1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 4 * Copyright 2012 Google, Inc. 5 */ 6 7 #include "bcachefs.h" 8 #include "alloc_foreground.h" 9 #include "async_objs.h" 10 #include "bkey_buf.h" 11 #include "bset.h" 12 #include "btree_update.h" 13 #include "buckets.h" 14 #include "checksum.h" 15 #include "clock.h" 16 #include "compress.h" 17 #include "debug.h" 18 #include "ec.h" 19 #include "enumerated_ref.h" 20 #include "error.h" 21 #include "extent_update.h" 22 #include "inode.h" 23 #include "io_write.h" 24 #include "journal.h" 25 #include "keylist.h" 26 #include "move.h" 27 #include "nocow_locking.h" 28 #include "rebalance.h" 29 #include "subvolume.h" 30 #include "super.h" 31 #include "super-io.h" 32 #include "trace.h" 33 34 #include <linux/blkdev.h> 35 #include <linux/prefetch.h> 36 #include <linux/random.h> 37 #include <linux/sched/mm.h> 38 39 #ifdef CONFIG_BCACHEFS_DEBUG 40 static unsigned bch2_write_corrupt_ratio; 41 module_param_named(write_corrupt_ratio, bch2_write_corrupt_ratio, uint, 0644); 42 MODULE_PARM_DESC(write_corrupt_ratio, ""); 43 #endif 44 45 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT 46 47 static inline void bch2_congested_acct(struct bch_dev *ca, u64 io_latency, 48 u64 now, int rw) 49 { 50 u64 latency_capable = 51 ca->io_latency[rw].quantiles.entries[QUANTILE_IDX(1)].m; 52 /* ideally we'd be taking into account the device's variance here: */ 53 u64 latency_threshold = latency_capable << (rw == READ ? 2 : 3); 54 s64 latency_over = io_latency - latency_threshold; 55 56 if (latency_threshold && latency_over > 0) { 57 /* 58 * bump up congested by approximately latency_over * 4 / 59 * latency_threshold - we don't need much accuracy here so don't 60 * bother with the divide: 61 */ 62 if (atomic_read(&ca->congested) < CONGESTED_MAX) 63 atomic_add(latency_over >> 64 max_t(int, ilog2(latency_threshold) - 2, 0), 65 &ca->congested); 66 67 ca->congested_last = now; 68 } else if (atomic_read(&ca->congested) > 0) { 69 atomic_dec(&ca->congested); 70 } 71 } 72 73 void bch2_latency_acct(struct bch_dev *ca, u64 submit_time, int rw) 74 { 75 atomic64_t *latency = &ca->cur_latency[rw]; 76 u64 now = local_clock(); 77 u64 io_latency = time_after64(now, submit_time) 78 ? now - submit_time 79 : 0; 80 u64 old, new; 81 82 old = atomic64_read(latency); 83 do { 84 /* 85 * If the io latency was reasonably close to the current 86 * latency, skip doing the update and atomic operation - most of 87 * the time: 88 */ 89 if (abs((int) (old - io_latency)) < (old >> 1) && 90 now & ~(~0U << 5)) 91 break; 92 93 new = ewma_add(old, io_latency, 5); 94 } while (!atomic64_try_cmpxchg(latency, &old, new)); 95 96 bch2_congested_acct(ca, io_latency, now, rw); 97 98 __bch2_time_stats_update(&ca->io_latency[rw].stats, submit_time, now); 99 } 100 101 #endif 102 103 /* Allocate, free from mempool: */ 104 105 void bch2_bio_free_pages_pool(struct bch_fs *c, struct bio *bio) 106 { 107 struct bvec_iter_all iter; 108 struct bio_vec *bv; 109 110 bio_for_each_segment_all(bv, bio, iter) 111 if (bv->bv_page != ZERO_PAGE(0)) 112 mempool_free(bv->bv_page, &c->bio_bounce_pages); 113 bio->bi_vcnt = 0; 114 } 115 116 static struct page *__bio_alloc_page_pool(struct bch_fs *c, bool *using_mempool) 117 { 118 struct page *page; 119 120 if (likely(!*using_mempool)) { 121 page = alloc_page(GFP_NOFS); 122 if (unlikely(!page)) { 123 mutex_lock(&c->bio_bounce_pages_lock); 124 *using_mempool = true; 125 goto pool_alloc; 126 127 } 128 } else { 129 pool_alloc: 130 page = mempool_alloc(&c->bio_bounce_pages, GFP_NOFS); 131 } 132 133 return page; 134 } 135 136 void bch2_bio_alloc_pages_pool(struct bch_fs *c, struct bio *bio, 137 size_t size) 138 { 139 bool using_mempool = false; 140 141 while (size) { 142 struct page *page = __bio_alloc_page_pool(c, &using_mempool); 143 unsigned len = min_t(size_t, PAGE_SIZE, size); 144 145 BUG_ON(!bio_add_page(bio, page, len, 0)); 146 size -= len; 147 } 148 149 if (using_mempool) 150 mutex_unlock(&c->bio_bounce_pages_lock); 151 } 152 153 /* Extent update path: */ 154 155 int bch2_sum_sector_overwrites(struct btree_trans *trans, 156 struct btree_iter *extent_iter, 157 struct bkey_i *new, 158 bool *usage_increasing, 159 s64 *i_sectors_delta, 160 s64 *disk_sectors_delta) 161 { 162 struct bch_fs *c = trans->c; 163 struct btree_iter iter; 164 struct bkey_s_c old; 165 unsigned new_replicas = bch2_bkey_replicas(c, bkey_i_to_s_c(new)); 166 bool new_compressed = bch2_bkey_sectors_compressed(bkey_i_to_s_c(new)); 167 int ret = 0; 168 169 *usage_increasing = false; 170 *i_sectors_delta = 0; 171 *disk_sectors_delta = 0; 172 173 bch2_trans_copy_iter(trans, &iter, extent_iter); 174 175 for_each_btree_key_max_continue_norestart(trans, iter, 176 new->k.p, BTREE_ITER_slots, old, ret) { 177 s64 sectors = min(new->k.p.offset, old.k->p.offset) - 178 max(bkey_start_offset(&new->k), 179 bkey_start_offset(old.k)); 180 181 *i_sectors_delta += sectors * 182 (bkey_extent_is_allocation(&new->k) - 183 bkey_extent_is_allocation(old.k)); 184 185 *disk_sectors_delta += sectors * bch2_bkey_nr_ptrs_allocated(bkey_i_to_s_c(new)); 186 *disk_sectors_delta -= new->k.p.snapshot == old.k->p.snapshot 187 ? sectors * bch2_bkey_nr_ptrs_fully_allocated(old) 188 : 0; 189 190 if (!*usage_increasing && 191 (new->k.p.snapshot != old.k->p.snapshot || 192 new_replicas > bch2_bkey_replicas(c, old) || 193 (!new_compressed && bch2_bkey_sectors_compressed(old)))) 194 *usage_increasing = true; 195 196 if (bkey_ge(old.k->p, new->k.p)) 197 break; 198 } 199 200 bch2_trans_iter_exit(trans, &iter); 201 return ret; 202 } 203 204 static inline int bch2_extent_update_i_size_sectors(struct btree_trans *trans, 205 struct btree_iter *extent_iter, 206 u64 new_i_size, 207 s64 i_sectors_delta) 208 { 209 /* 210 * Crazy performance optimization: 211 * Every extent update needs to also update the inode: the inode trigger 212 * will set bi->journal_seq to the journal sequence number of this 213 * transaction - for fsync. 214 * 215 * But if that's the only reason we're updating the inode (we're not 216 * updating bi_size or bi_sectors), then we don't need the inode update 217 * to be journalled - if we crash, the bi_journal_seq update will be 218 * lost, but that's fine. 219 */ 220 unsigned inode_update_flags = BTREE_UPDATE_nojournal; 221 222 struct btree_iter iter; 223 struct bkey_s_c k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_inodes, 224 SPOS(0, 225 extent_iter->pos.inode, 226 extent_iter->snapshot), 227 BTREE_ITER_intent| 228 BTREE_ITER_cached); 229 int ret = bkey_err(k); 230 if (unlikely(ret)) 231 return ret; 232 233 /* 234 * varint_decode_fast(), in the inode .invalid method, reads up to 7 235 * bytes past the end of the buffer: 236 */ 237 struct bkey_i *k_mut = bch2_trans_kmalloc_nomemzero(trans, bkey_bytes(k.k) + 8); 238 ret = PTR_ERR_OR_ZERO(k_mut); 239 if (unlikely(ret)) 240 goto err; 241 242 bkey_reassemble(k_mut, k); 243 244 if (unlikely(k_mut->k.type != KEY_TYPE_inode_v3)) { 245 k_mut = bch2_inode_to_v3(trans, k_mut); 246 ret = PTR_ERR_OR_ZERO(k_mut); 247 if (unlikely(ret)) 248 goto err; 249 } 250 251 struct bkey_i_inode_v3 *inode = bkey_i_to_inode_v3(k_mut); 252 253 if (!(le64_to_cpu(inode->v.bi_flags) & BCH_INODE_i_size_dirty) && 254 new_i_size > le64_to_cpu(inode->v.bi_size)) { 255 inode->v.bi_size = cpu_to_le64(new_i_size); 256 inode_update_flags = 0; 257 } 258 259 if (i_sectors_delta) { 260 s64 bi_sectors = le64_to_cpu(inode->v.bi_sectors); 261 if (unlikely(bi_sectors + i_sectors_delta < 0)) { 262 struct bch_fs *c = trans->c; 263 struct printbuf buf = PRINTBUF; 264 bch2_log_msg_start(c, &buf); 265 prt_printf(&buf, "inode %llu i_sectors underflow: %lli + %lli < 0", 266 extent_iter->pos.inode, bi_sectors, i_sectors_delta); 267 268 bool print = bch2_count_fsck_err(c, inode_i_sectors_underflow, &buf); 269 if (print) 270 bch2_print_str(c, KERN_ERR, buf.buf); 271 printbuf_exit(&buf); 272 273 if (i_sectors_delta < 0) 274 i_sectors_delta = -bi_sectors; 275 else 276 i_sectors_delta = 0; 277 } 278 279 le64_add_cpu(&inode->v.bi_sectors, i_sectors_delta); 280 inode_update_flags = 0; 281 } 282 283 /* 284 * extents, dirents and xattrs updates require that an inode update also 285 * happens - to ensure that if a key exists in one of those btrees with 286 * a given snapshot ID an inode is also present - so we may have to skip 287 * the nojournal optimization: 288 */ 289 if (inode->k.p.snapshot != iter.snapshot) { 290 inode->k.p.snapshot = iter.snapshot; 291 inode_update_flags = 0; 292 } 293 294 ret = bch2_trans_update(trans, &iter, &inode->k_i, 295 BTREE_UPDATE_internal_snapshot_node| 296 inode_update_flags); 297 err: 298 bch2_trans_iter_exit(trans, &iter); 299 return ret; 300 } 301 302 int bch2_extent_update(struct btree_trans *trans, 303 subvol_inum inum, 304 struct btree_iter *iter, 305 struct bkey_i *k, 306 struct disk_reservation *disk_res, 307 u64 new_i_size, 308 s64 *i_sectors_delta_total, 309 bool check_enospc) 310 { 311 struct bpos next_pos; 312 bool usage_increasing; 313 s64 i_sectors_delta = 0, disk_sectors_delta = 0; 314 int ret; 315 316 /* 317 * This traverses us the iterator without changing iter->path->pos to 318 * search_key() (which is pos + 1 for extents): we want there to be a 319 * path already traversed at iter->pos because 320 * bch2_trans_extent_update() will use it to attempt extent merging 321 */ 322 ret = __bch2_btree_iter_traverse(trans, iter); 323 if (ret) 324 return ret; 325 326 ret = bch2_extent_trim_atomic(trans, iter, k); 327 if (ret) 328 return ret; 329 330 next_pos = k->k.p; 331 332 ret = bch2_sum_sector_overwrites(trans, iter, k, 333 &usage_increasing, 334 &i_sectors_delta, 335 &disk_sectors_delta); 336 if (ret) 337 return ret; 338 339 if (disk_res && 340 disk_sectors_delta > (s64) disk_res->sectors) { 341 ret = bch2_disk_reservation_add(trans->c, disk_res, 342 disk_sectors_delta - disk_res->sectors, 343 !check_enospc || !usage_increasing 344 ? BCH_DISK_RESERVATION_NOFAIL : 0); 345 if (ret) 346 return ret; 347 } 348 349 /* 350 * Note: 351 * We always have to do an inode update - even when i_size/i_sectors 352 * aren't changing - for fsync to work properly; fsync relies on 353 * inode->bi_journal_seq which is updated by the trigger code: 354 */ 355 ret = bch2_extent_update_i_size_sectors(trans, iter, 356 min(k->k.p.offset << 9, new_i_size), 357 i_sectors_delta) ?: 358 bch2_trans_update(trans, iter, k, 0) ?: 359 bch2_trans_commit(trans, disk_res, NULL, 360 BCH_TRANS_COMMIT_no_check_rw| 361 BCH_TRANS_COMMIT_no_enospc); 362 if (unlikely(ret)) 363 return ret; 364 365 if (i_sectors_delta_total) 366 *i_sectors_delta_total += i_sectors_delta; 367 bch2_btree_iter_set_pos(trans, iter, next_pos); 368 return 0; 369 } 370 371 static int bch2_write_index_default(struct bch_write_op *op) 372 { 373 struct bch_fs *c = op->c; 374 struct bkey_buf sk; 375 struct keylist *keys = &op->insert_keys; 376 struct bkey_i *k = bch2_keylist_front(keys); 377 struct btree_trans *trans = bch2_trans_get(c); 378 struct btree_iter iter; 379 subvol_inum inum = { 380 .subvol = op->subvol, 381 .inum = k->k.p.inode, 382 }; 383 int ret; 384 385 BUG_ON(!inum.subvol); 386 387 bch2_bkey_buf_init(&sk); 388 389 do { 390 bch2_trans_begin(trans); 391 392 k = bch2_keylist_front(keys); 393 bch2_bkey_buf_copy(&sk, c, k); 394 395 ret = bch2_subvolume_get_snapshot(trans, inum.subvol, 396 &sk.k->k.p.snapshot); 397 if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) 398 continue; 399 if (ret) 400 break; 401 402 bch2_trans_iter_init(trans, &iter, BTREE_ID_extents, 403 bkey_start_pos(&sk.k->k), 404 BTREE_ITER_slots|BTREE_ITER_intent); 405 406 ret = bch2_extent_update(trans, inum, &iter, sk.k, 407 &op->res, 408 op->new_i_size, &op->i_sectors_delta, 409 op->flags & BCH_WRITE_check_enospc); 410 bch2_trans_iter_exit(trans, &iter); 411 412 if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) 413 continue; 414 if (ret) 415 break; 416 417 if (bkey_ge(iter.pos, k->k.p)) 418 bch2_keylist_pop_front(&op->insert_keys); 419 else 420 bch2_cut_front(iter.pos, k); 421 } while (!bch2_keylist_empty(keys)); 422 423 bch2_trans_put(trans); 424 bch2_bkey_buf_exit(&sk, c); 425 426 return ret; 427 } 428 429 /* Writes */ 430 431 void bch2_write_op_error(struct bch_write_op *op, u64 offset, const char *fmt, ...) 432 { 433 struct printbuf buf = PRINTBUF; 434 435 if (op->subvol) { 436 bch2_inum_offset_err_msg(op->c, &buf, 437 (subvol_inum) { op->subvol, op->pos.inode, }, 438 offset << 9); 439 } else { 440 struct bpos pos = op->pos; 441 pos.offset = offset; 442 bch2_inum_snap_offset_err_msg(op->c, &buf, pos); 443 } 444 445 prt_str(&buf, "write error: "); 446 447 va_list args; 448 va_start(args, fmt); 449 prt_vprintf(&buf, fmt, args); 450 va_end(args); 451 452 if (op->flags & BCH_WRITE_move) { 453 struct data_update *u = container_of(op, struct data_update, op); 454 455 prt_printf(&buf, "\n from internal move "); 456 bch2_bkey_val_to_text(&buf, op->c, bkey_i_to_s_c(u->k.k)); 457 } 458 459 bch_err_ratelimited(op->c, "%s", buf.buf); 460 printbuf_exit(&buf); 461 } 462 463 void bch2_submit_wbio_replicas(struct bch_write_bio *wbio, struct bch_fs *c, 464 enum bch_data_type type, 465 const struct bkey_i *k, 466 bool nocow) 467 { 468 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k)); 469 struct bch_write_bio *n; 470 unsigned ref_rw = type == BCH_DATA_btree ? READ : WRITE; 471 unsigned ref_idx = type == BCH_DATA_btree 472 ? BCH_DEV_READ_REF_btree_node_write 473 : BCH_DEV_WRITE_REF_io_write; 474 475 BUG_ON(c->opts.nochanges); 476 477 const struct bch_extent_ptr *last = NULL; 478 bkey_for_each_ptr(ptrs, ptr) 479 last = ptr; 480 481 bkey_for_each_ptr(ptrs, ptr) { 482 /* 483 * XXX: btree writes should be using io_ref[WRITE], but we 484 * aren't retrying failed btree writes yet (due to device 485 * removal/ro): 486 */ 487 struct bch_dev *ca = nocow 488 ? bch2_dev_have_ref(c, ptr->dev) 489 : bch2_dev_get_ioref(c, ptr->dev, ref_rw, ref_idx); 490 491 if (ptr != last) { 492 n = to_wbio(bio_alloc_clone(NULL, &wbio->bio, GFP_NOFS, &c->replica_set)); 493 494 n->bio.bi_end_io = wbio->bio.bi_end_io; 495 n->bio.bi_private = wbio->bio.bi_private; 496 n->parent = wbio; 497 n->split = true; 498 n->bounce = false; 499 n->put_bio = true; 500 n->bio.bi_opf = wbio->bio.bi_opf; 501 bio_inc_remaining(&wbio->bio); 502 } else { 503 n = wbio; 504 n->split = false; 505 } 506 507 n->c = c; 508 n->dev = ptr->dev; 509 n->have_ioref = ca != NULL; 510 n->nocow = nocow; 511 n->submit_time = local_clock(); 512 n->inode_offset = bkey_start_offset(&k->k); 513 if (nocow) 514 n->nocow_bucket = PTR_BUCKET_NR(ca, ptr); 515 n->bio.bi_iter.bi_sector = ptr->offset; 516 517 if (likely(n->have_ioref)) { 518 this_cpu_add(ca->io_done->sectors[WRITE][type], 519 bio_sectors(&n->bio)); 520 521 bio_set_dev(&n->bio, ca->disk_sb.bdev); 522 523 if (type != BCH_DATA_btree && unlikely(c->opts.no_data_io)) { 524 bio_endio(&n->bio); 525 continue; 526 } 527 528 submit_bio(&n->bio); 529 } else { 530 n->bio.bi_status = BLK_STS_REMOVED; 531 bio_endio(&n->bio); 532 } 533 } 534 } 535 536 static void __bch2_write(struct bch_write_op *); 537 538 static void bch2_write_done(struct closure *cl) 539 { 540 struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); 541 struct bch_fs *c = op->c; 542 543 EBUG_ON(op->open_buckets.nr); 544 545 bch2_time_stats_update(&c->times[BCH_TIME_data_write], op->start_time); 546 bch2_disk_reservation_put(c, &op->res); 547 548 if (!(op->flags & BCH_WRITE_move)) 549 enumerated_ref_put(&c->writes, BCH_WRITE_REF_write); 550 bch2_keylist_free(&op->insert_keys, op->inline_keys); 551 552 EBUG_ON(cl->parent); 553 closure_debug_destroy(cl); 554 async_object_list_del(c, write_op, op->list_idx); 555 if (op->end_io) 556 op->end_io(op); 557 } 558 559 static noinline int bch2_write_drop_io_error_ptrs(struct bch_write_op *op) 560 { 561 struct bch_fs *c = op->c; 562 struct keylist *keys = &op->insert_keys; 563 struct bkey_i *src, *dst = keys->keys, *n; 564 565 for (src = keys->keys; src != keys->top; src = n) { 566 n = bkey_next(src); 567 568 if (bkey_extent_is_direct_data(&src->k)) { 569 bch2_bkey_drop_ptrs(bkey_i_to_s(src), ptr, 570 test_bit(ptr->dev, op->failed.d)); 571 572 if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(src))) 573 return bch_err_throw(c, data_write_io); 574 } 575 576 if (dst != src) 577 memmove_u64s_down(dst, src, src->k.u64s); 578 dst = bkey_next(dst); 579 } 580 581 keys->top = dst; 582 return 0; 583 } 584 585 /** 586 * __bch2_write_index - after a write, update index to point to new data 587 * @op: bch_write_op to process 588 */ 589 static void __bch2_write_index(struct bch_write_op *op) 590 { 591 struct bch_fs *c = op->c; 592 struct keylist *keys = &op->insert_keys; 593 unsigned dev; 594 int ret = 0; 595 596 if (unlikely(op->flags & BCH_WRITE_io_error)) { 597 ret = bch2_write_drop_io_error_ptrs(op); 598 if (ret) 599 goto err; 600 } 601 602 if (!bch2_keylist_empty(keys)) { 603 u64 sectors_start = keylist_sectors(keys); 604 605 ret = !(op->flags & BCH_WRITE_move) 606 ? bch2_write_index_default(op) 607 : bch2_data_update_index_update(op); 608 609 BUG_ON(bch2_err_matches(ret, BCH_ERR_transaction_restart)); 610 BUG_ON(keylist_sectors(keys) && !ret); 611 612 op->written += sectors_start - keylist_sectors(keys); 613 614 if (unlikely(ret && !bch2_err_matches(ret, EROFS))) { 615 struct bkey_i *insert = bch2_keylist_front(&op->insert_keys); 616 617 bch2_write_op_error(op, bkey_start_offset(&insert->k), 618 "btree update error: %s", bch2_err_str(ret)); 619 } 620 621 if (ret) 622 goto err; 623 } 624 out: 625 /* If some a bucket wasn't written, we can't erasure code it: */ 626 for_each_set_bit(dev, op->failed.d, BCH_SB_MEMBERS_MAX) 627 bch2_open_bucket_write_error(c, &op->open_buckets, dev, -BCH_ERR_data_write_io); 628 629 bch2_open_buckets_put(c, &op->open_buckets); 630 return; 631 err: 632 keys->top = keys->keys; 633 op->error = ret; 634 op->flags |= BCH_WRITE_submitted; 635 goto out; 636 } 637 638 static inline void __wp_update_state(struct write_point *wp, enum write_point_state state) 639 { 640 if (state != wp->state) { 641 struct task_struct *p = current; 642 u64 now = ktime_get_ns(); 643 u64 runtime = p->se.sum_exec_runtime + 644 (now - p->se.exec_start); 645 646 if (state == WRITE_POINT_runnable) 647 wp->last_runtime = runtime; 648 else if (wp->state == WRITE_POINT_runnable) 649 wp->time[WRITE_POINT_running] += runtime - wp->last_runtime; 650 651 if (wp->last_state_change && 652 time_after64(now, wp->last_state_change)) 653 wp->time[wp->state] += now - wp->last_state_change; 654 wp->state = state; 655 wp->last_state_change = now; 656 } 657 } 658 659 static inline void wp_update_state(struct write_point *wp, bool running) 660 { 661 enum write_point_state state; 662 663 state = running ? WRITE_POINT_runnable: 664 !list_empty(&wp->writes) ? WRITE_POINT_waiting_io 665 : WRITE_POINT_stopped; 666 667 __wp_update_state(wp, state); 668 } 669 670 static CLOSURE_CALLBACK(bch2_write_index) 671 { 672 closure_type(op, struct bch_write_op, cl); 673 struct write_point *wp = op->wp; 674 struct workqueue_struct *wq = index_update_wq(op); 675 unsigned long flags; 676 677 if ((op->flags & BCH_WRITE_submitted) && 678 (op->flags & BCH_WRITE_move)) 679 bch2_bio_free_pages_pool(op->c, &op->wbio.bio); 680 681 spin_lock_irqsave(&wp->writes_lock, flags); 682 if (wp->state == WRITE_POINT_waiting_io) 683 __wp_update_state(wp, WRITE_POINT_waiting_work); 684 list_add_tail(&op->wp_list, &wp->writes); 685 spin_unlock_irqrestore (&wp->writes_lock, flags); 686 687 queue_work(wq, &wp->index_update_work); 688 } 689 690 static inline void bch2_write_queue(struct bch_write_op *op, struct write_point *wp) 691 { 692 op->wp = wp; 693 694 if (wp->state == WRITE_POINT_stopped) { 695 spin_lock_irq(&wp->writes_lock); 696 __wp_update_state(wp, WRITE_POINT_waiting_io); 697 spin_unlock_irq(&wp->writes_lock); 698 } 699 } 700 701 void bch2_write_point_do_index_updates(struct work_struct *work) 702 { 703 struct write_point *wp = 704 container_of(work, struct write_point, index_update_work); 705 struct bch_write_op *op; 706 707 while (1) { 708 spin_lock_irq(&wp->writes_lock); 709 op = list_pop_entry(&wp->writes, struct bch_write_op, wp_list); 710 wp_update_state(wp, op != NULL); 711 spin_unlock_irq(&wp->writes_lock); 712 713 if (!op) 714 break; 715 716 op->flags |= BCH_WRITE_in_worker; 717 718 __bch2_write_index(op); 719 720 if (!(op->flags & BCH_WRITE_submitted)) 721 __bch2_write(op); 722 else 723 bch2_write_done(&op->cl); 724 } 725 } 726 727 static void bch2_write_endio(struct bio *bio) 728 { 729 struct closure *cl = bio->bi_private; 730 struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); 731 struct bch_write_bio *wbio = to_wbio(bio); 732 struct bch_write_bio *parent = wbio->split ? wbio->parent : NULL; 733 struct bch_fs *c = wbio->c; 734 struct bch_dev *ca = wbio->have_ioref 735 ? bch2_dev_have_ref(c, wbio->dev) 736 : NULL; 737 738 bch2_account_io_completion(ca, BCH_MEMBER_ERROR_write, 739 wbio->submit_time, !bio->bi_status); 740 741 if (unlikely(bio->bi_status)) { 742 if (ca) 743 bch_err_inum_offset_ratelimited(ca, 744 op->pos.inode, 745 wbio->inode_offset << 9, 746 "data write error: %s", 747 bch2_blk_status_to_str(bio->bi_status)); 748 else 749 bch_err_inum_offset_ratelimited(c, 750 op->pos.inode, 751 wbio->inode_offset << 9, 752 "data write error: %s", 753 bch2_blk_status_to_str(bio->bi_status)); 754 set_bit(wbio->dev, op->failed.d); 755 op->flags |= BCH_WRITE_io_error; 756 } 757 758 if (wbio->nocow) { 759 bch2_bucket_nocow_unlock(&c->nocow_locks, 760 POS(ca->dev_idx, wbio->nocow_bucket), 761 BUCKET_NOCOW_LOCK_UPDATE); 762 set_bit(wbio->dev, op->devs_need_flush->d); 763 } 764 765 if (wbio->have_ioref) 766 enumerated_ref_put(&ca->io_ref[WRITE], 767 BCH_DEV_WRITE_REF_io_write); 768 769 if (wbio->bounce) 770 bch2_bio_free_pages_pool(c, bio); 771 772 if (wbio->put_bio) 773 bio_put(bio); 774 775 if (parent) 776 bio_endio(&parent->bio); 777 else 778 closure_put(cl); 779 } 780 781 static void init_append_extent(struct bch_write_op *op, 782 struct write_point *wp, 783 struct bversion version, 784 struct bch_extent_crc_unpacked crc) 785 { 786 struct bkey_i_extent *e; 787 788 op->pos.offset += crc.uncompressed_size; 789 790 e = bkey_extent_init(op->insert_keys.top); 791 e->k.p = op->pos; 792 e->k.size = crc.uncompressed_size; 793 e->k.bversion = version; 794 795 if (crc.csum_type || 796 crc.compression_type || 797 crc.nonce) 798 bch2_extent_crc_append(&e->k_i, crc); 799 800 bch2_alloc_sectors_append_ptrs_inlined(op->c, wp, &e->k_i, crc.compressed_size, 801 op->flags & BCH_WRITE_cached); 802 803 if (!(op->flags & BCH_WRITE_move)) 804 bch2_bkey_set_needs_rebalance(op->c, &op->opts, &e->k_i); 805 806 bch2_keylist_push(&op->insert_keys); 807 } 808 809 static struct bio *bch2_write_bio_alloc(struct bch_fs *c, 810 struct write_point *wp, 811 struct bio *src, 812 bool *page_alloc_failed, 813 void *buf) 814 { 815 struct bch_write_bio *wbio; 816 struct bio *bio; 817 unsigned output_available = 818 min(wp->sectors_free << 9, src->bi_iter.bi_size); 819 unsigned pages = DIV_ROUND_UP(output_available + 820 (buf 821 ? ((unsigned long) buf & (PAGE_SIZE - 1)) 822 : 0), PAGE_SIZE); 823 824 pages = min(pages, BIO_MAX_VECS); 825 826 bio = bio_alloc_bioset(NULL, pages, 0, 827 GFP_NOFS, &c->bio_write); 828 wbio = wbio_init(bio); 829 wbio->put_bio = true; 830 /* copy WRITE_SYNC flag */ 831 wbio->bio.bi_opf = src->bi_opf; 832 833 if (buf) { 834 bch2_bio_map(bio, buf, output_available); 835 return bio; 836 } 837 838 wbio->bounce = true; 839 840 /* 841 * We can't use mempool for more than c->sb.encoded_extent_max 842 * worth of pages, but we'd like to allocate more if we can: 843 */ 844 bch2_bio_alloc_pages_pool(c, bio, 845 min_t(unsigned, output_available, 846 c->opts.encoded_extent_max)); 847 848 if (bio->bi_iter.bi_size < output_available) 849 *page_alloc_failed = 850 bch2_bio_alloc_pages(bio, 851 output_available - 852 bio->bi_iter.bi_size, 853 GFP_NOFS) != 0; 854 855 return bio; 856 } 857 858 static int bch2_write_rechecksum(struct bch_fs *c, 859 struct bch_write_op *op, 860 unsigned new_csum_type) 861 { 862 struct bio *bio = &op->wbio.bio; 863 struct bch_extent_crc_unpacked new_crc; 864 865 /* bch2_rechecksum_bio() can't encrypt or decrypt data: */ 866 867 if (bch2_csum_type_is_encryption(op->crc.csum_type) != 868 bch2_csum_type_is_encryption(new_csum_type)) 869 new_csum_type = op->crc.csum_type; 870 871 int ret = bch2_rechecksum_bio(c, bio, op->version, op->crc, 872 NULL, &new_crc, 873 op->crc.offset, op->crc.live_size, 874 new_csum_type); 875 if (ret) 876 return ret; 877 878 bio_advance(bio, op->crc.offset << 9); 879 bio->bi_iter.bi_size = op->crc.live_size << 9; 880 op->crc = new_crc; 881 return 0; 882 } 883 884 static noinline int bch2_write_prep_encoded_data(struct bch_write_op *op, struct write_point *wp) 885 { 886 struct bch_fs *c = op->c; 887 struct bio *bio = &op->wbio.bio; 888 struct bch_csum csum; 889 int ret = 0; 890 891 BUG_ON(bio_sectors(bio) != op->crc.compressed_size); 892 893 /* Can we just write the entire extent as is? */ 894 if (op->crc.uncompressed_size == op->crc.live_size && 895 op->crc.uncompressed_size <= c->opts.encoded_extent_max >> 9 && 896 op->crc.compressed_size <= wp->sectors_free && 897 (op->crc.compression_type == bch2_compression_opt_to_type(op->compression_opt) || 898 op->incompressible)) { 899 if (!crc_is_compressed(op->crc) && 900 op->csum_type != op->crc.csum_type) { 901 ret = bch2_write_rechecksum(c, op, op->csum_type); 902 if (ret) 903 return ret; 904 } 905 906 return 1; 907 } 908 909 /* 910 * If the data is compressed and we couldn't write the entire extent as 911 * is, we have to decompress it: 912 */ 913 if (crc_is_compressed(op->crc)) { 914 /* Last point we can still verify checksum: */ 915 struct nonce nonce = extent_nonce(op->version, op->crc); 916 csum = bch2_checksum_bio(c, op->crc.csum_type, nonce, bio); 917 if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io) 918 goto csum_err; 919 920 if (bch2_csum_type_is_encryption(op->crc.csum_type)) { 921 ret = bch2_encrypt_bio(c, op->crc.csum_type, nonce, bio); 922 if (ret) 923 return ret; 924 925 op->crc.csum_type = 0; 926 op->crc.csum = (struct bch_csum) { 0, 0 }; 927 } 928 929 ret = bch2_bio_uncompress_inplace(op, bio); 930 if (ret) 931 return ret; 932 } 933 934 /* 935 * No longer have compressed data after this point - data might be 936 * encrypted: 937 */ 938 939 /* 940 * If the data is checksummed and we're only writing a subset, 941 * rechecksum and adjust bio to point to currently live data: 942 */ 943 if (op->crc.live_size != op->crc.uncompressed_size || 944 op->crc.csum_type != op->csum_type) { 945 ret = bch2_write_rechecksum(c, op, op->csum_type); 946 if (ret) 947 return ret; 948 } 949 950 /* 951 * If we want to compress the data, it has to be decrypted: 952 */ 953 if (bch2_csum_type_is_encryption(op->crc.csum_type) && 954 (op->compression_opt || op->crc.csum_type != op->csum_type)) { 955 struct nonce nonce = extent_nonce(op->version, op->crc); 956 csum = bch2_checksum_bio(c, op->crc.csum_type, nonce, bio); 957 if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io) 958 goto csum_err; 959 960 ret = bch2_encrypt_bio(c, op->crc.csum_type, nonce, bio); 961 if (ret) 962 return ret; 963 964 op->crc.csum_type = 0; 965 op->crc.csum = (struct bch_csum) { 0, 0 }; 966 } 967 968 return 0; 969 csum_err: 970 bch2_write_op_error(op, op->pos.offset, 971 "error verifying existing checksum while moving existing data (memory corruption?)\n" 972 " expected %0llx:%0llx got %0llx:%0llx type %s", 973 op->crc.csum.hi, 974 op->crc.csum.lo, 975 csum.hi, 976 csum.lo, 977 op->crc.csum_type < BCH_CSUM_NR 978 ? __bch2_csum_types[op->crc.csum_type] 979 : "(unknown)"); 980 return bch_err_throw(c, data_write_csum); 981 } 982 983 static int bch2_write_extent(struct bch_write_op *op, struct write_point *wp, 984 struct bio **_dst) 985 { 986 struct bch_fs *c = op->c; 987 struct bio *src = &op->wbio.bio, *dst = src; 988 struct bvec_iter saved_iter; 989 void *ec_buf; 990 unsigned total_output = 0, total_input = 0; 991 bool bounce = false; 992 bool page_alloc_failed = false; 993 int ret, more = 0; 994 995 if (op->incompressible) 996 op->compression_opt = 0; 997 998 BUG_ON(!bio_sectors(src)); 999 1000 ec_buf = bch2_writepoint_ec_buf(c, wp); 1001 1002 if (unlikely(op->flags & BCH_WRITE_data_encoded)) { 1003 ret = bch2_write_prep_encoded_data(op, wp); 1004 if (ret < 0) 1005 goto err; 1006 if (ret) { 1007 if (ec_buf) { 1008 dst = bch2_write_bio_alloc(c, wp, src, 1009 &page_alloc_failed, 1010 ec_buf); 1011 bio_copy_data(dst, src); 1012 bounce = true; 1013 } 1014 init_append_extent(op, wp, op->version, op->crc); 1015 goto do_write; 1016 } 1017 } 1018 1019 if (ec_buf || 1020 op->compression_opt || 1021 (op->csum_type && 1022 !(op->flags & BCH_WRITE_pages_stable)) || 1023 (bch2_csum_type_is_encryption(op->csum_type) && 1024 !(op->flags & BCH_WRITE_pages_owned))) { 1025 dst = bch2_write_bio_alloc(c, wp, src, 1026 &page_alloc_failed, 1027 ec_buf); 1028 bounce = true; 1029 } 1030 1031 #ifdef CONFIG_BCACHEFS_DEBUG 1032 unsigned write_corrupt_ratio = READ_ONCE(bch2_write_corrupt_ratio); 1033 if (!bounce && write_corrupt_ratio) { 1034 dst = bch2_write_bio_alloc(c, wp, src, 1035 &page_alloc_failed, 1036 ec_buf); 1037 bounce = true; 1038 } 1039 #endif 1040 saved_iter = dst->bi_iter; 1041 1042 do { 1043 struct bch_extent_crc_unpacked crc = { 0 }; 1044 struct bversion version = op->version; 1045 size_t dst_len = 0, src_len = 0; 1046 1047 if (page_alloc_failed && 1048 dst->bi_iter.bi_size < (wp->sectors_free << 9) && 1049 dst->bi_iter.bi_size < c->opts.encoded_extent_max) 1050 break; 1051 1052 BUG_ON(op->compression_opt && 1053 (op->flags & BCH_WRITE_data_encoded) && 1054 bch2_csum_type_is_encryption(op->crc.csum_type)); 1055 BUG_ON(op->compression_opt && !bounce); 1056 1057 crc.compression_type = op->incompressible 1058 ? BCH_COMPRESSION_TYPE_incompressible 1059 : op->compression_opt 1060 ? bch2_bio_compress(c, dst, &dst_len, src, &src_len, 1061 op->compression_opt) 1062 : 0; 1063 if (!crc_is_compressed(crc)) { 1064 dst_len = min(dst->bi_iter.bi_size, src->bi_iter.bi_size); 1065 dst_len = min_t(unsigned, dst_len, wp->sectors_free << 9); 1066 1067 if (op->csum_type) 1068 dst_len = min_t(unsigned, dst_len, 1069 c->opts.encoded_extent_max); 1070 1071 if (bounce) { 1072 swap(dst->bi_iter.bi_size, dst_len); 1073 bio_copy_data(dst, src); 1074 swap(dst->bi_iter.bi_size, dst_len); 1075 } 1076 1077 src_len = dst_len; 1078 } 1079 1080 BUG_ON(!src_len || !dst_len); 1081 1082 if (bch2_csum_type_is_encryption(op->csum_type)) { 1083 if (bversion_zero(version)) { 1084 version.lo = atomic64_inc_return(&c->key_version); 1085 } else { 1086 crc.nonce = op->nonce; 1087 op->nonce += src_len >> 9; 1088 } 1089 } 1090 1091 if ((op->flags & BCH_WRITE_data_encoded) && 1092 !crc_is_compressed(crc) && 1093 bch2_csum_type_is_encryption(op->crc.csum_type) == 1094 bch2_csum_type_is_encryption(op->csum_type)) { 1095 u8 compression_type = crc.compression_type; 1096 u16 nonce = crc.nonce; 1097 /* 1098 * Note: when we're using rechecksum(), we need to be 1099 * checksumming @src because it has all the data our 1100 * existing checksum covers - if we bounced (because we 1101 * were trying to compress), @dst will only have the 1102 * part of the data the new checksum will cover. 1103 * 1104 * But normally we want to be checksumming post bounce, 1105 * because part of the reason for bouncing is so the 1106 * data can't be modified (by userspace) while it's in 1107 * flight. 1108 */ 1109 ret = bch2_rechecksum_bio(c, src, version, op->crc, 1110 &crc, &op->crc, 1111 src_len >> 9, 1112 bio_sectors(src) - (src_len >> 9), 1113 op->csum_type); 1114 if (ret) 1115 goto err; 1116 /* 1117 * rchecksum_bio sets compression_type on crc from op->crc, 1118 * this isn't always correct as sometimes we're changing 1119 * an extent from uncompressed to incompressible. 1120 */ 1121 crc.compression_type = compression_type; 1122 crc.nonce = nonce; 1123 } else { 1124 if ((op->flags & BCH_WRITE_data_encoded) && 1125 (ret = bch2_rechecksum_bio(c, src, version, op->crc, 1126 NULL, &op->crc, 1127 src_len >> 9, 1128 bio_sectors(src) - (src_len >> 9), 1129 op->crc.csum_type))) 1130 goto err; 1131 1132 crc.compressed_size = dst_len >> 9; 1133 crc.uncompressed_size = src_len >> 9; 1134 crc.live_size = src_len >> 9; 1135 1136 swap(dst->bi_iter.bi_size, dst_len); 1137 ret = bch2_encrypt_bio(c, op->csum_type, 1138 extent_nonce(version, crc), dst); 1139 if (ret) 1140 goto err; 1141 1142 crc.csum = bch2_checksum_bio(c, op->csum_type, 1143 extent_nonce(version, crc), dst); 1144 crc.csum_type = op->csum_type; 1145 swap(dst->bi_iter.bi_size, dst_len); 1146 } 1147 1148 init_append_extent(op, wp, version, crc); 1149 1150 #ifdef CONFIG_BCACHEFS_DEBUG 1151 if (write_corrupt_ratio) { 1152 swap(dst->bi_iter.bi_size, dst_len); 1153 bch2_maybe_corrupt_bio(dst, write_corrupt_ratio); 1154 swap(dst->bi_iter.bi_size, dst_len); 1155 } 1156 #endif 1157 1158 if (dst != src) 1159 bio_advance(dst, dst_len); 1160 bio_advance(src, src_len); 1161 total_output += dst_len; 1162 total_input += src_len; 1163 } while (dst->bi_iter.bi_size && 1164 src->bi_iter.bi_size && 1165 wp->sectors_free && 1166 !bch2_keylist_realloc(&op->insert_keys, 1167 op->inline_keys, 1168 ARRAY_SIZE(op->inline_keys), 1169 BKEY_EXTENT_U64s_MAX)); 1170 1171 more = src->bi_iter.bi_size != 0; 1172 1173 dst->bi_iter = saved_iter; 1174 1175 if (dst == src && more) { 1176 BUG_ON(total_output != total_input); 1177 1178 dst = bio_split(src, total_input >> 9, 1179 GFP_NOFS, &c->bio_write); 1180 wbio_init(dst)->put_bio = true; 1181 /* copy WRITE_SYNC flag */ 1182 dst->bi_opf = src->bi_opf; 1183 } 1184 1185 dst->bi_iter.bi_size = total_output; 1186 do_write: 1187 *_dst = dst; 1188 return more; 1189 err: 1190 if (to_wbio(dst)->bounce) 1191 bch2_bio_free_pages_pool(c, dst); 1192 if (to_wbio(dst)->put_bio) 1193 bio_put(dst); 1194 1195 return ret; 1196 } 1197 1198 static bool bch2_extent_is_writeable(struct bch_write_op *op, 1199 struct bkey_s_c k) 1200 { 1201 struct bch_fs *c = op->c; 1202 struct bkey_s_c_extent e; 1203 struct extent_ptr_decoded p; 1204 const union bch_extent_entry *entry; 1205 unsigned replicas = 0; 1206 1207 if (k.k->type != KEY_TYPE_extent) 1208 return false; 1209 1210 e = bkey_s_c_to_extent(k); 1211 1212 guard(rcu)(); 1213 extent_for_each_ptr_decode(e, p, entry) { 1214 if (crc_is_encoded(p.crc) || p.has_ec) 1215 return false; 1216 1217 replicas += bch2_extent_ptr_durability(c, &p); 1218 } 1219 1220 return replicas >= op->opts.data_replicas; 1221 } 1222 1223 static int bch2_nocow_write_convert_one_unwritten(struct btree_trans *trans, 1224 struct btree_iter *iter, 1225 struct bkey_i *orig, 1226 struct bkey_s_c k, 1227 u64 new_i_size) 1228 { 1229 if (!bch2_extents_match(bkey_i_to_s_c(orig), k)) { 1230 /* trace this */ 1231 return 0; 1232 } 1233 1234 struct bkey_i *new = bch2_bkey_make_mut_noupdate(trans, k); 1235 int ret = PTR_ERR_OR_ZERO(new); 1236 if (ret) 1237 return ret; 1238 1239 bch2_cut_front(bkey_start_pos(&orig->k), new); 1240 bch2_cut_back(orig->k.p, new); 1241 1242 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(new)); 1243 bkey_for_each_ptr(ptrs, ptr) 1244 ptr->unwritten = 0; 1245 1246 /* 1247 * Note that we're not calling bch2_subvol_get_snapshot() in this path - 1248 * that was done when we kicked off the write, and here it's important 1249 * that we update the extent that we wrote to - even if a snapshot has 1250 * since been created. The write is still outstanding, so we're ok 1251 * w.r.t. snapshot atomicity: 1252 */ 1253 return bch2_extent_update_i_size_sectors(trans, iter, 1254 min(new->k.p.offset << 9, new_i_size), 0) ?: 1255 bch2_trans_update(trans, iter, new, 1256 BTREE_UPDATE_internal_snapshot_node); 1257 } 1258 1259 static void bch2_nocow_write_convert_unwritten(struct bch_write_op *op) 1260 { 1261 struct bch_fs *c = op->c; 1262 struct btree_trans *trans = bch2_trans_get(c); 1263 int ret = 0; 1264 1265 for_each_keylist_key(&op->insert_keys, orig) { 1266 ret = for_each_btree_key_max_commit(trans, iter, BTREE_ID_extents, 1267 bkey_start_pos(&orig->k), orig->k.p, 1268 BTREE_ITER_intent, k, 1269 NULL, NULL, BCH_TRANS_COMMIT_no_enospc, ({ 1270 bch2_nocow_write_convert_one_unwritten(trans, &iter, orig, k, op->new_i_size); 1271 })); 1272 if (ret) 1273 break; 1274 } 1275 1276 bch2_trans_put(trans); 1277 1278 if (ret && !bch2_err_matches(ret, EROFS)) { 1279 struct bkey_i *insert = bch2_keylist_front(&op->insert_keys); 1280 bch2_write_op_error(op, bkey_start_offset(&insert->k), 1281 "btree update error: %s", bch2_err_str(ret)); 1282 } 1283 1284 if (ret) 1285 op->error = ret; 1286 } 1287 1288 static void __bch2_nocow_write_done(struct bch_write_op *op) 1289 { 1290 if (unlikely(op->flags & BCH_WRITE_io_error)) { 1291 op->error = bch_err_throw(op->c, data_write_io); 1292 } else if (unlikely(op->flags & BCH_WRITE_convert_unwritten)) 1293 bch2_nocow_write_convert_unwritten(op); 1294 } 1295 1296 static CLOSURE_CALLBACK(bch2_nocow_write_done) 1297 { 1298 closure_type(op, struct bch_write_op, cl); 1299 1300 __bch2_nocow_write_done(op); 1301 bch2_write_done(cl); 1302 } 1303 1304 struct bucket_to_lock { 1305 struct bpos b; 1306 unsigned gen; 1307 struct nocow_lock_bucket *l; 1308 }; 1309 1310 static void bch2_nocow_write(struct bch_write_op *op) 1311 { 1312 struct bch_fs *c = op->c; 1313 struct btree_trans *trans; 1314 struct btree_iter iter; 1315 struct bkey_s_c k; 1316 DARRAY_PREALLOCATED(struct bucket_to_lock, 3) buckets; 1317 u32 snapshot; 1318 struct bucket_to_lock *stale_at; 1319 int stale, ret; 1320 1321 if (op->flags & BCH_WRITE_move) 1322 return; 1323 1324 darray_init(&buckets); 1325 trans = bch2_trans_get(c); 1326 retry: 1327 bch2_trans_begin(trans); 1328 1329 ret = bch2_subvolume_get_snapshot(trans, op->subvol, &snapshot); 1330 if (unlikely(ret)) 1331 goto err; 1332 1333 bch2_trans_iter_init(trans, &iter, BTREE_ID_extents, 1334 SPOS(op->pos.inode, op->pos.offset, snapshot), 1335 BTREE_ITER_slots); 1336 while (1) { 1337 struct bio *bio = &op->wbio.bio; 1338 1339 buckets.nr = 0; 1340 1341 ret = bch2_trans_relock(trans); 1342 if (ret) 1343 break; 1344 1345 k = bch2_btree_iter_peek_slot(trans, &iter); 1346 ret = bkey_err(k); 1347 if (ret) 1348 break; 1349 1350 /* fall back to normal cow write path? */ 1351 if (unlikely(k.k->p.snapshot != snapshot || 1352 !bch2_extent_is_writeable(op, k))) 1353 break; 1354 1355 if (bch2_keylist_realloc(&op->insert_keys, 1356 op->inline_keys, 1357 ARRAY_SIZE(op->inline_keys), 1358 k.k->u64s)) 1359 break; 1360 1361 /* Get iorefs before dropping btree locks: */ 1362 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1363 bkey_for_each_ptr(ptrs, ptr) { 1364 struct bch_dev *ca = bch2_dev_get_ioref(c, ptr->dev, WRITE, 1365 BCH_DEV_WRITE_REF_io_write); 1366 if (unlikely(!ca)) 1367 goto err_get_ioref; 1368 1369 struct bpos b = PTR_BUCKET_POS(ca, ptr); 1370 struct nocow_lock_bucket *l = 1371 bucket_nocow_lock(&c->nocow_locks, bucket_to_u64(b)); 1372 prefetch(l); 1373 1374 /* XXX allocating memory with btree locks held - rare */ 1375 darray_push_gfp(&buckets, ((struct bucket_to_lock) { 1376 .b = b, .gen = ptr->gen, .l = l, 1377 }), GFP_KERNEL|__GFP_NOFAIL); 1378 1379 if (ptr->unwritten) 1380 op->flags |= BCH_WRITE_convert_unwritten; 1381 } 1382 1383 /* Unlock before taking nocow locks, doing IO: */ 1384 bkey_reassemble(op->insert_keys.top, k); 1385 bch2_trans_unlock(trans); 1386 1387 bch2_cut_front(op->pos, op->insert_keys.top); 1388 if (op->flags & BCH_WRITE_convert_unwritten) 1389 bch2_cut_back(POS(op->pos.inode, op->pos.offset + bio_sectors(bio)), op->insert_keys.top); 1390 1391 darray_for_each(buckets, i) { 1392 struct bch_dev *ca = bch2_dev_have_ref(c, i->b.inode); 1393 1394 __bch2_bucket_nocow_lock(&c->nocow_locks, i->l, 1395 bucket_to_u64(i->b), 1396 BUCKET_NOCOW_LOCK_UPDATE); 1397 1398 int gen = bucket_gen_get(ca, i->b.offset); 1399 stale = gen < 0 ? gen : gen_after(gen, i->gen); 1400 if (unlikely(stale)) { 1401 stale_at = i; 1402 goto err_bucket_stale; 1403 } 1404 } 1405 1406 bio = &op->wbio.bio; 1407 if (k.k->p.offset < op->pos.offset + bio_sectors(bio)) { 1408 bio = bio_split(bio, k.k->p.offset - op->pos.offset, 1409 GFP_KERNEL, &c->bio_write); 1410 wbio_init(bio)->put_bio = true; 1411 bio->bi_opf = op->wbio.bio.bi_opf; 1412 } else { 1413 op->flags |= BCH_WRITE_submitted; 1414 } 1415 1416 op->pos.offset += bio_sectors(bio); 1417 op->written += bio_sectors(bio); 1418 1419 bio->bi_end_io = bch2_write_endio; 1420 bio->bi_private = &op->cl; 1421 bio->bi_opf |= REQ_OP_WRITE; 1422 closure_get(&op->cl); 1423 1424 bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user, 1425 op->insert_keys.top, true); 1426 1427 bch2_keylist_push(&op->insert_keys); 1428 if (op->flags & BCH_WRITE_submitted) 1429 break; 1430 bch2_btree_iter_advance(trans, &iter); 1431 } 1432 out: 1433 bch2_trans_iter_exit(trans, &iter); 1434 err: 1435 if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) 1436 goto retry; 1437 1438 bch2_trans_put(trans); 1439 darray_exit(&buckets); 1440 1441 if (ret) { 1442 bch2_write_op_error(op, op->pos.offset, 1443 "%s(): btree lookup error: %s", __func__, bch2_err_str(ret)); 1444 op->error = ret; 1445 op->flags |= BCH_WRITE_submitted; 1446 } 1447 1448 /* fallback to cow write path? */ 1449 if (!(op->flags & BCH_WRITE_submitted)) { 1450 closure_sync(&op->cl); 1451 __bch2_nocow_write_done(op); 1452 op->insert_keys.top = op->insert_keys.keys; 1453 } else if (op->flags & BCH_WRITE_sync) { 1454 closure_sync(&op->cl); 1455 bch2_nocow_write_done(&op->cl.work); 1456 } else { 1457 /* 1458 * XXX 1459 * needs to run out of process context because ei_quota_lock is 1460 * a mutex 1461 */ 1462 continue_at(&op->cl, bch2_nocow_write_done, index_update_wq(op)); 1463 } 1464 return; 1465 err_get_ioref: 1466 darray_for_each(buckets, i) 1467 enumerated_ref_put(&bch2_dev_have_ref(c, i->b.inode)->io_ref[WRITE], 1468 BCH_DEV_WRITE_REF_io_write); 1469 1470 /* Fall back to COW path: */ 1471 goto out; 1472 err_bucket_stale: 1473 darray_for_each(buckets, i) { 1474 bch2_bucket_nocow_unlock(&c->nocow_locks, i->b, BUCKET_NOCOW_LOCK_UPDATE); 1475 if (i == stale_at) 1476 break; 1477 } 1478 1479 struct printbuf buf = PRINTBUF; 1480 if (bch2_fs_inconsistent_on(stale < 0, c, 1481 "pointer to invalid bucket in nocow path on device %llu\n %s", 1482 stale_at->b.inode, 1483 (bch2_bkey_val_to_text(&buf, c, k), buf.buf))) { 1484 ret = bch_err_throw(c, data_write_invalid_ptr); 1485 } else { 1486 /* We can retry this: */ 1487 ret = bch_err_throw(c, transaction_restart); 1488 } 1489 printbuf_exit(&buf); 1490 1491 goto err_get_ioref; 1492 } 1493 1494 static void __bch2_write(struct bch_write_op *op) 1495 { 1496 struct bch_fs *c = op->c; 1497 struct write_point *wp = NULL; 1498 struct bio *bio = NULL; 1499 unsigned nofs_flags; 1500 int ret; 1501 1502 nofs_flags = memalloc_nofs_save(); 1503 1504 if (unlikely(op->opts.nocow && c->opts.nocow_enabled)) { 1505 bch2_nocow_write(op); 1506 if (op->flags & BCH_WRITE_submitted) 1507 goto out_nofs_restore; 1508 } 1509 again: 1510 memset(&op->failed, 0, sizeof(op->failed)); 1511 1512 do { 1513 struct bkey_i *key_to_write; 1514 unsigned key_to_write_offset = op->insert_keys.top_p - 1515 op->insert_keys.keys_p; 1516 1517 /* +1 for possible cache device: */ 1518 if (op->open_buckets.nr + op->nr_replicas + 1 > 1519 ARRAY_SIZE(op->open_buckets.v)) 1520 break; 1521 1522 if (bch2_keylist_realloc(&op->insert_keys, 1523 op->inline_keys, 1524 ARRAY_SIZE(op->inline_keys), 1525 BKEY_EXTENT_U64s_MAX)) 1526 break; 1527 1528 /* 1529 * The copygc thread is now global, which means it's no longer 1530 * freeing up space on specific disks, which means that 1531 * allocations for specific disks may hang arbitrarily long: 1532 */ 1533 ret = bch2_trans_run(c, lockrestart_do(trans, 1534 bch2_alloc_sectors_start_trans(trans, 1535 op->target, 1536 op->opts.erasure_code && !(op->flags & BCH_WRITE_cached), 1537 op->write_point, 1538 &op->devs_have, 1539 op->nr_replicas, 1540 op->nr_replicas_required, 1541 op->watermark, 1542 op->flags, 1543 &op->cl, &wp))); 1544 if (unlikely(ret)) { 1545 if (bch2_err_matches(ret, BCH_ERR_operation_blocked)) 1546 break; 1547 1548 goto err; 1549 } 1550 1551 EBUG_ON(!wp); 1552 1553 bch2_open_bucket_get(c, wp, &op->open_buckets); 1554 ret = bch2_write_extent(op, wp, &bio); 1555 1556 bch2_alloc_sectors_done_inlined(c, wp); 1557 err: 1558 if (ret <= 0) { 1559 op->flags |= BCH_WRITE_submitted; 1560 1561 if (unlikely(ret < 0)) { 1562 if (!(op->flags & BCH_WRITE_alloc_nowait)) 1563 bch2_write_op_error(op, op->pos.offset, 1564 "%s(): %s", __func__, bch2_err_str(ret)); 1565 op->error = ret; 1566 break; 1567 } 1568 } 1569 1570 bio->bi_end_io = bch2_write_endio; 1571 bio->bi_private = &op->cl; 1572 bio->bi_opf |= REQ_OP_WRITE; 1573 1574 closure_get(bio->bi_private); 1575 1576 key_to_write = (void *) (op->insert_keys.keys_p + 1577 key_to_write_offset); 1578 1579 bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user, 1580 key_to_write, false); 1581 } while (ret); 1582 1583 /* 1584 * Sync or no? 1585 * 1586 * If we're running asynchronously, wne may still want to block 1587 * synchronously here if we weren't able to submit all of the IO at 1588 * once, as that signals backpressure to the caller. 1589 */ 1590 if ((op->flags & BCH_WRITE_sync) || 1591 (!(op->flags & BCH_WRITE_submitted) && 1592 !(op->flags & BCH_WRITE_in_worker))) { 1593 bch2_wait_on_allocator(c, &op->cl); 1594 1595 __bch2_write_index(op); 1596 1597 if (!(op->flags & BCH_WRITE_submitted)) 1598 goto again; 1599 bch2_write_done(&op->cl); 1600 } else { 1601 bch2_write_queue(op, wp); 1602 continue_at(&op->cl, bch2_write_index, NULL); 1603 } 1604 out_nofs_restore: 1605 memalloc_nofs_restore(nofs_flags); 1606 } 1607 1608 static void bch2_write_data_inline(struct bch_write_op *op, unsigned data_len) 1609 { 1610 struct bio *bio = &op->wbio.bio; 1611 struct bvec_iter iter; 1612 struct bkey_i_inline_data *id; 1613 unsigned sectors; 1614 int ret; 1615 1616 memset(&op->failed, 0, sizeof(op->failed)); 1617 1618 op->flags |= BCH_WRITE_wrote_data_inline; 1619 op->flags |= BCH_WRITE_submitted; 1620 1621 bch2_check_set_feature(op->c, BCH_FEATURE_inline_data); 1622 1623 ret = bch2_keylist_realloc(&op->insert_keys, op->inline_keys, 1624 ARRAY_SIZE(op->inline_keys), 1625 BKEY_U64s + DIV_ROUND_UP(data_len, 8)); 1626 if (ret) { 1627 op->error = ret; 1628 goto err; 1629 } 1630 1631 sectors = bio_sectors(bio); 1632 op->pos.offset += sectors; 1633 1634 id = bkey_inline_data_init(op->insert_keys.top); 1635 id->k.p = op->pos; 1636 id->k.bversion = op->version; 1637 id->k.size = sectors; 1638 1639 iter = bio->bi_iter; 1640 iter.bi_size = data_len; 1641 memcpy_from_bio(id->v.data, bio, iter); 1642 1643 while (data_len & 7) 1644 id->v.data[data_len++] = '\0'; 1645 set_bkey_val_bytes(&id->k, data_len); 1646 bch2_keylist_push(&op->insert_keys); 1647 1648 __bch2_write_index(op); 1649 err: 1650 bch2_write_done(&op->cl); 1651 } 1652 1653 /** 1654 * bch2_write() - handle a write to a cache device or flash only volume 1655 * @cl: &bch_write_op->cl 1656 * 1657 * This is the starting point for any data to end up in a cache device; it could 1658 * be from a normal write, or a writeback write, or a write to a flash only 1659 * volume - it's also used by the moving garbage collector to compact data in 1660 * mostly empty buckets. 1661 * 1662 * It first writes the data to the cache, creating a list of keys to be inserted 1663 * (if the data won't fit in a single open bucket, there will be multiple keys); 1664 * after the data is written it calls bch_journal, and after the keys have been 1665 * added to the next journal write they're inserted into the btree. 1666 * 1667 * If op->discard is true, instead of inserting the data it invalidates the 1668 * region of the cache represented by op->bio and op->inode. 1669 */ 1670 CLOSURE_CALLBACK(bch2_write) 1671 { 1672 closure_type(op, struct bch_write_op, cl); 1673 struct bio *bio = &op->wbio.bio; 1674 struct bch_fs *c = op->c; 1675 unsigned data_len; 1676 1677 EBUG_ON(op->cl.parent); 1678 BUG_ON(!op->nr_replicas); 1679 BUG_ON(!op->write_point.v); 1680 BUG_ON(bkey_eq(op->pos, POS_MAX)); 1681 1682 async_object_list_add(c, write_op, op, &op->list_idx); 1683 1684 if (op->flags & BCH_WRITE_only_specified_devs) 1685 op->flags |= BCH_WRITE_alloc_nowait; 1686 1687 op->nr_replicas_required = min_t(unsigned, op->nr_replicas_required, op->nr_replicas); 1688 op->start_time = local_clock(); 1689 bch2_keylist_init(&op->insert_keys, op->inline_keys); 1690 wbio_init(bio)->put_bio = false; 1691 1692 if (unlikely(bio->bi_iter.bi_size & (c->opts.block_size - 1))) { 1693 bch2_write_op_error(op, op->pos.offset, "misaligned write"); 1694 op->error = bch_err_throw(c, data_write_misaligned); 1695 goto err; 1696 } 1697 1698 if (c->opts.nochanges) { 1699 op->error = bch_err_throw(c, erofs_no_writes); 1700 goto err; 1701 } 1702 1703 if (!(op->flags & BCH_WRITE_move) && 1704 !enumerated_ref_tryget(&c->writes, BCH_WRITE_REF_write)) { 1705 op->error = bch_err_throw(c, erofs_no_writes); 1706 goto err; 1707 } 1708 1709 if (!(op->flags & BCH_WRITE_move)) 1710 this_cpu_add(c->counters[BCH_COUNTER_io_write], bio_sectors(bio)); 1711 bch2_increment_clock(c, bio_sectors(bio), WRITE); 1712 1713 data_len = min_t(u64, bio->bi_iter.bi_size, 1714 op->new_i_size - (op->pos.offset << 9)); 1715 1716 if (c->opts.inline_data && 1717 data_len <= min(block_bytes(c) / 2, 1024U)) { 1718 bch2_write_data_inline(op, data_len); 1719 return; 1720 } 1721 1722 __bch2_write(op); 1723 return; 1724 err: 1725 bch2_disk_reservation_put(c, &op->res); 1726 1727 closure_debug_destroy(&op->cl); 1728 async_object_list_del(c, write_op, op->list_idx); 1729 if (op->end_io) 1730 op->end_io(op); 1731 } 1732 1733 static const char * const bch2_write_flags[] = { 1734 #define x(f) #f, 1735 BCH_WRITE_FLAGS() 1736 #undef x 1737 NULL 1738 }; 1739 1740 void bch2_write_op_to_text(struct printbuf *out, struct bch_write_op *op) 1741 { 1742 if (!out->nr_tabstops) 1743 printbuf_tabstop_push(out, 32); 1744 1745 prt_printf(out, "pos:\t"); 1746 bch2_bpos_to_text(out, op->pos); 1747 prt_newline(out); 1748 printbuf_indent_add(out, 2); 1749 1750 prt_printf(out, "started:\t"); 1751 bch2_pr_time_units(out, local_clock() - op->start_time); 1752 prt_newline(out); 1753 1754 prt_printf(out, "flags:\t"); 1755 prt_bitflags(out, bch2_write_flags, op->flags); 1756 prt_newline(out); 1757 1758 prt_printf(out, "nr_replicas:\t%u\n", op->nr_replicas); 1759 prt_printf(out, "nr_replicas_required:\t%u\n", op->nr_replicas_required); 1760 1761 prt_printf(out, "ref:\t%u\n", closure_nr_remaining(&op->cl)); 1762 prt_printf(out, "ret\t%s\n", bch2_err_str(op->error)); 1763 1764 printbuf_indent_sub(out, 2); 1765 } 1766 1767 void bch2_fs_io_write_exit(struct bch_fs *c) 1768 { 1769 bioset_exit(&c->replica_set); 1770 bioset_exit(&c->bio_write); 1771 } 1772 1773 int bch2_fs_io_write_init(struct bch_fs *c) 1774 { 1775 if (bioset_init(&c->bio_write, 1, offsetof(struct bch_write_bio, bio), BIOSET_NEED_BVECS) || 1776 bioset_init(&c->replica_set, 4, offsetof(struct bch_write_bio, bio), 0)) 1777 return bch_err_throw(c, ENOMEM_bio_write_init); 1778 1779 return 0; 1780 } 1781