1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "btree_key_cache.h" 5 #include "btree_update.h" 6 #include "btree_write_buffer.h" 7 #include "buckets.h" 8 #include "errcode.h" 9 #include "error.h" 10 #include "journal.h" 11 #include "journal_io.h" 12 #include "journal_reclaim.h" 13 #include "replicas.h" 14 #include "sb-members.h" 15 #include "trace.h" 16 17 #include <linux/kthread.h> 18 #include <linux/sched/mm.h> 19 20 /* Free space calculations: */ 21 22 static unsigned journal_space_from(struct journal_device *ja, 23 enum journal_space_from from) 24 { 25 switch (from) { 26 case journal_space_discarded: 27 return ja->discard_idx; 28 case journal_space_clean_ondisk: 29 return ja->dirty_idx_ondisk; 30 case journal_space_clean: 31 return ja->dirty_idx; 32 default: 33 BUG(); 34 } 35 } 36 37 unsigned bch2_journal_dev_buckets_available(struct journal *j, 38 struct journal_device *ja, 39 enum journal_space_from from) 40 { 41 if (!ja->nr) 42 return 0; 43 44 unsigned available = (journal_space_from(ja, from) - 45 ja->cur_idx - 1 + ja->nr) % ja->nr; 46 47 /* 48 * Don't use the last bucket unless writing the new last_seq 49 * will make another bucket available: 50 */ 51 if (available && ja->dirty_idx_ondisk == ja->dirty_idx) 52 --available; 53 54 return available; 55 } 56 57 void bch2_journal_set_watermark(struct journal *j) 58 { 59 struct bch_fs *c = container_of(j, struct bch_fs, journal); 60 bool low_on_space = j->space[journal_space_clean].total * 4 <= 61 j->space[journal_space_total].total; 62 bool low_on_pin = fifo_free(&j->pin) < j->pin.size / 4; 63 bool low_on_wb = bch2_btree_write_buffer_must_wait(c); 64 unsigned watermark = low_on_space || low_on_pin || low_on_wb 65 ? BCH_WATERMARK_reclaim 66 : BCH_WATERMARK_stripe; 67 68 if (track_event_change(&c->times[BCH_TIME_blocked_journal_low_on_space], low_on_space) || 69 track_event_change(&c->times[BCH_TIME_blocked_journal_low_on_pin], low_on_pin) || 70 track_event_change(&c->times[BCH_TIME_blocked_write_buffer_full], low_on_wb)) 71 trace_and_count(c, journal_full, c); 72 73 mod_bit(JOURNAL_space_low, &j->flags, low_on_space || low_on_pin); 74 75 swap(watermark, j->watermark); 76 if (watermark > j->watermark) 77 journal_wake(j); 78 } 79 80 static struct journal_space 81 journal_dev_space_available(struct journal *j, struct bch_dev *ca, 82 enum journal_space_from from) 83 { 84 struct journal_device *ja = &ca->journal; 85 unsigned sectors, buckets, unwritten; 86 u64 seq; 87 88 if (from == journal_space_total) 89 return (struct journal_space) { 90 .next_entry = ca->mi.bucket_size, 91 .total = ca->mi.bucket_size * ja->nr, 92 }; 93 94 buckets = bch2_journal_dev_buckets_available(j, ja, from); 95 sectors = ja->sectors_free; 96 97 /* 98 * We that we don't allocate the space for a journal entry 99 * until we write it out - thus, account for it here: 100 */ 101 for (seq = journal_last_unwritten_seq(j); 102 seq <= journal_cur_seq(j); 103 seq++) { 104 unwritten = j->buf[seq & JOURNAL_BUF_MASK].sectors; 105 106 if (!unwritten) 107 continue; 108 109 /* entry won't fit on this device, skip: */ 110 if (unwritten > ca->mi.bucket_size) 111 continue; 112 113 if (unwritten >= sectors) { 114 if (!buckets) { 115 sectors = 0; 116 break; 117 } 118 119 buckets--; 120 sectors = ca->mi.bucket_size; 121 } 122 123 sectors -= unwritten; 124 } 125 126 if (sectors < ca->mi.bucket_size && buckets) { 127 buckets--; 128 sectors = ca->mi.bucket_size; 129 } 130 131 return (struct journal_space) { 132 .next_entry = sectors, 133 .total = sectors + buckets * ca->mi.bucket_size, 134 }; 135 } 136 137 static struct journal_space __journal_space_available(struct journal *j, unsigned nr_devs_want, 138 enum journal_space_from from) 139 { 140 struct bch_fs *c = container_of(j, struct bch_fs, journal); 141 unsigned pos, nr_devs = 0; 142 struct journal_space space, dev_space[BCH_SB_MEMBERS_MAX]; 143 unsigned min_bucket_size = U32_MAX; 144 145 BUG_ON(nr_devs_want > ARRAY_SIZE(dev_space)); 146 147 rcu_read_lock(); 148 for_each_member_device_rcu(c, ca, &c->rw_devs[BCH_DATA_journal]) { 149 if (!ca->journal.nr || 150 !ca->mi.durability) 151 continue; 152 153 min_bucket_size = min(min_bucket_size, ca->mi.bucket_size); 154 155 space = journal_dev_space_available(j, ca, from); 156 if (!space.next_entry) 157 continue; 158 159 for (pos = 0; pos < nr_devs; pos++) 160 if (space.total > dev_space[pos].total) 161 break; 162 163 array_insert_item(dev_space, nr_devs, pos, space); 164 } 165 rcu_read_unlock(); 166 167 if (nr_devs < nr_devs_want) 168 return (struct journal_space) { 0, 0 }; 169 170 /* 171 * We sorted largest to smallest, and we want the smallest out of the 172 * @nr_devs_want largest devices: 173 */ 174 space = dev_space[nr_devs_want - 1]; 175 space.next_entry = min(space.next_entry, min_bucket_size); 176 return space; 177 } 178 179 void bch2_journal_space_available(struct journal *j) 180 { 181 struct bch_fs *c = container_of(j, struct bch_fs, journal); 182 unsigned clean, clean_ondisk, total; 183 unsigned max_entry_size = min(j->buf[0].buf_size >> 9, 184 j->buf[1].buf_size >> 9); 185 unsigned nr_online = 0, nr_devs_want; 186 bool can_discard = false; 187 int ret = 0; 188 189 lockdep_assert_held(&j->lock); 190 191 rcu_read_lock(); 192 for_each_member_device_rcu(c, ca, &c->rw_devs[BCH_DATA_journal]) { 193 struct journal_device *ja = &ca->journal; 194 195 if (!ja->nr) 196 continue; 197 198 while (ja->dirty_idx != ja->cur_idx && 199 ja->bucket_seq[ja->dirty_idx] < journal_last_seq(j)) 200 ja->dirty_idx = (ja->dirty_idx + 1) % ja->nr; 201 202 while (ja->dirty_idx_ondisk != ja->dirty_idx && 203 ja->bucket_seq[ja->dirty_idx_ondisk] < j->last_seq_ondisk) 204 ja->dirty_idx_ondisk = (ja->dirty_idx_ondisk + 1) % ja->nr; 205 206 if (ja->discard_idx != ja->dirty_idx_ondisk) 207 can_discard = true; 208 209 max_entry_size = min_t(unsigned, max_entry_size, ca->mi.bucket_size); 210 nr_online++; 211 } 212 rcu_read_unlock(); 213 214 j->can_discard = can_discard; 215 216 if (nr_online < metadata_replicas_required(c)) { 217 struct printbuf buf = PRINTBUF; 218 buf.atomic++; 219 prt_printf(&buf, "insufficient writeable journal devices available: have %u, need %u\n" 220 "rw journal devs:", nr_online, metadata_replicas_required(c)); 221 222 rcu_read_lock(); 223 for_each_member_device_rcu(c, ca, &c->rw_devs[BCH_DATA_journal]) 224 prt_printf(&buf, " %s", ca->name); 225 rcu_read_unlock(); 226 227 bch_err(c, "%s", buf.buf); 228 printbuf_exit(&buf); 229 ret = JOURNAL_ERR_insufficient_devices; 230 goto out; 231 } 232 233 nr_devs_want = min_t(unsigned, nr_online, c->opts.metadata_replicas); 234 235 for (unsigned i = 0; i < journal_space_nr; i++) 236 j->space[i] = __journal_space_available(j, nr_devs_want, i); 237 238 clean_ondisk = j->space[journal_space_clean_ondisk].total; 239 clean = j->space[journal_space_clean].total; 240 total = j->space[journal_space_total].total; 241 242 if (!j->space[journal_space_discarded].next_entry) 243 ret = JOURNAL_ERR_journal_full; 244 245 if ((j->space[journal_space_clean_ondisk].next_entry < 246 j->space[journal_space_clean_ondisk].total) && 247 (clean - clean_ondisk <= total / 8) && 248 (clean_ondisk * 2 > clean)) 249 set_bit(JOURNAL_may_skip_flush, &j->flags); 250 else 251 clear_bit(JOURNAL_may_skip_flush, &j->flags); 252 253 bch2_journal_set_watermark(j); 254 out: 255 j->cur_entry_sectors = !ret ? j->space[journal_space_discarded].next_entry : 0; 256 j->cur_entry_error = ret; 257 258 if (!ret) 259 journal_wake(j); 260 } 261 262 /* Discards - last part of journal reclaim: */ 263 264 static bool should_discard_bucket(struct journal *j, struct journal_device *ja) 265 { 266 bool ret; 267 268 spin_lock(&j->lock); 269 ret = ja->discard_idx != ja->dirty_idx_ondisk; 270 spin_unlock(&j->lock); 271 272 return ret; 273 } 274 275 /* 276 * Advance ja->discard_idx as long as it points to buckets that are no longer 277 * dirty, issuing discards if necessary: 278 */ 279 void bch2_journal_do_discards(struct journal *j) 280 { 281 struct bch_fs *c = container_of(j, struct bch_fs, journal); 282 283 mutex_lock(&j->discard_lock); 284 285 for_each_rw_member(c, ca) { 286 struct journal_device *ja = &ca->journal; 287 288 while (should_discard_bucket(j, ja)) { 289 if (!c->opts.nochanges && 290 ca->mi.discard && 291 bdev_max_discard_sectors(ca->disk_sb.bdev)) 292 blkdev_issue_discard(ca->disk_sb.bdev, 293 bucket_to_sector(ca, 294 ja->buckets[ja->discard_idx]), 295 ca->mi.bucket_size, GFP_NOFS); 296 297 spin_lock(&j->lock); 298 ja->discard_idx = (ja->discard_idx + 1) % ja->nr; 299 300 bch2_journal_space_available(j); 301 spin_unlock(&j->lock); 302 } 303 } 304 305 mutex_unlock(&j->discard_lock); 306 } 307 308 /* 309 * Journal entry pinning - machinery for holding a reference on a given journal 310 * entry, holding it open to ensure it gets replayed during recovery: 311 */ 312 313 void bch2_journal_reclaim_fast(struct journal *j) 314 { 315 bool popped = false; 316 317 lockdep_assert_held(&j->lock); 318 319 /* 320 * Unpin journal entries whose reference counts reached zero, meaning 321 * all btree nodes got written out 322 */ 323 while (!fifo_empty(&j->pin) && 324 j->pin.front <= j->seq_ondisk && 325 !atomic_read(&fifo_peek_front(&j->pin).count)) { 326 j->pin.front++; 327 popped = true; 328 } 329 330 if (popped) { 331 bch2_journal_space_available(j); 332 __closure_wake_up(&j->reclaim_flush_wait); 333 } 334 } 335 336 bool __bch2_journal_pin_put(struct journal *j, u64 seq) 337 { 338 struct journal_entry_pin_list *pin_list = journal_seq_pin(j, seq); 339 340 return atomic_dec_and_test(&pin_list->count); 341 } 342 343 void bch2_journal_pin_put(struct journal *j, u64 seq) 344 { 345 if (__bch2_journal_pin_put(j, seq)) { 346 spin_lock(&j->lock); 347 bch2_journal_reclaim_fast(j); 348 spin_unlock(&j->lock); 349 } 350 } 351 352 static inline bool __journal_pin_drop(struct journal *j, 353 struct journal_entry_pin *pin) 354 { 355 struct journal_entry_pin_list *pin_list; 356 357 if (!journal_pin_active(pin)) 358 return false; 359 360 if (j->flush_in_progress == pin) 361 j->flush_in_progress_dropped = true; 362 363 pin_list = journal_seq_pin(j, pin->seq); 364 pin->seq = 0; 365 list_del_init(&pin->list); 366 367 if (j->reclaim_flush_wait.list.first) 368 __closure_wake_up(&j->reclaim_flush_wait); 369 370 /* 371 * Unpinning a journal entry may make journal_next_bucket() succeed, if 372 * writing a new last_seq will now make another bucket available: 373 */ 374 return atomic_dec_and_test(&pin_list->count) && 375 pin_list == &fifo_peek_front(&j->pin); 376 } 377 378 void bch2_journal_pin_drop(struct journal *j, 379 struct journal_entry_pin *pin) 380 { 381 spin_lock(&j->lock); 382 if (__journal_pin_drop(j, pin)) 383 bch2_journal_reclaim_fast(j); 384 spin_unlock(&j->lock); 385 } 386 387 static enum journal_pin_type journal_pin_type(journal_pin_flush_fn fn) 388 { 389 if (fn == bch2_btree_node_flush0 || 390 fn == bch2_btree_node_flush1) 391 return JOURNAL_PIN_TYPE_btree; 392 else if (fn == bch2_btree_key_cache_journal_flush) 393 return JOURNAL_PIN_TYPE_key_cache; 394 else 395 return JOURNAL_PIN_TYPE_other; 396 } 397 398 static inline void bch2_journal_pin_set_locked(struct journal *j, u64 seq, 399 struct journal_entry_pin *pin, 400 journal_pin_flush_fn flush_fn, 401 enum journal_pin_type type) 402 { 403 struct journal_entry_pin_list *pin_list = journal_seq_pin(j, seq); 404 405 /* 406 * flush_fn is how we identify journal pins in debugfs, so must always 407 * exist, even if it doesn't do anything: 408 */ 409 BUG_ON(!flush_fn); 410 411 atomic_inc(&pin_list->count); 412 pin->seq = seq; 413 pin->flush = flush_fn; 414 415 if (list_empty(&pin_list->unflushed[type]) && 416 j->reclaim_flush_wait.list.first) 417 __closure_wake_up(&j->reclaim_flush_wait); 418 419 list_add(&pin->list, &pin_list->unflushed[type]); 420 } 421 422 void bch2_journal_pin_copy(struct journal *j, 423 struct journal_entry_pin *dst, 424 struct journal_entry_pin *src, 425 journal_pin_flush_fn flush_fn) 426 { 427 spin_lock(&j->lock); 428 429 u64 seq = READ_ONCE(src->seq); 430 431 if (seq < journal_last_seq(j)) { 432 /* 433 * bch2_journal_pin_copy() raced with bch2_journal_pin_drop() on 434 * the src pin - with the pin dropped, the entry to pin might no 435 * longer to exist, but that means there's no longer anything to 436 * copy and we can bail out here: 437 */ 438 spin_unlock(&j->lock); 439 return; 440 } 441 442 bool reclaim = __journal_pin_drop(j, dst); 443 444 bch2_journal_pin_set_locked(j, seq, dst, flush_fn, journal_pin_type(flush_fn)); 445 446 if (reclaim) 447 bch2_journal_reclaim_fast(j); 448 449 /* 450 * If the journal is currently full, we might want to call flush_fn 451 * immediately: 452 */ 453 if (seq == journal_last_seq(j)) 454 journal_wake(j); 455 spin_unlock(&j->lock); 456 } 457 458 void bch2_journal_pin_set(struct journal *j, u64 seq, 459 struct journal_entry_pin *pin, 460 journal_pin_flush_fn flush_fn) 461 { 462 spin_lock(&j->lock); 463 464 BUG_ON(seq < journal_last_seq(j)); 465 466 bool reclaim = __journal_pin_drop(j, pin); 467 468 bch2_journal_pin_set_locked(j, seq, pin, flush_fn, journal_pin_type(flush_fn)); 469 470 if (reclaim) 471 bch2_journal_reclaim_fast(j); 472 /* 473 * If the journal is currently full, we might want to call flush_fn 474 * immediately: 475 */ 476 if (seq == journal_last_seq(j)) 477 journal_wake(j); 478 479 spin_unlock(&j->lock); 480 } 481 482 /** 483 * bch2_journal_pin_flush: ensure journal pin callback is no longer running 484 * @j: journal object 485 * @pin: pin to flush 486 */ 487 void bch2_journal_pin_flush(struct journal *j, struct journal_entry_pin *pin) 488 { 489 BUG_ON(journal_pin_active(pin)); 490 491 wait_event(j->pin_flush_wait, j->flush_in_progress != pin); 492 } 493 494 /* 495 * Journal reclaim: flush references to open journal entries to reclaim space in 496 * the journal 497 * 498 * May be done by the journal code in the background as needed to free up space 499 * for more journal entries, or as part of doing a clean shutdown, or to migrate 500 * data off of a specific device: 501 */ 502 503 static struct journal_entry_pin * 504 journal_get_next_pin(struct journal *j, 505 u64 seq_to_flush, 506 unsigned allowed_below_seq, 507 unsigned allowed_above_seq, 508 u64 *seq) 509 { 510 struct journal_entry_pin_list *pin_list; 511 struct journal_entry_pin *ret = NULL; 512 513 fifo_for_each_entry_ptr(pin_list, &j->pin, *seq) { 514 if (*seq > seq_to_flush && !allowed_above_seq) 515 break; 516 517 for (unsigned i = 0; i < JOURNAL_PIN_TYPE_NR; i++) 518 if (((BIT(i) & allowed_below_seq) && *seq <= seq_to_flush) || 519 (BIT(i) & allowed_above_seq)) { 520 ret = list_first_entry_or_null(&pin_list->unflushed[i], 521 struct journal_entry_pin, list); 522 if (ret) 523 return ret; 524 } 525 } 526 527 return NULL; 528 } 529 530 /* returns true if we did work */ 531 static size_t journal_flush_pins(struct journal *j, 532 u64 seq_to_flush, 533 unsigned allowed_below_seq, 534 unsigned allowed_above_seq, 535 unsigned min_any, 536 unsigned min_key_cache) 537 { 538 struct journal_entry_pin *pin; 539 size_t nr_flushed = 0; 540 journal_pin_flush_fn flush_fn; 541 u64 seq; 542 int err; 543 544 lockdep_assert_held(&j->reclaim_lock); 545 546 while (1) { 547 unsigned allowed_above = allowed_above_seq; 548 unsigned allowed_below = allowed_below_seq; 549 550 if (min_any) { 551 allowed_above |= ~0; 552 allowed_below |= ~0; 553 } 554 555 if (min_key_cache) { 556 allowed_above |= BIT(JOURNAL_PIN_TYPE_key_cache); 557 allowed_below |= BIT(JOURNAL_PIN_TYPE_key_cache); 558 } 559 560 cond_resched(); 561 562 j->last_flushed = jiffies; 563 564 spin_lock(&j->lock); 565 pin = journal_get_next_pin(j, seq_to_flush, 566 allowed_below, 567 allowed_above, &seq); 568 if (pin) { 569 BUG_ON(j->flush_in_progress); 570 j->flush_in_progress = pin; 571 j->flush_in_progress_dropped = false; 572 flush_fn = pin->flush; 573 } 574 spin_unlock(&j->lock); 575 576 if (!pin) 577 break; 578 579 if (min_key_cache && pin->flush == bch2_btree_key_cache_journal_flush) 580 min_key_cache--; 581 582 if (min_any) 583 min_any--; 584 585 err = flush_fn(j, pin, seq); 586 587 spin_lock(&j->lock); 588 /* Pin might have been dropped or rearmed: */ 589 if (likely(!err && !j->flush_in_progress_dropped)) 590 list_move(&pin->list, &journal_seq_pin(j, seq)->flushed[journal_pin_type(flush_fn)]); 591 j->flush_in_progress = NULL; 592 j->flush_in_progress_dropped = false; 593 spin_unlock(&j->lock); 594 595 wake_up(&j->pin_flush_wait); 596 597 if (err) 598 break; 599 600 nr_flushed++; 601 } 602 603 return nr_flushed; 604 } 605 606 static u64 journal_seq_to_flush(struct journal *j) 607 { 608 struct bch_fs *c = container_of(j, struct bch_fs, journal); 609 u64 seq_to_flush = 0; 610 611 spin_lock(&j->lock); 612 613 for_each_rw_member(c, ca) { 614 struct journal_device *ja = &ca->journal; 615 unsigned nr_buckets, bucket_to_flush; 616 617 if (!ja->nr) 618 continue; 619 620 /* Try to keep the journal at most half full: */ 621 nr_buckets = ja->nr / 2; 622 623 nr_buckets = min(nr_buckets, ja->nr); 624 625 bucket_to_flush = (ja->cur_idx + nr_buckets) % ja->nr; 626 seq_to_flush = max(seq_to_flush, 627 ja->bucket_seq[bucket_to_flush]); 628 } 629 630 /* Also flush if the pin fifo is more than half full */ 631 seq_to_flush = max_t(s64, seq_to_flush, 632 (s64) journal_cur_seq(j) - 633 (j->pin.size >> 1)); 634 spin_unlock(&j->lock); 635 636 return seq_to_flush; 637 } 638 639 /** 640 * __bch2_journal_reclaim - free up journal buckets 641 * @j: journal object 642 * @direct: direct or background reclaim? 643 * @kicked: requested to run since we last ran? 644 * Returns: 0 on success, or -EIO if the journal has been shutdown 645 * 646 * Background journal reclaim writes out btree nodes. It should be run 647 * early enough so that we never completely run out of journal buckets. 648 * 649 * High watermarks for triggering background reclaim: 650 * - FIFO has fewer than 512 entries left 651 * - fewer than 25% journal buckets free 652 * 653 * Background reclaim runs until low watermarks are reached: 654 * - FIFO has more than 1024 entries left 655 * - more than 50% journal buckets free 656 * 657 * As long as a reclaim can complete in the time it takes to fill up 658 * 512 journal entries or 25% of all journal buckets, then 659 * journal_next_bucket() should not stall. 660 */ 661 static int __bch2_journal_reclaim(struct journal *j, bool direct, bool kicked) 662 { 663 struct bch_fs *c = container_of(j, struct bch_fs, journal); 664 struct btree_cache *bc = &c->btree_cache; 665 bool kthread = (current->flags & PF_KTHREAD) != 0; 666 u64 seq_to_flush; 667 size_t min_nr, min_key_cache, nr_flushed; 668 unsigned flags; 669 int ret = 0; 670 671 /* 672 * We can't invoke memory reclaim while holding the reclaim_lock - 673 * journal reclaim is required to make progress for memory reclaim 674 * (cleaning the caches), so we can't get stuck in memory reclaim while 675 * we're holding the reclaim lock: 676 */ 677 lockdep_assert_held(&j->reclaim_lock); 678 flags = memalloc_noreclaim_save(); 679 680 do { 681 if (kthread && kthread_should_stop()) 682 break; 683 684 if (bch2_journal_error(j)) { 685 ret = -EIO; 686 break; 687 } 688 689 bch2_journal_do_discards(j); 690 691 seq_to_flush = journal_seq_to_flush(j); 692 min_nr = 0; 693 694 /* 695 * If it's been longer than j->reclaim_delay_ms since we last flushed, 696 * make sure to flush at least one journal pin: 697 */ 698 if (time_after(jiffies, j->last_flushed + 699 msecs_to_jiffies(c->opts.journal_reclaim_delay))) 700 min_nr = 1; 701 702 if (j->watermark != BCH_WATERMARK_stripe) 703 min_nr = 1; 704 705 size_t btree_cache_live = bc->live[0].nr + bc->live[1].nr; 706 if (atomic_long_read(&bc->nr_dirty) * 2 > btree_cache_live) 707 min_nr = 1; 708 709 min_key_cache = min(bch2_nr_btree_keys_need_flush(c), (size_t) 128); 710 711 trace_and_count(c, journal_reclaim_start, c, 712 direct, kicked, 713 min_nr, min_key_cache, 714 atomic_long_read(&bc->nr_dirty), btree_cache_live, 715 atomic_long_read(&c->btree_key_cache.nr_dirty), 716 atomic_long_read(&c->btree_key_cache.nr_keys)); 717 718 nr_flushed = journal_flush_pins(j, seq_to_flush, 719 ~0, 0, 720 min_nr, min_key_cache); 721 722 if (direct) 723 j->nr_direct_reclaim += nr_flushed; 724 else 725 j->nr_background_reclaim += nr_flushed; 726 trace_and_count(c, journal_reclaim_finish, c, nr_flushed); 727 728 if (nr_flushed) 729 wake_up(&j->reclaim_wait); 730 } while ((min_nr || min_key_cache) && nr_flushed && !direct); 731 732 memalloc_noreclaim_restore(flags); 733 734 return ret; 735 } 736 737 int bch2_journal_reclaim(struct journal *j) 738 { 739 return __bch2_journal_reclaim(j, true, true); 740 } 741 742 static int bch2_journal_reclaim_thread(void *arg) 743 { 744 struct journal *j = arg; 745 struct bch_fs *c = container_of(j, struct bch_fs, journal); 746 unsigned long delay, now; 747 bool journal_empty; 748 int ret = 0; 749 750 set_freezable(); 751 752 j->last_flushed = jiffies; 753 754 while (!ret && !kthread_should_stop()) { 755 bool kicked = j->reclaim_kicked; 756 757 j->reclaim_kicked = false; 758 759 mutex_lock(&j->reclaim_lock); 760 ret = __bch2_journal_reclaim(j, false, kicked); 761 mutex_unlock(&j->reclaim_lock); 762 763 now = jiffies; 764 delay = msecs_to_jiffies(c->opts.journal_reclaim_delay); 765 j->next_reclaim = j->last_flushed + delay; 766 767 if (!time_in_range(j->next_reclaim, now, now + delay)) 768 j->next_reclaim = now + delay; 769 770 while (1) { 771 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 772 if (kthread_should_stop()) 773 break; 774 if (j->reclaim_kicked) 775 break; 776 777 spin_lock(&j->lock); 778 journal_empty = fifo_empty(&j->pin); 779 spin_unlock(&j->lock); 780 781 long timeout = j->next_reclaim - jiffies; 782 783 if (journal_empty) 784 schedule(); 785 else if (timeout > 0) 786 schedule_timeout(timeout); 787 else 788 break; 789 } 790 __set_current_state(TASK_RUNNING); 791 } 792 793 return 0; 794 } 795 796 void bch2_journal_reclaim_stop(struct journal *j) 797 { 798 struct task_struct *p = j->reclaim_thread; 799 800 j->reclaim_thread = NULL; 801 802 if (p) { 803 kthread_stop(p); 804 put_task_struct(p); 805 } 806 } 807 808 int bch2_journal_reclaim_start(struct journal *j) 809 { 810 struct bch_fs *c = container_of(j, struct bch_fs, journal); 811 struct task_struct *p; 812 int ret; 813 814 if (j->reclaim_thread) 815 return 0; 816 817 p = kthread_create(bch2_journal_reclaim_thread, j, 818 "bch-reclaim/%s", c->name); 819 ret = PTR_ERR_OR_ZERO(p); 820 bch_err_msg(c, ret, "creating journal reclaim thread"); 821 if (ret) 822 return ret; 823 824 get_task_struct(p); 825 j->reclaim_thread = p; 826 wake_up_process(p); 827 return 0; 828 } 829 830 static bool journal_pins_still_flushing(struct journal *j, u64 seq_to_flush, 831 unsigned types) 832 { 833 struct journal_entry_pin_list *pin_list; 834 u64 seq; 835 836 spin_lock(&j->lock); 837 fifo_for_each_entry_ptr(pin_list, &j->pin, seq) { 838 if (seq > seq_to_flush) 839 break; 840 841 for (unsigned i = 0; i < JOURNAL_PIN_TYPE_NR; i++) 842 if ((BIT(i) & types) && 843 (!list_empty(&pin_list->unflushed[i]) || 844 !list_empty(&pin_list->flushed[i]))) { 845 spin_unlock(&j->lock); 846 return true; 847 } 848 } 849 spin_unlock(&j->lock); 850 851 return false; 852 } 853 854 static bool journal_flush_pins_or_still_flushing(struct journal *j, u64 seq_to_flush, 855 unsigned types) 856 { 857 return journal_flush_pins(j, seq_to_flush, types, 0, 0, 0) || 858 journal_pins_still_flushing(j, seq_to_flush, types); 859 } 860 861 static int journal_flush_done(struct journal *j, u64 seq_to_flush, 862 bool *did_work) 863 { 864 int ret = 0; 865 866 ret = bch2_journal_error(j); 867 if (ret) 868 return ret; 869 870 mutex_lock(&j->reclaim_lock); 871 872 if (journal_flush_pins_or_still_flushing(j, seq_to_flush, 873 BIT(JOURNAL_PIN_TYPE_key_cache)| 874 BIT(JOURNAL_PIN_TYPE_other))) { 875 *did_work = true; 876 goto unlock; 877 } 878 879 if (journal_flush_pins_or_still_flushing(j, seq_to_flush, 880 BIT(JOURNAL_PIN_TYPE_btree))) { 881 *did_work = true; 882 goto unlock; 883 } 884 885 if (seq_to_flush > journal_cur_seq(j)) 886 bch2_journal_entry_close(j); 887 888 spin_lock(&j->lock); 889 /* 890 * If journal replay hasn't completed, the unreplayed journal entries 891 * hold refs on their corresponding sequence numbers 892 */ 893 ret = !test_bit(JOURNAL_replay_done, &j->flags) || 894 journal_last_seq(j) > seq_to_flush || 895 !fifo_used(&j->pin); 896 897 spin_unlock(&j->lock); 898 unlock: 899 mutex_unlock(&j->reclaim_lock); 900 901 return ret; 902 } 903 904 bool bch2_journal_flush_pins(struct journal *j, u64 seq_to_flush) 905 { 906 /* time_stats this */ 907 bool did_work = false; 908 909 if (!test_bit(JOURNAL_running, &j->flags)) 910 return false; 911 912 closure_wait_event(&j->reclaim_flush_wait, 913 journal_flush_done(j, seq_to_flush, &did_work)); 914 915 return did_work; 916 } 917 918 int bch2_journal_flush_device_pins(struct journal *j, int dev_idx) 919 { 920 struct bch_fs *c = container_of(j, struct bch_fs, journal); 921 struct journal_entry_pin_list *p; 922 u64 iter, seq = 0; 923 int ret = 0; 924 925 spin_lock(&j->lock); 926 fifo_for_each_entry_ptr(p, &j->pin, iter) 927 if (dev_idx >= 0 928 ? bch2_dev_list_has_dev(p->devs, dev_idx) 929 : p->devs.nr < c->opts.metadata_replicas) 930 seq = iter; 931 spin_unlock(&j->lock); 932 933 bch2_journal_flush_pins(j, seq); 934 935 ret = bch2_journal_error(j); 936 if (ret) 937 return ret; 938 939 mutex_lock(&c->replicas_gc_lock); 940 bch2_replicas_gc_start(c, 1 << BCH_DATA_journal); 941 942 /* 943 * Now that we've populated replicas_gc, write to the journal to mark 944 * active journal devices. This handles the case where the journal might 945 * be empty. Otherwise we could clear all journal replicas and 946 * temporarily put the fs into an unrecoverable state. Journal recovery 947 * expects to find devices marked for journal data on unclean mount. 948 */ 949 ret = bch2_journal_meta(&c->journal); 950 if (ret) 951 goto err; 952 953 seq = 0; 954 spin_lock(&j->lock); 955 while (!ret) { 956 struct bch_replicas_padded replicas; 957 958 seq = max(seq, journal_last_seq(j)); 959 if (seq >= j->pin.back) 960 break; 961 bch2_devlist_to_replicas(&replicas.e, BCH_DATA_journal, 962 journal_seq_pin(j, seq)->devs); 963 seq++; 964 965 if (replicas.e.nr_devs) { 966 spin_unlock(&j->lock); 967 ret = bch2_mark_replicas(c, &replicas.e); 968 spin_lock(&j->lock); 969 } 970 } 971 spin_unlock(&j->lock); 972 err: 973 ret = bch2_replicas_gc_end(c, ret); 974 mutex_unlock(&c->replicas_gc_lock); 975 976 return ret; 977 } 978 979 bool bch2_journal_seq_pins_to_text(struct printbuf *out, struct journal *j, u64 *seq) 980 { 981 struct journal_entry_pin_list *pin_list; 982 struct journal_entry_pin *pin; 983 984 spin_lock(&j->lock); 985 if (!test_bit(JOURNAL_running, &j->flags)) { 986 spin_unlock(&j->lock); 987 return true; 988 } 989 990 *seq = max(*seq, j->pin.front); 991 992 if (*seq >= j->pin.back) { 993 spin_unlock(&j->lock); 994 return true; 995 } 996 997 out->atomic++; 998 999 pin_list = journal_seq_pin(j, *seq); 1000 1001 prt_printf(out, "%llu: count %u\n", *seq, atomic_read(&pin_list->count)); 1002 printbuf_indent_add(out, 2); 1003 1004 prt_printf(out, "unflushed:\n"); 1005 for (unsigned i = 0; i < ARRAY_SIZE(pin_list->unflushed); i++) 1006 list_for_each_entry(pin, &pin_list->unflushed[i], list) 1007 prt_printf(out, "\t%px %ps\n", pin, pin->flush); 1008 1009 prt_printf(out, "flushed:\n"); 1010 for (unsigned i = 0; i < ARRAY_SIZE(pin_list->flushed); i++) 1011 list_for_each_entry(pin, &pin_list->flushed[i], list) 1012 prt_printf(out, "\t%px %ps\n", pin, pin->flush); 1013 1014 printbuf_indent_sub(out, 2); 1015 1016 --out->atomic; 1017 spin_unlock(&j->lock); 1018 1019 return false; 1020 } 1021 1022 void bch2_journal_pins_to_text(struct printbuf *out, struct journal *j) 1023 { 1024 u64 seq = 0; 1025 1026 while (!bch2_journal_seq_pins_to_text(out, j, &seq)) 1027 seq++; 1028 } 1029