1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 4 * Copyright 2012 Google, Inc. 5 */ 6 7 #include "bcachefs.h" 8 #include "alloc_foreground.h" 9 #include "bkey_buf.h" 10 #include "bset.h" 11 #include "btree_update.h" 12 #include "buckets.h" 13 #include "checksum.h" 14 #include "clock.h" 15 #include "compress.h" 16 #include "debug.h" 17 #include "ec.h" 18 #include "error.h" 19 #include "extent_update.h" 20 #include "inode.h" 21 #include "io_write.h" 22 #include "journal.h" 23 #include "keylist.h" 24 #include "move.h" 25 #include "nocow_locking.h" 26 #include "rebalance.h" 27 #include "subvolume.h" 28 #include "super.h" 29 #include "super-io.h" 30 #include "trace.h" 31 32 #include <linux/blkdev.h> 33 #include <linux/prefetch.h> 34 #include <linux/random.h> 35 #include <linux/sched/mm.h> 36 37 #ifdef CONFIG_BCACHEFS_DEBUG 38 static unsigned bch2_write_corrupt_ratio; 39 module_param_named(write_corrupt_ratio, bch2_write_corrupt_ratio, uint, 0644); 40 MODULE_PARM_DESC(write_corrupt_ratio, ""); 41 #endif 42 43 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT 44 45 static inline void bch2_congested_acct(struct bch_dev *ca, u64 io_latency, 46 u64 now, int rw) 47 { 48 u64 latency_capable = 49 ca->io_latency[rw].quantiles.entries[QUANTILE_IDX(1)].m; 50 /* ideally we'd be taking into account the device's variance here: */ 51 u64 latency_threshold = latency_capable << (rw == READ ? 2 : 3); 52 s64 latency_over = io_latency - latency_threshold; 53 54 if (latency_threshold && latency_over > 0) { 55 /* 56 * bump up congested by approximately latency_over * 4 / 57 * latency_threshold - we don't need much accuracy here so don't 58 * bother with the divide: 59 */ 60 if (atomic_read(&ca->congested) < CONGESTED_MAX) 61 atomic_add(latency_over >> 62 max_t(int, ilog2(latency_threshold) - 2, 0), 63 &ca->congested); 64 65 ca->congested_last = now; 66 } else if (atomic_read(&ca->congested) > 0) { 67 atomic_dec(&ca->congested); 68 } 69 } 70 71 void bch2_latency_acct(struct bch_dev *ca, u64 submit_time, int rw) 72 { 73 atomic64_t *latency = &ca->cur_latency[rw]; 74 u64 now = local_clock(); 75 u64 io_latency = time_after64(now, submit_time) 76 ? now - submit_time 77 : 0; 78 u64 old, new; 79 80 old = atomic64_read(latency); 81 do { 82 /* 83 * If the io latency was reasonably close to the current 84 * latency, skip doing the update and atomic operation - most of 85 * the time: 86 */ 87 if (abs((int) (old - io_latency)) < (old >> 1) && 88 now & ~(~0U << 5)) 89 break; 90 91 new = ewma_add(old, io_latency, 5); 92 } while (!atomic64_try_cmpxchg(latency, &old, new)); 93 94 bch2_congested_acct(ca, io_latency, now, rw); 95 96 __bch2_time_stats_update(&ca->io_latency[rw].stats, submit_time, now); 97 } 98 99 #endif 100 101 /* Allocate, free from mempool: */ 102 103 void bch2_bio_free_pages_pool(struct bch_fs *c, struct bio *bio) 104 { 105 struct bvec_iter_all iter; 106 struct bio_vec *bv; 107 108 bio_for_each_segment_all(bv, bio, iter) 109 if (bv->bv_page != ZERO_PAGE(0)) 110 mempool_free(bv->bv_page, &c->bio_bounce_pages); 111 bio->bi_vcnt = 0; 112 } 113 114 static struct page *__bio_alloc_page_pool(struct bch_fs *c, bool *using_mempool) 115 { 116 struct page *page; 117 118 if (likely(!*using_mempool)) { 119 page = alloc_page(GFP_NOFS); 120 if (unlikely(!page)) { 121 mutex_lock(&c->bio_bounce_pages_lock); 122 *using_mempool = true; 123 goto pool_alloc; 124 125 } 126 } else { 127 pool_alloc: 128 page = mempool_alloc(&c->bio_bounce_pages, GFP_NOFS); 129 } 130 131 return page; 132 } 133 134 void bch2_bio_alloc_pages_pool(struct bch_fs *c, struct bio *bio, 135 size_t size) 136 { 137 bool using_mempool = false; 138 139 while (size) { 140 struct page *page = __bio_alloc_page_pool(c, &using_mempool); 141 unsigned len = min_t(size_t, PAGE_SIZE, size); 142 143 BUG_ON(!bio_add_page(bio, page, len, 0)); 144 size -= len; 145 } 146 147 if (using_mempool) 148 mutex_unlock(&c->bio_bounce_pages_lock); 149 } 150 151 /* Extent update path: */ 152 153 int bch2_sum_sector_overwrites(struct btree_trans *trans, 154 struct btree_iter *extent_iter, 155 struct bkey_i *new, 156 bool *usage_increasing, 157 s64 *i_sectors_delta, 158 s64 *disk_sectors_delta) 159 { 160 struct bch_fs *c = trans->c; 161 struct btree_iter iter; 162 struct bkey_s_c old; 163 unsigned new_replicas = bch2_bkey_replicas(c, bkey_i_to_s_c(new)); 164 bool new_compressed = bch2_bkey_sectors_compressed(bkey_i_to_s_c(new)); 165 int ret = 0; 166 167 *usage_increasing = false; 168 *i_sectors_delta = 0; 169 *disk_sectors_delta = 0; 170 171 bch2_trans_copy_iter(trans, &iter, extent_iter); 172 173 for_each_btree_key_max_continue_norestart(trans, iter, 174 new->k.p, BTREE_ITER_slots, old, ret) { 175 s64 sectors = min(new->k.p.offset, old.k->p.offset) - 176 max(bkey_start_offset(&new->k), 177 bkey_start_offset(old.k)); 178 179 *i_sectors_delta += sectors * 180 (bkey_extent_is_allocation(&new->k) - 181 bkey_extent_is_allocation(old.k)); 182 183 *disk_sectors_delta += sectors * bch2_bkey_nr_ptrs_allocated(bkey_i_to_s_c(new)); 184 *disk_sectors_delta -= new->k.p.snapshot == old.k->p.snapshot 185 ? sectors * bch2_bkey_nr_ptrs_fully_allocated(old) 186 : 0; 187 188 if (!*usage_increasing && 189 (new->k.p.snapshot != old.k->p.snapshot || 190 new_replicas > bch2_bkey_replicas(c, old) || 191 (!new_compressed && bch2_bkey_sectors_compressed(old)))) 192 *usage_increasing = true; 193 194 if (bkey_ge(old.k->p, new->k.p)) 195 break; 196 } 197 198 bch2_trans_iter_exit(trans, &iter); 199 return ret; 200 } 201 202 static inline int bch2_extent_update_i_size_sectors(struct btree_trans *trans, 203 struct btree_iter *extent_iter, 204 u64 new_i_size, 205 s64 i_sectors_delta) 206 { 207 /* 208 * Crazy performance optimization: 209 * Every extent update needs to also update the inode: the inode trigger 210 * will set bi->journal_seq to the journal sequence number of this 211 * transaction - for fsync. 212 * 213 * But if that's the only reason we're updating the inode (we're not 214 * updating bi_size or bi_sectors), then we don't need the inode update 215 * to be journalled - if we crash, the bi_journal_seq update will be 216 * lost, but that's fine. 217 */ 218 unsigned inode_update_flags = BTREE_UPDATE_nojournal; 219 220 struct btree_iter iter; 221 struct bkey_s_c k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_inodes, 222 SPOS(0, 223 extent_iter->pos.inode, 224 extent_iter->snapshot), 225 BTREE_ITER_intent| 226 BTREE_ITER_cached); 227 int ret = bkey_err(k); 228 if (unlikely(ret)) 229 return ret; 230 231 /* 232 * varint_decode_fast(), in the inode .invalid method, reads up to 7 233 * bytes past the end of the buffer: 234 */ 235 struct bkey_i *k_mut = bch2_trans_kmalloc_nomemzero(trans, bkey_bytes(k.k) + 8); 236 ret = PTR_ERR_OR_ZERO(k_mut); 237 if (unlikely(ret)) 238 goto err; 239 240 bkey_reassemble(k_mut, k); 241 242 if (unlikely(k_mut->k.type != KEY_TYPE_inode_v3)) { 243 k_mut = bch2_inode_to_v3(trans, k_mut); 244 ret = PTR_ERR_OR_ZERO(k_mut); 245 if (unlikely(ret)) 246 goto err; 247 } 248 249 struct bkey_i_inode_v3 *inode = bkey_i_to_inode_v3(k_mut); 250 251 if (!(le64_to_cpu(inode->v.bi_flags) & BCH_INODE_i_size_dirty) && 252 new_i_size > le64_to_cpu(inode->v.bi_size)) { 253 inode->v.bi_size = cpu_to_le64(new_i_size); 254 inode_update_flags = 0; 255 } 256 257 if (i_sectors_delta) { 258 le64_add_cpu(&inode->v.bi_sectors, i_sectors_delta); 259 inode_update_flags = 0; 260 } 261 262 if (inode->k.p.snapshot != iter.snapshot) { 263 inode->k.p.snapshot = iter.snapshot; 264 inode_update_flags = 0; 265 } 266 267 ret = bch2_trans_update(trans, &iter, &inode->k_i, 268 BTREE_UPDATE_internal_snapshot_node| 269 inode_update_flags); 270 err: 271 bch2_trans_iter_exit(trans, &iter); 272 return ret; 273 } 274 275 int bch2_extent_update(struct btree_trans *trans, 276 subvol_inum inum, 277 struct btree_iter *iter, 278 struct bkey_i *k, 279 struct disk_reservation *disk_res, 280 u64 new_i_size, 281 s64 *i_sectors_delta_total, 282 bool check_enospc) 283 { 284 struct bpos next_pos; 285 bool usage_increasing; 286 s64 i_sectors_delta = 0, disk_sectors_delta = 0; 287 int ret; 288 289 /* 290 * This traverses us the iterator without changing iter->path->pos to 291 * search_key() (which is pos + 1 for extents): we want there to be a 292 * path already traversed at iter->pos because 293 * bch2_trans_extent_update() will use it to attempt extent merging 294 */ 295 ret = __bch2_btree_iter_traverse(trans, iter); 296 if (ret) 297 return ret; 298 299 ret = bch2_extent_trim_atomic(trans, iter, k); 300 if (ret) 301 return ret; 302 303 next_pos = k->k.p; 304 305 ret = bch2_sum_sector_overwrites(trans, iter, k, 306 &usage_increasing, 307 &i_sectors_delta, 308 &disk_sectors_delta); 309 if (ret) 310 return ret; 311 312 if (disk_res && 313 disk_sectors_delta > (s64) disk_res->sectors) { 314 ret = bch2_disk_reservation_add(trans->c, disk_res, 315 disk_sectors_delta - disk_res->sectors, 316 !check_enospc || !usage_increasing 317 ? BCH_DISK_RESERVATION_NOFAIL : 0); 318 if (ret) 319 return ret; 320 } 321 322 /* 323 * Note: 324 * We always have to do an inode update - even when i_size/i_sectors 325 * aren't changing - for fsync to work properly; fsync relies on 326 * inode->bi_journal_seq which is updated by the trigger code: 327 */ 328 ret = bch2_extent_update_i_size_sectors(trans, iter, 329 min(k->k.p.offset << 9, new_i_size), 330 i_sectors_delta) ?: 331 bch2_trans_update(trans, iter, k, 0) ?: 332 bch2_trans_commit(trans, disk_res, NULL, 333 BCH_TRANS_COMMIT_no_check_rw| 334 BCH_TRANS_COMMIT_no_enospc); 335 if (unlikely(ret)) 336 return ret; 337 338 if (i_sectors_delta_total) 339 *i_sectors_delta_total += i_sectors_delta; 340 bch2_btree_iter_set_pos(trans, iter, next_pos); 341 return 0; 342 } 343 344 static int bch2_write_index_default(struct bch_write_op *op) 345 { 346 struct bch_fs *c = op->c; 347 struct bkey_buf sk; 348 struct keylist *keys = &op->insert_keys; 349 struct bkey_i *k = bch2_keylist_front(keys); 350 struct btree_trans *trans = bch2_trans_get(c); 351 struct btree_iter iter; 352 subvol_inum inum = { 353 .subvol = op->subvol, 354 .inum = k->k.p.inode, 355 }; 356 int ret; 357 358 BUG_ON(!inum.subvol); 359 360 bch2_bkey_buf_init(&sk); 361 362 do { 363 bch2_trans_begin(trans); 364 365 k = bch2_keylist_front(keys); 366 bch2_bkey_buf_copy(&sk, c, k); 367 368 ret = bch2_subvolume_get_snapshot(trans, inum.subvol, 369 &sk.k->k.p.snapshot); 370 if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) 371 continue; 372 if (ret) 373 break; 374 375 bch2_trans_iter_init(trans, &iter, BTREE_ID_extents, 376 bkey_start_pos(&sk.k->k), 377 BTREE_ITER_slots|BTREE_ITER_intent); 378 379 ret = bch2_bkey_set_needs_rebalance(c, &op->opts, sk.k) ?: 380 bch2_extent_update(trans, inum, &iter, sk.k, 381 &op->res, 382 op->new_i_size, &op->i_sectors_delta, 383 op->flags & BCH_WRITE_check_enospc); 384 bch2_trans_iter_exit(trans, &iter); 385 386 if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) 387 continue; 388 if (ret) 389 break; 390 391 if (bkey_ge(iter.pos, k->k.p)) 392 bch2_keylist_pop_front(&op->insert_keys); 393 else 394 bch2_cut_front(iter.pos, k); 395 } while (!bch2_keylist_empty(keys)); 396 397 bch2_trans_put(trans); 398 bch2_bkey_buf_exit(&sk, c); 399 400 return ret; 401 } 402 403 /* Writes */ 404 405 void bch2_write_op_error(struct bch_write_op *op, u64 offset, const char *fmt, ...) 406 { 407 struct printbuf buf = PRINTBUF; 408 409 if (op->subvol) { 410 bch2_inum_offset_err_msg(op->c, &buf, 411 (subvol_inum) { op->subvol, op->pos.inode, }, 412 offset << 9); 413 } else { 414 struct bpos pos = op->pos; 415 pos.offset = offset; 416 bch2_inum_snap_offset_err_msg(op->c, &buf, pos); 417 } 418 419 prt_str(&buf, "write error: "); 420 421 va_list args; 422 va_start(args, fmt); 423 prt_vprintf(&buf, fmt, args); 424 va_end(args); 425 426 if (op->flags & BCH_WRITE_move) { 427 struct data_update *u = container_of(op, struct data_update, op); 428 429 prt_printf(&buf, "\n from internal move "); 430 bch2_bkey_val_to_text(&buf, op->c, bkey_i_to_s_c(u->k.k)); 431 } 432 433 bch_err_ratelimited(op->c, "%s", buf.buf); 434 printbuf_exit(&buf); 435 } 436 437 void bch2_submit_wbio_replicas(struct bch_write_bio *wbio, struct bch_fs *c, 438 enum bch_data_type type, 439 const struct bkey_i *k, 440 bool nocow) 441 { 442 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k)); 443 struct bch_write_bio *n; 444 445 BUG_ON(c->opts.nochanges); 446 447 bkey_for_each_ptr(ptrs, ptr) { 448 /* 449 * XXX: btree writes should be using io_ref[WRITE], but we 450 * aren't retrying failed btree writes yet (due to device 451 * removal/ro): 452 */ 453 struct bch_dev *ca = nocow 454 ? bch2_dev_have_ref(c, ptr->dev) 455 : bch2_dev_get_ioref(c, ptr->dev, type == BCH_DATA_btree ? READ : WRITE); 456 457 if (to_entry(ptr + 1) < ptrs.end) { 458 n = to_wbio(bio_alloc_clone(NULL, &wbio->bio, GFP_NOFS, &c->replica_set)); 459 460 n->bio.bi_end_io = wbio->bio.bi_end_io; 461 n->bio.bi_private = wbio->bio.bi_private; 462 n->parent = wbio; 463 n->split = true; 464 n->bounce = false; 465 n->put_bio = true; 466 n->bio.bi_opf = wbio->bio.bi_opf; 467 bio_inc_remaining(&wbio->bio); 468 } else { 469 n = wbio; 470 n->split = false; 471 } 472 473 n->c = c; 474 n->dev = ptr->dev; 475 n->have_ioref = ca != NULL; 476 n->nocow = nocow; 477 n->submit_time = local_clock(); 478 n->inode_offset = bkey_start_offset(&k->k); 479 if (nocow) 480 n->nocow_bucket = PTR_BUCKET_NR(ca, ptr); 481 n->bio.bi_iter.bi_sector = ptr->offset; 482 483 if (likely(n->have_ioref)) { 484 this_cpu_add(ca->io_done->sectors[WRITE][type], 485 bio_sectors(&n->bio)); 486 487 bio_set_dev(&n->bio, ca->disk_sb.bdev); 488 489 if (type != BCH_DATA_btree && unlikely(c->opts.no_data_io)) { 490 bio_endio(&n->bio); 491 continue; 492 } 493 494 submit_bio(&n->bio); 495 } else { 496 n->bio.bi_status = BLK_STS_REMOVED; 497 bio_endio(&n->bio); 498 } 499 } 500 } 501 502 static void __bch2_write(struct bch_write_op *); 503 504 static void bch2_write_done(struct closure *cl) 505 { 506 struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); 507 struct bch_fs *c = op->c; 508 509 EBUG_ON(op->open_buckets.nr); 510 511 bch2_time_stats_update(&c->times[BCH_TIME_data_write], op->start_time); 512 bch2_disk_reservation_put(c, &op->res); 513 514 if (!(op->flags & BCH_WRITE_move)) 515 bch2_write_ref_put(c, BCH_WRITE_REF_write); 516 bch2_keylist_free(&op->insert_keys, op->inline_keys); 517 518 EBUG_ON(cl->parent); 519 closure_debug_destroy(cl); 520 if (op->end_io) 521 op->end_io(op); 522 } 523 524 static noinline int bch2_write_drop_io_error_ptrs(struct bch_write_op *op) 525 { 526 struct keylist *keys = &op->insert_keys; 527 struct bkey_i *src, *dst = keys->keys, *n; 528 529 for (src = keys->keys; src != keys->top; src = n) { 530 n = bkey_next(src); 531 532 if (bkey_extent_is_direct_data(&src->k)) { 533 bch2_bkey_drop_ptrs(bkey_i_to_s(src), ptr, 534 test_bit(ptr->dev, op->failed.d)); 535 536 if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(src))) 537 return -BCH_ERR_data_write_io; 538 } 539 540 if (dst != src) 541 memmove_u64s_down(dst, src, src->k.u64s); 542 dst = bkey_next(dst); 543 } 544 545 keys->top = dst; 546 return 0; 547 } 548 549 /** 550 * __bch2_write_index - after a write, update index to point to new data 551 * @op: bch_write_op to process 552 */ 553 static void __bch2_write_index(struct bch_write_op *op) 554 { 555 struct bch_fs *c = op->c; 556 struct keylist *keys = &op->insert_keys; 557 unsigned dev; 558 int ret = 0; 559 560 if (unlikely(op->flags & BCH_WRITE_io_error)) { 561 ret = bch2_write_drop_io_error_ptrs(op); 562 if (ret) 563 goto err; 564 } 565 566 if (!bch2_keylist_empty(keys)) { 567 u64 sectors_start = keylist_sectors(keys); 568 569 ret = !(op->flags & BCH_WRITE_move) 570 ? bch2_write_index_default(op) 571 : bch2_data_update_index_update(op); 572 573 BUG_ON(bch2_err_matches(ret, BCH_ERR_transaction_restart)); 574 BUG_ON(keylist_sectors(keys) && !ret); 575 576 op->written += sectors_start - keylist_sectors(keys); 577 578 if (unlikely(ret && !bch2_err_matches(ret, EROFS))) { 579 struct bkey_i *insert = bch2_keylist_front(&op->insert_keys); 580 581 bch2_write_op_error(op, bkey_start_offset(&insert->k), 582 "btree update error: %s", bch2_err_str(ret)); 583 } 584 585 if (ret) 586 goto err; 587 } 588 out: 589 /* If some a bucket wasn't written, we can't erasure code it: */ 590 for_each_set_bit(dev, op->failed.d, BCH_SB_MEMBERS_MAX) 591 bch2_open_bucket_write_error(c, &op->open_buckets, dev, -BCH_ERR_data_write_io); 592 593 bch2_open_buckets_put(c, &op->open_buckets); 594 return; 595 err: 596 keys->top = keys->keys; 597 op->error = ret; 598 op->flags |= BCH_WRITE_submitted; 599 goto out; 600 } 601 602 static inline void __wp_update_state(struct write_point *wp, enum write_point_state state) 603 { 604 if (state != wp->state) { 605 struct task_struct *p = current; 606 u64 now = ktime_get_ns(); 607 u64 runtime = p->se.sum_exec_runtime + 608 (now - p->se.exec_start); 609 610 if (state == WRITE_POINT_runnable) 611 wp->last_runtime = runtime; 612 else if (wp->state == WRITE_POINT_runnable) 613 wp->time[WRITE_POINT_running] += runtime - wp->last_runtime; 614 615 if (wp->last_state_change && 616 time_after64(now, wp->last_state_change)) 617 wp->time[wp->state] += now - wp->last_state_change; 618 wp->state = state; 619 wp->last_state_change = now; 620 } 621 } 622 623 static inline void wp_update_state(struct write_point *wp, bool running) 624 { 625 enum write_point_state state; 626 627 state = running ? WRITE_POINT_runnable: 628 !list_empty(&wp->writes) ? WRITE_POINT_waiting_io 629 : WRITE_POINT_stopped; 630 631 __wp_update_state(wp, state); 632 } 633 634 static CLOSURE_CALLBACK(bch2_write_index) 635 { 636 closure_type(op, struct bch_write_op, cl); 637 struct write_point *wp = op->wp; 638 struct workqueue_struct *wq = index_update_wq(op); 639 unsigned long flags; 640 641 if ((op->flags & BCH_WRITE_submitted) && 642 (op->flags & BCH_WRITE_move)) 643 bch2_bio_free_pages_pool(op->c, &op->wbio.bio); 644 645 spin_lock_irqsave(&wp->writes_lock, flags); 646 if (wp->state == WRITE_POINT_waiting_io) 647 __wp_update_state(wp, WRITE_POINT_waiting_work); 648 list_add_tail(&op->wp_list, &wp->writes); 649 spin_unlock_irqrestore (&wp->writes_lock, flags); 650 651 queue_work(wq, &wp->index_update_work); 652 } 653 654 static inline void bch2_write_queue(struct bch_write_op *op, struct write_point *wp) 655 { 656 op->wp = wp; 657 658 if (wp->state == WRITE_POINT_stopped) { 659 spin_lock_irq(&wp->writes_lock); 660 __wp_update_state(wp, WRITE_POINT_waiting_io); 661 spin_unlock_irq(&wp->writes_lock); 662 } 663 } 664 665 void bch2_write_point_do_index_updates(struct work_struct *work) 666 { 667 struct write_point *wp = 668 container_of(work, struct write_point, index_update_work); 669 struct bch_write_op *op; 670 671 while (1) { 672 spin_lock_irq(&wp->writes_lock); 673 op = list_pop_entry(&wp->writes, struct bch_write_op, wp_list); 674 wp_update_state(wp, op != NULL); 675 spin_unlock_irq(&wp->writes_lock); 676 677 if (!op) 678 break; 679 680 op->flags |= BCH_WRITE_in_worker; 681 682 __bch2_write_index(op); 683 684 if (!(op->flags & BCH_WRITE_submitted)) 685 __bch2_write(op); 686 else 687 bch2_write_done(&op->cl); 688 } 689 } 690 691 static void bch2_write_endio(struct bio *bio) 692 { 693 struct closure *cl = bio->bi_private; 694 struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); 695 struct bch_write_bio *wbio = to_wbio(bio); 696 struct bch_write_bio *parent = wbio->split ? wbio->parent : NULL; 697 struct bch_fs *c = wbio->c; 698 struct bch_dev *ca = wbio->have_ioref 699 ? bch2_dev_have_ref(c, wbio->dev) 700 : NULL; 701 702 bch2_account_io_completion(ca, BCH_MEMBER_ERROR_write, 703 wbio->submit_time, !bio->bi_status); 704 705 if (unlikely(bio->bi_status)) { 706 if (ca) 707 bch_err_inum_offset_ratelimited(ca, 708 op->pos.inode, 709 wbio->inode_offset << 9, 710 "data write error: %s", 711 bch2_blk_status_to_str(bio->bi_status)); 712 else 713 bch_err_inum_offset_ratelimited(c, 714 op->pos.inode, 715 wbio->inode_offset << 9, 716 "data write error: %s", 717 bch2_blk_status_to_str(bio->bi_status)); 718 set_bit(wbio->dev, op->failed.d); 719 op->flags |= BCH_WRITE_io_error; 720 } 721 722 if (wbio->nocow) { 723 bch2_bucket_nocow_unlock(&c->nocow_locks, 724 POS(ca->dev_idx, wbio->nocow_bucket), 725 BUCKET_NOCOW_LOCK_UPDATE); 726 set_bit(wbio->dev, op->devs_need_flush->d); 727 } 728 729 if (wbio->have_ioref) 730 percpu_ref_put(&ca->io_ref[WRITE]); 731 732 if (wbio->bounce) 733 bch2_bio_free_pages_pool(c, bio); 734 735 if (wbio->put_bio) 736 bio_put(bio); 737 738 if (parent) 739 bio_endio(&parent->bio); 740 else 741 closure_put(cl); 742 } 743 744 static void init_append_extent(struct bch_write_op *op, 745 struct write_point *wp, 746 struct bversion version, 747 struct bch_extent_crc_unpacked crc) 748 { 749 struct bkey_i_extent *e; 750 751 op->pos.offset += crc.uncompressed_size; 752 753 e = bkey_extent_init(op->insert_keys.top); 754 e->k.p = op->pos; 755 e->k.size = crc.uncompressed_size; 756 e->k.bversion = version; 757 758 if (crc.csum_type || 759 crc.compression_type || 760 crc.nonce) 761 bch2_extent_crc_append(&e->k_i, crc); 762 763 bch2_alloc_sectors_append_ptrs_inlined(op->c, wp, &e->k_i, crc.compressed_size, 764 op->flags & BCH_WRITE_cached); 765 766 bch2_keylist_push(&op->insert_keys); 767 } 768 769 static struct bio *bch2_write_bio_alloc(struct bch_fs *c, 770 struct write_point *wp, 771 struct bio *src, 772 bool *page_alloc_failed, 773 void *buf) 774 { 775 struct bch_write_bio *wbio; 776 struct bio *bio; 777 unsigned output_available = 778 min(wp->sectors_free << 9, src->bi_iter.bi_size); 779 unsigned pages = DIV_ROUND_UP(output_available + 780 (buf 781 ? ((unsigned long) buf & (PAGE_SIZE - 1)) 782 : 0), PAGE_SIZE); 783 784 pages = min(pages, BIO_MAX_VECS); 785 786 bio = bio_alloc_bioset(NULL, pages, 0, 787 GFP_NOFS, &c->bio_write); 788 wbio = wbio_init(bio); 789 wbio->put_bio = true; 790 /* copy WRITE_SYNC flag */ 791 wbio->bio.bi_opf = src->bi_opf; 792 793 if (buf) { 794 bch2_bio_map(bio, buf, output_available); 795 return bio; 796 } 797 798 wbio->bounce = true; 799 800 /* 801 * We can't use mempool for more than c->sb.encoded_extent_max 802 * worth of pages, but we'd like to allocate more if we can: 803 */ 804 bch2_bio_alloc_pages_pool(c, bio, 805 min_t(unsigned, output_available, 806 c->opts.encoded_extent_max)); 807 808 if (bio->bi_iter.bi_size < output_available) 809 *page_alloc_failed = 810 bch2_bio_alloc_pages(bio, 811 output_available - 812 bio->bi_iter.bi_size, 813 GFP_NOFS) != 0; 814 815 return bio; 816 } 817 818 static int bch2_write_rechecksum(struct bch_fs *c, 819 struct bch_write_op *op, 820 unsigned new_csum_type) 821 { 822 struct bio *bio = &op->wbio.bio; 823 struct bch_extent_crc_unpacked new_crc; 824 825 /* bch2_rechecksum_bio() can't encrypt or decrypt data: */ 826 827 if (bch2_csum_type_is_encryption(op->crc.csum_type) != 828 bch2_csum_type_is_encryption(new_csum_type)) 829 new_csum_type = op->crc.csum_type; 830 831 int ret = bch2_rechecksum_bio(c, bio, op->version, op->crc, 832 NULL, &new_crc, 833 op->crc.offset, op->crc.live_size, 834 new_csum_type); 835 if (ret) 836 return ret; 837 838 bio_advance(bio, op->crc.offset << 9); 839 bio->bi_iter.bi_size = op->crc.live_size << 9; 840 op->crc = new_crc; 841 return 0; 842 } 843 844 static noinline int bch2_write_prep_encoded_data(struct bch_write_op *op, struct write_point *wp) 845 { 846 struct bch_fs *c = op->c; 847 struct bio *bio = &op->wbio.bio; 848 struct bch_csum csum; 849 int ret = 0; 850 851 BUG_ON(bio_sectors(bio) != op->crc.compressed_size); 852 853 /* Can we just write the entire extent as is? */ 854 if (op->crc.uncompressed_size == op->crc.live_size && 855 op->crc.uncompressed_size <= c->opts.encoded_extent_max >> 9 && 856 op->crc.compressed_size <= wp->sectors_free && 857 (op->crc.compression_type == bch2_compression_opt_to_type(op->compression_opt) || 858 op->incompressible)) { 859 if (!crc_is_compressed(op->crc) && 860 op->csum_type != op->crc.csum_type) { 861 ret = bch2_write_rechecksum(c, op, op->csum_type); 862 if (ret) 863 return ret; 864 } 865 866 return 1; 867 } 868 869 /* 870 * If the data is compressed and we couldn't write the entire extent as 871 * is, we have to decompress it: 872 */ 873 if (crc_is_compressed(op->crc)) { 874 /* Last point we can still verify checksum: */ 875 struct nonce nonce = extent_nonce(op->version, op->crc); 876 csum = bch2_checksum_bio(c, op->crc.csum_type, nonce, bio); 877 if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io) 878 goto csum_err; 879 880 if (bch2_csum_type_is_encryption(op->crc.csum_type)) { 881 ret = bch2_encrypt_bio(c, op->crc.csum_type, nonce, bio); 882 if (ret) 883 return ret; 884 885 op->crc.csum_type = 0; 886 op->crc.csum = (struct bch_csum) { 0, 0 }; 887 } 888 889 ret = bch2_bio_uncompress_inplace(op, bio); 890 if (ret) 891 return ret; 892 } 893 894 /* 895 * No longer have compressed data after this point - data might be 896 * encrypted: 897 */ 898 899 /* 900 * If the data is checksummed and we're only writing a subset, 901 * rechecksum and adjust bio to point to currently live data: 902 */ 903 if (op->crc.live_size != op->crc.uncompressed_size || 904 op->crc.csum_type != op->csum_type) { 905 ret = bch2_write_rechecksum(c, op, op->csum_type); 906 if (ret) 907 return ret; 908 } 909 910 /* 911 * If we want to compress the data, it has to be decrypted: 912 */ 913 if (bch2_csum_type_is_encryption(op->crc.csum_type) && 914 (op->compression_opt || op->crc.csum_type != op->csum_type)) { 915 struct nonce nonce = extent_nonce(op->version, op->crc); 916 csum = bch2_checksum_bio(c, op->crc.csum_type, nonce, bio); 917 if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io) 918 goto csum_err; 919 920 ret = bch2_encrypt_bio(c, op->crc.csum_type, nonce, bio); 921 if (ret) 922 return ret; 923 924 op->crc.csum_type = 0; 925 op->crc.csum = (struct bch_csum) { 0, 0 }; 926 } 927 928 return 0; 929 csum_err: 930 bch2_write_op_error(op, op->pos.offset, 931 "error verifying existing checksum while moving existing data (memory corruption?)\n" 932 " expected %0llx:%0llx got %0llx:%0llx type %s", 933 op->crc.csum.hi, 934 op->crc.csum.lo, 935 csum.hi, 936 csum.lo, 937 op->crc.csum_type < BCH_CSUM_NR 938 ? __bch2_csum_types[op->crc.csum_type] 939 : "(unknown)"); 940 return -BCH_ERR_data_write_csum; 941 } 942 943 static int bch2_write_extent(struct bch_write_op *op, struct write_point *wp, 944 struct bio **_dst) 945 { 946 struct bch_fs *c = op->c; 947 struct bio *src = &op->wbio.bio, *dst = src; 948 struct bvec_iter saved_iter; 949 void *ec_buf; 950 unsigned total_output = 0, total_input = 0; 951 bool bounce = false; 952 bool page_alloc_failed = false; 953 int ret, more = 0; 954 955 if (op->incompressible) 956 op->compression_opt = 0; 957 958 BUG_ON(!bio_sectors(src)); 959 960 ec_buf = bch2_writepoint_ec_buf(c, wp); 961 962 if (unlikely(op->flags & BCH_WRITE_data_encoded)) { 963 ret = bch2_write_prep_encoded_data(op, wp); 964 if (ret < 0) 965 goto err; 966 if (ret) { 967 if (ec_buf) { 968 dst = bch2_write_bio_alloc(c, wp, src, 969 &page_alloc_failed, 970 ec_buf); 971 bio_copy_data(dst, src); 972 bounce = true; 973 } 974 init_append_extent(op, wp, op->version, op->crc); 975 goto do_write; 976 } 977 } 978 979 if (ec_buf || 980 op->compression_opt || 981 (op->csum_type && 982 !(op->flags & BCH_WRITE_pages_stable)) || 983 (bch2_csum_type_is_encryption(op->csum_type) && 984 !(op->flags & BCH_WRITE_pages_owned))) { 985 dst = bch2_write_bio_alloc(c, wp, src, 986 &page_alloc_failed, 987 ec_buf); 988 bounce = true; 989 } 990 991 #ifdef CONFIG_BCACHEFS_DEBUG 992 unsigned write_corrupt_ratio = READ_ONCE(bch2_write_corrupt_ratio); 993 if (!bounce && write_corrupt_ratio) { 994 dst = bch2_write_bio_alloc(c, wp, src, 995 &page_alloc_failed, 996 ec_buf); 997 bounce = true; 998 } 999 #endif 1000 saved_iter = dst->bi_iter; 1001 1002 do { 1003 struct bch_extent_crc_unpacked crc = { 0 }; 1004 struct bversion version = op->version; 1005 size_t dst_len = 0, src_len = 0; 1006 1007 if (page_alloc_failed && 1008 dst->bi_iter.bi_size < (wp->sectors_free << 9) && 1009 dst->bi_iter.bi_size < c->opts.encoded_extent_max) 1010 break; 1011 1012 BUG_ON(op->compression_opt && 1013 (op->flags & BCH_WRITE_data_encoded) && 1014 bch2_csum_type_is_encryption(op->crc.csum_type)); 1015 BUG_ON(op->compression_opt && !bounce); 1016 1017 crc.compression_type = op->incompressible 1018 ? BCH_COMPRESSION_TYPE_incompressible 1019 : op->compression_opt 1020 ? bch2_bio_compress(c, dst, &dst_len, src, &src_len, 1021 op->compression_opt) 1022 : 0; 1023 if (!crc_is_compressed(crc)) { 1024 dst_len = min(dst->bi_iter.bi_size, src->bi_iter.bi_size); 1025 dst_len = min_t(unsigned, dst_len, wp->sectors_free << 9); 1026 1027 if (op->csum_type) 1028 dst_len = min_t(unsigned, dst_len, 1029 c->opts.encoded_extent_max); 1030 1031 if (bounce) { 1032 swap(dst->bi_iter.bi_size, dst_len); 1033 bio_copy_data(dst, src); 1034 swap(dst->bi_iter.bi_size, dst_len); 1035 } 1036 1037 src_len = dst_len; 1038 } 1039 1040 BUG_ON(!src_len || !dst_len); 1041 1042 if (bch2_csum_type_is_encryption(op->csum_type)) { 1043 if (bversion_zero(version)) { 1044 version.lo = atomic64_inc_return(&c->key_version); 1045 } else { 1046 crc.nonce = op->nonce; 1047 op->nonce += src_len >> 9; 1048 } 1049 } 1050 1051 if ((op->flags & BCH_WRITE_data_encoded) && 1052 !crc_is_compressed(crc) && 1053 bch2_csum_type_is_encryption(op->crc.csum_type) == 1054 bch2_csum_type_is_encryption(op->csum_type)) { 1055 u8 compression_type = crc.compression_type; 1056 u16 nonce = crc.nonce; 1057 /* 1058 * Note: when we're using rechecksum(), we need to be 1059 * checksumming @src because it has all the data our 1060 * existing checksum covers - if we bounced (because we 1061 * were trying to compress), @dst will only have the 1062 * part of the data the new checksum will cover. 1063 * 1064 * But normally we want to be checksumming post bounce, 1065 * because part of the reason for bouncing is so the 1066 * data can't be modified (by userspace) while it's in 1067 * flight. 1068 */ 1069 ret = bch2_rechecksum_bio(c, src, version, op->crc, 1070 &crc, &op->crc, 1071 src_len >> 9, 1072 bio_sectors(src) - (src_len >> 9), 1073 op->csum_type); 1074 if (ret) 1075 goto err; 1076 /* 1077 * rchecksum_bio sets compression_type on crc from op->crc, 1078 * this isn't always correct as sometimes we're changing 1079 * an extent from uncompressed to incompressible. 1080 */ 1081 crc.compression_type = compression_type; 1082 crc.nonce = nonce; 1083 } else { 1084 if ((op->flags & BCH_WRITE_data_encoded) && 1085 (ret = bch2_rechecksum_bio(c, src, version, op->crc, 1086 NULL, &op->crc, 1087 src_len >> 9, 1088 bio_sectors(src) - (src_len >> 9), 1089 op->crc.csum_type))) 1090 goto err; 1091 1092 crc.compressed_size = dst_len >> 9; 1093 crc.uncompressed_size = src_len >> 9; 1094 crc.live_size = src_len >> 9; 1095 1096 swap(dst->bi_iter.bi_size, dst_len); 1097 ret = bch2_encrypt_bio(c, op->csum_type, 1098 extent_nonce(version, crc), dst); 1099 if (ret) 1100 goto err; 1101 1102 crc.csum = bch2_checksum_bio(c, op->csum_type, 1103 extent_nonce(version, crc), dst); 1104 crc.csum_type = op->csum_type; 1105 swap(dst->bi_iter.bi_size, dst_len); 1106 } 1107 1108 init_append_extent(op, wp, version, crc); 1109 1110 #ifdef CONFIG_BCACHEFS_DEBUG 1111 if (write_corrupt_ratio) { 1112 swap(dst->bi_iter.bi_size, dst_len); 1113 bch2_maybe_corrupt_bio(dst, write_corrupt_ratio); 1114 swap(dst->bi_iter.bi_size, dst_len); 1115 } 1116 #endif 1117 1118 if (dst != src) 1119 bio_advance(dst, dst_len); 1120 bio_advance(src, src_len); 1121 total_output += dst_len; 1122 total_input += src_len; 1123 } while (dst->bi_iter.bi_size && 1124 src->bi_iter.bi_size && 1125 wp->sectors_free && 1126 !bch2_keylist_realloc(&op->insert_keys, 1127 op->inline_keys, 1128 ARRAY_SIZE(op->inline_keys), 1129 BKEY_EXTENT_U64s_MAX)); 1130 1131 more = src->bi_iter.bi_size != 0; 1132 1133 dst->bi_iter = saved_iter; 1134 1135 if (dst == src && more) { 1136 BUG_ON(total_output != total_input); 1137 1138 dst = bio_split(src, total_input >> 9, 1139 GFP_NOFS, &c->bio_write); 1140 wbio_init(dst)->put_bio = true; 1141 /* copy WRITE_SYNC flag */ 1142 dst->bi_opf = src->bi_opf; 1143 } 1144 1145 dst->bi_iter.bi_size = total_output; 1146 do_write: 1147 *_dst = dst; 1148 return more; 1149 err: 1150 if (to_wbio(dst)->bounce) 1151 bch2_bio_free_pages_pool(c, dst); 1152 if (to_wbio(dst)->put_bio) 1153 bio_put(dst); 1154 1155 return ret; 1156 } 1157 1158 static bool bch2_extent_is_writeable(struct bch_write_op *op, 1159 struct bkey_s_c k) 1160 { 1161 struct bch_fs *c = op->c; 1162 struct bkey_s_c_extent e; 1163 struct extent_ptr_decoded p; 1164 const union bch_extent_entry *entry; 1165 unsigned replicas = 0; 1166 1167 if (k.k->type != KEY_TYPE_extent) 1168 return false; 1169 1170 e = bkey_s_c_to_extent(k); 1171 1172 rcu_read_lock(); 1173 extent_for_each_ptr_decode(e, p, entry) { 1174 if (crc_is_encoded(p.crc) || p.has_ec) { 1175 rcu_read_unlock(); 1176 return false; 1177 } 1178 1179 replicas += bch2_extent_ptr_durability(c, &p); 1180 } 1181 rcu_read_unlock(); 1182 1183 return replicas >= op->opts.data_replicas; 1184 } 1185 1186 static int bch2_nocow_write_convert_one_unwritten(struct btree_trans *trans, 1187 struct btree_iter *iter, 1188 struct bkey_i *orig, 1189 struct bkey_s_c k, 1190 u64 new_i_size) 1191 { 1192 if (!bch2_extents_match(bkey_i_to_s_c(orig), k)) { 1193 /* trace this */ 1194 return 0; 1195 } 1196 1197 struct bkey_i *new = bch2_bkey_make_mut_noupdate(trans, k); 1198 int ret = PTR_ERR_OR_ZERO(new); 1199 if (ret) 1200 return ret; 1201 1202 bch2_cut_front(bkey_start_pos(&orig->k), new); 1203 bch2_cut_back(orig->k.p, new); 1204 1205 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(new)); 1206 bkey_for_each_ptr(ptrs, ptr) 1207 ptr->unwritten = 0; 1208 1209 /* 1210 * Note that we're not calling bch2_subvol_get_snapshot() in this path - 1211 * that was done when we kicked off the write, and here it's important 1212 * that we update the extent that we wrote to - even if a snapshot has 1213 * since been created. The write is still outstanding, so we're ok 1214 * w.r.t. snapshot atomicity: 1215 */ 1216 return bch2_extent_update_i_size_sectors(trans, iter, 1217 min(new->k.p.offset << 9, new_i_size), 0) ?: 1218 bch2_trans_update(trans, iter, new, 1219 BTREE_UPDATE_internal_snapshot_node); 1220 } 1221 1222 static void bch2_nocow_write_convert_unwritten(struct bch_write_op *op) 1223 { 1224 struct bch_fs *c = op->c; 1225 struct btree_trans *trans = bch2_trans_get(c); 1226 int ret = 0; 1227 1228 for_each_keylist_key(&op->insert_keys, orig) { 1229 ret = for_each_btree_key_max_commit(trans, iter, BTREE_ID_extents, 1230 bkey_start_pos(&orig->k), orig->k.p, 1231 BTREE_ITER_intent, k, 1232 NULL, NULL, BCH_TRANS_COMMIT_no_enospc, ({ 1233 bch2_nocow_write_convert_one_unwritten(trans, &iter, orig, k, op->new_i_size); 1234 })); 1235 if (ret) 1236 break; 1237 } 1238 1239 bch2_trans_put(trans); 1240 1241 if (ret && !bch2_err_matches(ret, EROFS)) { 1242 struct bkey_i *insert = bch2_keylist_front(&op->insert_keys); 1243 bch2_write_op_error(op, bkey_start_offset(&insert->k), 1244 "btree update error: %s", bch2_err_str(ret)); 1245 } 1246 1247 if (ret) 1248 op->error = ret; 1249 } 1250 1251 static void __bch2_nocow_write_done(struct bch_write_op *op) 1252 { 1253 if (unlikely(op->flags & BCH_WRITE_io_error)) { 1254 op->error = -BCH_ERR_data_write_io; 1255 } else if (unlikely(op->flags & BCH_WRITE_convert_unwritten)) 1256 bch2_nocow_write_convert_unwritten(op); 1257 } 1258 1259 static CLOSURE_CALLBACK(bch2_nocow_write_done) 1260 { 1261 closure_type(op, struct bch_write_op, cl); 1262 1263 __bch2_nocow_write_done(op); 1264 bch2_write_done(cl); 1265 } 1266 1267 struct bucket_to_lock { 1268 struct bpos b; 1269 unsigned gen; 1270 struct nocow_lock_bucket *l; 1271 }; 1272 1273 static void bch2_nocow_write(struct bch_write_op *op) 1274 { 1275 struct bch_fs *c = op->c; 1276 struct btree_trans *trans; 1277 struct btree_iter iter; 1278 struct bkey_s_c k; 1279 DARRAY_PREALLOCATED(struct bucket_to_lock, 3) buckets; 1280 u32 snapshot; 1281 struct bucket_to_lock *stale_at; 1282 int stale, ret; 1283 1284 if (op->flags & BCH_WRITE_move) 1285 return; 1286 1287 darray_init(&buckets); 1288 trans = bch2_trans_get(c); 1289 retry: 1290 bch2_trans_begin(trans); 1291 1292 ret = bch2_subvolume_get_snapshot(trans, op->subvol, &snapshot); 1293 if (unlikely(ret)) 1294 goto err; 1295 1296 bch2_trans_iter_init(trans, &iter, BTREE_ID_extents, 1297 SPOS(op->pos.inode, op->pos.offset, snapshot), 1298 BTREE_ITER_slots); 1299 while (1) { 1300 struct bio *bio = &op->wbio.bio; 1301 1302 buckets.nr = 0; 1303 1304 ret = bch2_trans_relock(trans); 1305 if (ret) 1306 break; 1307 1308 k = bch2_btree_iter_peek_slot(trans, &iter); 1309 ret = bkey_err(k); 1310 if (ret) 1311 break; 1312 1313 /* fall back to normal cow write path? */ 1314 if (unlikely(k.k->p.snapshot != snapshot || 1315 !bch2_extent_is_writeable(op, k))) 1316 break; 1317 1318 if (bch2_keylist_realloc(&op->insert_keys, 1319 op->inline_keys, 1320 ARRAY_SIZE(op->inline_keys), 1321 k.k->u64s)) 1322 break; 1323 1324 /* Get iorefs before dropping btree locks: */ 1325 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1326 bkey_for_each_ptr(ptrs, ptr) { 1327 struct bch_dev *ca = bch2_dev_get_ioref(c, ptr->dev, WRITE); 1328 if (unlikely(!ca)) 1329 goto err_get_ioref; 1330 1331 struct bpos b = PTR_BUCKET_POS(ca, ptr); 1332 struct nocow_lock_bucket *l = 1333 bucket_nocow_lock(&c->nocow_locks, bucket_to_u64(b)); 1334 prefetch(l); 1335 1336 /* XXX allocating memory with btree locks held - rare */ 1337 darray_push_gfp(&buckets, ((struct bucket_to_lock) { 1338 .b = b, .gen = ptr->gen, .l = l, 1339 }), GFP_KERNEL|__GFP_NOFAIL); 1340 1341 if (ptr->unwritten) 1342 op->flags |= BCH_WRITE_convert_unwritten; 1343 } 1344 1345 /* Unlock before taking nocow locks, doing IO: */ 1346 bkey_reassemble(op->insert_keys.top, k); 1347 bch2_trans_unlock(trans); 1348 1349 bch2_cut_front(op->pos, op->insert_keys.top); 1350 if (op->flags & BCH_WRITE_convert_unwritten) 1351 bch2_cut_back(POS(op->pos.inode, op->pos.offset + bio_sectors(bio)), op->insert_keys.top); 1352 1353 darray_for_each(buckets, i) { 1354 struct bch_dev *ca = bch2_dev_have_ref(c, i->b.inode); 1355 1356 __bch2_bucket_nocow_lock(&c->nocow_locks, i->l, 1357 bucket_to_u64(i->b), 1358 BUCKET_NOCOW_LOCK_UPDATE); 1359 1360 int gen = bucket_gen_get(ca, i->b.offset); 1361 stale = gen < 0 ? gen : gen_after(gen, i->gen); 1362 if (unlikely(stale)) { 1363 stale_at = i; 1364 goto err_bucket_stale; 1365 } 1366 } 1367 1368 bio = &op->wbio.bio; 1369 if (k.k->p.offset < op->pos.offset + bio_sectors(bio)) { 1370 bio = bio_split(bio, k.k->p.offset - op->pos.offset, 1371 GFP_KERNEL, &c->bio_write); 1372 wbio_init(bio)->put_bio = true; 1373 bio->bi_opf = op->wbio.bio.bi_opf; 1374 } else { 1375 op->flags |= BCH_WRITE_submitted; 1376 } 1377 1378 op->pos.offset += bio_sectors(bio); 1379 op->written += bio_sectors(bio); 1380 1381 bio->bi_end_io = bch2_write_endio; 1382 bio->bi_private = &op->cl; 1383 bio->bi_opf |= REQ_OP_WRITE; 1384 closure_get(&op->cl); 1385 1386 bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user, 1387 op->insert_keys.top, true); 1388 1389 bch2_keylist_push(&op->insert_keys); 1390 if (op->flags & BCH_WRITE_submitted) 1391 break; 1392 bch2_btree_iter_advance(trans, &iter); 1393 } 1394 out: 1395 bch2_trans_iter_exit(trans, &iter); 1396 err: 1397 if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) 1398 goto retry; 1399 1400 bch2_trans_put(trans); 1401 darray_exit(&buckets); 1402 1403 if (ret) { 1404 bch2_write_op_error(op, op->pos.offset, 1405 "%s(): btree lookup error: %s", __func__, bch2_err_str(ret)); 1406 op->error = ret; 1407 op->flags |= BCH_WRITE_submitted; 1408 } 1409 1410 /* fallback to cow write path? */ 1411 if (!(op->flags & BCH_WRITE_submitted)) { 1412 closure_sync(&op->cl); 1413 __bch2_nocow_write_done(op); 1414 op->insert_keys.top = op->insert_keys.keys; 1415 } else if (op->flags & BCH_WRITE_sync) { 1416 closure_sync(&op->cl); 1417 bch2_nocow_write_done(&op->cl.work); 1418 } else { 1419 /* 1420 * XXX 1421 * needs to run out of process context because ei_quota_lock is 1422 * a mutex 1423 */ 1424 continue_at(&op->cl, bch2_nocow_write_done, index_update_wq(op)); 1425 } 1426 return; 1427 err_get_ioref: 1428 darray_for_each(buckets, i) 1429 percpu_ref_put(&bch2_dev_have_ref(c, i->b.inode)->io_ref[WRITE]); 1430 1431 /* Fall back to COW path: */ 1432 goto out; 1433 err_bucket_stale: 1434 darray_for_each(buckets, i) { 1435 bch2_bucket_nocow_unlock(&c->nocow_locks, i->b, BUCKET_NOCOW_LOCK_UPDATE); 1436 if (i == stale_at) 1437 break; 1438 } 1439 1440 struct printbuf buf = PRINTBUF; 1441 if (bch2_fs_inconsistent_on(stale < 0, c, 1442 "pointer to invalid bucket in nocow path on device %llu\n %s", 1443 stale_at->b.inode, 1444 (bch2_bkey_val_to_text(&buf, c, k), buf.buf))) { 1445 ret = -BCH_ERR_data_write_invalid_ptr; 1446 } else { 1447 /* We can retry this: */ 1448 ret = -BCH_ERR_transaction_restart; 1449 } 1450 printbuf_exit(&buf); 1451 1452 goto err_get_ioref; 1453 } 1454 1455 static void __bch2_write(struct bch_write_op *op) 1456 { 1457 struct bch_fs *c = op->c; 1458 struct write_point *wp = NULL; 1459 struct bio *bio = NULL; 1460 unsigned nofs_flags; 1461 int ret; 1462 1463 nofs_flags = memalloc_nofs_save(); 1464 1465 if (unlikely(op->opts.nocow && c->opts.nocow_enabled)) { 1466 bch2_nocow_write(op); 1467 if (op->flags & BCH_WRITE_submitted) 1468 goto out_nofs_restore; 1469 } 1470 again: 1471 memset(&op->failed, 0, sizeof(op->failed)); 1472 1473 do { 1474 struct bkey_i *key_to_write; 1475 unsigned key_to_write_offset = op->insert_keys.top_p - 1476 op->insert_keys.keys_p; 1477 1478 /* +1 for possible cache device: */ 1479 if (op->open_buckets.nr + op->nr_replicas + 1 > 1480 ARRAY_SIZE(op->open_buckets.v)) 1481 break; 1482 1483 if (bch2_keylist_realloc(&op->insert_keys, 1484 op->inline_keys, 1485 ARRAY_SIZE(op->inline_keys), 1486 BKEY_EXTENT_U64s_MAX)) 1487 break; 1488 1489 /* 1490 * The copygc thread is now global, which means it's no longer 1491 * freeing up space on specific disks, which means that 1492 * allocations for specific disks may hang arbitrarily long: 1493 */ 1494 ret = bch2_trans_run(c, lockrestart_do(trans, 1495 bch2_alloc_sectors_start_trans(trans, 1496 op->target, 1497 op->opts.erasure_code && !(op->flags & BCH_WRITE_cached), 1498 op->write_point, 1499 &op->devs_have, 1500 op->nr_replicas, 1501 op->nr_replicas_required, 1502 op->watermark, 1503 op->flags, 1504 &op->cl, &wp))); 1505 if (unlikely(ret)) { 1506 if (bch2_err_matches(ret, BCH_ERR_operation_blocked)) 1507 break; 1508 1509 goto err; 1510 } 1511 1512 EBUG_ON(!wp); 1513 1514 bch2_open_bucket_get(c, wp, &op->open_buckets); 1515 ret = bch2_write_extent(op, wp, &bio); 1516 1517 bch2_alloc_sectors_done_inlined(c, wp); 1518 err: 1519 if (ret <= 0) { 1520 op->flags |= BCH_WRITE_submitted; 1521 1522 if (unlikely(ret < 0)) { 1523 if (!(op->flags & BCH_WRITE_alloc_nowait)) 1524 bch2_write_op_error(op, op->pos.offset, 1525 "%s(): %s", __func__, bch2_err_str(ret)); 1526 op->error = ret; 1527 break; 1528 } 1529 } 1530 1531 bio->bi_end_io = bch2_write_endio; 1532 bio->bi_private = &op->cl; 1533 bio->bi_opf |= REQ_OP_WRITE; 1534 1535 closure_get(bio->bi_private); 1536 1537 key_to_write = (void *) (op->insert_keys.keys_p + 1538 key_to_write_offset); 1539 1540 bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user, 1541 key_to_write, false); 1542 } while (ret); 1543 1544 /* 1545 * Sync or no? 1546 * 1547 * If we're running asynchronously, wne may still want to block 1548 * synchronously here if we weren't able to submit all of the IO at 1549 * once, as that signals backpressure to the caller. 1550 */ 1551 if ((op->flags & BCH_WRITE_sync) || 1552 (!(op->flags & BCH_WRITE_submitted) && 1553 !(op->flags & BCH_WRITE_in_worker))) { 1554 bch2_wait_on_allocator(c, &op->cl); 1555 1556 __bch2_write_index(op); 1557 1558 if (!(op->flags & BCH_WRITE_submitted)) 1559 goto again; 1560 bch2_write_done(&op->cl); 1561 } else { 1562 bch2_write_queue(op, wp); 1563 continue_at(&op->cl, bch2_write_index, NULL); 1564 } 1565 out_nofs_restore: 1566 memalloc_nofs_restore(nofs_flags); 1567 } 1568 1569 static void bch2_write_data_inline(struct bch_write_op *op, unsigned data_len) 1570 { 1571 struct bio *bio = &op->wbio.bio; 1572 struct bvec_iter iter; 1573 struct bkey_i_inline_data *id; 1574 unsigned sectors; 1575 int ret; 1576 1577 memset(&op->failed, 0, sizeof(op->failed)); 1578 1579 op->flags |= BCH_WRITE_wrote_data_inline; 1580 op->flags |= BCH_WRITE_submitted; 1581 1582 bch2_check_set_feature(op->c, BCH_FEATURE_inline_data); 1583 1584 ret = bch2_keylist_realloc(&op->insert_keys, op->inline_keys, 1585 ARRAY_SIZE(op->inline_keys), 1586 BKEY_U64s + DIV_ROUND_UP(data_len, 8)); 1587 if (ret) { 1588 op->error = ret; 1589 goto err; 1590 } 1591 1592 sectors = bio_sectors(bio); 1593 op->pos.offset += sectors; 1594 1595 id = bkey_inline_data_init(op->insert_keys.top); 1596 id->k.p = op->pos; 1597 id->k.bversion = op->version; 1598 id->k.size = sectors; 1599 1600 iter = bio->bi_iter; 1601 iter.bi_size = data_len; 1602 memcpy_from_bio(id->v.data, bio, iter); 1603 1604 while (data_len & 7) 1605 id->v.data[data_len++] = '\0'; 1606 set_bkey_val_bytes(&id->k, data_len); 1607 bch2_keylist_push(&op->insert_keys); 1608 1609 __bch2_write_index(op); 1610 err: 1611 bch2_write_done(&op->cl); 1612 } 1613 1614 /** 1615 * bch2_write() - handle a write to a cache device or flash only volume 1616 * @cl: &bch_write_op->cl 1617 * 1618 * This is the starting point for any data to end up in a cache device; it could 1619 * be from a normal write, or a writeback write, or a write to a flash only 1620 * volume - it's also used by the moving garbage collector to compact data in 1621 * mostly empty buckets. 1622 * 1623 * It first writes the data to the cache, creating a list of keys to be inserted 1624 * (if the data won't fit in a single open bucket, there will be multiple keys); 1625 * after the data is written it calls bch_journal, and after the keys have been 1626 * added to the next journal write they're inserted into the btree. 1627 * 1628 * If op->discard is true, instead of inserting the data it invalidates the 1629 * region of the cache represented by op->bio and op->inode. 1630 */ 1631 CLOSURE_CALLBACK(bch2_write) 1632 { 1633 closure_type(op, struct bch_write_op, cl); 1634 struct bio *bio = &op->wbio.bio; 1635 struct bch_fs *c = op->c; 1636 unsigned data_len; 1637 1638 EBUG_ON(op->cl.parent); 1639 BUG_ON(!op->nr_replicas); 1640 BUG_ON(!op->write_point.v); 1641 BUG_ON(bkey_eq(op->pos, POS_MAX)); 1642 1643 if (op->flags & BCH_WRITE_only_specified_devs) 1644 op->flags |= BCH_WRITE_alloc_nowait; 1645 1646 op->nr_replicas_required = min_t(unsigned, op->nr_replicas_required, op->nr_replicas); 1647 op->start_time = local_clock(); 1648 bch2_keylist_init(&op->insert_keys, op->inline_keys); 1649 wbio_init(bio)->put_bio = false; 1650 1651 if (unlikely(bio->bi_iter.bi_size & (c->opts.block_size - 1))) { 1652 bch2_write_op_error(op, op->pos.offset, "misaligned write"); 1653 op->error = -BCH_ERR_data_write_misaligned; 1654 goto err; 1655 } 1656 1657 if (c->opts.nochanges) { 1658 op->error = -BCH_ERR_erofs_no_writes; 1659 goto err; 1660 } 1661 1662 if (!(op->flags & BCH_WRITE_move) && 1663 !bch2_write_ref_tryget(c, BCH_WRITE_REF_write)) { 1664 op->error = -BCH_ERR_erofs_no_writes; 1665 goto err; 1666 } 1667 1668 if (!(op->flags & BCH_WRITE_move)) 1669 this_cpu_add(c->counters[BCH_COUNTER_io_write], bio_sectors(bio)); 1670 bch2_increment_clock(c, bio_sectors(bio), WRITE); 1671 1672 data_len = min_t(u64, bio->bi_iter.bi_size, 1673 op->new_i_size - (op->pos.offset << 9)); 1674 1675 if (c->opts.inline_data && 1676 data_len <= min(block_bytes(c) / 2, 1024U)) { 1677 bch2_write_data_inline(op, data_len); 1678 return; 1679 } 1680 1681 __bch2_write(op); 1682 return; 1683 err: 1684 bch2_disk_reservation_put(c, &op->res); 1685 1686 closure_debug_destroy(&op->cl); 1687 if (op->end_io) 1688 op->end_io(op); 1689 } 1690 1691 static const char * const bch2_write_flags[] = { 1692 #define x(f) #f, 1693 BCH_WRITE_FLAGS() 1694 #undef x 1695 NULL 1696 }; 1697 1698 void bch2_write_op_to_text(struct printbuf *out, struct bch_write_op *op) 1699 { 1700 if (!out->nr_tabstops) 1701 printbuf_tabstop_push(out, 32); 1702 1703 prt_printf(out, "pos:\t"); 1704 bch2_bpos_to_text(out, op->pos); 1705 prt_newline(out); 1706 printbuf_indent_add(out, 2); 1707 1708 prt_printf(out, "started:\t"); 1709 bch2_pr_time_units(out, local_clock() - op->start_time); 1710 prt_newline(out); 1711 1712 prt_printf(out, "flags:\t"); 1713 prt_bitflags(out, bch2_write_flags, op->flags); 1714 prt_newline(out); 1715 1716 prt_printf(out, "nr_replicas:\t%u\n", op->nr_replicas); 1717 prt_printf(out, "nr_replicas_required:\t%u\n", op->nr_replicas_required); 1718 1719 prt_printf(out, "ref:\t%u\n", closure_nr_remaining(&op->cl)); 1720 1721 printbuf_indent_sub(out, 2); 1722 } 1723 1724 void bch2_fs_io_write_exit(struct bch_fs *c) 1725 { 1726 mempool_exit(&c->bio_bounce_pages); 1727 bioset_exit(&c->replica_set); 1728 bioset_exit(&c->bio_write); 1729 } 1730 1731 int bch2_fs_io_write_init(struct bch_fs *c) 1732 { 1733 if (bioset_init(&c->bio_write, 1, offsetof(struct bch_write_bio, bio), BIOSET_NEED_BVECS) || 1734 bioset_init(&c->replica_set, 4, offsetof(struct bch_write_bio, bio), 0)) 1735 return -BCH_ERR_ENOMEM_bio_write_init; 1736 1737 if (mempool_init_page_pool(&c->bio_bounce_pages, 1738 max_t(unsigned, 1739 c->opts.btree_node_size, 1740 c->opts.encoded_extent_max) / 1741 PAGE_SIZE, 0)) 1742 return -BCH_ERR_ENOMEM_bio_bounce_pages_init; 1743 1744 return 0; 1745 } 1746