1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "btree_key_cache.h" 5 #include "btree_update.h" 6 #include "btree_write_buffer.h" 7 #include "buckets.h" 8 #include "errcode.h" 9 #include "error.h" 10 #include "journal.h" 11 #include "journal_io.h" 12 #include "journal_reclaim.h" 13 #include "replicas.h" 14 #include "sb-members.h" 15 #include "trace.h" 16 17 #include <linux/kthread.h> 18 #include <linux/sched/mm.h> 19 20 /* Free space calculations: */ 21 22 static unsigned journal_space_from(struct journal_device *ja, 23 enum journal_space_from from) 24 { 25 switch (from) { 26 case journal_space_discarded: 27 return ja->discard_idx; 28 case journal_space_clean_ondisk: 29 return ja->dirty_idx_ondisk; 30 case journal_space_clean: 31 return ja->dirty_idx; 32 default: 33 BUG(); 34 } 35 } 36 37 unsigned bch2_journal_dev_buckets_available(struct journal *j, 38 struct journal_device *ja, 39 enum journal_space_from from) 40 { 41 unsigned available = (journal_space_from(ja, from) - 42 ja->cur_idx - 1 + ja->nr) % ja->nr; 43 44 /* 45 * Don't use the last bucket unless writing the new last_seq 46 * will make another bucket available: 47 */ 48 if (available && ja->dirty_idx_ondisk == ja->dirty_idx) 49 --available; 50 51 return available; 52 } 53 54 void bch2_journal_set_watermark(struct journal *j) 55 { 56 struct bch_fs *c = container_of(j, struct bch_fs, journal); 57 bool low_on_space = j->space[journal_space_clean].total * 4 <= 58 j->space[journal_space_total].total; 59 bool low_on_pin = fifo_free(&j->pin) < j->pin.size / 4; 60 bool low_on_wb = bch2_btree_write_buffer_must_wait(c); 61 unsigned watermark = low_on_space || low_on_pin || low_on_wb 62 ? BCH_WATERMARK_reclaim 63 : BCH_WATERMARK_stripe; 64 65 if (track_event_change(&c->times[BCH_TIME_blocked_journal_low_on_space], low_on_space) || 66 track_event_change(&c->times[BCH_TIME_blocked_journal_low_on_pin], low_on_pin) || 67 track_event_change(&c->times[BCH_TIME_blocked_write_buffer_full], low_on_wb)) 68 trace_and_count(c, journal_full, c); 69 70 mod_bit(JOURNAL_space_low, &j->flags, low_on_space || low_on_pin); 71 72 swap(watermark, j->watermark); 73 if (watermark > j->watermark) 74 journal_wake(j); 75 } 76 77 static struct journal_space 78 journal_dev_space_available(struct journal *j, struct bch_dev *ca, 79 enum journal_space_from from) 80 { 81 struct journal_device *ja = &ca->journal; 82 unsigned sectors, buckets, unwritten; 83 u64 seq; 84 85 if (from == journal_space_total) 86 return (struct journal_space) { 87 .next_entry = ca->mi.bucket_size, 88 .total = ca->mi.bucket_size * ja->nr, 89 }; 90 91 buckets = bch2_journal_dev_buckets_available(j, ja, from); 92 sectors = ja->sectors_free; 93 94 /* 95 * We that we don't allocate the space for a journal entry 96 * until we write it out - thus, account for it here: 97 */ 98 for (seq = journal_last_unwritten_seq(j); 99 seq <= journal_cur_seq(j); 100 seq++) { 101 unwritten = j->buf[seq & JOURNAL_BUF_MASK].sectors; 102 103 if (!unwritten) 104 continue; 105 106 /* entry won't fit on this device, skip: */ 107 if (unwritten > ca->mi.bucket_size) 108 continue; 109 110 if (unwritten >= sectors) { 111 if (!buckets) { 112 sectors = 0; 113 break; 114 } 115 116 buckets--; 117 sectors = ca->mi.bucket_size; 118 } 119 120 sectors -= unwritten; 121 } 122 123 if (sectors < ca->mi.bucket_size && buckets) { 124 buckets--; 125 sectors = ca->mi.bucket_size; 126 } 127 128 return (struct journal_space) { 129 .next_entry = sectors, 130 .total = sectors + buckets * ca->mi.bucket_size, 131 }; 132 } 133 134 static struct journal_space __journal_space_available(struct journal *j, unsigned nr_devs_want, 135 enum journal_space_from from) 136 { 137 struct bch_fs *c = container_of(j, struct bch_fs, journal); 138 unsigned pos, nr_devs = 0; 139 struct journal_space space, dev_space[BCH_SB_MEMBERS_MAX]; 140 141 BUG_ON(nr_devs_want > ARRAY_SIZE(dev_space)); 142 143 rcu_read_lock(); 144 for_each_member_device_rcu(c, ca, &c->rw_devs[BCH_DATA_journal]) { 145 if (!ca->journal.nr) 146 continue; 147 148 space = journal_dev_space_available(j, ca, from); 149 if (!space.next_entry) 150 continue; 151 152 for (pos = 0; pos < nr_devs; pos++) 153 if (space.total > dev_space[pos].total) 154 break; 155 156 array_insert_item(dev_space, nr_devs, pos, space); 157 } 158 rcu_read_unlock(); 159 160 if (nr_devs < nr_devs_want) 161 return (struct journal_space) { 0, 0 }; 162 163 /* 164 * We sorted largest to smallest, and we want the smallest out of the 165 * @nr_devs_want largest devices: 166 */ 167 return dev_space[nr_devs_want - 1]; 168 } 169 170 void bch2_journal_space_available(struct journal *j) 171 { 172 struct bch_fs *c = container_of(j, struct bch_fs, journal); 173 unsigned clean, clean_ondisk, total; 174 unsigned max_entry_size = min(j->buf[0].buf_size >> 9, 175 j->buf[1].buf_size >> 9); 176 unsigned nr_online = 0, nr_devs_want; 177 bool can_discard = false; 178 int ret = 0; 179 180 lockdep_assert_held(&j->lock); 181 182 rcu_read_lock(); 183 for_each_member_device_rcu(c, ca, &c->rw_devs[BCH_DATA_journal]) { 184 struct journal_device *ja = &ca->journal; 185 186 if (!ja->nr) 187 continue; 188 189 while (ja->dirty_idx != ja->cur_idx && 190 ja->bucket_seq[ja->dirty_idx] < journal_last_seq(j)) 191 ja->dirty_idx = (ja->dirty_idx + 1) % ja->nr; 192 193 while (ja->dirty_idx_ondisk != ja->dirty_idx && 194 ja->bucket_seq[ja->dirty_idx_ondisk] < j->last_seq_ondisk) 195 ja->dirty_idx_ondisk = (ja->dirty_idx_ondisk + 1) % ja->nr; 196 197 if (ja->discard_idx != ja->dirty_idx_ondisk) 198 can_discard = true; 199 200 max_entry_size = min_t(unsigned, max_entry_size, ca->mi.bucket_size); 201 nr_online++; 202 } 203 rcu_read_unlock(); 204 205 j->can_discard = can_discard; 206 207 if (nr_online < metadata_replicas_required(c)) { 208 struct printbuf buf = PRINTBUF; 209 buf.atomic++; 210 prt_printf(&buf, "insufficient writeable journal devices available: have %u, need %u\n" 211 "rw journal devs:", nr_online, metadata_replicas_required(c)); 212 213 rcu_read_lock(); 214 for_each_member_device_rcu(c, ca, &c->rw_devs[BCH_DATA_journal]) 215 prt_printf(&buf, " %s", ca->name); 216 rcu_read_unlock(); 217 218 bch_err(c, "%s", buf.buf); 219 printbuf_exit(&buf); 220 ret = JOURNAL_ERR_insufficient_devices; 221 goto out; 222 } 223 224 nr_devs_want = min_t(unsigned, nr_online, c->opts.metadata_replicas); 225 226 for (unsigned i = 0; i < journal_space_nr; i++) 227 j->space[i] = __journal_space_available(j, nr_devs_want, i); 228 229 clean_ondisk = j->space[journal_space_clean_ondisk].total; 230 clean = j->space[journal_space_clean].total; 231 total = j->space[journal_space_total].total; 232 233 if (!j->space[journal_space_discarded].next_entry) 234 ret = JOURNAL_ERR_journal_full; 235 236 if ((j->space[journal_space_clean_ondisk].next_entry < 237 j->space[journal_space_clean_ondisk].total) && 238 (clean - clean_ondisk <= total / 8) && 239 (clean_ondisk * 2 > clean)) 240 set_bit(JOURNAL_may_skip_flush, &j->flags); 241 else 242 clear_bit(JOURNAL_may_skip_flush, &j->flags); 243 244 bch2_journal_set_watermark(j); 245 out: 246 j->cur_entry_sectors = !ret ? j->space[journal_space_discarded].next_entry : 0; 247 j->cur_entry_error = ret; 248 249 if (!ret) 250 journal_wake(j); 251 } 252 253 /* Discards - last part of journal reclaim: */ 254 255 static bool should_discard_bucket(struct journal *j, struct journal_device *ja) 256 { 257 bool ret; 258 259 spin_lock(&j->lock); 260 ret = ja->discard_idx != ja->dirty_idx_ondisk; 261 spin_unlock(&j->lock); 262 263 return ret; 264 } 265 266 /* 267 * Advance ja->discard_idx as long as it points to buckets that are no longer 268 * dirty, issuing discards if necessary: 269 */ 270 void bch2_journal_do_discards(struct journal *j) 271 { 272 struct bch_fs *c = container_of(j, struct bch_fs, journal); 273 274 mutex_lock(&j->discard_lock); 275 276 for_each_rw_member(c, ca) { 277 struct journal_device *ja = &ca->journal; 278 279 while (should_discard_bucket(j, ja)) { 280 if (!c->opts.nochanges && 281 ca->mi.discard && 282 bdev_max_discard_sectors(ca->disk_sb.bdev)) 283 blkdev_issue_discard(ca->disk_sb.bdev, 284 bucket_to_sector(ca, 285 ja->buckets[ja->discard_idx]), 286 ca->mi.bucket_size, GFP_NOFS); 287 288 spin_lock(&j->lock); 289 ja->discard_idx = (ja->discard_idx + 1) % ja->nr; 290 291 bch2_journal_space_available(j); 292 spin_unlock(&j->lock); 293 } 294 } 295 296 mutex_unlock(&j->discard_lock); 297 } 298 299 /* 300 * Journal entry pinning - machinery for holding a reference on a given journal 301 * entry, holding it open to ensure it gets replayed during recovery: 302 */ 303 304 void bch2_journal_reclaim_fast(struct journal *j) 305 { 306 bool popped = false; 307 308 lockdep_assert_held(&j->lock); 309 310 /* 311 * Unpin journal entries whose reference counts reached zero, meaning 312 * all btree nodes got written out 313 */ 314 while (!fifo_empty(&j->pin) && 315 j->pin.front <= j->seq_ondisk && 316 !atomic_read(&fifo_peek_front(&j->pin).count)) { 317 j->pin.front++; 318 popped = true; 319 } 320 321 if (popped) 322 bch2_journal_space_available(j); 323 } 324 325 bool __bch2_journal_pin_put(struct journal *j, u64 seq) 326 { 327 struct journal_entry_pin_list *pin_list = journal_seq_pin(j, seq); 328 329 return atomic_dec_and_test(&pin_list->count); 330 } 331 332 void bch2_journal_pin_put(struct journal *j, u64 seq) 333 { 334 if (__bch2_journal_pin_put(j, seq)) { 335 spin_lock(&j->lock); 336 bch2_journal_reclaim_fast(j); 337 spin_unlock(&j->lock); 338 } 339 } 340 341 static inline bool __journal_pin_drop(struct journal *j, 342 struct journal_entry_pin *pin) 343 { 344 struct journal_entry_pin_list *pin_list; 345 346 if (!journal_pin_active(pin)) 347 return false; 348 349 if (j->flush_in_progress == pin) 350 j->flush_in_progress_dropped = true; 351 352 pin_list = journal_seq_pin(j, pin->seq); 353 pin->seq = 0; 354 list_del_init(&pin->list); 355 356 /* 357 * Unpinning a journal entry may make journal_next_bucket() succeed, if 358 * writing a new last_seq will now make another bucket available: 359 */ 360 return atomic_dec_and_test(&pin_list->count) && 361 pin_list == &fifo_peek_front(&j->pin); 362 } 363 364 void bch2_journal_pin_drop(struct journal *j, 365 struct journal_entry_pin *pin) 366 { 367 spin_lock(&j->lock); 368 if (__journal_pin_drop(j, pin)) 369 bch2_journal_reclaim_fast(j); 370 spin_unlock(&j->lock); 371 } 372 373 static enum journal_pin_type journal_pin_type(journal_pin_flush_fn fn) 374 { 375 if (fn == bch2_btree_node_flush0 || 376 fn == bch2_btree_node_flush1) 377 return JOURNAL_PIN_btree; 378 else if (fn == bch2_btree_key_cache_journal_flush) 379 return JOURNAL_PIN_key_cache; 380 else 381 return JOURNAL_PIN_other; 382 } 383 384 static inline void bch2_journal_pin_set_locked(struct journal *j, u64 seq, 385 struct journal_entry_pin *pin, 386 journal_pin_flush_fn flush_fn, 387 enum journal_pin_type type) 388 { 389 struct journal_entry_pin_list *pin_list = journal_seq_pin(j, seq); 390 391 /* 392 * flush_fn is how we identify journal pins in debugfs, so must always 393 * exist, even if it doesn't do anything: 394 */ 395 BUG_ON(!flush_fn); 396 397 atomic_inc(&pin_list->count); 398 pin->seq = seq; 399 pin->flush = flush_fn; 400 list_add(&pin->list, &pin_list->list[type]); 401 } 402 403 void bch2_journal_pin_copy(struct journal *j, 404 struct journal_entry_pin *dst, 405 struct journal_entry_pin *src, 406 journal_pin_flush_fn flush_fn) 407 { 408 spin_lock(&j->lock); 409 410 u64 seq = READ_ONCE(src->seq); 411 412 if (seq < journal_last_seq(j)) { 413 /* 414 * bch2_journal_pin_copy() raced with bch2_journal_pin_drop() on 415 * the src pin - with the pin dropped, the entry to pin might no 416 * longer to exist, but that means there's no longer anything to 417 * copy and we can bail out here: 418 */ 419 spin_unlock(&j->lock); 420 return; 421 } 422 423 bool reclaim = __journal_pin_drop(j, dst); 424 425 bch2_journal_pin_set_locked(j, seq, dst, flush_fn, journal_pin_type(flush_fn)); 426 427 if (reclaim) 428 bch2_journal_reclaim_fast(j); 429 430 /* 431 * If the journal is currently full, we might want to call flush_fn 432 * immediately: 433 */ 434 if (seq == journal_last_seq(j)) 435 journal_wake(j); 436 spin_unlock(&j->lock); 437 } 438 439 void bch2_journal_pin_set(struct journal *j, u64 seq, 440 struct journal_entry_pin *pin, 441 journal_pin_flush_fn flush_fn) 442 { 443 spin_lock(&j->lock); 444 445 BUG_ON(seq < journal_last_seq(j)); 446 447 bool reclaim = __journal_pin_drop(j, pin); 448 449 bch2_journal_pin_set_locked(j, seq, pin, flush_fn, journal_pin_type(flush_fn)); 450 451 if (reclaim) 452 bch2_journal_reclaim_fast(j); 453 /* 454 * If the journal is currently full, we might want to call flush_fn 455 * immediately: 456 */ 457 if (seq == journal_last_seq(j)) 458 journal_wake(j); 459 460 spin_unlock(&j->lock); 461 } 462 463 /** 464 * bch2_journal_pin_flush: ensure journal pin callback is no longer running 465 * @j: journal object 466 * @pin: pin to flush 467 */ 468 void bch2_journal_pin_flush(struct journal *j, struct journal_entry_pin *pin) 469 { 470 BUG_ON(journal_pin_active(pin)); 471 472 wait_event(j->pin_flush_wait, j->flush_in_progress != pin); 473 } 474 475 /* 476 * Journal reclaim: flush references to open journal entries to reclaim space in 477 * the journal 478 * 479 * May be done by the journal code in the background as needed to free up space 480 * for more journal entries, or as part of doing a clean shutdown, or to migrate 481 * data off of a specific device: 482 */ 483 484 static struct journal_entry_pin * 485 journal_get_next_pin(struct journal *j, 486 u64 seq_to_flush, 487 unsigned allowed_below_seq, 488 unsigned allowed_above_seq, 489 u64 *seq) 490 { 491 struct journal_entry_pin_list *pin_list; 492 struct journal_entry_pin *ret = NULL; 493 unsigned i; 494 495 fifo_for_each_entry_ptr(pin_list, &j->pin, *seq) { 496 if (*seq > seq_to_flush && !allowed_above_seq) 497 break; 498 499 for (i = 0; i < JOURNAL_PIN_NR; i++) 500 if ((((1U << i) & allowed_below_seq) && *seq <= seq_to_flush) || 501 ((1U << i) & allowed_above_seq)) { 502 ret = list_first_entry_or_null(&pin_list->list[i], 503 struct journal_entry_pin, list); 504 if (ret) 505 return ret; 506 } 507 } 508 509 return NULL; 510 } 511 512 /* returns true if we did work */ 513 static size_t journal_flush_pins(struct journal *j, 514 u64 seq_to_flush, 515 unsigned allowed_below_seq, 516 unsigned allowed_above_seq, 517 unsigned min_any, 518 unsigned min_key_cache) 519 { 520 struct journal_entry_pin *pin; 521 size_t nr_flushed = 0; 522 journal_pin_flush_fn flush_fn; 523 u64 seq; 524 int err; 525 526 lockdep_assert_held(&j->reclaim_lock); 527 528 while (1) { 529 unsigned allowed_above = allowed_above_seq; 530 unsigned allowed_below = allowed_below_seq; 531 532 if (min_any) { 533 allowed_above |= ~0; 534 allowed_below |= ~0; 535 } 536 537 if (min_key_cache) { 538 allowed_above |= 1U << JOURNAL_PIN_key_cache; 539 allowed_below |= 1U << JOURNAL_PIN_key_cache; 540 } 541 542 cond_resched(); 543 544 j->last_flushed = jiffies; 545 546 spin_lock(&j->lock); 547 pin = journal_get_next_pin(j, seq_to_flush, allowed_below, allowed_above, &seq); 548 if (pin) { 549 BUG_ON(j->flush_in_progress); 550 j->flush_in_progress = pin; 551 j->flush_in_progress_dropped = false; 552 flush_fn = pin->flush; 553 } 554 spin_unlock(&j->lock); 555 556 if (!pin) 557 break; 558 559 if (min_key_cache && pin->flush == bch2_btree_key_cache_journal_flush) 560 min_key_cache--; 561 562 if (min_any) 563 min_any--; 564 565 err = flush_fn(j, pin, seq); 566 567 spin_lock(&j->lock); 568 /* Pin might have been dropped or rearmed: */ 569 if (likely(!err && !j->flush_in_progress_dropped)) 570 list_move(&pin->list, &journal_seq_pin(j, seq)->flushed); 571 j->flush_in_progress = NULL; 572 j->flush_in_progress_dropped = false; 573 spin_unlock(&j->lock); 574 575 wake_up(&j->pin_flush_wait); 576 577 if (err) 578 break; 579 580 nr_flushed++; 581 } 582 583 return nr_flushed; 584 } 585 586 static u64 journal_seq_to_flush(struct journal *j) 587 { 588 struct bch_fs *c = container_of(j, struct bch_fs, journal); 589 u64 seq_to_flush = 0; 590 591 spin_lock(&j->lock); 592 593 for_each_rw_member(c, ca) { 594 struct journal_device *ja = &ca->journal; 595 unsigned nr_buckets, bucket_to_flush; 596 597 if (!ja->nr) 598 continue; 599 600 /* Try to keep the journal at most half full: */ 601 nr_buckets = ja->nr / 2; 602 603 nr_buckets = min(nr_buckets, ja->nr); 604 605 bucket_to_flush = (ja->cur_idx + nr_buckets) % ja->nr; 606 seq_to_flush = max(seq_to_flush, 607 ja->bucket_seq[bucket_to_flush]); 608 } 609 610 /* Also flush if the pin fifo is more than half full */ 611 seq_to_flush = max_t(s64, seq_to_flush, 612 (s64) journal_cur_seq(j) - 613 (j->pin.size >> 1)); 614 spin_unlock(&j->lock); 615 616 return seq_to_flush; 617 } 618 619 /** 620 * __bch2_journal_reclaim - free up journal buckets 621 * @j: journal object 622 * @direct: direct or background reclaim? 623 * @kicked: requested to run since we last ran? 624 * Returns: 0 on success, or -EIO if the journal has been shutdown 625 * 626 * Background journal reclaim writes out btree nodes. It should be run 627 * early enough so that we never completely run out of journal buckets. 628 * 629 * High watermarks for triggering background reclaim: 630 * - FIFO has fewer than 512 entries left 631 * - fewer than 25% journal buckets free 632 * 633 * Background reclaim runs until low watermarks are reached: 634 * - FIFO has more than 1024 entries left 635 * - more than 50% journal buckets free 636 * 637 * As long as a reclaim can complete in the time it takes to fill up 638 * 512 journal entries or 25% of all journal buckets, then 639 * journal_next_bucket() should not stall. 640 */ 641 static int __bch2_journal_reclaim(struct journal *j, bool direct, bool kicked) 642 { 643 struct bch_fs *c = container_of(j, struct bch_fs, journal); 644 struct btree_cache *bc = &c->btree_cache; 645 bool kthread = (current->flags & PF_KTHREAD) != 0; 646 u64 seq_to_flush; 647 size_t min_nr, min_key_cache, nr_flushed; 648 unsigned flags; 649 int ret = 0; 650 651 /* 652 * We can't invoke memory reclaim while holding the reclaim_lock - 653 * journal reclaim is required to make progress for memory reclaim 654 * (cleaning the caches), so we can't get stuck in memory reclaim while 655 * we're holding the reclaim lock: 656 */ 657 lockdep_assert_held(&j->reclaim_lock); 658 flags = memalloc_noreclaim_save(); 659 660 do { 661 if (kthread && kthread_should_stop()) 662 break; 663 664 if (bch2_journal_error(j)) { 665 ret = -EIO; 666 break; 667 } 668 669 bch2_journal_do_discards(j); 670 671 seq_to_flush = journal_seq_to_flush(j); 672 min_nr = 0; 673 674 /* 675 * If it's been longer than j->reclaim_delay_ms since we last flushed, 676 * make sure to flush at least one journal pin: 677 */ 678 if (time_after(jiffies, j->last_flushed + 679 msecs_to_jiffies(c->opts.journal_reclaim_delay))) 680 min_nr = 1; 681 682 if (j->watermark != BCH_WATERMARK_stripe) 683 min_nr = 1; 684 685 size_t btree_cache_live = bc->live[0].nr + bc->live[1].nr; 686 if (atomic_long_read(&bc->nr_dirty) * 2 > btree_cache_live) 687 min_nr = 1; 688 689 min_key_cache = min(bch2_nr_btree_keys_need_flush(c), (size_t) 128); 690 691 trace_and_count(c, journal_reclaim_start, c, 692 direct, kicked, 693 min_nr, min_key_cache, 694 atomic_long_read(&bc->nr_dirty), btree_cache_live, 695 atomic_long_read(&c->btree_key_cache.nr_dirty), 696 atomic_long_read(&c->btree_key_cache.nr_keys)); 697 698 nr_flushed = journal_flush_pins(j, seq_to_flush, 699 ~0, 0, 700 min_nr, min_key_cache); 701 702 if (direct) 703 j->nr_direct_reclaim += nr_flushed; 704 else 705 j->nr_background_reclaim += nr_flushed; 706 trace_and_count(c, journal_reclaim_finish, c, nr_flushed); 707 708 if (nr_flushed) 709 wake_up(&j->reclaim_wait); 710 } while ((min_nr || min_key_cache) && nr_flushed && !direct); 711 712 memalloc_noreclaim_restore(flags); 713 714 return ret; 715 } 716 717 int bch2_journal_reclaim(struct journal *j) 718 { 719 return __bch2_journal_reclaim(j, true, true); 720 } 721 722 static int bch2_journal_reclaim_thread(void *arg) 723 { 724 struct journal *j = arg; 725 struct bch_fs *c = container_of(j, struct bch_fs, journal); 726 unsigned long delay, now; 727 bool journal_empty; 728 int ret = 0; 729 730 set_freezable(); 731 732 j->last_flushed = jiffies; 733 734 while (!ret && !kthread_should_stop()) { 735 bool kicked = j->reclaim_kicked; 736 737 j->reclaim_kicked = false; 738 739 mutex_lock(&j->reclaim_lock); 740 ret = __bch2_journal_reclaim(j, false, kicked); 741 mutex_unlock(&j->reclaim_lock); 742 743 now = jiffies; 744 delay = msecs_to_jiffies(c->opts.journal_reclaim_delay); 745 j->next_reclaim = j->last_flushed + delay; 746 747 if (!time_in_range(j->next_reclaim, now, now + delay)) 748 j->next_reclaim = now + delay; 749 750 while (1) { 751 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 752 if (kthread_should_stop()) 753 break; 754 if (j->reclaim_kicked) 755 break; 756 757 spin_lock(&j->lock); 758 journal_empty = fifo_empty(&j->pin); 759 spin_unlock(&j->lock); 760 761 if (journal_empty) 762 schedule(); 763 else if (time_after(j->next_reclaim, jiffies)) 764 schedule_timeout(j->next_reclaim - jiffies); 765 else 766 break; 767 } 768 __set_current_state(TASK_RUNNING); 769 } 770 771 return 0; 772 } 773 774 void bch2_journal_reclaim_stop(struct journal *j) 775 { 776 struct task_struct *p = j->reclaim_thread; 777 778 j->reclaim_thread = NULL; 779 780 if (p) { 781 kthread_stop(p); 782 put_task_struct(p); 783 } 784 } 785 786 int bch2_journal_reclaim_start(struct journal *j) 787 { 788 struct bch_fs *c = container_of(j, struct bch_fs, journal); 789 struct task_struct *p; 790 int ret; 791 792 if (j->reclaim_thread) 793 return 0; 794 795 p = kthread_create(bch2_journal_reclaim_thread, j, 796 "bch-reclaim/%s", c->name); 797 ret = PTR_ERR_OR_ZERO(p); 798 bch_err_msg(c, ret, "creating journal reclaim thread"); 799 if (ret) 800 return ret; 801 802 get_task_struct(p); 803 j->reclaim_thread = p; 804 wake_up_process(p); 805 return 0; 806 } 807 808 static int journal_flush_done(struct journal *j, u64 seq_to_flush, 809 bool *did_work) 810 { 811 int ret; 812 813 ret = bch2_journal_error(j); 814 if (ret) 815 return ret; 816 817 mutex_lock(&j->reclaim_lock); 818 819 if (journal_flush_pins(j, seq_to_flush, 820 (1U << JOURNAL_PIN_key_cache)| 821 (1U << JOURNAL_PIN_other), 0, 0, 0) || 822 journal_flush_pins(j, seq_to_flush, 823 (1U << JOURNAL_PIN_btree), 0, 0, 0)) 824 *did_work = true; 825 826 if (seq_to_flush > journal_cur_seq(j)) 827 bch2_journal_entry_close(j); 828 829 spin_lock(&j->lock); 830 /* 831 * If journal replay hasn't completed, the unreplayed journal entries 832 * hold refs on their corresponding sequence numbers 833 */ 834 ret = !test_bit(JOURNAL_replay_done, &j->flags) || 835 journal_last_seq(j) > seq_to_flush || 836 !fifo_used(&j->pin); 837 838 spin_unlock(&j->lock); 839 mutex_unlock(&j->reclaim_lock); 840 841 return ret; 842 } 843 844 bool bch2_journal_flush_pins(struct journal *j, u64 seq_to_flush) 845 { 846 /* time_stats this */ 847 bool did_work = false; 848 849 if (!test_bit(JOURNAL_running, &j->flags)) 850 return false; 851 852 closure_wait_event(&j->async_wait, 853 journal_flush_done(j, seq_to_flush, &did_work)); 854 855 return did_work; 856 } 857 858 int bch2_journal_flush_device_pins(struct journal *j, int dev_idx) 859 { 860 struct bch_fs *c = container_of(j, struct bch_fs, journal); 861 struct journal_entry_pin_list *p; 862 u64 iter, seq = 0; 863 int ret = 0; 864 865 spin_lock(&j->lock); 866 fifo_for_each_entry_ptr(p, &j->pin, iter) 867 if (dev_idx >= 0 868 ? bch2_dev_list_has_dev(p->devs, dev_idx) 869 : p->devs.nr < c->opts.metadata_replicas) 870 seq = iter; 871 spin_unlock(&j->lock); 872 873 bch2_journal_flush_pins(j, seq); 874 875 ret = bch2_journal_error(j); 876 if (ret) 877 return ret; 878 879 mutex_lock(&c->replicas_gc_lock); 880 bch2_replicas_gc_start(c, 1 << BCH_DATA_journal); 881 882 /* 883 * Now that we've populated replicas_gc, write to the journal to mark 884 * active journal devices. This handles the case where the journal might 885 * be empty. Otherwise we could clear all journal replicas and 886 * temporarily put the fs into an unrecoverable state. Journal recovery 887 * expects to find devices marked for journal data on unclean mount. 888 */ 889 ret = bch2_journal_meta(&c->journal); 890 if (ret) 891 goto err; 892 893 seq = 0; 894 spin_lock(&j->lock); 895 while (!ret) { 896 struct bch_replicas_padded replicas; 897 898 seq = max(seq, journal_last_seq(j)); 899 if (seq >= j->pin.back) 900 break; 901 bch2_devlist_to_replicas(&replicas.e, BCH_DATA_journal, 902 journal_seq_pin(j, seq)->devs); 903 seq++; 904 905 if (replicas.e.nr_devs) { 906 spin_unlock(&j->lock); 907 ret = bch2_mark_replicas(c, &replicas.e); 908 spin_lock(&j->lock); 909 } 910 } 911 spin_unlock(&j->lock); 912 err: 913 ret = bch2_replicas_gc_end(c, ret); 914 mutex_unlock(&c->replicas_gc_lock); 915 916 return ret; 917 } 918