1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "btree_key_cache.h" 5 #include "btree_update.h" 6 #include "buckets.h" 7 #include "errcode.h" 8 #include "error.h" 9 #include "journal.h" 10 #include "journal_io.h" 11 #include "journal_reclaim.h" 12 #include "replicas.h" 13 #include "sb-members.h" 14 #include "trace.h" 15 16 #include <linux/kthread.h> 17 #include <linux/sched/mm.h> 18 19 /* Free space calculations: */ 20 21 static unsigned journal_space_from(struct journal_device *ja, 22 enum journal_space_from from) 23 { 24 switch (from) { 25 case journal_space_discarded: 26 return ja->discard_idx; 27 case journal_space_clean_ondisk: 28 return ja->dirty_idx_ondisk; 29 case journal_space_clean: 30 return ja->dirty_idx; 31 default: 32 BUG(); 33 } 34 } 35 36 unsigned bch2_journal_dev_buckets_available(struct journal *j, 37 struct journal_device *ja, 38 enum journal_space_from from) 39 { 40 unsigned available = (journal_space_from(ja, from) - 41 ja->cur_idx - 1 + ja->nr) % ja->nr; 42 43 /* 44 * Don't use the last bucket unless writing the new last_seq 45 * will make another bucket available: 46 */ 47 if (available && ja->dirty_idx_ondisk == ja->dirty_idx) 48 --available; 49 50 return available; 51 } 52 53 static inline void journal_set_watermark(struct journal *j, bool low_on_space) 54 { 55 unsigned watermark = BCH_WATERMARK_stripe; 56 57 if (low_on_space) 58 watermark = max_t(unsigned, watermark, BCH_WATERMARK_reclaim); 59 if (fifo_free(&j->pin) < j->pin.size / 4) 60 watermark = max_t(unsigned, watermark, BCH_WATERMARK_reclaim); 61 62 if (watermark == j->watermark) 63 return; 64 65 swap(watermark, j->watermark); 66 if (watermark > j->watermark) 67 journal_wake(j); 68 } 69 70 static struct journal_space 71 journal_dev_space_available(struct journal *j, struct bch_dev *ca, 72 enum journal_space_from from) 73 { 74 struct journal_device *ja = &ca->journal; 75 unsigned sectors, buckets, unwritten; 76 u64 seq; 77 78 if (from == journal_space_total) 79 return (struct journal_space) { 80 .next_entry = ca->mi.bucket_size, 81 .total = ca->mi.bucket_size * ja->nr, 82 }; 83 84 buckets = bch2_journal_dev_buckets_available(j, ja, from); 85 sectors = ja->sectors_free; 86 87 /* 88 * We that we don't allocate the space for a journal entry 89 * until we write it out - thus, account for it here: 90 */ 91 for (seq = journal_last_unwritten_seq(j); 92 seq <= journal_cur_seq(j); 93 seq++) { 94 unwritten = j->buf[seq & JOURNAL_BUF_MASK].sectors; 95 96 if (!unwritten) 97 continue; 98 99 /* entry won't fit on this device, skip: */ 100 if (unwritten > ca->mi.bucket_size) 101 continue; 102 103 if (unwritten >= sectors) { 104 if (!buckets) { 105 sectors = 0; 106 break; 107 } 108 109 buckets--; 110 sectors = ca->mi.bucket_size; 111 } 112 113 sectors -= unwritten; 114 } 115 116 if (sectors < ca->mi.bucket_size && buckets) { 117 buckets--; 118 sectors = ca->mi.bucket_size; 119 } 120 121 return (struct journal_space) { 122 .next_entry = sectors, 123 .total = sectors + buckets * ca->mi.bucket_size, 124 }; 125 } 126 127 static struct journal_space __journal_space_available(struct journal *j, unsigned nr_devs_want, 128 enum journal_space_from from) 129 { 130 struct bch_fs *c = container_of(j, struct bch_fs, journal); 131 struct bch_dev *ca; 132 unsigned i, pos, nr_devs = 0; 133 struct journal_space space, dev_space[BCH_SB_MEMBERS_MAX]; 134 135 BUG_ON(nr_devs_want > ARRAY_SIZE(dev_space)); 136 137 rcu_read_lock(); 138 for_each_member_device_rcu(ca, c, i, 139 &c->rw_devs[BCH_DATA_journal]) { 140 if (!ca->journal.nr) 141 continue; 142 143 space = journal_dev_space_available(j, ca, from); 144 if (!space.next_entry) 145 continue; 146 147 for (pos = 0; pos < nr_devs; pos++) 148 if (space.total > dev_space[pos].total) 149 break; 150 151 array_insert_item(dev_space, nr_devs, pos, space); 152 } 153 rcu_read_unlock(); 154 155 if (nr_devs < nr_devs_want) 156 return (struct journal_space) { 0, 0 }; 157 158 /* 159 * We sorted largest to smallest, and we want the smallest out of the 160 * @nr_devs_want largest devices: 161 */ 162 return dev_space[nr_devs_want - 1]; 163 } 164 165 void bch2_journal_space_available(struct journal *j) 166 { 167 struct bch_fs *c = container_of(j, struct bch_fs, journal); 168 struct bch_dev *ca; 169 unsigned clean, clean_ondisk, total; 170 unsigned max_entry_size = min(j->buf[0].buf_size >> 9, 171 j->buf[1].buf_size >> 9); 172 unsigned i, nr_online = 0, nr_devs_want; 173 bool can_discard = false; 174 int ret = 0; 175 176 lockdep_assert_held(&j->lock); 177 178 rcu_read_lock(); 179 for_each_member_device_rcu(ca, c, i, 180 &c->rw_devs[BCH_DATA_journal]) { 181 struct journal_device *ja = &ca->journal; 182 183 if (!ja->nr) 184 continue; 185 186 while (ja->dirty_idx != ja->cur_idx && 187 ja->bucket_seq[ja->dirty_idx] < journal_last_seq(j)) 188 ja->dirty_idx = (ja->dirty_idx + 1) % ja->nr; 189 190 while (ja->dirty_idx_ondisk != ja->dirty_idx && 191 ja->bucket_seq[ja->dirty_idx_ondisk] < j->last_seq_ondisk) 192 ja->dirty_idx_ondisk = (ja->dirty_idx_ondisk + 1) % ja->nr; 193 194 if (ja->discard_idx != ja->dirty_idx_ondisk) 195 can_discard = true; 196 197 max_entry_size = min_t(unsigned, max_entry_size, ca->mi.bucket_size); 198 nr_online++; 199 } 200 rcu_read_unlock(); 201 202 j->can_discard = can_discard; 203 204 if (nr_online < c->opts.metadata_replicas_required) { 205 ret = JOURNAL_ERR_insufficient_devices; 206 goto out; 207 } 208 209 nr_devs_want = min_t(unsigned, nr_online, c->opts.metadata_replicas); 210 211 for (i = 0; i < journal_space_nr; i++) 212 j->space[i] = __journal_space_available(j, nr_devs_want, i); 213 214 clean_ondisk = j->space[journal_space_clean_ondisk].total; 215 clean = j->space[journal_space_clean].total; 216 total = j->space[journal_space_total].total; 217 218 if (!j->space[journal_space_discarded].next_entry) 219 ret = JOURNAL_ERR_journal_full; 220 221 if ((j->space[journal_space_clean_ondisk].next_entry < 222 j->space[journal_space_clean_ondisk].total) && 223 (clean - clean_ondisk <= total / 8) && 224 (clean_ondisk * 2 > clean)) 225 set_bit(JOURNAL_MAY_SKIP_FLUSH, &j->flags); 226 else 227 clear_bit(JOURNAL_MAY_SKIP_FLUSH, &j->flags); 228 229 journal_set_watermark(j, clean * 4 <= total); 230 out: 231 j->cur_entry_sectors = !ret ? j->space[journal_space_discarded].next_entry : 0; 232 j->cur_entry_error = ret; 233 234 if (!ret) 235 journal_wake(j); 236 } 237 238 /* Discards - last part of journal reclaim: */ 239 240 static bool should_discard_bucket(struct journal *j, struct journal_device *ja) 241 { 242 bool ret; 243 244 spin_lock(&j->lock); 245 ret = ja->discard_idx != ja->dirty_idx_ondisk; 246 spin_unlock(&j->lock); 247 248 return ret; 249 } 250 251 /* 252 * Advance ja->discard_idx as long as it points to buckets that are no longer 253 * dirty, issuing discards if necessary: 254 */ 255 void bch2_journal_do_discards(struct journal *j) 256 { 257 struct bch_fs *c = container_of(j, struct bch_fs, journal); 258 struct bch_dev *ca; 259 unsigned iter; 260 261 mutex_lock(&j->discard_lock); 262 263 for_each_rw_member(ca, c, iter) { 264 struct journal_device *ja = &ca->journal; 265 266 while (should_discard_bucket(j, ja)) { 267 if (!c->opts.nochanges && 268 ca->mi.discard && 269 bdev_max_discard_sectors(ca->disk_sb.bdev)) 270 blkdev_issue_discard(ca->disk_sb.bdev, 271 bucket_to_sector(ca, 272 ja->buckets[ja->discard_idx]), 273 ca->mi.bucket_size, GFP_NOFS); 274 275 spin_lock(&j->lock); 276 ja->discard_idx = (ja->discard_idx + 1) % ja->nr; 277 278 bch2_journal_space_available(j); 279 spin_unlock(&j->lock); 280 } 281 } 282 283 mutex_unlock(&j->discard_lock); 284 } 285 286 /* 287 * Journal entry pinning - machinery for holding a reference on a given journal 288 * entry, holding it open to ensure it gets replayed during recovery: 289 */ 290 291 void bch2_journal_reclaim_fast(struct journal *j) 292 { 293 bool popped = false; 294 295 lockdep_assert_held(&j->lock); 296 297 /* 298 * Unpin journal entries whose reference counts reached zero, meaning 299 * all btree nodes got written out 300 */ 301 while (!fifo_empty(&j->pin) && 302 !atomic_read(&fifo_peek_front(&j->pin).count)) { 303 j->pin.front++; 304 popped = true; 305 } 306 307 if (popped) 308 bch2_journal_space_available(j); 309 } 310 311 bool __bch2_journal_pin_put(struct journal *j, u64 seq) 312 { 313 struct journal_entry_pin_list *pin_list = journal_seq_pin(j, seq); 314 315 return atomic_dec_and_test(&pin_list->count); 316 } 317 318 void bch2_journal_pin_put(struct journal *j, u64 seq) 319 { 320 if (__bch2_journal_pin_put(j, seq)) { 321 spin_lock(&j->lock); 322 bch2_journal_reclaim_fast(j); 323 spin_unlock(&j->lock); 324 } 325 } 326 327 static inline bool __journal_pin_drop(struct journal *j, 328 struct journal_entry_pin *pin) 329 { 330 struct journal_entry_pin_list *pin_list; 331 332 if (!journal_pin_active(pin)) 333 return false; 334 335 if (j->flush_in_progress == pin) 336 j->flush_in_progress_dropped = true; 337 338 pin_list = journal_seq_pin(j, pin->seq); 339 pin->seq = 0; 340 list_del_init(&pin->list); 341 342 /* 343 * Unpinning a journal entry may make journal_next_bucket() succeed, if 344 * writing a new last_seq will now make another bucket available: 345 */ 346 return atomic_dec_and_test(&pin_list->count) && 347 pin_list == &fifo_peek_front(&j->pin); 348 } 349 350 void bch2_journal_pin_drop(struct journal *j, 351 struct journal_entry_pin *pin) 352 { 353 spin_lock(&j->lock); 354 if (__journal_pin_drop(j, pin)) 355 bch2_journal_reclaim_fast(j); 356 spin_unlock(&j->lock); 357 } 358 359 static enum journal_pin_type journal_pin_type(journal_pin_flush_fn fn) 360 { 361 if (fn == bch2_btree_node_flush0 || 362 fn == bch2_btree_node_flush1) 363 return JOURNAL_PIN_btree; 364 else if (fn == bch2_btree_key_cache_journal_flush) 365 return JOURNAL_PIN_key_cache; 366 else 367 return JOURNAL_PIN_other; 368 } 369 370 void bch2_journal_pin_set(struct journal *j, u64 seq, 371 struct journal_entry_pin *pin, 372 journal_pin_flush_fn flush_fn) 373 { 374 struct journal_entry_pin_list *pin_list; 375 bool reclaim; 376 377 spin_lock(&j->lock); 378 379 if (seq < journal_last_seq(j)) { 380 /* 381 * bch2_journal_pin_copy() raced with bch2_journal_pin_drop() on 382 * the src pin - with the pin dropped, the entry to pin might no 383 * longer to exist, but that means there's no longer anything to 384 * copy and we can bail out here: 385 */ 386 spin_unlock(&j->lock); 387 return; 388 } 389 390 pin_list = journal_seq_pin(j, seq); 391 392 reclaim = __journal_pin_drop(j, pin); 393 394 atomic_inc(&pin_list->count); 395 pin->seq = seq; 396 pin->flush = flush_fn; 397 398 if (flush_fn) 399 list_add(&pin->list, &pin_list->list[journal_pin_type(flush_fn)]); 400 else 401 list_add(&pin->list, &pin_list->flushed); 402 403 if (reclaim) 404 bch2_journal_reclaim_fast(j); 405 spin_unlock(&j->lock); 406 407 /* 408 * If the journal is currently full, we might want to call flush_fn 409 * immediately: 410 */ 411 journal_wake(j); 412 } 413 414 /** 415 * bch2_journal_pin_flush: ensure journal pin callback is no longer running 416 * @j: journal object 417 * @pin: pin to flush 418 */ 419 void bch2_journal_pin_flush(struct journal *j, struct journal_entry_pin *pin) 420 { 421 BUG_ON(journal_pin_active(pin)); 422 423 wait_event(j->pin_flush_wait, j->flush_in_progress != pin); 424 } 425 426 /* 427 * Journal reclaim: flush references to open journal entries to reclaim space in 428 * the journal 429 * 430 * May be done by the journal code in the background as needed to free up space 431 * for more journal entries, or as part of doing a clean shutdown, or to migrate 432 * data off of a specific device: 433 */ 434 435 static struct journal_entry_pin * 436 journal_get_next_pin(struct journal *j, 437 u64 seq_to_flush, 438 unsigned allowed_below_seq, 439 unsigned allowed_above_seq, 440 u64 *seq) 441 { 442 struct journal_entry_pin_list *pin_list; 443 struct journal_entry_pin *ret = NULL; 444 unsigned i; 445 446 fifo_for_each_entry_ptr(pin_list, &j->pin, *seq) { 447 if (*seq > seq_to_flush && !allowed_above_seq) 448 break; 449 450 for (i = 0; i < JOURNAL_PIN_NR; i++) 451 if ((((1U << i) & allowed_below_seq) && *seq <= seq_to_flush) || 452 ((1U << i) & allowed_above_seq)) { 453 ret = list_first_entry_or_null(&pin_list->list[i], 454 struct journal_entry_pin, list); 455 if (ret) 456 return ret; 457 } 458 } 459 460 return NULL; 461 } 462 463 /* returns true if we did work */ 464 static size_t journal_flush_pins(struct journal *j, 465 u64 seq_to_flush, 466 unsigned allowed_below_seq, 467 unsigned allowed_above_seq, 468 unsigned min_any, 469 unsigned min_key_cache) 470 { 471 struct journal_entry_pin *pin; 472 size_t nr_flushed = 0; 473 journal_pin_flush_fn flush_fn; 474 u64 seq; 475 int err; 476 477 lockdep_assert_held(&j->reclaim_lock); 478 479 while (1) { 480 unsigned allowed_above = allowed_above_seq; 481 unsigned allowed_below = allowed_below_seq; 482 483 if (min_any) { 484 allowed_above |= ~0; 485 allowed_below |= ~0; 486 } 487 488 if (min_key_cache) { 489 allowed_above |= 1U << JOURNAL_PIN_key_cache; 490 allowed_below |= 1U << JOURNAL_PIN_key_cache; 491 } 492 493 cond_resched(); 494 495 j->last_flushed = jiffies; 496 497 spin_lock(&j->lock); 498 pin = journal_get_next_pin(j, seq_to_flush, allowed_below, allowed_above, &seq); 499 if (pin) { 500 BUG_ON(j->flush_in_progress); 501 j->flush_in_progress = pin; 502 j->flush_in_progress_dropped = false; 503 flush_fn = pin->flush; 504 } 505 spin_unlock(&j->lock); 506 507 if (!pin) 508 break; 509 510 if (min_key_cache && pin->flush == bch2_btree_key_cache_journal_flush) 511 min_key_cache--; 512 513 if (min_any) 514 min_any--; 515 516 err = flush_fn(j, pin, seq); 517 518 spin_lock(&j->lock); 519 /* Pin might have been dropped or rearmed: */ 520 if (likely(!err && !j->flush_in_progress_dropped)) 521 list_move(&pin->list, &journal_seq_pin(j, seq)->flushed); 522 j->flush_in_progress = NULL; 523 j->flush_in_progress_dropped = false; 524 spin_unlock(&j->lock); 525 526 wake_up(&j->pin_flush_wait); 527 528 if (err) 529 break; 530 531 nr_flushed++; 532 } 533 534 return nr_flushed; 535 } 536 537 static u64 journal_seq_to_flush(struct journal *j) 538 { 539 struct bch_fs *c = container_of(j, struct bch_fs, journal); 540 struct bch_dev *ca; 541 u64 seq_to_flush = 0; 542 unsigned iter; 543 544 spin_lock(&j->lock); 545 546 for_each_rw_member(ca, c, iter) { 547 struct journal_device *ja = &ca->journal; 548 unsigned nr_buckets, bucket_to_flush; 549 550 if (!ja->nr) 551 continue; 552 553 /* Try to keep the journal at most half full: */ 554 nr_buckets = ja->nr / 2; 555 556 nr_buckets = min(nr_buckets, ja->nr); 557 558 bucket_to_flush = (ja->cur_idx + nr_buckets) % ja->nr; 559 seq_to_flush = max(seq_to_flush, 560 ja->bucket_seq[bucket_to_flush]); 561 } 562 563 /* Also flush if the pin fifo is more than half full */ 564 seq_to_flush = max_t(s64, seq_to_flush, 565 (s64) journal_cur_seq(j) - 566 (j->pin.size >> 1)); 567 spin_unlock(&j->lock); 568 569 return seq_to_flush; 570 } 571 572 /** 573 * __bch2_journal_reclaim - free up journal buckets 574 * @j: journal object 575 * @direct: direct or background reclaim? 576 * @kicked: requested to run since we last ran? 577 * Returns: 0 on success, or -EIO if the journal has been shutdown 578 * 579 * Background journal reclaim writes out btree nodes. It should be run 580 * early enough so that we never completely run out of journal buckets. 581 * 582 * High watermarks for triggering background reclaim: 583 * - FIFO has fewer than 512 entries left 584 * - fewer than 25% journal buckets free 585 * 586 * Background reclaim runs until low watermarks are reached: 587 * - FIFO has more than 1024 entries left 588 * - more than 50% journal buckets free 589 * 590 * As long as a reclaim can complete in the time it takes to fill up 591 * 512 journal entries or 25% of all journal buckets, then 592 * journal_next_bucket() should not stall. 593 */ 594 static int __bch2_journal_reclaim(struct journal *j, bool direct, bool kicked) 595 { 596 struct bch_fs *c = container_of(j, struct bch_fs, journal); 597 bool kthread = (current->flags & PF_KTHREAD) != 0; 598 u64 seq_to_flush; 599 size_t min_nr, min_key_cache, nr_flushed; 600 unsigned flags; 601 int ret = 0; 602 603 /* 604 * We can't invoke memory reclaim while holding the reclaim_lock - 605 * journal reclaim is required to make progress for memory reclaim 606 * (cleaning the caches), so we can't get stuck in memory reclaim while 607 * we're holding the reclaim lock: 608 */ 609 lockdep_assert_held(&j->reclaim_lock); 610 flags = memalloc_noreclaim_save(); 611 612 do { 613 if (kthread && kthread_should_stop()) 614 break; 615 616 if (bch2_journal_error(j)) { 617 ret = -EIO; 618 break; 619 } 620 621 bch2_journal_do_discards(j); 622 623 seq_to_flush = journal_seq_to_flush(j); 624 min_nr = 0; 625 626 /* 627 * If it's been longer than j->reclaim_delay_ms since we last flushed, 628 * make sure to flush at least one journal pin: 629 */ 630 if (time_after(jiffies, j->last_flushed + 631 msecs_to_jiffies(c->opts.journal_reclaim_delay))) 632 min_nr = 1; 633 634 if (j->watermark != BCH_WATERMARK_stripe) 635 min_nr = 1; 636 637 if (atomic_read(&c->btree_cache.dirty) * 2 > c->btree_cache.used) 638 min_nr = 1; 639 640 min_key_cache = min(bch2_nr_btree_keys_need_flush(c), (size_t) 128); 641 642 trace_and_count(c, journal_reclaim_start, c, 643 direct, kicked, 644 min_nr, min_key_cache, 645 atomic_read(&c->btree_cache.dirty), 646 c->btree_cache.used, 647 atomic_long_read(&c->btree_key_cache.nr_dirty), 648 atomic_long_read(&c->btree_key_cache.nr_keys)); 649 650 nr_flushed = journal_flush_pins(j, seq_to_flush, 651 ~0, 0, 652 min_nr, min_key_cache); 653 654 if (direct) 655 j->nr_direct_reclaim += nr_flushed; 656 else 657 j->nr_background_reclaim += nr_flushed; 658 trace_and_count(c, journal_reclaim_finish, c, nr_flushed); 659 660 if (nr_flushed) 661 wake_up(&j->reclaim_wait); 662 } while ((min_nr || min_key_cache) && nr_flushed && !direct); 663 664 memalloc_noreclaim_restore(flags); 665 666 return ret; 667 } 668 669 int bch2_journal_reclaim(struct journal *j) 670 { 671 return __bch2_journal_reclaim(j, true, true); 672 } 673 674 static int bch2_journal_reclaim_thread(void *arg) 675 { 676 struct journal *j = arg; 677 struct bch_fs *c = container_of(j, struct bch_fs, journal); 678 unsigned long delay, now; 679 bool journal_empty; 680 int ret = 0; 681 682 set_freezable(); 683 684 j->last_flushed = jiffies; 685 686 while (!ret && !kthread_should_stop()) { 687 bool kicked = j->reclaim_kicked; 688 689 j->reclaim_kicked = false; 690 691 mutex_lock(&j->reclaim_lock); 692 ret = __bch2_journal_reclaim(j, false, kicked); 693 mutex_unlock(&j->reclaim_lock); 694 695 now = jiffies; 696 delay = msecs_to_jiffies(c->opts.journal_reclaim_delay); 697 j->next_reclaim = j->last_flushed + delay; 698 699 if (!time_in_range(j->next_reclaim, now, now + delay)) 700 j->next_reclaim = now + delay; 701 702 while (1) { 703 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 704 if (kthread_should_stop()) 705 break; 706 if (j->reclaim_kicked) 707 break; 708 709 spin_lock(&j->lock); 710 journal_empty = fifo_empty(&j->pin); 711 spin_unlock(&j->lock); 712 713 if (journal_empty) 714 schedule(); 715 else if (time_after(j->next_reclaim, jiffies)) 716 schedule_timeout(j->next_reclaim - jiffies); 717 else 718 break; 719 } 720 __set_current_state(TASK_RUNNING); 721 } 722 723 return 0; 724 } 725 726 void bch2_journal_reclaim_stop(struct journal *j) 727 { 728 struct task_struct *p = j->reclaim_thread; 729 730 j->reclaim_thread = NULL; 731 732 if (p) { 733 kthread_stop(p); 734 put_task_struct(p); 735 } 736 } 737 738 int bch2_journal_reclaim_start(struct journal *j) 739 { 740 struct bch_fs *c = container_of(j, struct bch_fs, journal); 741 struct task_struct *p; 742 int ret; 743 744 if (j->reclaim_thread) 745 return 0; 746 747 p = kthread_create(bch2_journal_reclaim_thread, j, 748 "bch-reclaim/%s", c->name); 749 ret = PTR_ERR_OR_ZERO(p); 750 if (ret) { 751 bch_err_msg(c, ret, "creating journal reclaim thread"); 752 return ret; 753 } 754 755 get_task_struct(p); 756 j->reclaim_thread = p; 757 wake_up_process(p); 758 return 0; 759 } 760 761 static int journal_flush_done(struct journal *j, u64 seq_to_flush, 762 bool *did_work) 763 { 764 int ret; 765 766 ret = bch2_journal_error(j); 767 if (ret) 768 return ret; 769 770 mutex_lock(&j->reclaim_lock); 771 772 if (journal_flush_pins(j, seq_to_flush, 773 (1U << JOURNAL_PIN_key_cache)| 774 (1U << JOURNAL_PIN_other), 0, 0, 0) || 775 journal_flush_pins(j, seq_to_flush, 776 (1U << JOURNAL_PIN_btree), 0, 0, 0)) 777 *did_work = true; 778 779 spin_lock(&j->lock); 780 /* 781 * If journal replay hasn't completed, the unreplayed journal entries 782 * hold refs on their corresponding sequence numbers 783 */ 784 ret = !test_bit(JOURNAL_REPLAY_DONE, &j->flags) || 785 journal_last_seq(j) > seq_to_flush || 786 !fifo_used(&j->pin); 787 788 spin_unlock(&j->lock); 789 mutex_unlock(&j->reclaim_lock); 790 791 return ret; 792 } 793 794 bool bch2_journal_flush_pins(struct journal *j, u64 seq_to_flush) 795 { 796 bool did_work = false; 797 798 if (!test_bit(JOURNAL_STARTED, &j->flags)) 799 return false; 800 801 closure_wait_event(&j->async_wait, 802 journal_flush_done(j, seq_to_flush, &did_work)); 803 804 return did_work; 805 } 806 807 int bch2_journal_flush_device_pins(struct journal *j, int dev_idx) 808 { 809 struct bch_fs *c = container_of(j, struct bch_fs, journal); 810 struct journal_entry_pin_list *p; 811 u64 iter, seq = 0; 812 int ret = 0; 813 814 spin_lock(&j->lock); 815 fifo_for_each_entry_ptr(p, &j->pin, iter) 816 if (dev_idx >= 0 817 ? bch2_dev_list_has_dev(p->devs, dev_idx) 818 : p->devs.nr < c->opts.metadata_replicas) 819 seq = iter; 820 spin_unlock(&j->lock); 821 822 bch2_journal_flush_pins(j, seq); 823 824 ret = bch2_journal_error(j); 825 if (ret) 826 return ret; 827 828 mutex_lock(&c->replicas_gc_lock); 829 bch2_replicas_gc_start(c, 1 << BCH_DATA_journal); 830 831 /* 832 * Now that we've populated replicas_gc, write to the journal to mark 833 * active journal devices. This handles the case where the journal might 834 * be empty. Otherwise we could clear all journal replicas and 835 * temporarily put the fs into an unrecoverable state. Journal recovery 836 * expects to find devices marked for journal data on unclean mount. 837 */ 838 ret = bch2_journal_meta(&c->journal); 839 if (ret) 840 goto err; 841 842 seq = 0; 843 spin_lock(&j->lock); 844 while (!ret) { 845 struct bch_replicas_padded replicas; 846 847 seq = max(seq, journal_last_seq(j)); 848 if (seq >= j->pin.back) 849 break; 850 bch2_devlist_to_replicas(&replicas.e, BCH_DATA_journal, 851 journal_seq_pin(j, seq)->devs); 852 seq++; 853 854 spin_unlock(&j->lock); 855 ret = bch2_mark_replicas(c, &replicas.e); 856 spin_lock(&j->lock); 857 } 858 spin_unlock(&j->lock); 859 err: 860 ret = bch2_replicas_gc_end(c, ret); 861 mutex_unlock(&c->replicas_gc_lock); 862 863 return ret; 864 } 865