1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "btree_key_cache.h" 5 #include "btree_update.h" 6 #include "btree_write_buffer.h" 7 #include "buckets.h" 8 #include "errcode.h" 9 #include "error.h" 10 #include "journal.h" 11 #include "journal_io.h" 12 #include "journal_reclaim.h" 13 #include "replicas.h" 14 #include "sb-members.h" 15 #include "trace.h" 16 17 #include <linux/kthread.h> 18 #include <linux/sched/mm.h> 19 20 /* Free space calculations: */ 21 22 static unsigned journal_space_from(struct journal_device *ja, 23 enum journal_space_from from) 24 { 25 switch (from) { 26 case journal_space_discarded: 27 return ja->discard_idx; 28 case journal_space_clean_ondisk: 29 return ja->dirty_idx_ondisk; 30 case journal_space_clean: 31 return ja->dirty_idx; 32 default: 33 BUG(); 34 } 35 } 36 37 unsigned bch2_journal_dev_buckets_available(struct journal *j, 38 struct journal_device *ja, 39 enum journal_space_from from) 40 { 41 if (!ja->nr) 42 return 0; 43 44 unsigned available = (journal_space_from(ja, from) - 45 ja->cur_idx - 1 + ja->nr) % ja->nr; 46 47 /* 48 * Don't use the last bucket unless writing the new last_seq 49 * will make another bucket available: 50 */ 51 if (available && ja->dirty_idx_ondisk == ja->dirty_idx) 52 --available; 53 54 return available; 55 } 56 57 void bch2_journal_set_watermark(struct journal *j) 58 { 59 struct bch_fs *c = container_of(j, struct bch_fs, journal); 60 bool low_on_space = j->space[journal_space_clean].total * 4 <= 61 j->space[journal_space_total].total; 62 bool low_on_pin = fifo_free(&j->pin) < j->pin.size / 4; 63 bool low_on_wb = bch2_btree_write_buffer_must_wait(c); 64 unsigned watermark = low_on_space || low_on_pin || low_on_wb 65 ? BCH_WATERMARK_reclaim 66 : BCH_WATERMARK_stripe; 67 68 if (track_event_change(&c->times[BCH_TIME_blocked_journal_low_on_space], low_on_space) || 69 track_event_change(&c->times[BCH_TIME_blocked_journal_low_on_pin], low_on_pin) || 70 track_event_change(&c->times[BCH_TIME_blocked_write_buffer_full], low_on_wb)) 71 trace_and_count(c, journal_full, c); 72 73 mod_bit(JOURNAL_space_low, &j->flags, low_on_space || low_on_pin); 74 75 swap(watermark, j->watermark); 76 if (watermark > j->watermark) 77 journal_wake(j); 78 } 79 80 static struct journal_space 81 journal_dev_space_available(struct journal *j, struct bch_dev *ca, 82 enum journal_space_from from) 83 { 84 struct journal_device *ja = &ca->journal; 85 unsigned sectors, buckets, unwritten; 86 u64 seq; 87 88 if (from == journal_space_total) 89 return (struct journal_space) { 90 .next_entry = ca->mi.bucket_size, 91 .total = ca->mi.bucket_size * ja->nr, 92 }; 93 94 buckets = bch2_journal_dev_buckets_available(j, ja, from); 95 sectors = ja->sectors_free; 96 97 /* 98 * We that we don't allocate the space for a journal entry 99 * until we write it out - thus, account for it here: 100 */ 101 for (seq = journal_last_unwritten_seq(j); 102 seq <= journal_cur_seq(j); 103 seq++) { 104 unwritten = j->buf[seq & JOURNAL_BUF_MASK].sectors; 105 106 if (!unwritten) 107 continue; 108 109 /* entry won't fit on this device, skip: */ 110 if (unwritten > ca->mi.bucket_size) 111 continue; 112 113 if (unwritten >= sectors) { 114 if (!buckets) { 115 sectors = 0; 116 break; 117 } 118 119 buckets--; 120 sectors = ca->mi.bucket_size; 121 } 122 123 sectors -= unwritten; 124 } 125 126 if (sectors < ca->mi.bucket_size && buckets) { 127 buckets--; 128 sectors = ca->mi.bucket_size; 129 } 130 131 return (struct journal_space) { 132 .next_entry = sectors, 133 .total = sectors + buckets * ca->mi.bucket_size, 134 }; 135 } 136 137 static struct journal_space __journal_space_available(struct journal *j, unsigned nr_devs_want, 138 enum journal_space_from from) 139 { 140 struct bch_fs *c = container_of(j, struct bch_fs, journal); 141 unsigned pos, nr_devs = 0; 142 struct journal_space space, dev_space[BCH_SB_MEMBERS_MAX]; 143 unsigned min_bucket_size = U32_MAX; 144 145 BUG_ON(nr_devs_want > ARRAY_SIZE(dev_space)); 146 147 rcu_read_lock(); 148 for_each_member_device_rcu(c, ca, &c->rw_devs[BCH_DATA_journal]) { 149 if (!ca->journal.nr || 150 !ca->mi.durability) 151 continue; 152 153 min_bucket_size = min(min_bucket_size, ca->mi.bucket_size); 154 155 space = journal_dev_space_available(j, ca, from); 156 if (!space.next_entry) 157 continue; 158 159 for (pos = 0; pos < nr_devs; pos++) 160 if (space.total > dev_space[pos].total) 161 break; 162 163 array_insert_item(dev_space, nr_devs, pos, space); 164 } 165 rcu_read_unlock(); 166 167 if (nr_devs < nr_devs_want) 168 return (struct journal_space) { 0, 0 }; 169 170 /* 171 * We sorted largest to smallest, and we want the smallest out of the 172 * @nr_devs_want largest devices: 173 */ 174 space = dev_space[nr_devs_want - 1]; 175 space.next_entry = min(space.next_entry, min_bucket_size); 176 return space; 177 } 178 179 void bch2_journal_space_available(struct journal *j) 180 { 181 struct bch_fs *c = container_of(j, struct bch_fs, journal); 182 unsigned clean, clean_ondisk, total; 183 unsigned max_entry_size = min(j->buf[0].buf_size >> 9, 184 j->buf[1].buf_size >> 9); 185 unsigned nr_online = 0, nr_devs_want; 186 bool can_discard = false; 187 int ret = 0; 188 189 lockdep_assert_held(&j->lock); 190 191 rcu_read_lock(); 192 for_each_member_device_rcu(c, ca, &c->rw_devs[BCH_DATA_journal]) { 193 struct journal_device *ja = &ca->journal; 194 195 if (!ja->nr) 196 continue; 197 198 while (ja->dirty_idx != ja->cur_idx && 199 ja->bucket_seq[ja->dirty_idx] < journal_last_seq(j)) 200 ja->dirty_idx = (ja->dirty_idx + 1) % ja->nr; 201 202 while (ja->dirty_idx_ondisk != ja->dirty_idx && 203 ja->bucket_seq[ja->dirty_idx_ondisk] < j->last_seq_ondisk) 204 ja->dirty_idx_ondisk = (ja->dirty_idx_ondisk + 1) % ja->nr; 205 206 if (ja->discard_idx != ja->dirty_idx_ondisk) 207 can_discard = true; 208 209 max_entry_size = min_t(unsigned, max_entry_size, ca->mi.bucket_size); 210 nr_online++; 211 } 212 rcu_read_unlock(); 213 214 j->can_discard = can_discard; 215 216 if (nr_online < metadata_replicas_required(c)) { 217 struct printbuf buf = PRINTBUF; 218 buf.atomic++; 219 prt_printf(&buf, "insufficient writeable journal devices available: have %u, need %u\n" 220 "rw journal devs:", nr_online, metadata_replicas_required(c)); 221 222 rcu_read_lock(); 223 for_each_member_device_rcu(c, ca, &c->rw_devs[BCH_DATA_journal]) 224 prt_printf(&buf, " %s", ca->name); 225 rcu_read_unlock(); 226 227 bch_err(c, "%s", buf.buf); 228 printbuf_exit(&buf); 229 ret = JOURNAL_ERR_insufficient_devices; 230 goto out; 231 } 232 233 nr_devs_want = min_t(unsigned, nr_online, c->opts.metadata_replicas); 234 235 for (unsigned i = 0; i < journal_space_nr; i++) 236 j->space[i] = __journal_space_available(j, nr_devs_want, i); 237 238 clean_ondisk = j->space[journal_space_clean_ondisk].total; 239 clean = j->space[journal_space_clean].total; 240 total = j->space[journal_space_total].total; 241 242 if (!j->space[journal_space_discarded].next_entry) 243 ret = JOURNAL_ERR_journal_full; 244 245 if ((j->space[journal_space_clean_ondisk].next_entry < 246 j->space[journal_space_clean_ondisk].total) && 247 (clean - clean_ondisk <= total / 8) && 248 (clean_ondisk * 2 > clean)) 249 set_bit(JOURNAL_may_skip_flush, &j->flags); 250 else 251 clear_bit(JOURNAL_may_skip_flush, &j->flags); 252 253 bch2_journal_set_watermark(j); 254 out: 255 j->cur_entry_sectors = !ret ? j->space[journal_space_discarded].next_entry : 0; 256 j->cur_entry_error = ret; 257 258 if (!ret) 259 journal_wake(j); 260 } 261 262 /* Discards - last part of journal reclaim: */ 263 264 static bool should_discard_bucket(struct journal *j, struct journal_device *ja) 265 { 266 bool ret; 267 268 spin_lock(&j->lock); 269 ret = ja->discard_idx != ja->dirty_idx_ondisk; 270 spin_unlock(&j->lock); 271 272 return ret; 273 } 274 275 /* 276 * Advance ja->discard_idx as long as it points to buckets that are no longer 277 * dirty, issuing discards if necessary: 278 */ 279 void bch2_journal_do_discards(struct journal *j) 280 { 281 struct bch_fs *c = container_of(j, struct bch_fs, journal); 282 283 mutex_lock(&j->discard_lock); 284 285 for_each_rw_member(c, ca) { 286 struct journal_device *ja = &ca->journal; 287 288 while (should_discard_bucket(j, ja)) { 289 if (!c->opts.nochanges && 290 ca->mi.discard && 291 bdev_max_discard_sectors(ca->disk_sb.bdev)) 292 blkdev_issue_discard(ca->disk_sb.bdev, 293 bucket_to_sector(ca, 294 ja->buckets[ja->discard_idx]), 295 ca->mi.bucket_size, GFP_NOFS); 296 297 spin_lock(&j->lock); 298 ja->discard_idx = (ja->discard_idx + 1) % ja->nr; 299 300 bch2_journal_space_available(j); 301 spin_unlock(&j->lock); 302 } 303 } 304 305 mutex_unlock(&j->discard_lock); 306 } 307 308 /* 309 * Journal entry pinning - machinery for holding a reference on a given journal 310 * entry, holding it open to ensure it gets replayed during recovery: 311 */ 312 313 void bch2_journal_reclaim_fast(struct journal *j) 314 { 315 bool popped = false; 316 317 lockdep_assert_held(&j->lock); 318 319 /* 320 * Unpin journal entries whose reference counts reached zero, meaning 321 * all btree nodes got written out 322 */ 323 while (!fifo_empty(&j->pin) && 324 j->pin.front <= j->seq_ondisk && 325 !atomic_read(&fifo_peek_front(&j->pin).count)) { 326 j->pin.front++; 327 popped = true; 328 } 329 330 if (popped) 331 bch2_journal_space_available(j); 332 } 333 334 bool __bch2_journal_pin_put(struct journal *j, u64 seq) 335 { 336 struct journal_entry_pin_list *pin_list = journal_seq_pin(j, seq); 337 338 return atomic_dec_and_test(&pin_list->count); 339 } 340 341 void bch2_journal_pin_put(struct journal *j, u64 seq) 342 { 343 if (__bch2_journal_pin_put(j, seq)) { 344 spin_lock(&j->lock); 345 bch2_journal_reclaim_fast(j); 346 spin_unlock(&j->lock); 347 } 348 } 349 350 static inline bool __journal_pin_drop(struct journal *j, 351 struct journal_entry_pin *pin) 352 { 353 struct journal_entry_pin_list *pin_list; 354 355 if (!journal_pin_active(pin)) 356 return false; 357 358 if (j->flush_in_progress == pin) 359 j->flush_in_progress_dropped = true; 360 361 pin_list = journal_seq_pin(j, pin->seq); 362 pin->seq = 0; 363 list_del_init(&pin->list); 364 365 /* 366 * Unpinning a journal entry may make journal_next_bucket() succeed, if 367 * writing a new last_seq will now make another bucket available: 368 */ 369 return atomic_dec_and_test(&pin_list->count) && 370 pin_list == &fifo_peek_front(&j->pin); 371 } 372 373 void bch2_journal_pin_drop(struct journal *j, 374 struct journal_entry_pin *pin) 375 { 376 spin_lock(&j->lock); 377 if (__journal_pin_drop(j, pin)) 378 bch2_journal_reclaim_fast(j); 379 spin_unlock(&j->lock); 380 } 381 382 static enum journal_pin_type journal_pin_type(journal_pin_flush_fn fn) 383 { 384 if (fn == bch2_btree_node_flush0 || 385 fn == bch2_btree_node_flush1) 386 return JOURNAL_PIN_btree; 387 else if (fn == bch2_btree_key_cache_journal_flush) 388 return JOURNAL_PIN_key_cache; 389 else 390 return JOURNAL_PIN_other; 391 } 392 393 static inline void bch2_journal_pin_set_locked(struct journal *j, u64 seq, 394 struct journal_entry_pin *pin, 395 journal_pin_flush_fn flush_fn, 396 enum journal_pin_type type) 397 { 398 struct journal_entry_pin_list *pin_list = journal_seq_pin(j, seq); 399 400 /* 401 * flush_fn is how we identify journal pins in debugfs, so must always 402 * exist, even if it doesn't do anything: 403 */ 404 BUG_ON(!flush_fn); 405 406 atomic_inc(&pin_list->count); 407 pin->seq = seq; 408 pin->flush = flush_fn; 409 list_add(&pin->list, &pin_list->list[type]); 410 } 411 412 void bch2_journal_pin_copy(struct journal *j, 413 struct journal_entry_pin *dst, 414 struct journal_entry_pin *src, 415 journal_pin_flush_fn flush_fn) 416 { 417 spin_lock(&j->lock); 418 419 u64 seq = READ_ONCE(src->seq); 420 421 if (seq < journal_last_seq(j)) { 422 /* 423 * bch2_journal_pin_copy() raced with bch2_journal_pin_drop() on 424 * the src pin - with the pin dropped, the entry to pin might no 425 * longer to exist, but that means there's no longer anything to 426 * copy and we can bail out here: 427 */ 428 spin_unlock(&j->lock); 429 return; 430 } 431 432 bool reclaim = __journal_pin_drop(j, dst); 433 434 bch2_journal_pin_set_locked(j, seq, dst, flush_fn, journal_pin_type(flush_fn)); 435 436 if (reclaim) 437 bch2_journal_reclaim_fast(j); 438 439 /* 440 * If the journal is currently full, we might want to call flush_fn 441 * immediately: 442 */ 443 if (seq == journal_last_seq(j)) 444 journal_wake(j); 445 spin_unlock(&j->lock); 446 } 447 448 void bch2_journal_pin_set(struct journal *j, u64 seq, 449 struct journal_entry_pin *pin, 450 journal_pin_flush_fn flush_fn) 451 { 452 spin_lock(&j->lock); 453 454 BUG_ON(seq < journal_last_seq(j)); 455 456 bool reclaim = __journal_pin_drop(j, pin); 457 458 bch2_journal_pin_set_locked(j, seq, pin, flush_fn, journal_pin_type(flush_fn)); 459 460 if (reclaim) 461 bch2_journal_reclaim_fast(j); 462 /* 463 * If the journal is currently full, we might want to call flush_fn 464 * immediately: 465 */ 466 if (seq == journal_last_seq(j)) 467 journal_wake(j); 468 469 spin_unlock(&j->lock); 470 } 471 472 /** 473 * bch2_journal_pin_flush: ensure journal pin callback is no longer running 474 * @j: journal object 475 * @pin: pin to flush 476 */ 477 void bch2_journal_pin_flush(struct journal *j, struct journal_entry_pin *pin) 478 { 479 BUG_ON(journal_pin_active(pin)); 480 481 wait_event(j->pin_flush_wait, j->flush_in_progress != pin); 482 } 483 484 /* 485 * Journal reclaim: flush references to open journal entries to reclaim space in 486 * the journal 487 * 488 * May be done by the journal code in the background as needed to free up space 489 * for more journal entries, or as part of doing a clean shutdown, or to migrate 490 * data off of a specific device: 491 */ 492 493 static struct journal_entry_pin * 494 journal_get_next_pin(struct journal *j, 495 u64 seq_to_flush, 496 unsigned allowed_below_seq, 497 unsigned allowed_above_seq, 498 u64 *seq) 499 { 500 struct journal_entry_pin_list *pin_list; 501 struct journal_entry_pin *ret = NULL; 502 unsigned i; 503 504 fifo_for_each_entry_ptr(pin_list, &j->pin, *seq) { 505 if (*seq > seq_to_flush && !allowed_above_seq) 506 break; 507 508 for (i = 0; i < JOURNAL_PIN_NR; i++) 509 if ((((1U << i) & allowed_below_seq) && *seq <= seq_to_flush) || 510 ((1U << i) & allowed_above_seq)) { 511 ret = list_first_entry_or_null(&pin_list->list[i], 512 struct journal_entry_pin, list); 513 if (ret) 514 return ret; 515 } 516 } 517 518 return NULL; 519 } 520 521 /* returns true if we did work */ 522 static size_t journal_flush_pins(struct journal *j, 523 u64 seq_to_flush, 524 unsigned allowed_below_seq, 525 unsigned allowed_above_seq, 526 unsigned min_any, 527 unsigned min_key_cache) 528 { 529 struct journal_entry_pin *pin; 530 size_t nr_flushed = 0; 531 journal_pin_flush_fn flush_fn; 532 u64 seq; 533 int err; 534 535 lockdep_assert_held(&j->reclaim_lock); 536 537 while (1) { 538 unsigned allowed_above = allowed_above_seq; 539 unsigned allowed_below = allowed_below_seq; 540 541 if (min_any) { 542 allowed_above |= ~0; 543 allowed_below |= ~0; 544 } 545 546 if (min_key_cache) { 547 allowed_above |= 1U << JOURNAL_PIN_key_cache; 548 allowed_below |= 1U << JOURNAL_PIN_key_cache; 549 } 550 551 cond_resched(); 552 553 j->last_flushed = jiffies; 554 555 spin_lock(&j->lock); 556 pin = journal_get_next_pin(j, seq_to_flush, allowed_below, allowed_above, &seq); 557 if (pin) { 558 BUG_ON(j->flush_in_progress); 559 j->flush_in_progress = pin; 560 j->flush_in_progress_dropped = false; 561 flush_fn = pin->flush; 562 } 563 spin_unlock(&j->lock); 564 565 if (!pin) 566 break; 567 568 if (min_key_cache && pin->flush == bch2_btree_key_cache_journal_flush) 569 min_key_cache--; 570 571 if (min_any) 572 min_any--; 573 574 err = flush_fn(j, pin, seq); 575 576 spin_lock(&j->lock); 577 /* Pin might have been dropped or rearmed: */ 578 if (likely(!err && !j->flush_in_progress_dropped)) 579 list_move(&pin->list, &journal_seq_pin(j, seq)->flushed); 580 j->flush_in_progress = NULL; 581 j->flush_in_progress_dropped = false; 582 spin_unlock(&j->lock); 583 584 wake_up(&j->pin_flush_wait); 585 586 if (err) 587 break; 588 589 nr_flushed++; 590 } 591 592 return nr_flushed; 593 } 594 595 static u64 journal_seq_to_flush(struct journal *j) 596 { 597 struct bch_fs *c = container_of(j, struct bch_fs, journal); 598 u64 seq_to_flush = 0; 599 600 spin_lock(&j->lock); 601 602 for_each_rw_member(c, ca) { 603 struct journal_device *ja = &ca->journal; 604 unsigned nr_buckets, bucket_to_flush; 605 606 if (!ja->nr) 607 continue; 608 609 /* Try to keep the journal at most half full: */ 610 nr_buckets = ja->nr / 2; 611 612 nr_buckets = min(nr_buckets, ja->nr); 613 614 bucket_to_flush = (ja->cur_idx + nr_buckets) % ja->nr; 615 seq_to_flush = max(seq_to_flush, 616 ja->bucket_seq[bucket_to_flush]); 617 } 618 619 /* Also flush if the pin fifo is more than half full */ 620 seq_to_flush = max_t(s64, seq_to_flush, 621 (s64) journal_cur_seq(j) - 622 (j->pin.size >> 1)); 623 spin_unlock(&j->lock); 624 625 return seq_to_flush; 626 } 627 628 /** 629 * __bch2_journal_reclaim - free up journal buckets 630 * @j: journal object 631 * @direct: direct or background reclaim? 632 * @kicked: requested to run since we last ran? 633 * Returns: 0 on success, or -EIO if the journal has been shutdown 634 * 635 * Background journal reclaim writes out btree nodes. It should be run 636 * early enough so that we never completely run out of journal buckets. 637 * 638 * High watermarks for triggering background reclaim: 639 * - FIFO has fewer than 512 entries left 640 * - fewer than 25% journal buckets free 641 * 642 * Background reclaim runs until low watermarks are reached: 643 * - FIFO has more than 1024 entries left 644 * - more than 50% journal buckets free 645 * 646 * As long as a reclaim can complete in the time it takes to fill up 647 * 512 journal entries or 25% of all journal buckets, then 648 * journal_next_bucket() should not stall. 649 */ 650 static int __bch2_journal_reclaim(struct journal *j, bool direct, bool kicked) 651 { 652 struct bch_fs *c = container_of(j, struct bch_fs, journal); 653 struct btree_cache *bc = &c->btree_cache; 654 bool kthread = (current->flags & PF_KTHREAD) != 0; 655 u64 seq_to_flush; 656 size_t min_nr, min_key_cache, nr_flushed; 657 unsigned flags; 658 int ret = 0; 659 660 /* 661 * We can't invoke memory reclaim while holding the reclaim_lock - 662 * journal reclaim is required to make progress for memory reclaim 663 * (cleaning the caches), so we can't get stuck in memory reclaim while 664 * we're holding the reclaim lock: 665 */ 666 lockdep_assert_held(&j->reclaim_lock); 667 flags = memalloc_noreclaim_save(); 668 669 do { 670 if (kthread && kthread_should_stop()) 671 break; 672 673 if (bch2_journal_error(j)) { 674 ret = -EIO; 675 break; 676 } 677 678 bch2_journal_do_discards(j); 679 680 seq_to_flush = journal_seq_to_flush(j); 681 min_nr = 0; 682 683 /* 684 * If it's been longer than j->reclaim_delay_ms since we last flushed, 685 * make sure to flush at least one journal pin: 686 */ 687 if (time_after(jiffies, j->last_flushed + 688 msecs_to_jiffies(c->opts.journal_reclaim_delay))) 689 min_nr = 1; 690 691 if (j->watermark != BCH_WATERMARK_stripe) 692 min_nr = 1; 693 694 size_t btree_cache_live = bc->live[0].nr + bc->live[1].nr; 695 if (atomic_long_read(&bc->nr_dirty) * 2 > btree_cache_live) 696 min_nr = 1; 697 698 min_key_cache = min(bch2_nr_btree_keys_need_flush(c), (size_t) 128); 699 700 trace_and_count(c, journal_reclaim_start, c, 701 direct, kicked, 702 min_nr, min_key_cache, 703 atomic_long_read(&bc->nr_dirty), btree_cache_live, 704 atomic_long_read(&c->btree_key_cache.nr_dirty), 705 atomic_long_read(&c->btree_key_cache.nr_keys)); 706 707 nr_flushed = journal_flush_pins(j, seq_to_flush, 708 ~0, 0, 709 min_nr, min_key_cache); 710 711 if (direct) 712 j->nr_direct_reclaim += nr_flushed; 713 else 714 j->nr_background_reclaim += nr_flushed; 715 trace_and_count(c, journal_reclaim_finish, c, nr_flushed); 716 717 if (nr_flushed) 718 wake_up(&j->reclaim_wait); 719 } while ((min_nr || min_key_cache) && nr_flushed && !direct); 720 721 memalloc_noreclaim_restore(flags); 722 723 return ret; 724 } 725 726 int bch2_journal_reclaim(struct journal *j) 727 { 728 return __bch2_journal_reclaim(j, true, true); 729 } 730 731 static int bch2_journal_reclaim_thread(void *arg) 732 { 733 struct journal *j = arg; 734 struct bch_fs *c = container_of(j, struct bch_fs, journal); 735 unsigned long delay, now; 736 bool journal_empty; 737 int ret = 0; 738 739 set_freezable(); 740 741 j->last_flushed = jiffies; 742 743 while (!ret && !kthread_should_stop()) { 744 bool kicked = j->reclaim_kicked; 745 746 j->reclaim_kicked = false; 747 748 mutex_lock(&j->reclaim_lock); 749 ret = __bch2_journal_reclaim(j, false, kicked); 750 mutex_unlock(&j->reclaim_lock); 751 752 now = jiffies; 753 delay = msecs_to_jiffies(c->opts.journal_reclaim_delay); 754 j->next_reclaim = j->last_flushed + delay; 755 756 if (!time_in_range(j->next_reclaim, now, now + delay)) 757 j->next_reclaim = now + delay; 758 759 while (1) { 760 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 761 if (kthread_should_stop()) 762 break; 763 if (j->reclaim_kicked) 764 break; 765 766 spin_lock(&j->lock); 767 journal_empty = fifo_empty(&j->pin); 768 spin_unlock(&j->lock); 769 770 long timeout = j->next_reclaim - jiffies; 771 772 if (journal_empty) 773 schedule(); 774 else if (timeout > 0) 775 schedule_timeout(timeout); 776 else 777 break; 778 } 779 __set_current_state(TASK_RUNNING); 780 } 781 782 return 0; 783 } 784 785 void bch2_journal_reclaim_stop(struct journal *j) 786 { 787 struct task_struct *p = j->reclaim_thread; 788 789 j->reclaim_thread = NULL; 790 791 if (p) { 792 kthread_stop(p); 793 put_task_struct(p); 794 } 795 } 796 797 int bch2_journal_reclaim_start(struct journal *j) 798 { 799 struct bch_fs *c = container_of(j, struct bch_fs, journal); 800 struct task_struct *p; 801 int ret; 802 803 if (j->reclaim_thread) 804 return 0; 805 806 p = kthread_create(bch2_journal_reclaim_thread, j, 807 "bch-reclaim/%s", c->name); 808 ret = PTR_ERR_OR_ZERO(p); 809 bch_err_msg(c, ret, "creating journal reclaim thread"); 810 if (ret) 811 return ret; 812 813 get_task_struct(p); 814 j->reclaim_thread = p; 815 wake_up_process(p); 816 return 0; 817 } 818 819 static int journal_flush_done(struct journal *j, u64 seq_to_flush, 820 bool *did_work) 821 { 822 int ret; 823 824 ret = bch2_journal_error(j); 825 if (ret) 826 return ret; 827 828 mutex_lock(&j->reclaim_lock); 829 830 if (journal_flush_pins(j, seq_to_flush, 831 (1U << JOURNAL_PIN_key_cache)| 832 (1U << JOURNAL_PIN_other), 0, 0, 0) || 833 journal_flush_pins(j, seq_to_flush, 834 (1U << JOURNAL_PIN_btree), 0, 0, 0)) 835 *did_work = true; 836 837 if (seq_to_flush > journal_cur_seq(j)) 838 bch2_journal_entry_close(j); 839 840 spin_lock(&j->lock); 841 /* 842 * If journal replay hasn't completed, the unreplayed journal entries 843 * hold refs on their corresponding sequence numbers 844 */ 845 ret = !test_bit(JOURNAL_replay_done, &j->flags) || 846 journal_last_seq(j) > seq_to_flush || 847 !fifo_used(&j->pin); 848 849 spin_unlock(&j->lock); 850 mutex_unlock(&j->reclaim_lock); 851 852 return ret; 853 } 854 855 bool bch2_journal_flush_pins(struct journal *j, u64 seq_to_flush) 856 { 857 /* time_stats this */ 858 bool did_work = false; 859 860 if (!test_bit(JOURNAL_running, &j->flags)) 861 return false; 862 863 closure_wait_event(&j->async_wait, 864 journal_flush_done(j, seq_to_flush, &did_work)); 865 866 return did_work; 867 } 868 869 int bch2_journal_flush_device_pins(struct journal *j, int dev_idx) 870 { 871 struct bch_fs *c = container_of(j, struct bch_fs, journal); 872 struct journal_entry_pin_list *p; 873 u64 iter, seq = 0; 874 int ret = 0; 875 876 spin_lock(&j->lock); 877 fifo_for_each_entry_ptr(p, &j->pin, iter) 878 if (dev_idx >= 0 879 ? bch2_dev_list_has_dev(p->devs, dev_idx) 880 : p->devs.nr < c->opts.metadata_replicas) 881 seq = iter; 882 spin_unlock(&j->lock); 883 884 bch2_journal_flush_pins(j, seq); 885 886 ret = bch2_journal_error(j); 887 if (ret) 888 return ret; 889 890 mutex_lock(&c->replicas_gc_lock); 891 bch2_replicas_gc_start(c, 1 << BCH_DATA_journal); 892 893 /* 894 * Now that we've populated replicas_gc, write to the journal to mark 895 * active journal devices. This handles the case where the journal might 896 * be empty. Otherwise we could clear all journal replicas and 897 * temporarily put the fs into an unrecoverable state. Journal recovery 898 * expects to find devices marked for journal data on unclean mount. 899 */ 900 ret = bch2_journal_meta(&c->journal); 901 if (ret) 902 goto err; 903 904 seq = 0; 905 spin_lock(&j->lock); 906 while (!ret) { 907 struct bch_replicas_padded replicas; 908 909 seq = max(seq, journal_last_seq(j)); 910 if (seq >= j->pin.back) 911 break; 912 bch2_devlist_to_replicas(&replicas.e, BCH_DATA_journal, 913 journal_seq_pin(j, seq)->devs); 914 seq++; 915 916 if (replicas.e.nr_devs) { 917 spin_unlock(&j->lock); 918 ret = bch2_mark_replicas(c, &replicas.e); 919 spin_lock(&j->lock); 920 } 921 } 922 spin_unlock(&j->lock); 923 err: 924 ret = bch2_replicas_gc_end(c, ret); 925 mutex_unlock(&c->replicas_gc_lock); 926 927 return ret; 928 } 929