1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 4 * Copyright 2012 Google, Inc. 5 */ 6 7 #include "bcachefs.h" 8 #include "alloc_foreground.h" 9 #include "bkey_buf.h" 10 #include "bset.h" 11 #include "btree_update.h" 12 #include "buckets.h" 13 #include "checksum.h" 14 #include "clock.h" 15 #include "compress.h" 16 #include "debug.h" 17 #include "ec.h" 18 #include "error.h" 19 #include "extent_update.h" 20 #include "inode.h" 21 #include "io_write.h" 22 #include "journal.h" 23 #include "keylist.h" 24 #include "move.h" 25 #include "nocow_locking.h" 26 #include "rebalance.h" 27 #include "subvolume.h" 28 #include "super.h" 29 #include "super-io.h" 30 #include "trace.h" 31 32 #include <linux/blkdev.h> 33 #include <linux/prefetch.h> 34 #include <linux/random.h> 35 #include <linux/sched/mm.h> 36 37 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT 38 39 static inline void bch2_congested_acct(struct bch_dev *ca, u64 io_latency, 40 u64 now, int rw) 41 { 42 u64 latency_capable = 43 ca->io_latency[rw].quantiles.entries[QUANTILE_IDX(1)].m; 44 /* ideally we'd be taking into account the device's variance here: */ 45 u64 latency_threshold = latency_capable << (rw == READ ? 2 : 3); 46 s64 latency_over = io_latency - latency_threshold; 47 48 if (latency_threshold && latency_over > 0) { 49 /* 50 * bump up congested by approximately latency_over * 4 / 51 * latency_threshold - we don't need much accuracy here so don't 52 * bother with the divide: 53 */ 54 if (atomic_read(&ca->congested) < CONGESTED_MAX) 55 atomic_add(latency_over >> 56 max_t(int, ilog2(latency_threshold) - 2, 0), 57 &ca->congested); 58 59 ca->congested_last = now; 60 } else if (atomic_read(&ca->congested) > 0) { 61 atomic_dec(&ca->congested); 62 } 63 } 64 65 void bch2_latency_acct(struct bch_dev *ca, u64 submit_time, int rw) 66 { 67 atomic64_t *latency = &ca->cur_latency[rw]; 68 u64 now = local_clock(); 69 u64 io_latency = time_after64(now, submit_time) 70 ? now - submit_time 71 : 0; 72 u64 old, new, v = atomic64_read(latency); 73 74 do { 75 old = v; 76 77 /* 78 * If the io latency was reasonably close to the current 79 * latency, skip doing the update and atomic operation - most of 80 * the time: 81 */ 82 if (abs((int) (old - io_latency)) < (old >> 1) && 83 now & ~(~0U << 5)) 84 break; 85 86 new = ewma_add(old, io_latency, 5); 87 } while ((v = atomic64_cmpxchg(latency, old, new)) != old); 88 89 bch2_congested_acct(ca, io_latency, now, rw); 90 91 __bch2_time_stats_update(&ca->io_latency[rw].stats, submit_time, now); 92 } 93 94 #endif 95 96 /* Allocate, free from mempool: */ 97 98 void bch2_bio_free_pages_pool(struct bch_fs *c, struct bio *bio) 99 { 100 struct bvec_iter_all iter; 101 struct bio_vec *bv; 102 103 bio_for_each_segment_all(bv, bio, iter) 104 if (bv->bv_page != ZERO_PAGE(0)) 105 mempool_free(bv->bv_page, &c->bio_bounce_pages); 106 bio->bi_vcnt = 0; 107 } 108 109 static struct page *__bio_alloc_page_pool(struct bch_fs *c, bool *using_mempool) 110 { 111 struct page *page; 112 113 if (likely(!*using_mempool)) { 114 page = alloc_page(GFP_NOFS); 115 if (unlikely(!page)) { 116 mutex_lock(&c->bio_bounce_pages_lock); 117 *using_mempool = true; 118 goto pool_alloc; 119 120 } 121 } else { 122 pool_alloc: 123 page = mempool_alloc(&c->bio_bounce_pages, GFP_NOFS); 124 } 125 126 return page; 127 } 128 129 void bch2_bio_alloc_pages_pool(struct bch_fs *c, struct bio *bio, 130 size_t size) 131 { 132 bool using_mempool = false; 133 134 while (size) { 135 struct page *page = __bio_alloc_page_pool(c, &using_mempool); 136 unsigned len = min_t(size_t, PAGE_SIZE, size); 137 138 BUG_ON(!bio_add_page(bio, page, len, 0)); 139 size -= len; 140 } 141 142 if (using_mempool) 143 mutex_unlock(&c->bio_bounce_pages_lock); 144 } 145 146 /* Extent update path: */ 147 148 int bch2_sum_sector_overwrites(struct btree_trans *trans, 149 struct btree_iter *extent_iter, 150 struct bkey_i *new, 151 bool *usage_increasing, 152 s64 *i_sectors_delta, 153 s64 *disk_sectors_delta) 154 { 155 struct bch_fs *c = trans->c; 156 struct btree_iter iter; 157 struct bkey_s_c old; 158 unsigned new_replicas = bch2_bkey_replicas(c, bkey_i_to_s_c(new)); 159 bool new_compressed = bch2_bkey_sectors_compressed(bkey_i_to_s_c(new)); 160 int ret = 0; 161 162 *usage_increasing = false; 163 *i_sectors_delta = 0; 164 *disk_sectors_delta = 0; 165 166 bch2_trans_copy_iter(&iter, extent_iter); 167 168 for_each_btree_key_upto_continue_norestart(iter, 169 new->k.p, BTREE_ITER_SLOTS, old, ret) { 170 s64 sectors = min(new->k.p.offset, old.k->p.offset) - 171 max(bkey_start_offset(&new->k), 172 bkey_start_offset(old.k)); 173 174 *i_sectors_delta += sectors * 175 (bkey_extent_is_allocation(&new->k) - 176 bkey_extent_is_allocation(old.k)); 177 178 *disk_sectors_delta += sectors * bch2_bkey_nr_ptrs_allocated(bkey_i_to_s_c(new)); 179 *disk_sectors_delta -= new->k.p.snapshot == old.k->p.snapshot 180 ? sectors * bch2_bkey_nr_ptrs_fully_allocated(old) 181 : 0; 182 183 if (!*usage_increasing && 184 (new->k.p.snapshot != old.k->p.snapshot || 185 new_replicas > bch2_bkey_replicas(c, old) || 186 (!new_compressed && bch2_bkey_sectors_compressed(old)))) 187 *usage_increasing = true; 188 189 if (bkey_ge(old.k->p, new->k.p)) 190 break; 191 } 192 193 bch2_trans_iter_exit(trans, &iter); 194 return ret; 195 } 196 197 static inline int bch2_extent_update_i_size_sectors(struct btree_trans *trans, 198 struct btree_iter *extent_iter, 199 u64 new_i_size, 200 s64 i_sectors_delta) 201 { 202 /* 203 * Crazy performance optimization: 204 * Every extent update needs to also update the inode: the inode trigger 205 * will set bi->journal_seq to the journal sequence number of this 206 * transaction - for fsync. 207 * 208 * But if that's the only reason we're updating the inode (we're not 209 * updating bi_size or bi_sectors), then we don't need the inode update 210 * to be journalled - if we crash, the bi_journal_seq update will be 211 * lost, but that's fine. 212 */ 213 unsigned inode_update_flags = BTREE_UPDATE_NOJOURNAL; 214 215 struct btree_iter iter; 216 struct bkey_s_c k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_inodes, 217 SPOS(0, 218 extent_iter->pos.inode, 219 extent_iter->snapshot), 220 BTREE_ITER_CACHED); 221 int ret = bkey_err(k); 222 if (unlikely(ret)) 223 return ret; 224 225 /* 226 * varint_decode_fast(), in the inode .invalid method, reads up to 7 227 * bytes past the end of the buffer: 228 */ 229 struct bkey_i *k_mut = bch2_trans_kmalloc_nomemzero(trans, bkey_bytes(k.k) + 8); 230 ret = PTR_ERR_OR_ZERO(k_mut); 231 if (unlikely(ret)) 232 goto err; 233 234 bkey_reassemble(k_mut, k); 235 236 if (unlikely(k_mut->k.type != KEY_TYPE_inode_v3)) { 237 k_mut = bch2_inode_to_v3(trans, k_mut); 238 ret = PTR_ERR_OR_ZERO(k_mut); 239 if (unlikely(ret)) 240 goto err; 241 } 242 243 struct bkey_i_inode_v3 *inode = bkey_i_to_inode_v3(k_mut); 244 245 if (!(le64_to_cpu(inode->v.bi_flags) & BCH_INODE_i_size_dirty) && 246 new_i_size > le64_to_cpu(inode->v.bi_size)) { 247 inode->v.bi_size = cpu_to_le64(new_i_size); 248 inode_update_flags = 0; 249 } 250 251 if (i_sectors_delta) { 252 le64_add_cpu(&inode->v.bi_sectors, i_sectors_delta); 253 inode_update_flags = 0; 254 } 255 256 if (inode->k.p.snapshot != iter.snapshot) { 257 inode->k.p.snapshot = iter.snapshot; 258 inode_update_flags = 0; 259 } 260 261 ret = bch2_trans_update(trans, &iter, &inode->k_i, 262 BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE| 263 inode_update_flags); 264 err: 265 bch2_trans_iter_exit(trans, &iter); 266 return ret; 267 } 268 269 int bch2_extent_update(struct btree_trans *trans, 270 subvol_inum inum, 271 struct btree_iter *iter, 272 struct bkey_i *k, 273 struct disk_reservation *disk_res, 274 u64 new_i_size, 275 s64 *i_sectors_delta_total, 276 bool check_enospc) 277 { 278 struct bpos next_pos; 279 bool usage_increasing; 280 s64 i_sectors_delta = 0, disk_sectors_delta = 0; 281 int ret; 282 283 /* 284 * This traverses us the iterator without changing iter->path->pos to 285 * search_key() (which is pos + 1 for extents): we want there to be a 286 * path already traversed at iter->pos because 287 * bch2_trans_extent_update() will use it to attempt extent merging 288 */ 289 ret = __bch2_btree_iter_traverse(iter); 290 if (ret) 291 return ret; 292 293 ret = bch2_extent_trim_atomic(trans, iter, k); 294 if (ret) 295 return ret; 296 297 next_pos = k->k.p; 298 299 ret = bch2_sum_sector_overwrites(trans, iter, k, 300 &usage_increasing, 301 &i_sectors_delta, 302 &disk_sectors_delta); 303 if (ret) 304 return ret; 305 306 if (disk_res && 307 disk_sectors_delta > (s64) disk_res->sectors) { 308 ret = bch2_disk_reservation_add(trans->c, disk_res, 309 disk_sectors_delta - disk_res->sectors, 310 !check_enospc || !usage_increasing 311 ? BCH_DISK_RESERVATION_NOFAIL : 0); 312 if (ret) 313 return ret; 314 } 315 316 /* 317 * Note: 318 * We always have to do an inode update - even when i_size/i_sectors 319 * aren't changing - for fsync to work properly; fsync relies on 320 * inode->bi_journal_seq which is updated by the trigger code: 321 */ 322 ret = bch2_extent_update_i_size_sectors(trans, iter, 323 min(k->k.p.offset << 9, new_i_size), 324 i_sectors_delta) ?: 325 bch2_trans_update(trans, iter, k, 0) ?: 326 bch2_trans_commit(trans, disk_res, NULL, 327 BCH_TRANS_COMMIT_no_check_rw| 328 BCH_TRANS_COMMIT_no_enospc); 329 if (unlikely(ret)) 330 return ret; 331 332 if (i_sectors_delta_total) 333 *i_sectors_delta_total += i_sectors_delta; 334 bch2_btree_iter_set_pos(iter, next_pos); 335 return 0; 336 } 337 338 static int bch2_write_index_default(struct bch_write_op *op) 339 { 340 struct bch_fs *c = op->c; 341 struct bkey_buf sk; 342 struct keylist *keys = &op->insert_keys; 343 struct bkey_i *k = bch2_keylist_front(keys); 344 struct btree_trans *trans = bch2_trans_get(c); 345 struct btree_iter iter; 346 subvol_inum inum = { 347 .subvol = op->subvol, 348 .inum = k->k.p.inode, 349 }; 350 int ret; 351 352 BUG_ON(!inum.subvol); 353 354 bch2_bkey_buf_init(&sk); 355 356 do { 357 bch2_trans_begin(trans); 358 359 k = bch2_keylist_front(keys); 360 bch2_bkey_buf_copy(&sk, c, k); 361 362 ret = bch2_subvolume_get_snapshot(trans, inum.subvol, 363 &sk.k->k.p.snapshot); 364 if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) 365 continue; 366 if (ret) 367 break; 368 369 bch2_trans_iter_init(trans, &iter, BTREE_ID_extents, 370 bkey_start_pos(&sk.k->k), 371 BTREE_ITER_SLOTS|BTREE_ITER_INTENT); 372 373 ret = bch2_bkey_set_needs_rebalance(c, sk.k, &op->opts) ?: 374 bch2_extent_update(trans, inum, &iter, sk.k, 375 &op->res, 376 op->new_i_size, &op->i_sectors_delta, 377 op->flags & BCH_WRITE_CHECK_ENOSPC); 378 bch2_trans_iter_exit(trans, &iter); 379 380 if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) 381 continue; 382 if (ret) 383 break; 384 385 if (bkey_ge(iter.pos, k->k.p)) 386 bch2_keylist_pop_front(&op->insert_keys); 387 else 388 bch2_cut_front(iter.pos, k); 389 } while (!bch2_keylist_empty(keys)); 390 391 bch2_trans_put(trans); 392 bch2_bkey_buf_exit(&sk, c); 393 394 return ret; 395 } 396 397 /* Writes */ 398 399 void bch2_submit_wbio_replicas(struct bch_write_bio *wbio, struct bch_fs *c, 400 enum bch_data_type type, 401 const struct bkey_i *k, 402 bool nocow) 403 { 404 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k)); 405 struct bch_write_bio *n; 406 407 BUG_ON(c->opts.nochanges); 408 409 bkey_for_each_ptr(ptrs, ptr) { 410 BUG_ON(!bch2_dev_exists2(c, ptr->dev)); 411 412 struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); 413 414 if (to_entry(ptr + 1) < ptrs.end) { 415 n = to_wbio(bio_alloc_clone(NULL, &wbio->bio, 416 GFP_NOFS, &ca->replica_set)); 417 418 n->bio.bi_end_io = wbio->bio.bi_end_io; 419 n->bio.bi_private = wbio->bio.bi_private; 420 n->parent = wbio; 421 n->split = true; 422 n->bounce = false; 423 n->put_bio = true; 424 n->bio.bi_opf = wbio->bio.bi_opf; 425 bio_inc_remaining(&wbio->bio); 426 } else { 427 n = wbio; 428 n->split = false; 429 } 430 431 n->c = c; 432 n->dev = ptr->dev; 433 n->have_ioref = nocow || bch2_dev_get_ioref(ca, 434 type == BCH_DATA_btree ? READ : WRITE); 435 n->nocow = nocow; 436 n->submit_time = local_clock(); 437 n->inode_offset = bkey_start_offset(&k->k); 438 n->bio.bi_iter.bi_sector = ptr->offset; 439 440 if (likely(n->have_ioref)) { 441 this_cpu_add(ca->io_done->sectors[WRITE][type], 442 bio_sectors(&n->bio)); 443 444 bio_set_dev(&n->bio, ca->disk_sb.bdev); 445 446 if (type != BCH_DATA_btree && unlikely(c->opts.no_data_io)) { 447 bio_endio(&n->bio); 448 continue; 449 } 450 451 submit_bio(&n->bio); 452 } else { 453 n->bio.bi_status = BLK_STS_REMOVED; 454 bio_endio(&n->bio); 455 } 456 } 457 } 458 459 static void __bch2_write(struct bch_write_op *); 460 461 static void bch2_write_done(struct closure *cl) 462 { 463 struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); 464 struct bch_fs *c = op->c; 465 466 EBUG_ON(op->open_buckets.nr); 467 468 bch2_time_stats_update(&c->times[BCH_TIME_data_write], op->start_time); 469 bch2_disk_reservation_put(c, &op->res); 470 471 if (!(op->flags & BCH_WRITE_MOVE)) 472 bch2_write_ref_put(c, BCH_WRITE_REF_write); 473 bch2_keylist_free(&op->insert_keys, op->inline_keys); 474 475 EBUG_ON(cl->parent); 476 closure_debug_destroy(cl); 477 if (op->end_io) 478 op->end_io(op); 479 } 480 481 static noinline int bch2_write_drop_io_error_ptrs(struct bch_write_op *op) 482 { 483 struct keylist *keys = &op->insert_keys; 484 struct bch_extent_ptr *ptr; 485 struct bkey_i *src, *dst = keys->keys, *n; 486 487 for (src = keys->keys; src != keys->top; src = n) { 488 n = bkey_next(src); 489 490 if (bkey_extent_is_direct_data(&src->k)) { 491 bch2_bkey_drop_ptrs(bkey_i_to_s(src), ptr, 492 test_bit(ptr->dev, op->failed.d)); 493 494 if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(src))) 495 return -EIO; 496 } 497 498 if (dst != src) 499 memmove_u64s_down(dst, src, src->k.u64s); 500 dst = bkey_next(dst); 501 } 502 503 keys->top = dst; 504 return 0; 505 } 506 507 /** 508 * __bch2_write_index - after a write, update index to point to new data 509 * @op: bch_write_op to process 510 */ 511 static void __bch2_write_index(struct bch_write_op *op) 512 { 513 struct bch_fs *c = op->c; 514 struct keylist *keys = &op->insert_keys; 515 unsigned dev; 516 int ret = 0; 517 518 if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) { 519 ret = bch2_write_drop_io_error_ptrs(op); 520 if (ret) 521 goto err; 522 } 523 524 if (!bch2_keylist_empty(keys)) { 525 u64 sectors_start = keylist_sectors(keys); 526 527 ret = !(op->flags & BCH_WRITE_MOVE) 528 ? bch2_write_index_default(op) 529 : bch2_data_update_index_update(op); 530 531 BUG_ON(bch2_err_matches(ret, BCH_ERR_transaction_restart)); 532 BUG_ON(keylist_sectors(keys) && !ret); 533 534 op->written += sectors_start - keylist_sectors(keys); 535 536 if (ret && !bch2_err_matches(ret, EROFS)) { 537 struct bkey_i *insert = bch2_keylist_front(&op->insert_keys); 538 539 bch_err_inum_offset_ratelimited(c, 540 insert->k.p.inode, insert->k.p.offset << 9, 541 "%s write error while doing btree update: %s", 542 op->flags & BCH_WRITE_MOVE ? "move" : "user", 543 bch2_err_str(ret)); 544 } 545 546 if (ret) 547 goto err; 548 } 549 out: 550 /* If some a bucket wasn't written, we can't erasure code it: */ 551 for_each_set_bit(dev, op->failed.d, BCH_SB_MEMBERS_MAX) 552 bch2_open_bucket_write_error(c, &op->open_buckets, dev); 553 554 bch2_open_buckets_put(c, &op->open_buckets); 555 return; 556 err: 557 keys->top = keys->keys; 558 op->error = ret; 559 op->flags |= BCH_WRITE_DONE; 560 goto out; 561 } 562 563 static inline void __wp_update_state(struct write_point *wp, enum write_point_state state) 564 { 565 if (state != wp->state) { 566 u64 now = ktime_get_ns(); 567 568 if (wp->last_state_change && 569 time_after64(now, wp->last_state_change)) 570 wp->time[wp->state] += now - wp->last_state_change; 571 wp->state = state; 572 wp->last_state_change = now; 573 } 574 } 575 576 static inline void wp_update_state(struct write_point *wp, bool running) 577 { 578 enum write_point_state state; 579 580 state = running ? WRITE_POINT_running : 581 !list_empty(&wp->writes) ? WRITE_POINT_waiting_io 582 : WRITE_POINT_stopped; 583 584 __wp_update_state(wp, state); 585 } 586 587 static CLOSURE_CALLBACK(bch2_write_index) 588 { 589 closure_type(op, struct bch_write_op, cl); 590 struct write_point *wp = op->wp; 591 struct workqueue_struct *wq = index_update_wq(op); 592 unsigned long flags; 593 594 if ((op->flags & BCH_WRITE_DONE) && 595 (op->flags & BCH_WRITE_MOVE)) 596 bch2_bio_free_pages_pool(op->c, &op->wbio.bio); 597 598 spin_lock_irqsave(&wp->writes_lock, flags); 599 if (wp->state == WRITE_POINT_waiting_io) 600 __wp_update_state(wp, WRITE_POINT_waiting_work); 601 list_add_tail(&op->wp_list, &wp->writes); 602 spin_unlock_irqrestore (&wp->writes_lock, flags); 603 604 queue_work(wq, &wp->index_update_work); 605 } 606 607 static inline void bch2_write_queue(struct bch_write_op *op, struct write_point *wp) 608 { 609 op->wp = wp; 610 611 if (wp->state == WRITE_POINT_stopped) { 612 spin_lock_irq(&wp->writes_lock); 613 __wp_update_state(wp, WRITE_POINT_waiting_io); 614 spin_unlock_irq(&wp->writes_lock); 615 } 616 } 617 618 void bch2_write_point_do_index_updates(struct work_struct *work) 619 { 620 struct write_point *wp = 621 container_of(work, struct write_point, index_update_work); 622 struct bch_write_op *op; 623 624 while (1) { 625 spin_lock_irq(&wp->writes_lock); 626 op = list_first_entry_or_null(&wp->writes, struct bch_write_op, wp_list); 627 if (op) 628 list_del(&op->wp_list); 629 wp_update_state(wp, op != NULL); 630 spin_unlock_irq(&wp->writes_lock); 631 632 if (!op) 633 break; 634 635 op->flags |= BCH_WRITE_IN_WORKER; 636 637 __bch2_write_index(op); 638 639 if (!(op->flags & BCH_WRITE_DONE)) 640 __bch2_write(op); 641 else 642 bch2_write_done(&op->cl); 643 } 644 } 645 646 static void bch2_write_endio(struct bio *bio) 647 { 648 struct closure *cl = bio->bi_private; 649 struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); 650 struct bch_write_bio *wbio = to_wbio(bio); 651 struct bch_write_bio *parent = wbio->split ? wbio->parent : NULL; 652 struct bch_fs *c = wbio->c; 653 struct bch_dev *ca = bch_dev_bkey_exists(c, wbio->dev); 654 655 if (bch2_dev_inum_io_err_on(bio->bi_status, ca, BCH_MEMBER_ERROR_write, 656 op->pos.inode, 657 wbio->inode_offset << 9, 658 "data write error: %s", 659 bch2_blk_status_to_str(bio->bi_status))) { 660 set_bit(wbio->dev, op->failed.d); 661 op->flags |= BCH_WRITE_IO_ERROR; 662 } 663 664 if (wbio->nocow) 665 set_bit(wbio->dev, op->devs_need_flush->d); 666 667 if (wbio->have_ioref) { 668 bch2_latency_acct(ca, wbio->submit_time, WRITE); 669 percpu_ref_put(&ca->io_ref); 670 } 671 672 if (wbio->bounce) 673 bch2_bio_free_pages_pool(c, bio); 674 675 if (wbio->put_bio) 676 bio_put(bio); 677 678 if (parent) 679 bio_endio(&parent->bio); 680 else 681 closure_put(cl); 682 } 683 684 static void init_append_extent(struct bch_write_op *op, 685 struct write_point *wp, 686 struct bversion version, 687 struct bch_extent_crc_unpacked crc) 688 { 689 struct bkey_i_extent *e; 690 691 op->pos.offset += crc.uncompressed_size; 692 693 e = bkey_extent_init(op->insert_keys.top); 694 e->k.p = op->pos; 695 e->k.size = crc.uncompressed_size; 696 e->k.version = version; 697 698 if (crc.csum_type || 699 crc.compression_type || 700 crc.nonce) 701 bch2_extent_crc_append(&e->k_i, crc); 702 703 bch2_alloc_sectors_append_ptrs_inlined(op->c, wp, &e->k_i, crc.compressed_size, 704 op->flags & BCH_WRITE_CACHED); 705 706 bch2_keylist_push(&op->insert_keys); 707 } 708 709 static struct bio *bch2_write_bio_alloc(struct bch_fs *c, 710 struct write_point *wp, 711 struct bio *src, 712 bool *page_alloc_failed, 713 void *buf) 714 { 715 struct bch_write_bio *wbio; 716 struct bio *bio; 717 unsigned output_available = 718 min(wp->sectors_free << 9, src->bi_iter.bi_size); 719 unsigned pages = DIV_ROUND_UP(output_available + 720 (buf 721 ? ((unsigned long) buf & (PAGE_SIZE - 1)) 722 : 0), PAGE_SIZE); 723 724 pages = min(pages, BIO_MAX_VECS); 725 726 bio = bio_alloc_bioset(NULL, pages, 0, 727 GFP_NOFS, &c->bio_write); 728 wbio = wbio_init(bio); 729 wbio->put_bio = true; 730 /* copy WRITE_SYNC flag */ 731 wbio->bio.bi_opf = src->bi_opf; 732 733 if (buf) { 734 bch2_bio_map(bio, buf, output_available); 735 return bio; 736 } 737 738 wbio->bounce = true; 739 740 /* 741 * We can't use mempool for more than c->sb.encoded_extent_max 742 * worth of pages, but we'd like to allocate more if we can: 743 */ 744 bch2_bio_alloc_pages_pool(c, bio, 745 min_t(unsigned, output_available, 746 c->opts.encoded_extent_max)); 747 748 if (bio->bi_iter.bi_size < output_available) 749 *page_alloc_failed = 750 bch2_bio_alloc_pages(bio, 751 output_available - 752 bio->bi_iter.bi_size, 753 GFP_NOFS) != 0; 754 755 return bio; 756 } 757 758 static int bch2_write_rechecksum(struct bch_fs *c, 759 struct bch_write_op *op, 760 unsigned new_csum_type) 761 { 762 struct bio *bio = &op->wbio.bio; 763 struct bch_extent_crc_unpacked new_crc; 764 int ret; 765 766 /* bch2_rechecksum_bio() can't encrypt or decrypt data: */ 767 768 if (bch2_csum_type_is_encryption(op->crc.csum_type) != 769 bch2_csum_type_is_encryption(new_csum_type)) 770 new_csum_type = op->crc.csum_type; 771 772 ret = bch2_rechecksum_bio(c, bio, op->version, op->crc, 773 NULL, &new_crc, 774 op->crc.offset, op->crc.live_size, 775 new_csum_type); 776 if (ret) 777 return ret; 778 779 bio_advance(bio, op->crc.offset << 9); 780 bio->bi_iter.bi_size = op->crc.live_size << 9; 781 op->crc = new_crc; 782 return 0; 783 } 784 785 static int bch2_write_decrypt(struct bch_write_op *op) 786 { 787 struct bch_fs *c = op->c; 788 struct nonce nonce = extent_nonce(op->version, op->crc); 789 struct bch_csum csum; 790 int ret; 791 792 if (!bch2_csum_type_is_encryption(op->crc.csum_type)) 793 return 0; 794 795 /* 796 * If we need to decrypt data in the write path, we'll no longer be able 797 * to verify the existing checksum (poly1305 mac, in this case) after 798 * it's decrypted - this is the last point we'll be able to reverify the 799 * checksum: 800 */ 801 csum = bch2_checksum_bio(c, op->crc.csum_type, nonce, &op->wbio.bio); 802 if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io) 803 return -EIO; 804 805 ret = bch2_encrypt_bio(c, op->crc.csum_type, nonce, &op->wbio.bio); 806 op->crc.csum_type = 0; 807 op->crc.csum = (struct bch_csum) { 0, 0 }; 808 return ret; 809 } 810 811 static enum prep_encoded_ret { 812 PREP_ENCODED_OK, 813 PREP_ENCODED_ERR, 814 PREP_ENCODED_CHECKSUM_ERR, 815 PREP_ENCODED_DO_WRITE, 816 } bch2_write_prep_encoded_data(struct bch_write_op *op, struct write_point *wp) 817 { 818 struct bch_fs *c = op->c; 819 struct bio *bio = &op->wbio.bio; 820 821 if (!(op->flags & BCH_WRITE_DATA_ENCODED)) 822 return PREP_ENCODED_OK; 823 824 BUG_ON(bio_sectors(bio) != op->crc.compressed_size); 825 826 /* Can we just write the entire extent as is? */ 827 if (op->crc.uncompressed_size == op->crc.live_size && 828 op->crc.uncompressed_size <= c->opts.encoded_extent_max >> 9 && 829 op->crc.compressed_size <= wp->sectors_free && 830 (op->crc.compression_type == bch2_compression_opt_to_type(op->compression_opt) || 831 op->incompressible)) { 832 if (!crc_is_compressed(op->crc) && 833 op->csum_type != op->crc.csum_type && 834 bch2_write_rechecksum(c, op, op->csum_type) && 835 !c->opts.no_data_io) 836 return PREP_ENCODED_CHECKSUM_ERR; 837 838 return PREP_ENCODED_DO_WRITE; 839 } 840 841 /* 842 * If the data is compressed and we couldn't write the entire extent as 843 * is, we have to decompress it: 844 */ 845 if (crc_is_compressed(op->crc)) { 846 struct bch_csum csum; 847 848 if (bch2_write_decrypt(op)) 849 return PREP_ENCODED_CHECKSUM_ERR; 850 851 /* Last point we can still verify checksum: */ 852 csum = bch2_checksum_bio(c, op->crc.csum_type, 853 extent_nonce(op->version, op->crc), 854 bio); 855 if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io) 856 return PREP_ENCODED_CHECKSUM_ERR; 857 858 if (bch2_bio_uncompress_inplace(c, bio, &op->crc)) 859 return PREP_ENCODED_ERR; 860 } 861 862 /* 863 * No longer have compressed data after this point - data might be 864 * encrypted: 865 */ 866 867 /* 868 * If the data is checksummed and we're only writing a subset, 869 * rechecksum and adjust bio to point to currently live data: 870 */ 871 if ((op->crc.live_size != op->crc.uncompressed_size || 872 op->crc.csum_type != op->csum_type) && 873 bch2_write_rechecksum(c, op, op->csum_type) && 874 !c->opts.no_data_io) 875 return PREP_ENCODED_CHECKSUM_ERR; 876 877 /* 878 * If we want to compress the data, it has to be decrypted: 879 */ 880 if ((op->compression_opt || 881 bch2_csum_type_is_encryption(op->crc.csum_type) != 882 bch2_csum_type_is_encryption(op->csum_type)) && 883 bch2_write_decrypt(op)) 884 return PREP_ENCODED_CHECKSUM_ERR; 885 886 return PREP_ENCODED_OK; 887 } 888 889 static int bch2_write_extent(struct bch_write_op *op, struct write_point *wp, 890 struct bio **_dst) 891 { 892 struct bch_fs *c = op->c; 893 struct bio *src = &op->wbio.bio, *dst = src; 894 struct bvec_iter saved_iter; 895 void *ec_buf; 896 unsigned total_output = 0, total_input = 0; 897 bool bounce = false; 898 bool page_alloc_failed = false; 899 int ret, more = 0; 900 901 BUG_ON(!bio_sectors(src)); 902 903 ec_buf = bch2_writepoint_ec_buf(c, wp); 904 905 switch (bch2_write_prep_encoded_data(op, wp)) { 906 case PREP_ENCODED_OK: 907 break; 908 case PREP_ENCODED_ERR: 909 ret = -EIO; 910 goto err; 911 case PREP_ENCODED_CHECKSUM_ERR: 912 goto csum_err; 913 case PREP_ENCODED_DO_WRITE: 914 /* XXX look for bug here */ 915 if (ec_buf) { 916 dst = bch2_write_bio_alloc(c, wp, src, 917 &page_alloc_failed, 918 ec_buf); 919 bio_copy_data(dst, src); 920 bounce = true; 921 } 922 init_append_extent(op, wp, op->version, op->crc); 923 goto do_write; 924 } 925 926 if (ec_buf || 927 op->compression_opt || 928 (op->csum_type && 929 !(op->flags & BCH_WRITE_PAGES_STABLE)) || 930 (bch2_csum_type_is_encryption(op->csum_type) && 931 !(op->flags & BCH_WRITE_PAGES_OWNED))) { 932 dst = bch2_write_bio_alloc(c, wp, src, 933 &page_alloc_failed, 934 ec_buf); 935 bounce = true; 936 } 937 938 saved_iter = dst->bi_iter; 939 940 do { 941 struct bch_extent_crc_unpacked crc = { 0 }; 942 struct bversion version = op->version; 943 size_t dst_len = 0, src_len = 0; 944 945 if (page_alloc_failed && 946 dst->bi_iter.bi_size < (wp->sectors_free << 9) && 947 dst->bi_iter.bi_size < c->opts.encoded_extent_max) 948 break; 949 950 BUG_ON(op->compression_opt && 951 (op->flags & BCH_WRITE_DATA_ENCODED) && 952 bch2_csum_type_is_encryption(op->crc.csum_type)); 953 BUG_ON(op->compression_opt && !bounce); 954 955 crc.compression_type = op->incompressible 956 ? BCH_COMPRESSION_TYPE_incompressible 957 : op->compression_opt 958 ? bch2_bio_compress(c, dst, &dst_len, src, &src_len, 959 op->compression_opt) 960 : 0; 961 if (!crc_is_compressed(crc)) { 962 dst_len = min(dst->bi_iter.bi_size, src->bi_iter.bi_size); 963 dst_len = min_t(unsigned, dst_len, wp->sectors_free << 9); 964 965 if (op->csum_type) 966 dst_len = min_t(unsigned, dst_len, 967 c->opts.encoded_extent_max); 968 969 if (bounce) { 970 swap(dst->bi_iter.bi_size, dst_len); 971 bio_copy_data(dst, src); 972 swap(dst->bi_iter.bi_size, dst_len); 973 } 974 975 src_len = dst_len; 976 } 977 978 BUG_ON(!src_len || !dst_len); 979 980 if (bch2_csum_type_is_encryption(op->csum_type)) { 981 if (bversion_zero(version)) { 982 version.lo = atomic64_inc_return(&c->key_version); 983 } else { 984 crc.nonce = op->nonce; 985 op->nonce += src_len >> 9; 986 } 987 } 988 989 if ((op->flags & BCH_WRITE_DATA_ENCODED) && 990 !crc_is_compressed(crc) && 991 bch2_csum_type_is_encryption(op->crc.csum_type) == 992 bch2_csum_type_is_encryption(op->csum_type)) { 993 u8 compression_type = crc.compression_type; 994 u16 nonce = crc.nonce; 995 /* 996 * Note: when we're using rechecksum(), we need to be 997 * checksumming @src because it has all the data our 998 * existing checksum covers - if we bounced (because we 999 * were trying to compress), @dst will only have the 1000 * part of the data the new checksum will cover. 1001 * 1002 * But normally we want to be checksumming post bounce, 1003 * because part of the reason for bouncing is so the 1004 * data can't be modified (by userspace) while it's in 1005 * flight. 1006 */ 1007 if (bch2_rechecksum_bio(c, src, version, op->crc, 1008 &crc, &op->crc, 1009 src_len >> 9, 1010 bio_sectors(src) - (src_len >> 9), 1011 op->csum_type)) 1012 goto csum_err; 1013 /* 1014 * rchecksum_bio sets compression_type on crc from op->crc, 1015 * this isn't always correct as sometimes we're changing 1016 * an extent from uncompressed to incompressible. 1017 */ 1018 crc.compression_type = compression_type; 1019 crc.nonce = nonce; 1020 } else { 1021 if ((op->flags & BCH_WRITE_DATA_ENCODED) && 1022 bch2_rechecksum_bio(c, src, version, op->crc, 1023 NULL, &op->crc, 1024 src_len >> 9, 1025 bio_sectors(src) - (src_len >> 9), 1026 op->crc.csum_type)) 1027 goto csum_err; 1028 1029 crc.compressed_size = dst_len >> 9; 1030 crc.uncompressed_size = src_len >> 9; 1031 crc.live_size = src_len >> 9; 1032 1033 swap(dst->bi_iter.bi_size, dst_len); 1034 ret = bch2_encrypt_bio(c, op->csum_type, 1035 extent_nonce(version, crc), dst); 1036 if (ret) 1037 goto err; 1038 1039 crc.csum = bch2_checksum_bio(c, op->csum_type, 1040 extent_nonce(version, crc), dst); 1041 crc.csum_type = op->csum_type; 1042 swap(dst->bi_iter.bi_size, dst_len); 1043 } 1044 1045 init_append_extent(op, wp, version, crc); 1046 1047 if (dst != src) 1048 bio_advance(dst, dst_len); 1049 bio_advance(src, src_len); 1050 total_output += dst_len; 1051 total_input += src_len; 1052 } while (dst->bi_iter.bi_size && 1053 src->bi_iter.bi_size && 1054 wp->sectors_free && 1055 !bch2_keylist_realloc(&op->insert_keys, 1056 op->inline_keys, 1057 ARRAY_SIZE(op->inline_keys), 1058 BKEY_EXTENT_U64s_MAX)); 1059 1060 more = src->bi_iter.bi_size != 0; 1061 1062 dst->bi_iter = saved_iter; 1063 1064 if (dst == src && more) { 1065 BUG_ON(total_output != total_input); 1066 1067 dst = bio_split(src, total_input >> 9, 1068 GFP_NOFS, &c->bio_write); 1069 wbio_init(dst)->put_bio = true; 1070 /* copy WRITE_SYNC flag */ 1071 dst->bi_opf = src->bi_opf; 1072 } 1073 1074 dst->bi_iter.bi_size = total_output; 1075 do_write: 1076 *_dst = dst; 1077 return more; 1078 csum_err: 1079 bch_err(c, "%s writ error: error verifying existing checksum while rewriting existing data (memory corruption?)", 1080 op->flags & BCH_WRITE_MOVE ? "move" : "user"); 1081 ret = -EIO; 1082 err: 1083 if (to_wbio(dst)->bounce) 1084 bch2_bio_free_pages_pool(c, dst); 1085 if (to_wbio(dst)->put_bio) 1086 bio_put(dst); 1087 1088 return ret; 1089 } 1090 1091 static bool bch2_extent_is_writeable(struct bch_write_op *op, 1092 struct bkey_s_c k) 1093 { 1094 struct bch_fs *c = op->c; 1095 struct bkey_s_c_extent e; 1096 struct extent_ptr_decoded p; 1097 const union bch_extent_entry *entry; 1098 unsigned replicas = 0; 1099 1100 if (k.k->type != KEY_TYPE_extent) 1101 return false; 1102 1103 e = bkey_s_c_to_extent(k); 1104 extent_for_each_ptr_decode(e, p, entry) { 1105 if (crc_is_encoded(p.crc) || p.has_ec) 1106 return false; 1107 1108 replicas += bch2_extent_ptr_durability(c, &p); 1109 } 1110 1111 return replicas >= op->opts.data_replicas; 1112 } 1113 1114 static inline void bch2_nocow_write_unlock(struct bch_write_op *op) 1115 { 1116 struct bch_fs *c = op->c; 1117 1118 for_each_keylist_key(&op->insert_keys, k) { 1119 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k)); 1120 1121 bkey_for_each_ptr(ptrs, ptr) 1122 bch2_bucket_nocow_unlock(&c->nocow_locks, 1123 PTR_BUCKET_POS(c, ptr), 1124 BUCKET_NOCOW_LOCK_UPDATE); 1125 } 1126 } 1127 1128 static int bch2_nocow_write_convert_one_unwritten(struct btree_trans *trans, 1129 struct btree_iter *iter, 1130 struct bkey_i *orig, 1131 struct bkey_s_c k, 1132 u64 new_i_size) 1133 { 1134 if (!bch2_extents_match(bkey_i_to_s_c(orig), k)) { 1135 /* trace this */ 1136 return 0; 1137 } 1138 1139 struct bkey_i *new = bch2_bkey_make_mut_noupdate(trans, k); 1140 int ret = PTR_ERR_OR_ZERO(new); 1141 if (ret) 1142 return ret; 1143 1144 bch2_cut_front(bkey_start_pos(&orig->k), new); 1145 bch2_cut_back(orig->k.p, new); 1146 1147 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(new)); 1148 bkey_for_each_ptr(ptrs, ptr) 1149 ptr->unwritten = 0; 1150 1151 /* 1152 * Note that we're not calling bch2_subvol_get_snapshot() in this path - 1153 * that was done when we kicked off the write, and here it's important 1154 * that we update the extent that we wrote to - even if a snapshot has 1155 * since been created. The write is still outstanding, so we're ok 1156 * w.r.t. snapshot atomicity: 1157 */ 1158 return bch2_extent_update_i_size_sectors(trans, iter, 1159 min(new->k.p.offset << 9, new_i_size), 0) ?: 1160 bch2_trans_update(trans, iter, new, 1161 BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE); 1162 } 1163 1164 static void bch2_nocow_write_convert_unwritten(struct bch_write_op *op) 1165 { 1166 struct bch_fs *c = op->c; 1167 struct btree_trans *trans = bch2_trans_get(c); 1168 1169 for_each_keylist_key(&op->insert_keys, orig) { 1170 int ret = for_each_btree_key_upto_commit(trans, iter, BTREE_ID_extents, 1171 bkey_start_pos(&orig->k), orig->k.p, 1172 BTREE_ITER_INTENT, k, 1173 NULL, NULL, BCH_TRANS_COMMIT_no_enospc, ({ 1174 bch2_nocow_write_convert_one_unwritten(trans, &iter, orig, k, op->new_i_size); 1175 })); 1176 1177 if (ret && !bch2_err_matches(ret, EROFS)) { 1178 struct bkey_i *insert = bch2_keylist_front(&op->insert_keys); 1179 1180 bch_err_inum_offset_ratelimited(c, 1181 insert->k.p.inode, insert->k.p.offset << 9, 1182 "%s write error while doing btree update: %s", 1183 op->flags & BCH_WRITE_MOVE ? "move" : "user", 1184 bch2_err_str(ret)); 1185 } 1186 1187 if (ret) { 1188 op->error = ret; 1189 break; 1190 } 1191 } 1192 1193 bch2_trans_put(trans); 1194 } 1195 1196 static void __bch2_nocow_write_done(struct bch_write_op *op) 1197 { 1198 bch2_nocow_write_unlock(op); 1199 1200 if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) { 1201 op->error = -EIO; 1202 } else if (unlikely(op->flags & BCH_WRITE_CONVERT_UNWRITTEN)) 1203 bch2_nocow_write_convert_unwritten(op); 1204 } 1205 1206 static CLOSURE_CALLBACK(bch2_nocow_write_done) 1207 { 1208 closure_type(op, struct bch_write_op, cl); 1209 1210 __bch2_nocow_write_done(op); 1211 bch2_write_done(cl); 1212 } 1213 1214 struct bucket_to_lock { 1215 struct bpos b; 1216 unsigned gen; 1217 struct nocow_lock_bucket *l; 1218 }; 1219 1220 static void bch2_nocow_write(struct bch_write_op *op) 1221 { 1222 struct bch_fs *c = op->c; 1223 struct btree_trans *trans; 1224 struct btree_iter iter; 1225 struct bkey_s_c k; 1226 DARRAY_PREALLOCATED(struct bucket_to_lock, 3) buckets; 1227 u32 snapshot; 1228 struct bucket_to_lock *stale_at; 1229 int ret; 1230 1231 if (op->flags & BCH_WRITE_MOVE) 1232 return; 1233 1234 darray_init(&buckets); 1235 trans = bch2_trans_get(c); 1236 retry: 1237 bch2_trans_begin(trans); 1238 1239 ret = bch2_subvolume_get_snapshot(trans, op->subvol, &snapshot); 1240 if (unlikely(ret)) 1241 goto err; 1242 1243 bch2_trans_iter_init(trans, &iter, BTREE_ID_extents, 1244 SPOS(op->pos.inode, op->pos.offset, snapshot), 1245 BTREE_ITER_SLOTS); 1246 while (1) { 1247 struct bio *bio = &op->wbio.bio; 1248 1249 buckets.nr = 0; 1250 1251 k = bch2_btree_iter_peek_slot(&iter); 1252 ret = bkey_err(k); 1253 if (ret) 1254 break; 1255 1256 /* fall back to normal cow write path? */ 1257 if (unlikely(k.k->p.snapshot != snapshot || 1258 !bch2_extent_is_writeable(op, k))) 1259 break; 1260 1261 if (bch2_keylist_realloc(&op->insert_keys, 1262 op->inline_keys, 1263 ARRAY_SIZE(op->inline_keys), 1264 k.k->u64s)) 1265 break; 1266 1267 /* Get iorefs before dropping btree locks: */ 1268 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1269 bkey_for_each_ptr(ptrs, ptr) { 1270 struct bpos b = PTR_BUCKET_POS(c, ptr); 1271 struct nocow_lock_bucket *l = 1272 bucket_nocow_lock(&c->nocow_locks, bucket_to_u64(b)); 1273 prefetch(l); 1274 1275 if (unlikely(!bch2_dev_get_ioref(bch_dev_bkey_exists(c, ptr->dev), WRITE))) 1276 goto err_get_ioref; 1277 1278 /* XXX allocating memory with btree locks held - rare */ 1279 darray_push_gfp(&buckets, ((struct bucket_to_lock) { 1280 .b = b, .gen = ptr->gen, .l = l, 1281 }), GFP_KERNEL|__GFP_NOFAIL); 1282 1283 if (ptr->unwritten) 1284 op->flags |= BCH_WRITE_CONVERT_UNWRITTEN; 1285 } 1286 1287 /* Unlock before taking nocow locks, doing IO: */ 1288 bkey_reassemble(op->insert_keys.top, k); 1289 bch2_trans_unlock(trans); 1290 1291 bch2_cut_front(op->pos, op->insert_keys.top); 1292 if (op->flags & BCH_WRITE_CONVERT_UNWRITTEN) 1293 bch2_cut_back(POS(op->pos.inode, op->pos.offset + bio_sectors(bio)), op->insert_keys.top); 1294 1295 darray_for_each(buckets, i) { 1296 struct bch_dev *ca = bch_dev_bkey_exists(c, i->b.inode); 1297 1298 __bch2_bucket_nocow_lock(&c->nocow_locks, i->l, 1299 bucket_to_u64(i->b), 1300 BUCKET_NOCOW_LOCK_UPDATE); 1301 1302 rcu_read_lock(); 1303 bool stale = gen_after(*bucket_gen(ca, i->b.offset), i->gen); 1304 rcu_read_unlock(); 1305 1306 if (unlikely(stale)) { 1307 stale_at = i; 1308 goto err_bucket_stale; 1309 } 1310 } 1311 1312 bio = &op->wbio.bio; 1313 if (k.k->p.offset < op->pos.offset + bio_sectors(bio)) { 1314 bio = bio_split(bio, k.k->p.offset - op->pos.offset, 1315 GFP_KERNEL, &c->bio_write); 1316 wbio_init(bio)->put_bio = true; 1317 bio->bi_opf = op->wbio.bio.bi_opf; 1318 } else { 1319 op->flags |= BCH_WRITE_DONE; 1320 } 1321 1322 op->pos.offset += bio_sectors(bio); 1323 op->written += bio_sectors(bio); 1324 1325 bio->bi_end_io = bch2_write_endio; 1326 bio->bi_private = &op->cl; 1327 bio->bi_opf |= REQ_OP_WRITE; 1328 closure_get(&op->cl); 1329 bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user, 1330 op->insert_keys.top, true); 1331 1332 bch2_keylist_push(&op->insert_keys); 1333 if (op->flags & BCH_WRITE_DONE) 1334 break; 1335 bch2_btree_iter_advance(&iter); 1336 } 1337 out: 1338 bch2_trans_iter_exit(trans, &iter); 1339 err: 1340 if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) 1341 goto retry; 1342 1343 if (ret) { 1344 bch_err_inum_offset_ratelimited(c, 1345 op->pos.inode, op->pos.offset << 9, 1346 "%s: btree lookup error %s", __func__, bch2_err_str(ret)); 1347 op->error = ret; 1348 op->flags |= BCH_WRITE_DONE; 1349 } 1350 1351 bch2_trans_put(trans); 1352 darray_exit(&buckets); 1353 1354 /* fallback to cow write path? */ 1355 if (!(op->flags & BCH_WRITE_DONE)) { 1356 closure_sync(&op->cl); 1357 __bch2_nocow_write_done(op); 1358 op->insert_keys.top = op->insert_keys.keys; 1359 } else if (op->flags & BCH_WRITE_SYNC) { 1360 closure_sync(&op->cl); 1361 bch2_nocow_write_done(&op->cl.work); 1362 } else { 1363 /* 1364 * XXX 1365 * needs to run out of process context because ei_quota_lock is 1366 * a mutex 1367 */ 1368 continue_at(&op->cl, bch2_nocow_write_done, index_update_wq(op)); 1369 } 1370 return; 1371 err_get_ioref: 1372 darray_for_each(buckets, i) 1373 percpu_ref_put(&bch_dev_bkey_exists(c, i->b.inode)->io_ref); 1374 1375 /* Fall back to COW path: */ 1376 goto out; 1377 err_bucket_stale: 1378 darray_for_each(buckets, i) { 1379 bch2_bucket_nocow_unlock(&c->nocow_locks, i->b, BUCKET_NOCOW_LOCK_UPDATE); 1380 if (i == stale_at) 1381 break; 1382 } 1383 1384 /* We can retry this: */ 1385 ret = -BCH_ERR_transaction_restart; 1386 goto err_get_ioref; 1387 } 1388 1389 static void __bch2_write(struct bch_write_op *op) 1390 { 1391 struct bch_fs *c = op->c; 1392 struct write_point *wp = NULL; 1393 struct bio *bio = NULL; 1394 unsigned nofs_flags; 1395 int ret; 1396 1397 nofs_flags = memalloc_nofs_save(); 1398 1399 if (unlikely(op->opts.nocow && c->opts.nocow_enabled)) { 1400 bch2_nocow_write(op); 1401 if (op->flags & BCH_WRITE_DONE) 1402 goto out_nofs_restore; 1403 } 1404 again: 1405 memset(&op->failed, 0, sizeof(op->failed)); 1406 1407 do { 1408 struct bkey_i *key_to_write; 1409 unsigned key_to_write_offset = op->insert_keys.top_p - 1410 op->insert_keys.keys_p; 1411 1412 /* +1 for possible cache device: */ 1413 if (op->open_buckets.nr + op->nr_replicas + 1 > 1414 ARRAY_SIZE(op->open_buckets.v)) 1415 break; 1416 1417 if (bch2_keylist_realloc(&op->insert_keys, 1418 op->inline_keys, 1419 ARRAY_SIZE(op->inline_keys), 1420 BKEY_EXTENT_U64s_MAX)) 1421 break; 1422 1423 /* 1424 * The copygc thread is now global, which means it's no longer 1425 * freeing up space on specific disks, which means that 1426 * allocations for specific disks may hang arbitrarily long: 1427 */ 1428 ret = bch2_trans_do(c, NULL, NULL, 0, 1429 bch2_alloc_sectors_start_trans(trans, 1430 op->target, 1431 op->opts.erasure_code && !(op->flags & BCH_WRITE_CACHED), 1432 op->write_point, 1433 &op->devs_have, 1434 op->nr_replicas, 1435 op->nr_replicas_required, 1436 op->watermark, 1437 op->flags, 1438 (op->flags & (BCH_WRITE_ALLOC_NOWAIT| 1439 BCH_WRITE_ONLY_SPECIFIED_DEVS)) 1440 ? NULL : &op->cl, &wp)); 1441 if (unlikely(ret)) { 1442 if (bch2_err_matches(ret, BCH_ERR_operation_blocked)) 1443 break; 1444 1445 goto err; 1446 } 1447 1448 EBUG_ON(!wp); 1449 1450 bch2_open_bucket_get(c, wp, &op->open_buckets); 1451 ret = bch2_write_extent(op, wp, &bio); 1452 1453 bch2_alloc_sectors_done_inlined(c, wp); 1454 err: 1455 if (ret <= 0) { 1456 op->flags |= BCH_WRITE_DONE; 1457 1458 if (ret < 0) { 1459 if (!(op->flags & BCH_WRITE_ALLOC_NOWAIT)) 1460 bch_err_inum_offset_ratelimited(c, 1461 op->pos.inode, 1462 op->pos.offset << 9, 1463 "%s(): %s error: %s", __func__, 1464 op->flags & BCH_WRITE_MOVE ? "move" : "user", 1465 bch2_err_str(ret)); 1466 op->error = ret; 1467 break; 1468 } 1469 } 1470 1471 bio->bi_end_io = bch2_write_endio; 1472 bio->bi_private = &op->cl; 1473 bio->bi_opf |= REQ_OP_WRITE; 1474 1475 closure_get(bio->bi_private); 1476 1477 key_to_write = (void *) (op->insert_keys.keys_p + 1478 key_to_write_offset); 1479 1480 bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user, 1481 key_to_write, false); 1482 } while (ret); 1483 1484 /* 1485 * Sync or no? 1486 * 1487 * If we're running asynchronously, wne may still want to block 1488 * synchronously here if we weren't able to submit all of the IO at 1489 * once, as that signals backpressure to the caller. 1490 */ 1491 if ((op->flags & BCH_WRITE_SYNC) || 1492 (!(op->flags & BCH_WRITE_DONE) && 1493 !(op->flags & BCH_WRITE_IN_WORKER))) { 1494 closure_sync(&op->cl); 1495 __bch2_write_index(op); 1496 1497 if (!(op->flags & BCH_WRITE_DONE)) 1498 goto again; 1499 bch2_write_done(&op->cl); 1500 } else { 1501 bch2_write_queue(op, wp); 1502 continue_at(&op->cl, bch2_write_index, NULL); 1503 } 1504 out_nofs_restore: 1505 memalloc_nofs_restore(nofs_flags); 1506 } 1507 1508 static void bch2_write_data_inline(struct bch_write_op *op, unsigned data_len) 1509 { 1510 struct bio *bio = &op->wbio.bio; 1511 struct bvec_iter iter; 1512 struct bkey_i_inline_data *id; 1513 unsigned sectors; 1514 int ret; 1515 1516 memset(&op->failed, 0, sizeof(op->failed)); 1517 1518 op->flags |= BCH_WRITE_WROTE_DATA_INLINE; 1519 op->flags |= BCH_WRITE_DONE; 1520 1521 bch2_check_set_feature(op->c, BCH_FEATURE_inline_data); 1522 1523 ret = bch2_keylist_realloc(&op->insert_keys, op->inline_keys, 1524 ARRAY_SIZE(op->inline_keys), 1525 BKEY_U64s + DIV_ROUND_UP(data_len, 8)); 1526 if (ret) { 1527 op->error = ret; 1528 goto err; 1529 } 1530 1531 sectors = bio_sectors(bio); 1532 op->pos.offset += sectors; 1533 1534 id = bkey_inline_data_init(op->insert_keys.top); 1535 id->k.p = op->pos; 1536 id->k.version = op->version; 1537 id->k.size = sectors; 1538 1539 iter = bio->bi_iter; 1540 iter.bi_size = data_len; 1541 memcpy_from_bio(id->v.data, bio, iter); 1542 1543 while (data_len & 7) 1544 id->v.data[data_len++] = '\0'; 1545 set_bkey_val_bytes(&id->k, data_len); 1546 bch2_keylist_push(&op->insert_keys); 1547 1548 __bch2_write_index(op); 1549 err: 1550 bch2_write_done(&op->cl); 1551 } 1552 1553 /** 1554 * bch2_write() - handle a write to a cache device or flash only volume 1555 * @cl: &bch_write_op->cl 1556 * 1557 * This is the starting point for any data to end up in a cache device; it could 1558 * be from a normal write, or a writeback write, or a write to a flash only 1559 * volume - it's also used by the moving garbage collector to compact data in 1560 * mostly empty buckets. 1561 * 1562 * It first writes the data to the cache, creating a list of keys to be inserted 1563 * (if the data won't fit in a single open bucket, there will be multiple keys); 1564 * after the data is written it calls bch_journal, and after the keys have been 1565 * added to the next journal write they're inserted into the btree. 1566 * 1567 * If op->discard is true, instead of inserting the data it invalidates the 1568 * region of the cache represented by op->bio and op->inode. 1569 */ 1570 CLOSURE_CALLBACK(bch2_write) 1571 { 1572 closure_type(op, struct bch_write_op, cl); 1573 struct bio *bio = &op->wbio.bio; 1574 struct bch_fs *c = op->c; 1575 unsigned data_len; 1576 1577 EBUG_ON(op->cl.parent); 1578 BUG_ON(!op->nr_replicas); 1579 BUG_ON(!op->write_point.v); 1580 BUG_ON(bkey_eq(op->pos, POS_MAX)); 1581 1582 op->nr_replicas_required = min_t(unsigned, op->nr_replicas_required, op->nr_replicas); 1583 op->start_time = local_clock(); 1584 bch2_keylist_init(&op->insert_keys, op->inline_keys); 1585 wbio_init(bio)->put_bio = false; 1586 1587 if (bio->bi_iter.bi_size & (c->opts.block_size - 1)) { 1588 bch_err_inum_offset_ratelimited(c, 1589 op->pos.inode, 1590 op->pos.offset << 9, 1591 "%s write error: misaligned write", 1592 op->flags & BCH_WRITE_MOVE ? "move" : "user"); 1593 op->error = -EIO; 1594 goto err; 1595 } 1596 1597 if (c->opts.nochanges) { 1598 op->error = -BCH_ERR_erofs_no_writes; 1599 goto err; 1600 } 1601 1602 if (!(op->flags & BCH_WRITE_MOVE) && 1603 !bch2_write_ref_tryget(c, BCH_WRITE_REF_write)) { 1604 op->error = -BCH_ERR_erofs_no_writes; 1605 goto err; 1606 } 1607 1608 this_cpu_add(c->counters[BCH_COUNTER_io_write], bio_sectors(bio)); 1609 bch2_increment_clock(c, bio_sectors(bio), WRITE); 1610 1611 data_len = min_t(u64, bio->bi_iter.bi_size, 1612 op->new_i_size - (op->pos.offset << 9)); 1613 1614 if (c->opts.inline_data && 1615 data_len <= min(block_bytes(c) / 2, 1024U)) { 1616 bch2_write_data_inline(op, data_len); 1617 return; 1618 } 1619 1620 __bch2_write(op); 1621 return; 1622 err: 1623 bch2_disk_reservation_put(c, &op->res); 1624 1625 closure_debug_destroy(&op->cl); 1626 if (op->end_io) 1627 op->end_io(op); 1628 } 1629 1630 static const char * const bch2_write_flags[] = { 1631 #define x(f) #f, 1632 BCH_WRITE_FLAGS() 1633 #undef x 1634 NULL 1635 }; 1636 1637 void bch2_write_op_to_text(struct printbuf *out, struct bch_write_op *op) 1638 { 1639 prt_str(out, "pos: "); 1640 bch2_bpos_to_text(out, op->pos); 1641 prt_newline(out); 1642 printbuf_indent_add(out, 2); 1643 1644 prt_str(out, "started: "); 1645 bch2_pr_time_units(out, local_clock() - op->start_time); 1646 prt_newline(out); 1647 1648 prt_str(out, "flags: "); 1649 prt_bitflags(out, bch2_write_flags, op->flags); 1650 prt_newline(out); 1651 1652 prt_printf(out, "ref: %u", closure_nr_remaining(&op->cl)); 1653 prt_newline(out); 1654 1655 printbuf_indent_sub(out, 2); 1656 } 1657 1658 void bch2_fs_io_write_exit(struct bch_fs *c) 1659 { 1660 mempool_exit(&c->bio_bounce_pages); 1661 bioset_exit(&c->bio_write); 1662 } 1663 1664 int bch2_fs_io_write_init(struct bch_fs *c) 1665 { 1666 if (bioset_init(&c->bio_write, 1, offsetof(struct bch_write_bio, bio), 1667 BIOSET_NEED_BVECS)) 1668 return -BCH_ERR_ENOMEM_bio_write_init; 1669 1670 if (mempool_init_page_pool(&c->bio_bounce_pages, 1671 max_t(unsigned, 1672 c->opts.btree_node_size, 1673 c->opts.encoded_extent_max) / 1674 PAGE_SIZE, 0)) 1675 return -BCH_ERR_ENOMEM_bio_bounce_pages_init; 1676 1677 return 0; 1678 } 1679