_to_flush, 636 (s64) journal_cur_seq(j) - 637 (j->pin.size >> 1)); 638 spin_unlock(&j->lock); 639 640 return seq_to_flush; 641 } 642 643 /** 644 * __bch2_journal_reclaim - free up journal buckets 645 * @j: journal object 646 * @direct: direct or background reclaim? 647 * @kicked: requested to run since we last ran? 648 * Returns: 0 on success, or -EIO if the journal has been shutdown 649 * 650 * Background journal reclaim writes out btree nodes. It should be run 651 * early enough so that we never completely run out of journal buckets. 652 * 653 * High watermarks for triggering background reclaim: 654 * - FIFO has fewer than 512 entries left 655 * - fewer than 25% journal buckets free 656 * 657 * Background reclaim runs until low watermarks are reached: 658 * - FIFO has more than 1024 entries left 659 * - more than 50% journal buckets free 660 * 661 * As long as a reclaim can complete in the time it takes to fill up 662 * 512 journal entries or 25% of all journal buckets, then 663 * journal_next_bucket() should not stall. 664 */ 665 static int __bch2_journal_reclaim(struct journal *j, bool direct, bool kicked) 666 { 667 struct bch_fs *c = container_of(j, struct bch_fs, journal); 668 struct btree_cache *bc = &c->btree_cache; 669 bool kthread = (current->flags & PF_KTHREAD) != 0; 670 u64 seq_to_flush; 671 size_t min_nr, min_key_cache, nr_flushed; 672 unsigned flags; 673 int ret = 0; 674 675 /* 676 * We can't invoke memory reclaim while holding the reclaim_lock - 677 * journal reclaim is required to make progress for memory reclaim 678 * (cleaning the caches), so we can't get stuck in memory reclaim while 679 * we're holding the reclaim lock: 680 */ 681 lockdep_assert_held(&j->reclaim_lock); 682 flags = memalloc_noreclaim_save(); 683 684 do { 685 if (kthread && kthread_should_stop()) 686 break; 687 688 if (bch2_journal_error(j)) { 689 ret = -EIO; 690 break; 691 } 692 693 bch2_journal_do_discards(j); 694 695 seq_to_flush = journal_seq_to_flush(j); 696 min_nr = 0; 697 698 /* 699 * If it's been longer than j->reclaim_delay_ms since we last flushed, 700 * make sure to flush at least one journal pin: 701 */ 702 if (time_after(jiffies, j->last_flushed + 703 msecs_to_jiffies(c->opts.journal_reclaim_delay))) 704 min_nr = 1; 705 706 if (j->watermark != BCH_WATERMARK_stripe) 707 min_nr = 1; 708 709 size_t btree_cache_live = bc->live[0].nr + bc->live[1].nr; 710 if (atomic_long_read(&bc->nr_dirty) * 2 > btree_cache_live) 711 min_nr = 1; 712 713 min_key_cache = min(bch2_nr_btree_keys_need_flush(c), (size_t) 128); 714 715 trace_and_count(c, journal_reclaim_start, c, 716 direct, kicked, 717 min_nr, min_key_cache, 718 atomic_long_read(&bc->nr_dirty), btree_cache_live, 719 atomic_long_read(&c->btree_key_cache.nr_dirty), 720 atomic_long_read(&c->btree_key_cache.nr_keys)); 721 722 nr_flushed = journal_flush_pins(j, seq_to_flush, 723 ~0, 0, 724 min_nr, min_key_cache); 725 726 if (direct) 727 j->nr_direct_reclaim += nr_flushed; 728 else 729 j->nr_background_reclaim += nr_flushed; 730 trace_and_count(c, journal_reclaim_finish, c, nr_flushed); 731 732 if (nr_flushed) 733 wake_up(&j->reclaim_wait); 734 } while ((min_nr || min_key_cache) && nr_flushed && !direct); 735 736 memalloc_noreclaim_restore(flags); 737 738 return ret; 739 } 740 741 int bch2_journal_reclaim(struct journal *j) 742 { 743 return __bch2_journal_reclaim(j, true, true); 744 } 745 746 static int bch2_journal_reclaim_thread(void *arg) 747 { 748 struct journal *j = arg; 749 struct bch_fs *c = container_of(j, struct bch_fs, journal); 750 unsigned long delay, now; 751 bool journal_empty; 752 int ret = 0; 753 754 set_freezable(); 755 756 j->last_flushed = jiffies; 757 758 while (!ret && !kthread_should_stop()) { 759 bool kicked = j->reclaim_kicked; 760 761 j->reclaim_kicked = false; 762 763 mutex_lock(&j->reclaim_lock); 764 ret = __bch2_journal_reclaim(j, false, kicked); 765 mutex_unlock(&j->reclaim_lock); 766 767 now = jiffies; 768 delay = msecs_to_jiffies(c->opts.journal_reclaim_delay); 769 j->next_reclaim = j->last_flushed + delay; 770 771 if (!time_in_range(j->next_reclaim, now, now + delay)) 772 j->next_reclaim = now + delay; 773 774 while (1) { 775 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 776 if (kthread_should_stop()) 777 break; 778 if (j->reclaim_kicked) 779 break; 780 781 spin_lock(&j->lock); 782 journal_empty = fifo_empty(&j->pin); 783 spin_unlock(&j->lock); 784 785 long timeout = j->next_reclaim - jiffies; 786 787 if (journal_empty) 788 schedule(); 789 else if (timeout > 0) 790 schedule_timeout(timeout); 791 else 792 break; 793 } 794 __set_current_state(TASK_RUNNING); 795 } 796 797 return 0; 798 } 799 800 void bch2_journal_reclaim_stop(struct journal *j) 801 { 802 struct task_struct *p = j->reclaim_thread; 803 804 j->reclaim_thread = NULL; 805 806 if (p) { 807 kthread_stop(p); 808 put_task_struct(p); 809 } 810 } 811 812 int bch2_journal_reclaim_start(struct journal *j) 813 { 814 struct bch_fs *c = container_of(j, struct bch_fs, journal); 815 struct task_struct *p; 816 int ret; 817 818 if (j->reclaim_thread) 819 return 0; 820 821 p = kthread_create(bch2_journal_reclaim_thread, j, 822 "bch-reclaim/%s", c->name); 823 ret = PTR_ERR_OR_ZERO(p); 824 bch_err_msg(c, ret, "creating journal reclaim thread"); 825 if (ret) 826 return ret; 827 828 get_task_struct(p); 829 j->reclaim_thread = p; 830 wake_up_process(p); 831 return 0; 832 } 833 834 static bool journal_pins_still_flushing(struct journal *j, u64 seq_to_flush, 835 unsigned types) 836 { 837 struct journal_entry_pin_list *pin_list; 838 u64 seq; 839 840 spin_lock(&j->lock); 841 fifo_for_each_entry_ptr(pin_list, &j->pin, seq) { 842 if (seq > seq_to_flush) 843 break; 844 845 for (unsigned i = 0; i < JOURNAL_PIN_TYPE_NR; i++) 846 if ((BIT(i) & types) && 847 (!list_empty(&pin_list->unflushed[i]) || 848 !list_empty(&pin_list->flushed[i]))) { 849 spin_unlock(&j->lock); 850 return true; 851 } 852 } 853 spin_unlock(&j->lock); 854 855 return false; 856 } 857 858 static bool journal_flush_pins_or_still_flushing(struct journal *j, u64 seq_to_flush, 859 unsigned types) 860 { 861 return journal_flush_pins(j, seq_to_flush, types, 0, 0, 0) || 862 journal_pins_still_flushing(j, seq_to_flush, types); 863 } 864 865 static int journal_flush_done(struct journal *j, u64 seq_to_flush, 866 bool *did_work) 867 { 868 int ret = 0; 869 870 ret = bch2_journal_error(j); 871 if (ret) 872 return ret; 873 874 mutex_lock(&j->reclaim_lock); 875 876 for (int type = JOURNAL_PIN_TYPE_NR - 1; 877 type >= 0; 878 --type) 879 if (journal_flush_pins_or_still_flushing(j, seq_to_flush, BIT(type))) { 880 *did_work = true; 881 goto unlock; 882 } 883 884 if (seq_to_flush > journal_cur_seq(j)) 885 bch2_journal_entry_close(j); 886 887 spin_lock(&j->lock); 888 /* 889 * If journal replay hasn't completed, the unreplayed journal entries 890 * hold refs on their corresponding sequence numbers 891 */ 892 ret = !test_bit(JOURNAL_replay_done, &j->flags) || 893 journal_last_seq(j) > seq_to_flush || 894 !fifo_used(&j->pin); 895 896 spin_unlock(&j->lock); 897 unlock: 898 mutex_unlock(&j->reclaim_lock); 899 900 return ret; 901 } 902 903 bool bch2_journal_flush_pins(struct journal *j, u64 seq_to_flush) 904 { 905 /* time_stats this */ 906 bool did_work = false; 907 908 if (!test_bit(JOURNAL_running, &j->flags)) 909 return false; 910 911 closure_wait_event(&j->reclaim_flush_wait, 912 journal_flush_done(j, seq_to_flush, &did_work)); 913 914 return did_work; 915 } 916 917 int bch2_journal_flush_device_pins(struct journal *j, int dev_idx) 918 { 919 struct bch_fs *c = container_of(j, struct bch_fs, journal); 920 struct journal_entry_pin_list *p; 921 u64 iter, seq = 0; 922 int ret = 0; 923 924 spin_lock(&j->lock); 925 fifo_for_each_entry_ptr(p, &j->pin, iter) 926 if (dev_idx >= 0 927 ? bch2_dev_list_has_dev(p->devs, dev_idx) 928 : p->devs.nr < c->opts.metadata_replicas) 929 seq = iter; 930 spin_unlock(&j->lock); 931 932 bch2_journal_flush_pins(j, seq); 933 934 ret = bch2_journal_error(j); 935 if (ret) 936 return ret; 937 938 mutex_lock(&c->replicas_gc_lock); 939 bch2_replicas_gc_start(c, 1 << BCH_DATA_journal); 940 941 /* 942 * Now that we've populated replicas_gc, write to the journal to mark 943 * active journal devices. This handles the case where the journal might 944 * be empty. Otherwise we could clear all journal replicas and 945 * temporarily put the fs into an unrecoverable state. Journal recovery 946 * expects to find devices marked for journal data on unclean mount. 947 */ 948 ret = bch2_journal_meta(&c->journal); 949 if (ret) 950 goto err; 951 952 seq = 0; 953 spin_lock(&j->lock); 954 while (!ret) { 955 struct bch_replicas_padded replicas; 956 957 seq = max(seq, journal_last_seq(j)); 958 if (seq >= j->pin.back) 959 break; 960 bch2_devlist_to_replicas(&replicas.e, BCH_DATA_journal, 961 journal_seq_pin(j, seq)->devs); 962 seq++; 963 964 if (replicas.e.nr_devs) { 965 spin_unlock(&j->lock); 966 ret = bch2_mark_replicas(c, &replicas.e); 967 spin_lock(&j->lock); 968 } 969 } 970 spin_unlock(&j->lock); 971 err: 972 ret = bch2_replicas_gc_end(c, ret); 973 mutex_unlock(&c->replicas_gc_lock); 974 975 return ret; 976 } 977 978 bool bch2_journal_seq_pins_to_text(struct printbuf *out, struct journal *j, u64 *seq) 979 { 980 struct journal_entry_pin_list *pin_list; 981 struct journal_entry_pin *pin; 982 983 spin_lock(&j->lock); 984 if (!test_bit(JOURNAL_running, &j->flags)) { 985 spin_unlock(&j->lock); 986 return true; 987 } 988 989 *seq = max(*seq, j->pin.front); 990 991 if (*seq >= j->pin.back) { 992 spin_unlock(&j->lock); 993 return true; 994 } 995 996 out->atomic++; 997 998 pin_list = journal_seq_pin(j, *seq); 999 1000 prt_printf(out, "%llu: count %u\n", *seq, atomic_read(&pin_list->count)); 1001 printbuf_indent_add(out, 2); 1002 1003 prt_printf(out, "unflushed:\n"); 1004 for (unsigned i = 0; i < ARRAY_SIZE(pin_list->unflushed); i++) 1005 list_for_each_entry(pin, &pin_list->unflushed[i], list) 1006 prt_printf(out, "\t%px %ps\n", pin, pin->flush); 1007 1008 prt_printf(out, "flushed:\n"); 1009 for (unsigned i = 0; i < ARRAY_SIZE(pin_list->flushed); i++) 1010 list_for_each_entry(pin, &pin_list->flushed[i], list) 1011 prt_printf(out, "\t%px %ps\n", pin, pin->flush); 1012 1013 printbuf_indent_sub(out, 2); 1014 1015 --out->atomic; 1016 spin_unlock(&j->lock); 1017 1018 return false; 1019 } 1020 1021 void bch2_journal_pins_to_text(struct printbuf *out, struct journal *j) 1022 { 1023 u64 seq = 0; 1024 1025 while (!bch2_journal_seq_pins_to_text(out, j, &seq)) 1026 seq++; 1027 } 1028