1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 4 * Copyright 2012 Google, Inc. 5 */ 6 7 #include "bcachefs.h" 8 #include "alloc_foreground.h" 9 #include "bkey_buf.h" 10 #include "bset.h" 11 #include "btree_update.h" 12 #include "buckets.h" 13 #include "checksum.h" 14 #include "clock.h" 15 #include "compress.h" 16 #include "debug.h" 17 #include "ec.h" 18 #include "error.h" 19 #include "extent_update.h" 20 #include "inode.h" 21 #include "io_write.h" 22 #include "journal.h" 23 #include "keylist.h" 24 #include "move.h" 25 #include "nocow_locking.h" 26 #include "rebalance.h" 27 #include "subvolume.h" 28 #include "super.h" 29 #include "super-io.h" 30 #include "trace.h" 31 32 #include <linux/blkdev.h> 33 #include <linux/prefetch.h> 34 #include <linux/random.h> 35 #include <linux/sched/mm.h> 36 37 #ifdef CONFIG_BCACHEFS_DEBUG 38 static unsigned bch2_write_corrupt_ratio; 39 module_param_named(write_corrupt_ratio, bch2_write_corrupt_ratio, uint, 0644); 40 MODULE_PARM_DESC(write_corrupt_ratio, ""); 41 #endif 42 43 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT 44 45 static inline void bch2_congested_acct(struct bch_dev *ca, u64 io_latency, 46 u64 now, int rw) 47 { 48 u64 latency_capable = 49 ca->io_latency[rw].quantiles.entries[QUANTILE_IDX(1)].m; 50 /* ideally we'd be taking into account the device's variance here: */ 51 u64 latency_threshold = latency_capable << (rw == READ ? 2 : 3); 52 s64 latency_over = io_latency - latency_threshold; 53 54 if (latency_threshold && latency_over > 0) { 55 /* 56 * bump up congested by approximately latency_over * 4 / 57 * latency_threshold - we don't need much accuracy here so don't 58 * bother with the divide: 59 */ 60 if (atomic_read(&ca->congested) < CONGESTED_MAX) 61 atomic_add(latency_over >> 62 max_t(int, ilog2(latency_threshold) - 2, 0), 63 &ca->congested); 64 65 ca->congested_last = now; 66 } else if (atomic_read(&ca->congested) > 0) { 67 atomic_dec(&ca->congested); 68 } 69 } 70 71 void bch2_latency_acct(struct bch_dev *ca, u64 submit_time, int rw) 72 { 73 atomic64_t *latency = &ca->cur_latency[rw]; 74 u64 now = local_clock(); 75 u64 io_latency = time_after64(now, submit_time) 76 ? now - submit_time 77 : 0; 78 u64 old, new; 79 80 old = atomic64_read(latency); 81 do { 82 /* 83 * If the io latency was reasonably close to the current 84 * latency, skip doing the update and atomic operation - most of 85 * the time: 86 */ 87 if (abs((int) (old - io_latency)) < (old >> 1) && 88 now & ~(~0U << 5)) 89 break; 90 91 new = ewma_add(old, io_latency, 5); 92 } while (!atomic64_try_cmpxchg(latency, &old, new)); 93 94 bch2_congested_acct(ca, io_latency, now, rw); 95 96 __bch2_time_stats_update(&ca->io_latency[rw].stats, submit_time, now); 97 } 98 99 #endif 100 101 /* Allocate, free from mempool: */ 102 103 void bch2_bio_free_pages_pool(struct bch_fs *c, struct bio *bio) 104 { 105 struct bvec_iter_all iter; 106 struct bio_vec *bv; 107 108 bio_for_each_segment_all(bv, bio, iter) 109 if (bv->bv_page != ZERO_PAGE(0)) 110 mempool_free(bv->bv_page, &c->bio_bounce_pages); 111 bio->bi_vcnt = 0; 112 } 113 114 static struct page *__bio_alloc_page_pool(struct bch_fs *c, bool *using_mempool) 115 { 116 struct page *page; 117 118 if (likely(!*using_mempool)) { 119 page = alloc_page(GFP_NOFS); 120 if (unlikely(!page)) { 121 mutex_lock(&c->bio_bounce_pages_lock); 122 *using_mempool = true; 123 goto pool_alloc; 124 125 } 126 } else { 127 pool_alloc: 128 page = mempool_alloc(&c->bio_bounce_pages, GFP_NOFS); 129 } 130 131 return page; 132 } 133 134 void bch2_bio_alloc_pages_pool(struct bch_fs *c, struct bio *bio, 135 size_t size) 136 { 137 bool using_mempool = false; 138 139 while (size) { 140 struct page *page = __bio_alloc_page_pool(c, &using_mempool); 141 unsigned len = min_t(size_t, PAGE_SIZE, size); 142 143 BUG_ON(!bio_add_page(bio, page, len, 0)); 144 size -= len; 145 } 146 147 if (using_mempool) 148 mutex_unlock(&c->bio_bounce_pages_lock); 149 } 150 151 /* Extent update path: */ 152 153 int bch2_sum_sector_overwrites(struct btree_trans *trans, 154 struct btree_iter *extent_iter, 155 struct bkey_i *new, 156 bool *usage_increasing, 157 s64 *i_sectors_delta, 158 s64 *disk_sectors_delta) 159 { 160 struct bch_fs *c = trans->c; 161 struct btree_iter iter; 162 struct bkey_s_c old; 163 unsigned new_replicas = bch2_bkey_replicas(c, bkey_i_to_s_c(new)); 164 bool new_compressed = bch2_bkey_sectors_compressed(bkey_i_to_s_c(new)); 165 int ret = 0; 166 167 *usage_increasing = false; 168 *i_sectors_delta = 0; 169 *disk_sectors_delta = 0; 170 171 bch2_trans_copy_iter(trans, &iter, extent_iter); 172 173 for_each_btree_key_max_continue_norestart(trans, iter, 174 new->k.p, BTREE_ITER_slots, old, ret) { 175 s64 sectors = min(new->k.p.offset, old.k->p.offset) - 176 max(bkey_start_offset(&new->k), 177 bkey_start_offset(old.k)); 178 179 *i_sectors_delta += sectors * 180 (bkey_extent_is_allocation(&new->k) - 181 bkey_extent_is_allocation(old.k)); 182 183 *disk_sectors_delta += sectors * bch2_bkey_nr_ptrs_allocated(bkey_i_to_s_c(new)); 184 *disk_sectors_delta -= new->k.p.snapshot == old.k->p.snapshot 185 ? sectors * bch2_bkey_nr_ptrs_fully_allocated(old) 186 : 0; 187 188 if (!*usage_increasing && 189 (new->k.p.snapshot != old.k->p.snapshot || 190 new_replicas > bch2_bkey_replicas(c, old) || 191 (!new_compressed && bch2_bkey_sectors_compressed(old)))) 192 *usage_increasing = true; 193 194 if (bkey_ge(old.k->p, new->k.p)) 195 break; 196 } 197 198 bch2_trans_iter_exit(trans, &iter); 199 return ret; 200 } 201 202 static inline int bch2_extent_update_i_size_sectors(struct btree_trans *trans, 203 struct btree_iter *extent_iter, 204 u64 new_i_size, 205 s64 i_sectors_delta) 206 { 207 /* 208 * Crazy performance optimization: 209 * Every extent update needs to also update the inode: the inode trigger 210 * will set bi->journal_seq to the journal sequence number of this 211 * transaction - for fsync. 212 * 213 * But if that's the only reason we're updating the inode (we're not 214 * updating bi_size or bi_sectors), then we don't need the inode update 215 * to be journalled - if we crash, the bi_journal_seq update will be 216 * lost, but that's fine. 217 */ 218 unsigned inode_update_flags = BTREE_UPDATE_nojournal; 219 220 struct btree_iter iter; 221 struct bkey_s_c k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_inodes, 222 SPOS(0, 223 extent_iter->pos.inode, 224 extent_iter->snapshot), 225 BTREE_ITER_intent| 226 BTREE_ITER_cached); 227 int ret = bkey_err(k); 228 if (unlikely(ret)) 229 return ret; 230 231 /* 232 * varint_decode_fast(), in the inode .invalid method, reads up to 7 233 * bytes past the end of the buffer: 234 */ 235 struct bkey_i *k_mut = bch2_trans_kmalloc_nomemzero(trans, bkey_bytes(k.k) + 8); 236 ret = PTR_ERR_OR_ZERO(k_mut); 237 if (unlikely(ret)) 238 goto err; 239 240 bkey_reassemble(k_mut, k); 241 242 if (unlikely(k_mut->k.type != KEY_TYPE_inode_v3)) { 243 k_mut = bch2_inode_to_v3(trans, k_mut); 244 ret = PTR_ERR_OR_ZERO(k_mut); 245 if (unlikely(ret)) 246 goto err; 247 } 248 249 struct bkey_i_inode_v3 *inode = bkey_i_to_inode_v3(k_mut); 250 251 if (!(le64_to_cpu(inode->v.bi_flags) & BCH_INODE_i_size_dirty) && 252 new_i_size > le64_to_cpu(inode->v.bi_size)) { 253 inode->v.bi_size = cpu_to_le64(new_i_size); 254 inode_update_flags = 0; 255 } 256 257 if (i_sectors_delta) { 258 s64 bi_sectors = le64_to_cpu(inode->v.bi_sectors); 259 if (unlikely(bi_sectors + i_sectors_delta < 0)) { 260 struct bch_fs *c = trans->c; 261 struct printbuf buf = PRINTBUF; 262 bch2_log_msg_start(c, &buf); 263 prt_printf(&buf, "inode %llu i_sectors underflow: %lli + %lli < 0", 264 extent_iter->pos.inode, bi_sectors, i_sectors_delta); 265 266 bool repeat = false, print = false, suppress = false; 267 bch2_count_fsck_err(c, inode_i_sectors_underflow, buf.buf, 268 &repeat, &print, &suppress); 269 if (print) 270 bch2_print_str(c, buf.buf); 271 printbuf_exit(&buf); 272 273 if (i_sectors_delta < 0) 274 i_sectors_delta = -bi_sectors; 275 else 276 i_sectors_delta = 0; 277 } 278 279 le64_add_cpu(&inode->v.bi_sectors, i_sectors_delta); 280 inode_update_flags = 0; 281 } 282 283 if (inode->k.p.snapshot != iter.snapshot) { 284 inode->k.p.snapshot = iter.snapshot; 285 inode_update_flags = 0; 286 } 287 288 ret = bch2_trans_update(trans, &iter, &inode->k_i, 289 BTREE_UPDATE_internal_snapshot_node| 290 inode_update_flags); 291 err: 292 bch2_trans_iter_exit(trans, &iter); 293 return ret; 294 } 295 296 int bch2_extent_update(struct btree_trans *trans, 297 subvol_inum inum, 298 struct btree_iter *iter, 299 struct bkey_i *k, 300 struct disk_reservation *disk_res, 301 u64 new_i_size, 302 s64 *i_sectors_delta_total, 303 bool check_enospc) 304 { 305 struct bpos next_pos; 306 bool usage_increasing; 307 s64 i_sectors_delta = 0, disk_sectors_delta = 0; 308 int ret; 309 310 /* 311 * This traverses us the iterator without changing iter->path->pos to 312 * search_key() (which is pos + 1 for extents): we want there to be a 313 * path already traversed at iter->pos because 314 * bch2_trans_extent_update() will use it to attempt extent merging 315 */ 316 ret = __bch2_btree_iter_traverse(trans, iter); 317 if (ret) 318 return ret; 319 320 ret = bch2_extent_trim_atomic(trans, iter, k); 321 if (ret) 322 return ret; 323 324 next_pos = k->k.p; 325 326 ret = bch2_sum_sector_overwrites(trans, iter, k, 327 &usage_increasing, 328 &i_sectors_delta, 329 &disk_sectors_delta); 330 if (ret) 331 return ret; 332 333 if (disk_res && 334 disk_sectors_delta > (s64) disk_res->sectors) { 335 ret = bch2_disk_reservation_add(trans->c, disk_res, 336 disk_sectors_delta - disk_res->sectors, 337 !check_enospc || !usage_increasing 338 ? BCH_DISK_RESERVATION_NOFAIL : 0); 339 if (ret) 340 return ret; 341 } 342 343 /* 344 * Note: 345 * We always have to do an inode update - even when i_size/i_sectors 346 * aren't changing - for fsync to work properly; fsync relies on 347 * inode->bi_journal_seq which is updated by the trigger code: 348 */ 349 ret = bch2_extent_update_i_size_sectors(trans, iter, 350 min(k->k.p.offset << 9, new_i_size), 351 i_sectors_delta) ?: 352 bch2_trans_update(trans, iter, k, 0) ?: 353 bch2_trans_commit(trans, disk_res, NULL, 354 BCH_TRANS_COMMIT_no_check_rw| 355 BCH_TRANS_COMMIT_no_enospc); 356 if (unlikely(ret)) 357 return ret; 358 359 if (i_sectors_delta_total) 360 *i_sectors_delta_total += i_sectors_delta; 361 bch2_btree_iter_set_pos(trans, iter, next_pos); 362 return 0; 363 } 364 365 static int bch2_write_index_default(struct bch_write_op *op) 366 { 367 struct bch_fs *c = op->c; 368 struct bkey_buf sk; 369 struct keylist *keys = &op->insert_keys; 370 struct bkey_i *k = bch2_keylist_front(keys); 371 struct btree_trans *trans = bch2_trans_get(c); 372 struct btree_iter iter; 373 subvol_inum inum = { 374 .subvol = op->subvol, 375 .inum = k->k.p.inode, 376 }; 377 int ret; 378 379 BUG_ON(!inum.subvol); 380 381 bch2_bkey_buf_init(&sk); 382 383 do { 384 bch2_trans_begin(trans); 385 386 k = bch2_keylist_front(keys); 387 bch2_bkey_buf_copy(&sk, c, k); 388 389 ret = bch2_subvolume_get_snapshot(trans, inum.subvol, 390 &sk.k->k.p.snapshot); 391 if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) 392 continue; 393 if (ret) 394 break; 395 396 bch2_trans_iter_init(trans, &iter, BTREE_ID_extents, 397 bkey_start_pos(&sk.k->k), 398 BTREE_ITER_slots|BTREE_ITER_intent); 399 400 ret = bch2_bkey_set_needs_rebalance(c, &op->opts, sk.k) ?: 401 bch2_extent_update(trans, inum, &iter, sk.k, 402 &op->res, 403 op->new_i_size, &op->i_sectors_delta, 404 op->flags & BCH_WRITE_check_enospc); 405 bch2_trans_iter_exit(trans, &iter); 406 407 if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) 408 continue; 409 if (ret) 410 break; 411 412 if (bkey_ge(iter.pos, k->k.p)) 413 bch2_keylist_pop_front(&op->insert_keys); 414 else 415 bch2_cut_front(iter.pos, k); 416 } while (!bch2_keylist_empty(keys)); 417 418 bch2_trans_put(trans); 419 bch2_bkey_buf_exit(&sk, c); 420 421 return ret; 422 } 423 424 /* Writes */ 425 426 void bch2_write_op_error(struct bch_write_op *op, u64 offset, const char *fmt, ...) 427 { 428 struct printbuf buf = PRINTBUF; 429 430 if (op->subvol) { 431 bch2_inum_offset_err_msg(op->c, &buf, 432 (subvol_inum) { op->subvol, op->pos.inode, }, 433 offset << 9); 434 } else { 435 struct bpos pos = op->pos; 436 pos.offset = offset; 437 bch2_inum_snap_offset_err_msg(op->c, &buf, pos); 438 } 439 440 prt_str(&buf, "write error: "); 441 442 va_list args; 443 va_start(args, fmt); 444 prt_vprintf(&buf, fmt, args); 445 va_end(args); 446 447 if (op->flags & BCH_WRITE_move) { 448 struct data_update *u = container_of(op, struct data_update, op); 449 450 prt_printf(&buf, "\n from internal move "); 451 bch2_bkey_val_to_text(&buf, op->c, bkey_i_to_s_c(u->k.k)); 452 } 453 454 bch_err_ratelimited(op->c, "%s", buf.buf); 455 printbuf_exit(&buf); 456 } 457 458 void bch2_submit_wbio_replicas(struct bch_write_bio *wbio, struct bch_fs *c, 459 enum bch_data_type type, 460 const struct bkey_i *k, 461 bool nocow) 462 { 463 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k)); 464 struct bch_write_bio *n; 465 466 BUG_ON(c->opts.nochanges); 467 468 bkey_for_each_ptr(ptrs, ptr) { 469 /* 470 * XXX: btree writes should be using io_ref[WRITE], but we 471 * aren't retrying failed btree writes yet (due to device 472 * removal/ro): 473 */ 474 struct bch_dev *ca = nocow 475 ? bch2_dev_have_ref(c, ptr->dev) 476 : bch2_dev_get_ioref(c, ptr->dev, type == BCH_DATA_btree ? READ : WRITE); 477 478 if (to_entry(ptr + 1) < ptrs.end) { 479 n = to_wbio(bio_alloc_clone(NULL, &wbio->bio, GFP_NOFS, &c->replica_set)); 480 481 n->bio.bi_end_io = wbio->bio.bi_end_io; 482 n->bio.bi_private = wbio->bio.bi_private; 483 n->parent = wbio; 484 n->split = true; 485 n->bounce = false; 486 n->put_bio = true; 487 n->bio.bi_opf = wbio->bio.bi_opf; 488 bio_inc_remaining(&wbio->bio); 489 } else { 490 n = wbio; 491 n->split = false; 492 } 493 494 n->c = c; 495 n->dev = ptr->dev; 496 n->have_ioref = ca != NULL; 497 n->nocow = nocow; 498 n->submit_time = local_clock(); 499 n->inode_offset = bkey_start_offset(&k->k); 500 if (nocow) 501 n->nocow_bucket = PTR_BUCKET_NR(ca, ptr); 502 n->bio.bi_iter.bi_sector = ptr->offset; 503 504 if (likely(n->have_ioref)) { 505 this_cpu_add(ca->io_done->sectors[WRITE][type], 506 bio_sectors(&n->bio)); 507 508 bio_set_dev(&n->bio, ca->disk_sb.bdev); 509 510 if (type != BCH_DATA_btree && unlikely(c->opts.no_data_io)) { 511 bio_endio(&n->bio); 512 continue; 513 } 514 515 submit_bio(&n->bio); 516 } else { 517 n->bio.bi_status = BLK_STS_REMOVED; 518 bio_endio(&n->bio); 519 } 520 } 521 } 522 523 static void __bch2_write(struct bch_write_op *); 524 525 static void bch2_write_done(struct closure *cl) 526 { 527 struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); 528 struct bch_fs *c = op->c; 529 530 EBUG_ON(op->open_buckets.nr); 531 532 bch2_time_stats_update(&c->times[BCH_TIME_data_write], op->start_time); 533 bch2_disk_reservation_put(c, &op->res); 534 535 if (!(op->flags & BCH_WRITE_move)) 536 bch2_write_ref_put(c, BCH_WRITE_REF_write); 537 bch2_keylist_free(&op->insert_keys, op->inline_keys); 538 539 EBUG_ON(cl->parent); 540 closure_debug_destroy(cl); 541 if (op->end_io) 542 op->end_io(op); 543 } 544 545 static noinline int bch2_write_drop_io_error_ptrs(struct bch_write_op *op) 546 { 547 struct keylist *keys = &op->insert_keys; 548 struct bkey_i *src, *dst = keys->keys, *n; 549 550 for (src = keys->keys; src != keys->top; src = n) { 551 n = bkey_next(src); 552 553 if (bkey_extent_is_direct_data(&src->k)) { 554 bch2_bkey_drop_ptrs(bkey_i_to_s(src), ptr, 555 test_bit(ptr->dev, op->failed.d)); 556 557 if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(src))) 558 return -BCH_ERR_data_write_io; 559 } 560 561 if (dst != src) 562 memmove_u64s_down(dst, src, src->k.u64s); 563 dst = bkey_next(dst); 564 } 565 566 keys->top = dst; 567 return 0; 568 } 569 570 /** 571 * __bch2_write_index - after a write, update index to point to new data 572 * @op: bch_write_op to process 573 */ 574 static void __bch2_write_index(struct bch_write_op *op) 575 { 576 struct bch_fs *c = op->c; 577 struct keylist *keys = &op->insert_keys; 578 unsigned dev; 579 int ret = 0; 580 581 if (unlikely(op->flags & BCH_WRITE_io_error)) { 582 ret = bch2_write_drop_io_error_ptrs(op); 583 if (ret) 584 goto err; 585 } 586 587 if (!bch2_keylist_empty(keys)) { 588 u64 sectors_start = keylist_sectors(keys); 589 590 ret = !(op->flags & BCH_WRITE_move) 591 ? bch2_write_index_default(op) 592 : bch2_data_update_index_update(op); 593 594 BUG_ON(bch2_err_matches(ret, BCH_ERR_transaction_restart)); 595 BUG_ON(keylist_sectors(keys) && !ret); 596 597 op->written += sectors_start - keylist_sectors(keys); 598 599 if (unlikely(ret && !bch2_err_matches(ret, EROFS))) { 600 struct bkey_i *insert = bch2_keylist_front(&op->insert_keys); 601 602 bch2_write_op_error(op, bkey_start_offset(&insert->k), 603 "btree update error: %s", bch2_err_str(ret)); 604 } 605 606 if (ret) 607 goto err; 608 } 609 out: 610 /* If some a bucket wasn't written, we can't erasure code it: */ 611 for_each_set_bit(dev, op->failed.d, BCH_SB_MEMBERS_MAX) 612 bch2_open_bucket_write_error(c, &op->open_buckets, dev, -BCH_ERR_data_write_io); 613 614 bch2_open_buckets_put(c, &op->open_buckets); 615 return; 616 err: 617 keys->top = keys->keys; 618 op->error = ret; 619 op->flags |= BCH_WRITE_submitted; 620 goto out; 621 } 622 623 static inline void __wp_update_state(struct write_point *wp, enum write_point_state state) 624 { 625 if (state != wp->state) { 626 struct task_struct *p = current; 627 u64 now = ktime_get_ns(); 628 u64 runtime = p->se.sum_exec_runtime + 629 (now - p->se.exec_start); 630 631 if (state == WRITE_POINT_runnable) 632 wp->last_runtime = runtime; 633 else if (wp->state == WRITE_POINT_runnable) 634 wp->time[WRITE_POINT_running] += runtime - wp->last_runtime; 635 636 if (wp->last_state_change && 637 time_after64(now, wp->last_state_change)) 638 wp->time[wp->state] += now - wp->last_state_change; 639 wp->state = state; 640 wp->last_state_change = now; 641 } 642 } 643 644 static inline void wp_update_state(struct write_point *wp, bool running) 645 { 646 enum write_point_state state; 647 648 state = running ? WRITE_POINT_runnable: 649 !list_empty(&wp->writes) ? WRITE_POINT_waiting_io 650 : WRITE_POINT_stopped; 651 652 __wp_update_state(wp, state); 653 } 654 655 static CLOSURE_CALLBACK(bch2_write_index) 656 { 657 closure_type(op, struct bch_write_op, cl); 658 struct write_point *wp = op->wp; 659 struct workqueue_struct *wq = index_update_wq(op); 660 unsigned long flags; 661 662 if ((op->flags & BCH_WRITE_submitted) && 663 (op->flags & BCH_WRITE_move)) 664 bch2_bio_free_pages_pool(op->c, &op->wbio.bio); 665 666 spin_lock_irqsave(&wp->writes_lock, flags); 667 if (wp->state == WRITE_POINT_waiting_io) 668 __wp_update_state(wp, WRITE_POINT_waiting_work); 669 list_add_tail(&op->wp_list, &wp->writes); 670 spin_unlock_irqrestore (&wp->writes_lock, flags); 671 672 queue_work(wq, &wp->index_update_work); 673 } 674 675 static inline void bch2_write_queue(struct bch_write_op *op, struct write_point *wp) 676 { 677 op->wp = wp; 678 679 if (wp->state == WRITE_POINT_stopped) { 680 spin_lock_irq(&wp->writes_lock); 681 __wp_update_state(wp, WRITE_POINT_waiting_io); 682 spin_unlock_irq(&wp->writes_lock); 683 } 684 } 685 686 void bch2_write_point_do_index_updates(struct work_struct *work) 687 { 688 struct write_point *wp = 689 container_of(work, struct write_point, index_update_work); 690 struct bch_write_op *op; 691 692 while (1) { 693 spin_lock_irq(&wp->writes_lock); 694 op = list_pop_entry(&wp->writes, struct bch_write_op, wp_list); 695 wp_update_state(wp, op != NULL); 696 spin_unlock_irq(&wp->writes_lock); 697 698 if (!op) 699 break; 700 701 op->flags |= BCH_WRITE_in_worker; 702 703 __bch2_write_index(op); 704 705 if (!(op->flags & BCH_WRITE_submitted)) 706 __bch2_write(op); 707 else 708 bch2_write_done(&op->cl); 709 } 710 } 711 712 static void bch2_write_endio(struct bio *bio) 713 { 714 struct closure *cl = bio->bi_private; 715 struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); 716 struct bch_write_bio *wbio = to_wbio(bio); 717 struct bch_write_bio *parent = wbio->split ? wbio->parent : NULL; 718 struct bch_fs *c = wbio->c; 719 struct bch_dev *ca = wbio->have_ioref 720 ? bch2_dev_have_ref(c, wbio->dev) 721 : NULL; 722 723 bch2_account_io_completion(ca, BCH_MEMBER_ERROR_write, 724 wbio->submit_time, !bio->bi_status); 725 726 if (unlikely(bio->bi_status)) { 727 if (ca) 728 bch_err_inum_offset_ratelimited(ca, 729 op->pos.inode, 730 wbio->inode_offset << 9, 731 "data write error: %s", 732 bch2_blk_status_to_str(bio->bi_status)); 733 else 734 bch_err_inum_offset_ratelimited(c, 735 op->pos.inode, 736 wbio->inode_offset << 9, 737 "data write error: %s", 738 bch2_blk_status_to_str(bio->bi_status)); 739 set_bit(wbio->dev, op->failed.d); 740 op->flags |= BCH_WRITE_io_error; 741 } 742 743 if (wbio->nocow) { 744 bch2_bucket_nocow_unlock(&c->nocow_locks, 745 POS(ca->dev_idx, wbio->nocow_bucket), 746 BUCKET_NOCOW_LOCK_UPDATE); 747 set_bit(wbio->dev, op->devs_need_flush->d); 748 } 749 750 if (wbio->have_ioref) 751 percpu_ref_put(&ca->io_ref[WRITE]); 752 753 if (wbio->bounce) 754 bch2_bio_free_pages_pool(c, bio); 755 756 if (wbio->put_bio) 757 bio_put(bio); 758 759 if (parent) 760 bio_endio(&parent->bio); 761 else 762 closure_put(cl); 763 } 764 765 static void init_append_extent(struct bch_write_op *op, 766 struct write_point *wp, 767 struct bversion version, 768 struct bch_extent_crc_unpacked crc) 769 { 770 struct bkey_i_extent *e; 771 772 op->pos.offset += crc.uncompressed_size; 773 774 e = bkey_extent_init(op->insert_keys.top); 775 e->k.p = op->pos; 776 e->k.size = crc.uncompressed_size; 777 e->k.bversion = version; 778 779 if (crc.csum_type || 780 crc.compression_type || 781 crc.nonce) 782 bch2_extent_crc_append(&e->k_i, crc); 783 784 bch2_alloc_sectors_append_ptrs_inlined(op->c, wp, &e->k_i, crc.compressed_size, 785 op->flags & BCH_WRITE_cached); 786 787 bch2_keylist_push(&op->insert_keys); 788 } 789 790 static struct bio *bch2_write_bio_alloc(struct bch_fs *c, 791 struct write_point *wp, 792 struct bio *src, 793 bool *page_alloc_failed, 794 void *buf) 795 { 796 struct bch_write_bio *wbio; 797 struct bio *bio; 798 unsigned output_available = 799 min(wp->sectors_free << 9, src->bi_iter.bi_size); 800 unsigned pages = DIV_ROUND_UP(output_available + 801 (buf 802 ? ((unsigned long) buf & (PAGE_SIZE - 1)) 803 : 0), PAGE_SIZE); 804 805 pages = min(pages, BIO_MAX_VECS); 806 807 bio = bio_alloc_bioset(NULL, pages, 0, 808 GFP_NOFS, &c->bio_write); 809 wbio = wbio_init(bio); 810 wbio->put_bio = true; 811 /* copy WRITE_SYNC flag */ 812 wbio->bio.bi_opf = src->bi_opf; 813 814 if (buf) { 815 bch2_bio_map(bio, buf, output_available); 816 return bio; 817 } 818 819 wbio->bounce = true; 820 821 /* 822 * We can't use mempool for more than c->sb.encoded_extent_max 823 * worth of pages, but we'd like to allocate more if we can: 824 */ 825 bch2_bio_alloc_pages_pool(c, bio, 826 min_t(unsigned, output_available, 827 c->opts.encoded_extent_max)); 828 829 if (bio->bi_iter.bi_size < output_available) 830 *page_alloc_failed = 831 bch2_bio_alloc_pages(bio, 832 output_available - 833 bio->bi_iter.bi_size, 834 GFP_NOFS) != 0; 835 836 return bio; 837 } 838 839 static int bch2_write_rechecksum(struct bch_fs *c, 840 struct bch_write_op *op, 841 unsigned new_csum_type) 842 { 843 struct bio *bio = &op->wbio.bio; 844 struct bch_extent_crc_unpacked new_crc; 845 846 /* bch2_rechecksum_bio() can't encrypt or decrypt data: */ 847 848 if (bch2_csum_type_is_encryption(op->crc.csum_type) != 849 bch2_csum_type_is_encryption(new_csum_type)) 850 new_csum_type = op->crc.csum_type; 851 852 int ret = bch2_rechecksum_bio(c, bio, op->version, op->crc, 853 NULL, &new_crc, 854 op->crc.offset, op->crc.live_size, 855 new_csum_type); 856 if (ret) 857 return ret; 858 859 bio_advance(bio, op->crc.offset << 9); 860 bio->bi_iter.bi_size = op->crc.live_size << 9; 861 op->crc = new_crc; 862 return 0; 863 } 864 865 static noinline int bch2_write_prep_encoded_data(struct bch_write_op *op, struct write_point *wp) 866 { 867 struct bch_fs *c = op->c; 868 struct bio *bio = &op->wbio.bio; 869 struct bch_csum csum; 870 int ret = 0; 871 872 BUG_ON(bio_sectors(bio) != op->crc.compressed_size); 873 874 /* Can we just write the entire extent as is? */ 875 if (op->crc.uncompressed_size == op->crc.live_size && 876 op->crc.uncompressed_size <= c->opts.encoded_extent_max >> 9 && 877 op->crc.compressed_size <= wp->sectors_free && 878 (op->crc.compression_type == bch2_compression_opt_to_type(op->compression_opt) || 879 op->incompressible)) { 880 if (!crc_is_compressed(op->crc) && 881 op->csum_type != op->crc.csum_type) { 882 ret = bch2_write_rechecksum(c, op, op->csum_type); 883 if (ret) 884 return ret; 885 } 886 887 return 1; 888 } 889 890 /* 891 * If the data is compressed and we couldn't write the entire extent as 892 * is, we have to decompress it: 893 */ 894 if (crc_is_compressed(op->crc)) { 895 /* Last point we can still verify checksum: */ 896 struct nonce nonce = extent_nonce(op->version, op->crc); 897 csum = bch2_checksum_bio(c, op->crc.csum_type, nonce, bio); 898 if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io) 899 goto csum_err; 900 901 if (bch2_csum_type_is_encryption(op->crc.csum_type)) { 902 ret = bch2_encrypt_bio(c, op->crc.csum_type, nonce, bio); 903 if (ret) 904 return ret; 905 906 op->crc.csum_type = 0; 907 op->crc.csum = (struct bch_csum) { 0, 0 }; 908 } 909 910 ret = bch2_bio_uncompress_inplace(op, bio); 911 if (ret) 912 return ret; 913 } 914 915 /* 916 * No longer have compressed data after this point - data might be 917 * encrypted: 918 */ 919 920 /* 921 * If the data is checksummed and we're only writing a subset, 922 * rechecksum and adjust bio to point to currently live data: 923 */ 924 if (op->crc.live_size != op->crc.uncompressed_size || 925 op->crc.csum_type != op->csum_type) { 926 ret = bch2_write_rechecksum(c, op, op->csum_type); 927 if (ret) 928 return ret; 929 } 930 931 /* 932 * If we want to compress the data, it has to be decrypted: 933 */ 934 if (bch2_csum_type_is_encryption(op->crc.csum_type) && 935 (op->compression_opt || op->crc.csum_type != op->csum_type)) { 936 struct nonce nonce = extent_nonce(op->version, op->crc); 937 csum = bch2_checksum_bio(c, op->crc.csum_type, nonce, bio); 938 if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io) 939 goto csum_err; 940 941 ret = bch2_encrypt_bio(c, op->crc.csum_type, nonce, bio); 942 if (ret) 943 return ret; 944 945 op->crc.csum_type = 0; 946 op->crc.csum = (struct bch_csum) { 0, 0 }; 947 } 948 949 return 0; 950 csum_err: 951 bch2_write_op_error(op, op->pos.offset, 952 "error verifying existing checksum while moving existing data (memory corruption?)\n" 953 " expected %0llx:%0llx got %0llx:%0llx type %s", 954 op->crc.csum.hi, 955 op->crc.csum.lo, 956 csum.hi, 957 csum.lo, 958 op->crc.csum_type < BCH_CSUM_NR 959 ? __bch2_csum_types[op->crc.csum_type] 960 : "(unknown)"); 961 return -BCH_ERR_data_write_csum; 962 } 963 964 static int bch2_write_extent(struct bch_write_op *op, struct write_point *wp, 965 struct bio **_dst) 966 { 967 struct bch_fs *c = op->c; 968 struct bio *src = &op->wbio.bio, *dst = src; 969 struct bvec_iter saved_iter; 970 void *ec_buf; 971 unsigned total_output = 0, total_input = 0; 972 bool bounce = false; 973 bool page_alloc_failed = false; 974 int ret, more = 0; 975 976 if (op->incompressible) 977 op->compression_opt = 0; 978 979 BUG_ON(!bio_sectors(src)); 980 981 ec_buf = bch2_writepoint_ec_buf(c, wp); 982 983 if (unlikely(op->flags & BCH_WRITE_data_encoded)) { 984 ret = bch2_write_prep_encoded_data(op, wp); 985 if (ret < 0) 986 goto err; 987 if (ret) { 988 if (ec_buf) { 989 dst = bch2_write_bio_alloc(c, wp, src, 990 &page_alloc_failed, 991 ec_buf); 992 bio_copy_data(dst, src); 993 bounce = true; 994 } 995 init_append_extent(op, wp, op->version, op->crc); 996 goto do_write; 997 } 998 } 999 1000 if (ec_buf || 1001 op->compression_opt || 1002 (op->csum_type && 1003 !(op->flags & BCH_WRITE_pages_stable)) || 1004 (bch2_csum_type_is_encryption(op->csum_type) && 1005 !(op->flags & BCH_WRITE_pages_owned))) { 1006 dst = bch2_write_bio_alloc(c, wp, src, 1007 &page_alloc_failed, 1008 ec_buf); 1009 bounce = true; 1010 } 1011 1012 #ifdef CONFIG_BCACHEFS_DEBUG 1013 unsigned write_corrupt_ratio = READ_ONCE(bch2_write_corrupt_ratio); 1014 if (!bounce && write_corrupt_ratio) { 1015 dst = bch2_write_bio_alloc(c, wp, src, 1016 &page_alloc_failed, 1017 ec_buf); 1018 bounce = true; 1019 } 1020 #endif 1021 saved_iter = dst->bi_iter; 1022 1023 do { 1024 struct bch_extent_crc_unpacked crc = { 0 }; 1025 struct bversion version = op->version; 1026 size_t dst_len = 0, src_len = 0; 1027 1028 if (page_alloc_failed && 1029 dst->bi_iter.bi_size < (wp->sectors_free << 9) && 1030 dst->bi_iter.bi_size < c->opts.encoded_extent_max) 1031 break; 1032 1033 BUG_ON(op->compression_opt && 1034 (op->flags & BCH_WRITE_data_encoded) && 1035 bch2_csum_type_is_encryption(op->crc.csum_type)); 1036 BUG_ON(op->compression_opt && !bounce); 1037 1038 crc.compression_type = op->incompressible 1039 ? BCH_COMPRESSION_TYPE_incompressible 1040 : op->compression_opt 1041 ? bch2_bio_compress(c, dst, &dst_len, src, &src_len, 1042 op->compression_opt) 1043 : 0; 1044 if (!crc_is_compressed(crc)) { 1045 dst_len = min(dst->bi_iter.bi_size, src->bi_iter.bi_size); 1046 dst_len = min_t(unsigned, dst_len, wp->sectors_free << 9); 1047 1048 if (op->csum_type) 1049 dst_len = min_t(unsigned, dst_len, 1050 c->opts.encoded_extent_max); 1051 1052 if (bounce) { 1053 swap(dst->bi_iter.bi_size, dst_len); 1054 bio_copy_data(dst, src); 1055 swap(dst->bi_iter.bi_size, dst_len); 1056 } 1057 1058 src_len = dst_len; 1059 } 1060 1061 BUG_ON(!src_len || !dst_len); 1062 1063 if (bch2_csum_type_is_encryption(op->csum_type)) { 1064 if (bversion_zero(version)) { 1065 version.lo = atomic64_inc_return(&c->key_version); 1066 } else { 1067 crc.nonce = op->nonce; 1068 op->nonce += src_len >> 9; 1069 } 1070 } 1071 1072 if ((op->flags & BCH_WRITE_data_encoded) && 1073 !crc_is_compressed(crc) && 1074 bch2_csum_type_is_encryption(op->crc.csum_type) == 1075 bch2_csum_type_is_encryption(op->csum_type)) { 1076 u8 compression_type = crc.compression_type; 1077 u16 nonce = crc.nonce; 1078 /* 1079 * Note: when we're using rechecksum(), we need to be 1080 * checksumming @src because it has all the data our 1081 * existing checksum covers - if we bounced (because we 1082 * were trying to compress), @dst will only have the 1083 * part of the data the new checksum will cover. 1084 * 1085 * But normally we want to be checksumming post bounce, 1086 * because part of the reason for bouncing is so the 1087 * data can't be modified (by userspace) while it's in 1088 * flight. 1089 */ 1090 ret = bch2_rechecksum_bio(c, src, version, op->crc, 1091 &crc, &op->crc, 1092 src_len >> 9, 1093 bio_sectors(src) - (src_len >> 9), 1094 op->csum_type); 1095 if (ret) 1096 goto err; 1097 /* 1098 * rchecksum_bio sets compression_type on crc from op->crc, 1099 * this isn't always correct as sometimes we're changing 1100 * an extent from uncompressed to incompressible. 1101 */ 1102 crc.compression_type = compression_type; 1103 crc.nonce = nonce; 1104 } else { 1105 if ((op->flags & BCH_WRITE_data_encoded) && 1106 (ret = bch2_rechecksum_bio(c, src, version, op->crc, 1107 NULL, &op->crc, 1108 src_len >> 9, 1109 bio_sectors(src) - (src_len >> 9), 1110 op->crc.csum_type))) 1111 goto err; 1112 1113 crc.compressed_size = dst_len >> 9; 1114 crc.uncompressed_size = src_len >> 9; 1115 crc.live_size = src_len >> 9; 1116 1117 swap(dst->bi_iter.bi_size, dst_len); 1118 ret = bch2_encrypt_bio(c, op->csum_type, 1119 extent_nonce(version, crc), dst); 1120 if (ret) 1121 goto err; 1122 1123 crc.csum = bch2_checksum_bio(c, op->csum_type, 1124 extent_nonce(version, crc), dst); 1125 crc.csum_type = op->csum_type; 1126 swap(dst->bi_iter.bi_size, dst_len); 1127 } 1128 1129 init_append_extent(op, wp, version, crc); 1130 1131 #ifdef CONFIG_BCACHEFS_DEBUG 1132 if (write_corrupt_ratio) { 1133 swap(dst->bi_iter.bi_size, dst_len); 1134 bch2_maybe_corrupt_bio(dst, write_corrupt_ratio); 1135 swap(dst->bi_iter.bi_size, dst_len); 1136 } 1137 #endif 1138 1139 if (dst != src) 1140 bio_advance(dst, dst_len); 1141 bio_advance(src, src_len); 1142 total_output += dst_len; 1143 total_input += src_len; 1144 } while (dst->bi_iter.bi_size && 1145 src->bi_iter.bi_size && 1146 wp->sectors_free && 1147 !bch2_keylist_realloc(&op->insert_keys, 1148 op->inline_keys, 1149 ARRAY_SIZE(op->inline_keys), 1150 BKEY_EXTENT_U64s_MAX)); 1151 1152 more = src->bi_iter.bi_size != 0; 1153 1154 dst->bi_iter = saved_iter; 1155 1156 if (dst == src && more) { 1157 BUG_ON(total_output != total_input); 1158 1159 dst = bio_split(src, total_input >> 9, 1160 GFP_NOFS, &c->bio_write); 1161 wbio_init(dst)->put_bio = true; 1162 /* copy WRITE_SYNC flag */ 1163 dst->bi_opf = src->bi_opf; 1164 } 1165 1166 dst->bi_iter.bi_size = total_output; 1167 do_write: 1168 *_dst = dst; 1169 return more; 1170 err: 1171 if (to_wbio(dst)->bounce) 1172 bch2_bio_free_pages_pool(c, dst); 1173 if (to_wbio(dst)->put_bio) 1174 bio_put(dst); 1175 1176 return ret; 1177 } 1178 1179 static bool bch2_extent_is_writeable(struct bch_write_op *op, 1180 struct bkey_s_c k) 1181 { 1182 struct bch_fs *c = op->c; 1183 struct bkey_s_c_extent e; 1184 struct extent_ptr_decoded p; 1185 const union bch_extent_entry *entry; 1186 unsigned replicas = 0; 1187 1188 if (k.k->type != KEY_TYPE_extent) 1189 return false; 1190 1191 e = bkey_s_c_to_extent(k); 1192 1193 rcu_read_lock(); 1194 extent_for_each_ptr_decode(e, p, entry) { 1195 if (crc_is_encoded(p.crc) || p.has_ec) { 1196 rcu_read_unlock(); 1197 return false; 1198 } 1199 1200 replicas += bch2_extent_ptr_durability(c, &p); 1201 } 1202 rcu_read_unlock(); 1203 1204 return replicas >= op->opts.data_replicas; 1205 } 1206 1207 static int bch2_nocow_write_convert_one_unwritten(struct btree_trans *trans, 1208 struct btree_iter *iter, 1209 struct bkey_i *orig, 1210 struct bkey_s_c k, 1211 u64 new_i_size) 1212 { 1213 if (!bch2_extents_match(bkey_i_to_s_c(orig), k)) { 1214 /* trace this */ 1215 return 0; 1216 } 1217 1218 struct bkey_i *new = bch2_bkey_make_mut_noupdate(trans, k); 1219 int ret = PTR_ERR_OR_ZERO(new); 1220 if (ret) 1221 return ret; 1222 1223 bch2_cut_front(bkey_start_pos(&orig->k), new); 1224 bch2_cut_back(orig->k.p, new); 1225 1226 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(new)); 1227 bkey_for_each_ptr(ptrs, ptr) 1228 ptr->unwritten = 0; 1229 1230 /* 1231 * Note that we're not calling bch2_subvol_get_snapshot() in this path - 1232 * that was done when we kicked off the write, and here it's important 1233 * that we update the extent that we wrote to - even if a snapshot has 1234 * since been created. The write is still outstanding, so we're ok 1235 * w.r.t. snapshot atomicity: 1236 */ 1237 return bch2_extent_update_i_size_sectors(trans, iter, 1238 min(new->k.p.offset << 9, new_i_size), 0) ?: 1239 bch2_trans_update(trans, iter, new, 1240 BTREE_UPDATE_internal_snapshot_node); 1241 } 1242 1243 static void bch2_nocow_write_convert_unwritten(struct bch_write_op *op) 1244 { 1245 struct bch_fs *c = op->c; 1246 struct btree_trans *trans = bch2_trans_get(c); 1247 int ret = 0; 1248 1249 for_each_keylist_key(&op->insert_keys, orig) { 1250 ret = for_each_btree_key_max_commit(trans, iter, BTREE_ID_extents, 1251 bkey_start_pos(&orig->k), orig->k.p, 1252 BTREE_ITER_intent, k, 1253 NULL, NULL, BCH_TRANS_COMMIT_no_enospc, ({ 1254 bch2_nocow_write_convert_one_unwritten(trans, &iter, orig, k, op->new_i_size); 1255 })); 1256 if (ret) 1257 break; 1258 } 1259 1260 bch2_trans_put(trans); 1261 1262 if (ret && !bch2_err_matches(ret, EROFS)) { 1263 struct bkey_i *insert = bch2_keylist_front(&op->insert_keys); 1264 bch2_write_op_error(op, bkey_start_offset(&insert->k), 1265 "btree update error: %s", bch2_err_str(ret)); 1266 } 1267 1268 if (ret) 1269 op->error = ret; 1270 } 1271 1272 static void __bch2_nocow_write_done(struct bch_write_op *op) 1273 { 1274 if (unlikely(op->flags & BCH_WRITE_io_error)) { 1275 op->error = -BCH_ERR_data_write_io; 1276 } else if (unlikely(op->flags & BCH_WRITE_convert_unwritten)) 1277 bch2_nocow_write_convert_unwritten(op); 1278 } 1279 1280 static CLOSURE_CALLBACK(bch2_nocow_write_done) 1281 { 1282 closure_type(op, struct bch_write_op, cl); 1283 1284 __bch2_nocow_write_done(op); 1285 bch2_write_done(cl); 1286 } 1287 1288 struct bucket_to_lock { 1289 struct bpos b; 1290 unsigned gen; 1291 struct nocow_lock_bucket *l; 1292 }; 1293 1294 static void bch2_nocow_write(struct bch_write_op *op) 1295 { 1296 struct bch_fs *c = op->c; 1297 struct btree_trans *trans; 1298 struct btree_iter iter; 1299 struct bkey_s_c k; 1300 DARRAY_PREALLOCATED(struct bucket_to_lock, 3) buckets; 1301 u32 snapshot; 1302 struct bucket_to_lock *stale_at; 1303 int stale, ret; 1304 1305 if (op->flags & BCH_WRITE_move) 1306 return; 1307 1308 darray_init(&buckets); 1309 trans = bch2_trans_get(c); 1310 retry: 1311 bch2_trans_begin(trans); 1312 1313 ret = bch2_subvolume_get_snapshot(trans, op->subvol, &snapshot); 1314 if (unlikely(ret)) 1315 goto err; 1316 1317 bch2_trans_iter_init(trans, &iter, BTREE_ID_extents, 1318 SPOS(op->pos.inode, op->pos.offset, snapshot), 1319 BTREE_ITER_slots); 1320 while (1) { 1321 struct bio *bio = &op->wbio.bio; 1322 1323 buckets.nr = 0; 1324 1325 ret = bch2_trans_relock(trans); 1326 if (ret) 1327 break; 1328 1329 k = bch2_btree_iter_peek_slot(trans, &iter); 1330 ret = bkey_err(k); 1331 if (ret) 1332 break; 1333 1334 /* fall back to normal cow write path? */ 1335 if (unlikely(k.k->p.snapshot != snapshot || 1336 !bch2_extent_is_writeable(op, k))) 1337 break; 1338 1339 if (bch2_keylist_realloc(&op->insert_keys, 1340 op->inline_keys, 1341 ARRAY_SIZE(op->inline_keys), 1342 k.k->u64s)) 1343 break; 1344 1345 /* Get iorefs before dropping btree locks: */ 1346 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1347 bkey_for_each_ptr(ptrs, ptr) { 1348 struct bch_dev *ca = bch2_dev_get_ioref(c, ptr->dev, WRITE); 1349 if (unlikely(!ca)) 1350 goto err_get_ioref; 1351 1352 struct bpos b = PTR_BUCKET_POS(ca, ptr); 1353 struct nocow_lock_bucket *l = 1354 bucket_nocow_lock(&c->nocow_locks, bucket_to_u64(b)); 1355 prefetch(l); 1356 1357 /* XXX allocating memory with btree locks held - rare */ 1358 darray_push_gfp(&buckets, ((struct bucket_to_lock) { 1359 .b = b, .gen = ptr->gen, .l = l, 1360 }), GFP_KERNEL|__GFP_NOFAIL); 1361 1362 if (ptr->unwritten) 1363 op->flags |= BCH_WRITE_convert_unwritten; 1364 } 1365 1366 /* Unlock before taking nocow locks, doing IO: */ 1367 bkey_reassemble(op->insert_keys.top, k); 1368 bch2_trans_unlock(trans); 1369 1370 bch2_cut_front(op->pos, op->insert_keys.top); 1371 if (op->flags & BCH_WRITE_convert_unwritten) 1372 bch2_cut_back(POS(op->pos.inode, op->pos.offset + bio_sectors(bio)), op->insert_keys.top); 1373 1374 darray_for_each(buckets, i) { 1375 struct bch_dev *ca = bch2_dev_have_ref(c, i->b.inode); 1376 1377 __bch2_bucket_nocow_lock(&c->nocow_locks, i->l, 1378 bucket_to_u64(i->b), 1379 BUCKET_NOCOW_LOCK_UPDATE); 1380 1381 int gen = bucket_gen_get(ca, i->b.offset); 1382 stale = gen < 0 ? gen : gen_after(gen, i->gen); 1383 if (unlikely(stale)) { 1384 stale_at = i; 1385 goto err_bucket_stale; 1386 } 1387 } 1388 1389 bio = &op->wbio.bio; 1390 if (k.k->p.offset < op->pos.offset + bio_sectors(bio)) { 1391 bio = bio_split(bio, k.k->p.offset - op->pos.offset, 1392 GFP_KERNEL, &c->bio_write); 1393 wbio_init(bio)->put_bio = true; 1394 bio->bi_opf = op->wbio.bio.bi_opf; 1395 } else { 1396 op->flags |= BCH_WRITE_submitted; 1397 } 1398 1399 op->pos.offset += bio_sectors(bio); 1400 op->written += bio_sectors(bio); 1401 1402 bio->bi_end_io = bch2_write_endio; 1403 bio->bi_private = &op->cl; 1404 bio->bi_opf |= REQ_OP_WRITE; 1405 closure_get(&op->cl); 1406 1407 bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user, 1408 op->insert_keys.top, true); 1409 1410 bch2_keylist_push(&op->insert_keys); 1411 if (op->flags & BCH_WRITE_submitted) 1412 break; 1413 bch2_btree_iter_advance(trans, &iter); 1414 } 1415 out: 1416 bch2_trans_iter_exit(trans, &iter); 1417 err: 1418 if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) 1419 goto retry; 1420 1421 bch2_trans_put(trans); 1422 darray_exit(&buckets); 1423 1424 if (ret) { 1425 bch2_write_op_error(op, op->pos.offset, 1426 "%s(): btree lookup error: %s", __func__, bch2_err_str(ret)); 1427 op->error = ret; 1428 op->flags |= BCH_WRITE_submitted; 1429 } 1430 1431 /* fallback to cow write path? */ 1432 if (!(op->flags & BCH_WRITE_submitted)) { 1433 closure_sync(&op->cl); 1434 __bch2_nocow_write_done(op); 1435 op->insert_keys.top = op->insert_keys.keys; 1436 } else if (op->flags & BCH_WRITE_sync) { 1437 closure_sync(&op->cl); 1438 bch2_nocow_write_done(&op->cl.work); 1439 } else { 1440 /* 1441 * XXX 1442 * needs to run out of process context because ei_quota_lock is 1443 * a mutex 1444 */ 1445 continue_at(&op->cl, bch2_nocow_write_done, index_update_wq(op)); 1446 } 1447 return; 1448 err_get_ioref: 1449 darray_for_each(buckets, i) 1450 percpu_ref_put(&bch2_dev_have_ref(c, i->b.inode)->io_ref[WRITE]); 1451 1452 /* Fall back to COW path: */ 1453 goto out; 1454 err_bucket_stale: 1455 darray_for_each(buckets, i) { 1456 bch2_bucket_nocow_unlock(&c->nocow_locks, i->b, BUCKET_NOCOW_LOCK_UPDATE); 1457 if (i == stale_at) 1458 break; 1459 } 1460 1461 struct printbuf buf = PRINTBUF; 1462 if (bch2_fs_inconsistent_on(stale < 0, c, 1463 "pointer to invalid bucket in nocow path on device %llu\n %s", 1464 stale_at->b.inode, 1465 (bch2_bkey_val_to_text(&buf, c, k), buf.buf))) { 1466 ret = -BCH_ERR_data_write_invalid_ptr; 1467 } else { 1468 /* We can retry this: */ 1469 ret = -BCH_ERR_transaction_restart; 1470 } 1471 printbuf_exit(&buf); 1472 1473 goto err_get_ioref; 1474 } 1475 1476 static void __bch2_write(struct bch_write_op *op) 1477 { 1478 struct bch_fs *c = op->c; 1479 struct write_point *wp = NULL; 1480 struct bio *bio = NULL; 1481 unsigned nofs_flags; 1482 int ret; 1483 1484 nofs_flags = memalloc_nofs_save(); 1485 1486 if (unlikely(op->opts.nocow && c->opts.nocow_enabled)) { 1487 bch2_nocow_write(op); 1488 if (op->flags & BCH_WRITE_submitted) 1489 goto out_nofs_restore; 1490 } 1491 again: 1492 memset(&op->failed, 0, sizeof(op->failed)); 1493 1494 do { 1495 struct bkey_i *key_to_write; 1496 unsigned key_to_write_offset = op->insert_keys.top_p - 1497 op->insert_keys.keys_p; 1498 1499 /* +1 for possible cache device: */ 1500 if (op->open_buckets.nr + op->nr_replicas + 1 > 1501 ARRAY_SIZE(op->open_buckets.v)) 1502 break; 1503 1504 if (bch2_keylist_realloc(&op->insert_keys, 1505 op->inline_keys, 1506 ARRAY_SIZE(op->inline_keys), 1507 BKEY_EXTENT_U64s_MAX)) 1508 break; 1509 1510 /* 1511 * The copygc thread is now global, which means it's no longer 1512 * freeing up space on specific disks, which means that 1513 * allocations for specific disks may hang arbitrarily long: 1514 */ 1515 ret = bch2_trans_run(c, lockrestart_do(trans, 1516 bch2_alloc_sectors_start_trans(trans, 1517 op->target, 1518 op->opts.erasure_code && !(op->flags & BCH_WRITE_cached), 1519 op->write_point, 1520 &op->devs_have, 1521 op->nr_replicas, 1522 op->nr_replicas_required, 1523 op->watermark, 1524 op->flags, 1525 &op->cl, &wp))); 1526 if (unlikely(ret)) { 1527 if (bch2_err_matches(ret, BCH_ERR_operation_blocked)) 1528 break; 1529 1530 goto err; 1531 } 1532 1533 EBUG_ON(!wp); 1534 1535 bch2_open_bucket_get(c, wp, &op->open_buckets); 1536 ret = bch2_write_extent(op, wp, &bio); 1537 1538 bch2_alloc_sectors_done_inlined(c, wp); 1539 err: 1540 if (ret <= 0) { 1541 op->flags |= BCH_WRITE_submitted; 1542 1543 if (unlikely(ret < 0)) { 1544 if (!(op->flags & BCH_WRITE_alloc_nowait)) 1545 bch2_write_op_error(op, op->pos.offset, 1546 "%s(): %s", __func__, bch2_err_str(ret)); 1547 op->error = ret; 1548 break; 1549 } 1550 } 1551 1552 bio->bi_end_io = bch2_write_endio; 1553 bio->bi_private = &op->cl; 1554 bio->bi_opf |= REQ_OP_WRITE; 1555 1556 closure_get(bio->bi_private); 1557 1558 key_to_write = (void *) (op->insert_keys.keys_p + 1559 key_to_write_offset); 1560 1561 bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user, 1562 key_to_write, false); 1563 } while (ret); 1564 1565 /* 1566 * Sync or no? 1567 * 1568 * If we're running asynchronously, wne may still want to block 1569 * synchronously here if we weren't able to submit all of the IO at 1570 * once, as that signals backpressure to the caller. 1571 */ 1572 if ((op->flags & BCH_WRITE_sync) || 1573 (!(op->flags & BCH_WRITE_submitted) && 1574 !(op->flags & BCH_WRITE_in_worker))) { 1575 bch2_wait_on_allocator(c, &op->cl); 1576 1577 __bch2_write_index(op); 1578 1579 if (!(op->flags & BCH_WRITE_submitted)) 1580 goto again; 1581 bch2_write_done(&op->cl); 1582 } else { 1583 bch2_write_queue(op, wp); 1584 continue_at(&op->cl, bch2_write_index, NULL); 1585 } 1586 out_nofs_restore: 1587 memalloc_nofs_restore(nofs_flags); 1588 } 1589 1590 static void bch2_write_data_inline(struct bch_write_op *op, unsigned data_len) 1591 { 1592 struct bio *bio = &op->wbio.bio; 1593 struct bvec_iter iter; 1594 struct bkey_i_inline_data *id; 1595 unsigned sectors; 1596 int ret; 1597 1598 memset(&op->failed, 0, sizeof(op->failed)); 1599 1600 op->flags |= BCH_WRITE_wrote_data_inline; 1601 op->flags |= BCH_WRITE_submitted; 1602 1603 bch2_check_set_feature(op->c, BCH_FEATURE_inline_data); 1604 1605 ret = bch2_keylist_realloc(&op->insert_keys, op->inline_keys, 1606 ARRAY_SIZE(op->inline_keys), 1607 BKEY_U64s + DIV_ROUND_UP(data_len, 8)); 1608 if (ret) { 1609 op->error = ret; 1610 goto err; 1611 } 1612 1613 sectors = bio_sectors(bio); 1614 op->pos.offset += sectors; 1615 1616 id = bkey_inline_data_init(op->insert_keys.top); 1617 id->k.p = op->pos; 1618 id->k.bversion = op->version; 1619 id->k.size = sectors; 1620 1621 iter = bio->bi_iter; 1622 iter.bi_size = data_len; 1623 memcpy_from_bio(id->v.data, bio, iter); 1624 1625 while (data_len & 7) 1626 id->v.data[data_len++] = '\0'; 1627 set_bkey_val_bytes(&id->k, data_len); 1628 bch2_keylist_push(&op->insert_keys); 1629 1630 __bch2_write_index(op); 1631 err: 1632 bch2_write_done(&op->cl); 1633 } 1634 1635 /** 1636 * bch2_write() - handle a write to a cache device or flash only volume 1637 * @cl: &bch_write_op->cl 1638 * 1639 * This is the starting point for any data to end up in a cache device; it could 1640 * be from a normal write, or a writeback write, or a write to a flash only 1641 * volume - it's also used by the moving garbage collector to compact data in 1642 * mostly empty buckets. 1643 * 1644 * It first writes the data to the cache, creating a list of keys to be inserted 1645 * (if the data won't fit in a single open bucket, there will be multiple keys); 1646 * after the data is written it calls bch_journal, and after the keys have been 1647 * added to the next journal write they're inserted into the btree. 1648 * 1649 * If op->discard is true, instead of inserting the data it invalidates the 1650 * region of the cache represented by op->bio and op->inode. 1651 */ 1652 CLOSURE_CALLBACK(bch2_write) 1653 { 1654 closure_type(op, struct bch_write_op, cl); 1655 struct bio *bio = &op->wbio.bio; 1656 struct bch_fs *c = op->c; 1657 unsigned data_len; 1658 1659 EBUG_ON(op->cl.parent); 1660 BUG_ON(!op->nr_replicas); 1661 BUG_ON(!op->write_point.v); 1662 BUG_ON(bkey_eq(op->pos, POS_MAX)); 1663 1664 if (op->flags & BCH_WRITE_only_specified_devs) 1665 op->flags |= BCH_WRITE_alloc_nowait; 1666 1667 op->nr_replicas_required = min_t(unsigned, op->nr_replicas_required, op->nr_replicas); 1668 op->start_time = local_clock(); 1669 bch2_keylist_init(&op->insert_keys, op->inline_keys); 1670 wbio_init(bio)->put_bio = false; 1671 1672 if (unlikely(bio->bi_iter.bi_size & (c->opts.block_size - 1))) { 1673 bch2_write_op_error(op, op->pos.offset, "misaligned write"); 1674 op->error = -BCH_ERR_data_write_misaligned; 1675 goto err; 1676 } 1677 1678 if (c->opts.nochanges) { 1679 op->error = -BCH_ERR_erofs_no_writes; 1680 goto err; 1681 } 1682 1683 if (!(op->flags & BCH_WRITE_move) && 1684 !bch2_write_ref_tryget(c, BCH_WRITE_REF_write)) { 1685 op->error = -BCH_ERR_erofs_no_writes; 1686 goto err; 1687 } 1688 1689 if (!(op->flags & BCH_WRITE_move)) 1690 this_cpu_add(c->counters[BCH_COUNTER_io_write], bio_sectors(bio)); 1691 bch2_increment_clock(c, bio_sectors(bio), WRITE); 1692 1693 data_len = min_t(u64, bio->bi_iter.bi_size, 1694 op->new_i_size - (op->pos.offset << 9)); 1695 1696 if (c->opts.inline_data && 1697 data_len <= min(block_bytes(c) / 2, 1024U)) { 1698 bch2_write_data_inline(op, data_len); 1699 return; 1700 } 1701 1702 __bch2_write(op); 1703 return; 1704 err: 1705 bch2_disk_reservation_put(c, &op->res); 1706 1707 closure_debug_destroy(&op->cl); 1708 if (op->end_io) 1709 op->end_io(op); 1710 } 1711 1712 static const char * const bch2_write_flags[] = { 1713 #define x(f) #f, 1714 BCH_WRITE_FLAGS() 1715 #undef x 1716 NULL 1717 }; 1718 1719 void bch2_write_op_to_text(struct printbuf *out, struct bch_write_op *op) 1720 { 1721 if (!out->nr_tabstops) 1722 printbuf_tabstop_push(out, 32); 1723 1724 prt_printf(out, "pos:\t"); 1725 bch2_bpos_to_text(out, op->pos); 1726 prt_newline(out); 1727 printbuf_indent_add(out, 2); 1728 1729 prt_printf(out, "started:\t"); 1730 bch2_pr_time_units(out, local_clock() - op->start_time); 1731 prt_newline(out); 1732 1733 prt_printf(out, "flags:\t"); 1734 prt_bitflags(out, bch2_write_flags, op->flags); 1735 prt_newline(out); 1736 1737 prt_printf(out, "nr_replicas:\t%u\n", op->nr_replicas); 1738 prt_printf(out, "nr_replicas_required:\t%u\n", op->nr_replicas_required); 1739 1740 prt_printf(out, "ref:\t%u\n", closure_nr_remaining(&op->cl)); 1741 1742 printbuf_indent_sub(out, 2); 1743 } 1744 1745 void bch2_fs_io_write_exit(struct bch_fs *c) 1746 { 1747 mempool_exit(&c->bio_bounce_pages); 1748 bioset_exit(&c->replica_set); 1749 bioset_exit(&c->bio_write); 1750 } 1751 1752 int bch2_fs_io_write_init(struct bch_fs *c) 1753 { 1754 if (bioset_init(&c->bio_write, 1, offsetof(struct bch_write_bio, bio), BIOSET_NEED_BVECS) || 1755 bioset_init(&c->replica_set, 4, offsetof(struct bch_write_bio, bio), 0)) 1756 return -BCH_ERR_ENOMEM_bio_write_init; 1757 1758 if (mempool_init_page_pool(&c->bio_bounce_pages, 1759 max_t(unsigned, 1760 c->opts.btree_node_size, 1761 c->opts.encoded_extent_max) / 1762 PAGE_SIZE, 0)) 1763 return -BCH_ERR_ENOMEM_bio_bounce_pages_init; 1764 1765 return 0; 1766 } 1767