xref: /linux/fs/bcachefs/io_write.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
4  * Copyright 2012 Google, Inc.
5  */
6 
7 #include "bcachefs.h"
8 #include "alloc_foreground.h"
9 #include "bkey_buf.h"
10 #include "bset.h"
11 #include "btree_update.h"
12 #include "buckets.h"
13 #include "checksum.h"
14 #include "clock.h"
15 #include "compress.h"
16 #include "debug.h"
17 #include "ec.h"
18 #include "error.h"
19 #include "extent_update.h"
20 #include "inode.h"
21 #include "io_write.h"
22 #include "journal.h"
23 #include "keylist.h"
24 #include "move.h"
25 #include "nocow_locking.h"
26 #include "rebalance.h"
27 #include "subvolume.h"
28 #include "super.h"
29 #include "super-io.h"
30 #include "trace.h"
31 
32 #include <linux/blkdev.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/sched/mm.h>
36 
37 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
38 
39 static inline void bch2_congested_acct(struct bch_dev *ca, u64 io_latency,
40 				       u64 now, int rw)
41 {
42 	u64 latency_capable =
43 		ca->io_latency[rw].quantiles.entries[QUANTILE_IDX(1)].m;
44 	/* ideally we'd be taking into account the device's variance here: */
45 	u64 latency_threshold = latency_capable << (rw == READ ? 2 : 3);
46 	s64 latency_over = io_latency - latency_threshold;
47 
48 	if (latency_threshold && latency_over > 0) {
49 		/*
50 		 * bump up congested by approximately latency_over * 4 /
51 		 * latency_threshold - we don't need much accuracy here so don't
52 		 * bother with the divide:
53 		 */
54 		if (atomic_read(&ca->congested) < CONGESTED_MAX)
55 			atomic_add(latency_over >>
56 				   max_t(int, ilog2(latency_threshold) - 2, 0),
57 				   &ca->congested);
58 
59 		ca->congested_last = now;
60 	} else if (atomic_read(&ca->congested) > 0) {
61 		atomic_dec(&ca->congested);
62 	}
63 }
64 
65 void bch2_latency_acct(struct bch_dev *ca, u64 submit_time, int rw)
66 {
67 	atomic64_t *latency = &ca->cur_latency[rw];
68 	u64 now = local_clock();
69 	u64 io_latency = time_after64(now, submit_time)
70 		? now - submit_time
71 		: 0;
72 	u64 old, new, v = atomic64_read(latency);
73 
74 	do {
75 		old = v;
76 
77 		/*
78 		 * If the io latency was reasonably close to the current
79 		 * latency, skip doing the update and atomic operation - most of
80 		 * the time:
81 		 */
82 		if (abs((int) (old - io_latency)) < (old >> 1) &&
83 		    now & ~(~0U << 5))
84 			break;
85 
86 		new = ewma_add(old, io_latency, 5);
87 	} while ((v = atomic64_cmpxchg(latency, old, new)) != old);
88 
89 	bch2_congested_acct(ca, io_latency, now, rw);
90 
91 	__bch2_time_stats_update(&ca->io_latency[rw], submit_time, now);
92 }
93 
94 #endif
95 
96 /* Allocate, free from mempool: */
97 
98 void bch2_bio_free_pages_pool(struct bch_fs *c, struct bio *bio)
99 {
100 	struct bvec_iter_all iter;
101 	struct bio_vec *bv;
102 
103 	bio_for_each_segment_all(bv, bio, iter)
104 		if (bv->bv_page != ZERO_PAGE(0))
105 			mempool_free(bv->bv_page, &c->bio_bounce_pages);
106 	bio->bi_vcnt = 0;
107 }
108 
109 static struct page *__bio_alloc_page_pool(struct bch_fs *c, bool *using_mempool)
110 {
111 	struct page *page;
112 
113 	if (likely(!*using_mempool)) {
114 		page = alloc_page(GFP_NOFS);
115 		if (unlikely(!page)) {
116 			mutex_lock(&c->bio_bounce_pages_lock);
117 			*using_mempool = true;
118 			goto pool_alloc;
119 
120 		}
121 	} else {
122 pool_alloc:
123 		page = mempool_alloc(&c->bio_bounce_pages, GFP_NOFS);
124 	}
125 
126 	return page;
127 }
128 
129 void bch2_bio_alloc_pages_pool(struct bch_fs *c, struct bio *bio,
130 			       size_t size)
131 {
132 	bool using_mempool = false;
133 
134 	while (size) {
135 		struct page *page = __bio_alloc_page_pool(c, &using_mempool);
136 		unsigned len = min_t(size_t, PAGE_SIZE, size);
137 
138 		BUG_ON(!bio_add_page(bio, page, len, 0));
139 		size -= len;
140 	}
141 
142 	if (using_mempool)
143 		mutex_unlock(&c->bio_bounce_pages_lock);
144 }
145 
146 /* Extent update path: */
147 
148 int bch2_sum_sector_overwrites(struct btree_trans *trans,
149 			       struct btree_iter *extent_iter,
150 			       struct bkey_i *new,
151 			       bool *usage_increasing,
152 			       s64 *i_sectors_delta,
153 			       s64 *disk_sectors_delta)
154 {
155 	struct bch_fs *c = trans->c;
156 	struct btree_iter iter;
157 	struct bkey_s_c old;
158 	unsigned new_replicas = bch2_bkey_replicas(c, bkey_i_to_s_c(new));
159 	bool new_compressed = bch2_bkey_sectors_compressed(bkey_i_to_s_c(new));
160 	int ret = 0;
161 
162 	*usage_increasing	= false;
163 	*i_sectors_delta	= 0;
164 	*disk_sectors_delta	= 0;
165 
166 	bch2_trans_copy_iter(&iter, extent_iter);
167 
168 	for_each_btree_key_upto_continue_norestart(iter,
169 				new->k.p, BTREE_ITER_SLOTS, old, ret) {
170 		s64 sectors = min(new->k.p.offset, old.k->p.offset) -
171 			max(bkey_start_offset(&new->k),
172 			    bkey_start_offset(old.k));
173 
174 		*i_sectors_delta += sectors *
175 			(bkey_extent_is_allocation(&new->k) -
176 			 bkey_extent_is_allocation(old.k));
177 
178 		*disk_sectors_delta += sectors * bch2_bkey_nr_ptrs_allocated(bkey_i_to_s_c(new));
179 		*disk_sectors_delta -= new->k.p.snapshot == old.k->p.snapshot
180 			? sectors * bch2_bkey_nr_ptrs_fully_allocated(old)
181 			: 0;
182 
183 		if (!*usage_increasing &&
184 		    (new->k.p.snapshot != old.k->p.snapshot ||
185 		     new_replicas > bch2_bkey_replicas(c, old) ||
186 		     (!new_compressed && bch2_bkey_sectors_compressed(old))))
187 			*usage_increasing = true;
188 
189 		if (bkey_ge(old.k->p, new->k.p))
190 			break;
191 	}
192 
193 	bch2_trans_iter_exit(trans, &iter);
194 	return ret;
195 }
196 
197 static inline int bch2_extent_update_i_size_sectors(struct btree_trans *trans,
198 						    struct btree_iter *extent_iter,
199 						    u64 new_i_size,
200 						    s64 i_sectors_delta)
201 {
202 	struct btree_iter iter;
203 	struct bkey_i *k;
204 	struct bkey_i_inode_v3 *inode;
205 	/*
206 	 * Crazy performance optimization:
207 	 * Every extent update needs to also update the inode: the inode trigger
208 	 * will set bi->journal_seq to the journal sequence number of this
209 	 * transaction - for fsync.
210 	 *
211 	 * But if that's the only reason we're updating the inode (we're not
212 	 * updating bi_size or bi_sectors), then we don't need the inode update
213 	 * to be journalled - if we crash, the bi_journal_seq update will be
214 	 * lost, but that's fine.
215 	 */
216 	unsigned inode_update_flags = BTREE_UPDATE_NOJOURNAL;
217 	int ret;
218 
219 	k = bch2_bkey_get_mut_noupdate(trans, &iter, BTREE_ID_inodes,
220 			      SPOS(0,
221 				   extent_iter->pos.inode,
222 				   extent_iter->snapshot),
223 			      BTREE_ITER_CACHED);
224 	ret = PTR_ERR_OR_ZERO(k);
225 	if (unlikely(ret))
226 		return ret;
227 
228 	if (unlikely(k->k.type != KEY_TYPE_inode_v3)) {
229 		k = bch2_inode_to_v3(trans, k);
230 		ret = PTR_ERR_OR_ZERO(k);
231 		if (unlikely(ret))
232 			goto err;
233 	}
234 
235 	inode = bkey_i_to_inode_v3(k);
236 
237 	if (!(le64_to_cpu(inode->v.bi_flags) & BCH_INODE_i_size_dirty) &&
238 	    new_i_size > le64_to_cpu(inode->v.bi_size)) {
239 		inode->v.bi_size = cpu_to_le64(new_i_size);
240 		inode_update_flags = 0;
241 	}
242 
243 	if (i_sectors_delta) {
244 		le64_add_cpu(&inode->v.bi_sectors, i_sectors_delta);
245 		inode_update_flags = 0;
246 	}
247 
248 	if (inode->k.p.snapshot != iter.snapshot) {
249 		inode->k.p.snapshot = iter.snapshot;
250 		inode_update_flags = 0;
251 	}
252 
253 	ret = bch2_trans_update(trans, &iter, &inode->k_i,
254 				BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|
255 				inode_update_flags);
256 err:
257 	bch2_trans_iter_exit(trans, &iter);
258 	return ret;
259 }
260 
261 int bch2_extent_update(struct btree_trans *trans,
262 		       subvol_inum inum,
263 		       struct btree_iter *iter,
264 		       struct bkey_i *k,
265 		       struct disk_reservation *disk_res,
266 		       u64 new_i_size,
267 		       s64 *i_sectors_delta_total,
268 		       bool check_enospc)
269 {
270 	struct bpos next_pos;
271 	bool usage_increasing;
272 	s64 i_sectors_delta = 0, disk_sectors_delta = 0;
273 	int ret;
274 
275 	/*
276 	 * This traverses us the iterator without changing iter->path->pos to
277 	 * search_key() (which is pos + 1 for extents): we want there to be a
278 	 * path already traversed at iter->pos because
279 	 * bch2_trans_extent_update() will use it to attempt extent merging
280 	 */
281 	ret = __bch2_btree_iter_traverse(iter);
282 	if (ret)
283 		return ret;
284 
285 	ret = bch2_extent_trim_atomic(trans, iter, k);
286 	if (ret)
287 		return ret;
288 
289 	next_pos = k->k.p;
290 
291 	ret = bch2_sum_sector_overwrites(trans, iter, k,
292 			&usage_increasing,
293 			&i_sectors_delta,
294 			&disk_sectors_delta);
295 	if (ret)
296 		return ret;
297 
298 	if (disk_res &&
299 	    disk_sectors_delta > (s64) disk_res->sectors) {
300 		ret = bch2_disk_reservation_add(trans->c, disk_res,
301 					disk_sectors_delta - disk_res->sectors,
302 					!check_enospc || !usage_increasing
303 					? BCH_DISK_RESERVATION_NOFAIL : 0);
304 		if (ret)
305 			return ret;
306 	}
307 
308 	/*
309 	 * Note:
310 	 * We always have to do an inode update - even when i_size/i_sectors
311 	 * aren't changing - for fsync to work properly; fsync relies on
312 	 * inode->bi_journal_seq which is updated by the trigger code:
313 	 */
314 	ret =   bch2_extent_update_i_size_sectors(trans, iter,
315 						  min(k->k.p.offset << 9, new_i_size),
316 						  i_sectors_delta) ?:
317 		bch2_trans_update(trans, iter, k, 0) ?:
318 		bch2_trans_commit(trans, disk_res, NULL,
319 				BTREE_INSERT_NOCHECK_RW|
320 				BTREE_INSERT_NOFAIL);
321 	if (unlikely(ret))
322 		return ret;
323 
324 	if (i_sectors_delta_total)
325 		*i_sectors_delta_total += i_sectors_delta;
326 	bch2_btree_iter_set_pos(iter, next_pos);
327 	return 0;
328 }
329 
330 static int bch2_write_index_default(struct bch_write_op *op)
331 {
332 	struct bch_fs *c = op->c;
333 	struct bkey_buf sk;
334 	struct keylist *keys = &op->insert_keys;
335 	struct bkey_i *k = bch2_keylist_front(keys);
336 	struct btree_trans *trans = bch2_trans_get(c);
337 	struct btree_iter iter;
338 	subvol_inum inum = {
339 		.subvol = op->subvol,
340 		.inum	= k->k.p.inode,
341 	};
342 	int ret;
343 
344 	BUG_ON(!inum.subvol);
345 
346 	bch2_bkey_buf_init(&sk);
347 
348 	do {
349 		bch2_trans_begin(trans);
350 
351 		k = bch2_keylist_front(keys);
352 		bch2_bkey_buf_copy(&sk, c, k);
353 
354 		ret = bch2_subvolume_get_snapshot(trans, inum.subvol,
355 						  &sk.k->k.p.snapshot);
356 		if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
357 			continue;
358 		if (ret)
359 			break;
360 
361 		bch2_trans_iter_init(trans, &iter, BTREE_ID_extents,
362 				     bkey_start_pos(&sk.k->k),
363 				     BTREE_ITER_SLOTS|BTREE_ITER_INTENT);
364 
365 		ret =   bch2_bkey_set_needs_rebalance(c, sk.k,
366 					op->opts.background_target,
367 					op->opts.background_compression) ?:
368 			bch2_extent_update(trans, inum, &iter, sk.k,
369 					&op->res,
370 					op->new_i_size, &op->i_sectors_delta,
371 					op->flags & BCH_WRITE_CHECK_ENOSPC);
372 		bch2_trans_iter_exit(trans, &iter);
373 
374 		if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
375 			continue;
376 		if (ret)
377 			break;
378 
379 		if (bkey_ge(iter.pos, k->k.p))
380 			bch2_keylist_pop_front(&op->insert_keys);
381 		else
382 			bch2_cut_front(iter.pos, k);
383 	} while (!bch2_keylist_empty(keys));
384 
385 	bch2_trans_put(trans);
386 	bch2_bkey_buf_exit(&sk, c);
387 
388 	return ret;
389 }
390 
391 /* Writes */
392 
393 void bch2_submit_wbio_replicas(struct bch_write_bio *wbio, struct bch_fs *c,
394 			       enum bch_data_type type,
395 			       const struct bkey_i *k,
396 			       bool nocow)
397 {
398 	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k));
399 	const struct bch_extent_ptr *ptr;
400 	struct bch_write_bio *n;
401 	struct bch_dev *ca;
402 
403 	BUG_ON(c->opts.nochanges);
404 
405 	bkey_for_each_ptr(ptrs, ptr) {
406 		BUG_ON(ptr->dev >= BCH_SB_MEMBERS_MAX ||
407 		       !c->devs[ptr->dev]);
408 
409 		ca = bch_dev_bkey_exists(c, ptr->dev);
410 
411 		if (to_entry(ptr + 1) < ptrs.end) {
412 			n = to_wbio(bio_alloc_clone(NULL, &wbio->bio,
413 						GFP_NOFS, &ca->replica_set));
414 
415 			n->bio.bi_end_io	= wbio->bio.bi_end_io;
416 			n->bio.bi_private	= wbio->bio.bi_private;
417 			n->parent		= wbio;
418 			n->split		= true;
419 			n->bounce		= false;
420 			n->put_bio		= true;
421 			n->bio.bi_opf		= wbio->bio.bi_opf;
422 			bio_inc_remaining(&wbio->bio);
423 		} else {
424 			n = wbio;
425 			n->split		= false;
426 		}
427 
428 		n->c			= c;
429 		n->dev			= ptr->dev;
430 		n->have_ioref		= nocow || bch2_dev_get_ioref(ca,
431 					type == BCH_DATA_btree ? READ : WRITE);
432 		n->nocow		= nocow;
433 		n->submit_time		= local_clock();
434 		n->inode_offset		= bkey_start_offset(&k->k);
435 		n->bio.bi_iter.bi_sector = ptr->offset;
436 
437 		if (likely(n->have_ioref)) {
438 			this_cpu_add(ca->io_done->sectors[WRITE][type],
439 				     bio_sectors(&n->bio));
440 
441 			bio_set_dev(&n->bio, ca->disk_sb.bdev);
442 
443 			if (type != BCH_DATA_btree && unlikely(c->opts.no_data_io)) {
444 				bio_endio(&n->bio);
445 				continue;
446 			}
447 
448 			submit_bio(&n->bio);
449 		} else {
450 			n->bio.bi_status	= BLK_STS_REMOVED;
451 			bio_endio(&n->bio);
452 		}
453 	}
454 }
455 
456 static void __bch2_write(struct bch_write_op *);
457 
458 static void bch2_write_done(struct closure *cl)
459 {
460 	struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
461 	struct bch_fs *c = op->c;
462 
463 	EBUG_ON(op->open_buckets.nr);
464 
465 	bch2_time_stats_update(&c->times[BCH_TIME_data_write], op->start_time);
466 	bch2_disk_reservation_put(c, &op->res);
467 
468 	if (!(op->flags & BCH_WRITE_MOVE))
469 		bch2_write_ref_put(c, BCH_WRITE_REF_write);
470 	bch2_keylist_free(&op->insert_keys, op->inline_keys);
471 
472 	EBUG_ON(cl->parent);
473 	closure_debug_destroy(cl);
474 	if (op->end_io)
475 		op->end_io(op);
476 }
477 
478 static noinline int bch2_write_drop_io_error_ptrs(struct bch_write_op *op)
479 {
480 	struct keylist *keys = &op->insert_keys;
481 	struct bch_extent_ptr *ptr;
482 	struct bkey_i *src, *dst = keys->keys, *n;
483 
484 	for (src = keys->keys; src != keys->top; src = n) {
485 		n = bkey_next(src);
486 
487 		if (bkey_extent_is_direct_data(&src->k)) {
488 			bch2_bkey_drop_ptrs(bkey_i_to_s(src), ptr,
489 					    test_bit(ptr->dev, op->failed.d));
490 
491 			if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(src)))
492 				return -EIO;
493 		}
494 
495 		if (dst != src)
496 			memmove_u64s_down(dst, src, src->k.u64s);
497 		dst = bkey_next(dst);
498 	}
499 
500 	keys->top = dst;
501 	return 0;
502 }
503 
504 /**
505  * __bch2_write_index - after a write, update index to point to new data
506  * @op:		bch_write_op to process
507  */
508 static void __bch2_write_index(struct bch_write_op *op)
509 {
510 	struct bch_fs *c = op->c;
511 	struct keylist *keys = &op->insert_keys;
512 	unsigned dev;
513 	int ret = 0;
514 
515 	if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) {
516 		ret = bch2_write_drop_io_error_ptrs(op);
517 		if (ret)
518 			goto err;
519 	}
520 
521 	if (!bch2_keylist_empty(keys)) {
522 		u64 sectors_start = keylist_sectors(keys);
523 
524 		ret = !(op->flags & BCH_WRITE_MOVE)
525 			? bch2_write_index_default(op)
526 			: bch2_data_update_index_update(op);
527 
528 		BUG_ON(bch2_err_matches(ret, BCH_ERR_transaction_restart));
529 		BUG_ON(keylist_sectors(keys) && !ret);
530 
531 		op->written += sectors_start - keylist_sectors(keys);
532 
533 		if (ret && !bch2_err_matches(ret, EROFS)) {
534 			struct bkey_i *insert = bch2_keylist_front(&op->insert_keys);
535 
536 			bch_err_inum_offset_ratelimited(c,
537 				insert->k.p.inode, insert->k.p.offset << 9,
538 				"write error while doing btree update: %s",
539 				bch2_err_str(ret));
540 		}
541 
542 		if (ret)
543 			goto err;
544 	}
545 out:
546 	/* If some a bucket wasn't written, we can't erasure code it: */
547 	for_each_set_bit(dev, op->failed.d, BCH_SB_MEMBERS_MAX)
548 		bch2_open_bucket_write_error(c, &op->open_buckets, dev);
549 
550 	bch2_open_buckets_put(c, &op->open_buckets);
551 	return;
552 err:
553 	keys->top = keys->keys;
554 	op->error = ret;
555 	op->flags |= BCH_WRITE_DONE;
556 	goto out;
557 }
558 
559 static inline void __wp_update_state(struct write_point *wp, enum write_point_state state)
560 {
561 	if (state != wp->state) {
562 		u64 now = ktime_get_ns();
563 
564 		if (wp->last_state_change &&
565 		    time_after64(now, wp->last_state_change))
566 			wp->time[wp->state] += now - wp->last_state_change;
567 		wp->state = state;
568 		wp->last_state_change = now;
569 	}
570 }
571 
572 static inline void wp_update_state(struct write_point *wp, bool running)
573 {
574 	enum write_point_state state;
575 
576 	state = running			 ? WRITE_POINT_running :
577 		!list_empty(&wp->writes) ? WRITE_POINT_waiting_io
578 					 : WRITE_POINT_stopped;
579 
580 	__wp_update_state(wp, state);
581 }
582 
583 static void bch2_write_index(struct closure *cl)
584 {
585 	struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
586 	struct write_point *wp = op->wp;
587 	struct workqueue_struct *wq = index_update_wq(op);
588 	unsigned long flags;
589 
590 	if ((op->flags & BCH_WRITE_DONE) &&
591 	    (op->flags & BCH_WRITE_MOVE))
592 		bch2_bio_free_pages_pool(op->c, &op->wbio.bio);
593 
594 	spin_lock_irqsave(&wp->writes_lock, flags);
595 	if (wp->state == WRITE_POINT_waiting_io)
596 		__wp_update_state(wp, WRITE_POINT_waiting_work);
597 	list_add_tail(&op->wp_list, &wp->writes);
598 	spin_unlock_irqrestore (&wp->writes_lock, flags);
599 
600 	queue_work(wq, &wp->index_update_work);
601 }
602 
603 static inline void bch2_write_queue(struct bch_write_op *op, struct write_point *wp)
604 {
605 	op->wp = wp;
606 
607 	if (wp->state == WRITE_POINT_stopped) {
608 		spin_lock_irq(&wp->writes_lock);
609 		__wp_update_state(wp, WRITE_POINT_waiting_io);
610 		spin_unlock_irq(&wp->writes_lock);
611 	}
612 }
613 
614 void bch2_write_point_do_index_updates(struct work_struct *work)
615 {
616 	struct write_point *wp =
617 		container_of(work, struct write_point, index_update_work);
618 	struct bch_write_op *op;
619 
620 	while (1) {
621 		spin_lock_irq(&wp->writes_lock);
622 		op = list_first_entry_or_null(&wp->writes, struct bch_write_op, wp_list);
623 		if (op)
624 			list_del(&op->wp_list);
625 		wp_update_state(wp, op != NULL);
626 		spin_unlock_irq(&wp->writes_lock);
627 
628 		if (!op)
629 			break;
630 
631 		op->flags |= BCH_WRITE_IN_WORKER;
632 
633 		__bch2_write_index(op);
634 
635 		if (!(op->flags & BCH_WRITE_DONE))
636 			__bch2_write(op);
637 		else
638 			bch2_write_done(&op->cl);
639 	}
640 }
641 
642 static void bch2_write_endio(struct bio *bio)
643 {
644 	struct closure *cl		= bio->bi_private;
645 	struct bch_write_op *op		= container_of(cl, struct bch_write_op, cl);
646 	struct bch_write_bio *wbio	= to_wbio(bio);
647 	struct bch_write_bio *parent	= wbio->split ? wbio->parent : NULL;
648 	struct bch_fs *c		= wbio->c;
649 	struct bch_dev *ca		= bch_dev_bkey_exists(c, wbio->dev);
650 
651 	if (bch2_dev_inum_io_err_on(bio->bi_status, ca, BCH_MEMBER_ERROR_write,
652 				    op->pos.inode,
653 				    wbio->inode_offset << 9,
654 				    "data write error: %s",
655 				    bch2_blk_status_to_str(bio->bi_status))) {
656 		set_bit(wbio->dev, op->failed.d);
657 		op->flags |= BCH_WRITE_IO_ERROR;
658 	}
659 
660 	if (wbio->nocow)
661 		set_bit(wbio->dev, op->devs_need_flush->d);
662 
663 	if (wbio->have_ioref) {
664 		bch2_latency_acct(ca, wbio->submit_time, WRITE);
665 		percpu_ref_put(&ca->io_ref);
666 	}
667 
668 	if (wbio->bounce)
669 		bch2_bio_free_pages_pool(c, bio);
670 
671 	if (wbio->put_bio)
672 		bio_put(bio);
673 
674 	if (parent)
675 		bio_endio(&parent->bio);
676 	else
677 		closure_put(cl);
678 }
679 
680 static void init_append_extent(struct bch_write_op *op,
681 			       struct write_point *wp,
682 			       struct bversion version,
683 			       struct bch_extent_crc_unpacked crc)
684 {
685 	struct bkey_i_extent *e;
686 
687 	op->pos.offset += crc.uncompressed_size;
688 
689 	e = bkey_extent_init(op->insert_keys.top);
690 	e->k.p		= op->pos;
691 	e->k.size	= crc.uncompressed_size;
692 	e->k.version	= version;
693 
694 	if (crc.csum_type ||
695 	    crc.compression_type ||
696 	    crc.nonce)
697 		bch2_extent_crc_append(&e->k_i, crc);
698 
699 	bch2_alloc_sectors_append_ptrs_inlined(op->c, wp, &e->k_i, crc.compressed_size,
700 				       op->flags & BCH_WRITE_CACHED);
701 
702 	bch2_keylist_push(&op->insert_keys);
703 }
704 
705 static struct bio *bch2_write_bio_alloc(struct bch_fs *c,
706 					struct write_point *wp,
707 					struct bio *src,
708 					bool *page_alloc_failed,
709 					void *buf)
710 {
711 	struct bch_write_bio *wbio;
712 	struct bio *bio;
713 	unsigned output_available =
714 		min(wp->sectors_free << 9, src->bi_iter.bi_size);
715 	unsigned pages = DIV_ROUND_UP(output_available +
716 				      (buf
717 				       ? ((unsigned long) buf & (PAGE_SIZE - 1))
718 				       : 0), PAGE_SIZE);
719 
720 	pages = min(pages, BIO_MAX_VECS);
721 
722 	bio = bio_alloc_bioset(NULL, pages, 0,
723 			       GFP_NOFS, &c->bio_write);
724 	wbio			= wbio_init(bio);
725 	wbio->put_bio		= true;
726 	/* copy WRITE_SYNC flag */
727 	wbio->bio.bi_opf	= src->bi_opf;
728 
729 	if (buf) {
730 		bch2_bio_map(bio, buf, output_available);
731 		return bio;
732 	}
733 
734 	wbio->bounce		= true;
735 
736 	/*
737 	 * We can't use mempool for more than c->sb.encoded_extent_max
738 	 * worth of pages, but we'd like to allocate more if we can:
739 	 */
740 	bch2_bio_alloc_pages_pool(c, bio,
741 				  min_t(unsigned, output_available,
742 					c->opts.encoded_extent_max));
743 
744 	if (bio->bi_iter.bi_size < output_available)
745 		*page_alloc_failed =
746 			bch2_bio_alloc_pages(bio,
747 					     output_available -
748 					     bio->bi_iter.bi_size,
749 					     GFP_NOFS) != 0;
750 
751 	return bio;
752 }
753 
754 static int bch2_write_rechecksum(struct bch_fs *c,
755 				 struct bch_write_op *op,
756 				 unsigned new_csum_type)
757 {
758 	struct bio *bio = &op->wbio.bio;
759 	struct bch_extent_crc_unpacked new_crc;
760 	int ret;
761 
762 	/* bch2_rechecksum_bio() can't encrypt or decrypt data: */
763 
764 	if (bch2_csum_type_is_encryption(op->crc.csum_type) !=
765 	    bch2_csum_type_is_encryption(new_csum_type))
766 		new_csum_type = op->crc.csum_type;
767 
768 	ret = bch2_rechecksum_bio(c, bio, op->version, op->crc,
769 				  NULL, &new_crc,
770 				  op->crc.offset, op->crc.live_size,
771 				  new_csum_type);
772 	if (ret)
773 		return ret;
774 
775 	bio_advance(bio, op->crc.offset << 9);
776 	bio->bi_iter.bi_size = op->crc.live_size << 9;
777 	op->crc = new_crc;
778 	return 0;
779 }
780 
781 static int bch2_write_decrypt(struct bch_write_op *op)
782 {
783 	struct bch_fs *c = op->c;
784 	struct nonce nonce = extent_nonce(op->version, op->crc);
785 	struct bch_csum csum;
786 	int ret;
787 
788 	if (!bch2_csum_type_is_encryption(op->crc.csum_type))
789 		return 0;
790 
791 	/*
792 	 * If we need to decrypt data in the write path, we'll no longer be able
793 	 * to verify the existing checksum (poly1305 mac, in this case) after
794 	 * it's decrypted - this is the last point we'll be able to reverify the
795 	 * checksum:
796 	 */
797 	csum = bch2_checksum_bio(c, op->crc.csum_type, nonce, &op->wbio.bio);
798 	if (bch2_crc_cmp(op->crc.csum, csum))
799 		return -EIO;
800 
801 	ret = bch2_encrypt_bio(c, op->crc.csum_type, nonce, &op->wbio.bio);
802 	op->crc.csum_type = 0;
803 	op->crc.csum = (struct bch_csum) { 0, 0 };
804 	return ret;
805 }
806 
807 static enum prep_encoded_ret {
808 	PREP_ENCODED_OK,
809 	PREP_ENCODED_ERR,
810 	PREP_ENCODED_CHECKSUM_ERR,
811 	PREP_ENCODED_DO_WRITE,
812 } bch2_write_prep_encoded_data(struct bch_write_op *op, struct write_point *wp)
813 {
814 	struct bch_fs *c = op->c;
815 	struct bio *bio = &op->wbio.bio;
816 
817 	if (!(op->flags & BCH_WRITE_DATA_ENCODED))
818 		return PREP_ENCODED_OK;
819 
820 	BUG_ON(bio_sectors(bio) != op->crc.compressed_size);
821 
822 	/* Can we just write the entire extent as is? */
823 	if (op->crc.uncompressed_size == op->crc.live_size &&
824 	    op->crc.uncompressed_size <= c->opts.encoded_extent_max >> 9 &&
825 	    op->crc.compressed_size <= wp->sectors_free &&
826 	    (op->crc.compression_type == bch2_compression_opt_to_type(op->compression_opt) ||
827 	     op->incompressible)) {
828 		if (!crc_is_compressed(op->crc) &&
829 		    op->csum_type != op->crc.csum_type &&
830 		    bch2_write_rechecksum(c, op, op->csum_type) &&
831 		    !c->opts.no_data_io)
832 			return PREP_ENCODED_CHECKSUM_ERR;
833 
834 		return PREP_ENCODED_DO_WRITE;
835 	}
836 
837 	/*
838 	 * If the data is compressed and we couldn't write the entire extent as
839 	 * is, we have to decompress it:
840 	 */
841 	if (crc_is_compressed(op->crc)) {
842 		struct bch_csum csum;
843 
844 		if (bch2_write_decrypt(op))
845 			return PREP_ENCODED_CHECKSUM_ERR;
846 
847 		/* Last point we can still verify checksum: */
848 		csum = bch2_checksum_bio(c, op->crc.csum_type,
849 					 extent_nonce(op->version, op->crc),
850 					 bio);
851 		if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io)
852 			return PREP_ENCODED_CHECKSUM_ERR;
853 
854 		if (bch2_bio_uncompress_inplace(c, bio, &op->crc))
855 			return PREP_ENCODED_ERR;
856 	}
857 
858 	/*
859 	 * No longer have compressed data after this point - data might be
860 	 * encrypted:
861 	 */
862 
863 	/*
864 	 * If the data is checksummed and we're only writing a subset,
865 	 * rechecksum and adjust bio to point to currently live data:
866 	 */
867 	if ((op->crc.live_size != op->crc.uncompressed_size ||
868 	     op->crc.csum_type != op->csum_type) &&
869 	    bch2_write_rechecksum(c, op, op->csum_type) &&
870 	    !c->opts.no_data_io)
871 		return PREP_ENCODED_CHECKSUM_ERR;
872 
873 	/*
874 	 * If we want to compress the data, it has to be decrypted:
875 	 */
876 	if ((op->compression_opt ||
877 	     bch2_csum_type_is_encryption(op->crc.csum_type) !=
878 	     bch2_csum_type_is_encryption(op->csum_type)) &&
879 	    bch2_write_decrypt(op))
880 		return PREP_ENCODED_CHECKSUM_ERR;
881 
882 	return PREP_ENCODED_OK;
883 }
884 
885 static int bch2_write_extent(struct bch_write_op *op, struct write_point *wp,
886 			     struct bio **_dst)
887 {
888 	struct bch_fs *c = op->c;
889 	struct bio *src = &op->wbio.bio, *dst = src;
890 	struct bvec_iter saved_iter;
891 	void *ec_buf;
892 	unsigned total_output = 0, total_input = 0;
893 	bool bounce = false;
894 	bool page_alloc_failed = false;
895 	int ret, more = 0;
896 
897 	BUG_ON(!bio_sectors(src));
898 
899 	ec_buf = bch2_writepoint_ec_buf(c, wp);
900 
901 	switch (bch2_write_prep_encoded_data(op, wp)) {
902 	case PREP_ENCODED_OK:
903 		break;
904 	case PREP_ENCODED_ERR:
905 		ret = -EIO;
906 		goto err;
907 	case PREP_ENCODED_CHECKSUM_ERR:
908 		goto csum_err;
909 	case PREP_ENCODED_DO_WRITE:
910 		/* XXX look for bug here */
911 		if (ec_buf) {
912 			dst = bch2_write_bio_alloc(c, wp, src,
913 						   &page_alloc_failed,
914 						   ec_buf);
915 			bio_copy_data(dst, src);
916 			bounce = true;
917 		}
918 		init_append_extent(op, wp, op->version, op->crc);
919 		goto do_write;
920 	}
921 
922 	if (ec_buf ||
923 	    op->compression_opt ||
924 	    (op->csum_type &&
925 	     !(op->flags & BCH_WRITE_PAGES_STABLE)) ||
926 	    (bch2_csum_type_is_encryption(op->csum_type) &&
927 	     !(op->flags & BCH_WRITE_PAGES_OWNED))) {
928 		dst = bch2_write_bio_alloc(c, wp, src,
929 					   &page_alloc_failed,
930 					   ec_buf);
931 		bounce = true;
932 	}
933 
934 	saved_iter = dst->bi_iter;
935 
936 	do {
937 		struct bch_extent_crc_unpacked crc = { 0 };
938 		struct bversion version = op->version;
939 		size_t dst_len = 0, src_len = 0;
940 
941 		if (page_alloc_failed &&
942 		    dst->bi_iter.bi_size  < (wp->sectors_free << 9) &&
943 		    dst->bi_iter.bi_size < c->opts.encoded_extent_max)
944 			break;
945 
946 		BUG_ON(op->compression_opt &&
947 		       (op->flags & BCH_WRITE_DATA_ENCODED) &&
948 		       bch2_csum_type_is_encryption(op->crc.csum_type));
949 		BUG_ON(op->compression_opt && !bounce);
950 
951 		crc.compression_type = op->incompressible
952 			? BCH_COMPRESSION_TYPE_incompressible
953 			: op->compression_opt
954 			? bch2_bio_compress(c, dst, &dst_len, src, &src_len,
955 					    op->compression_opt)
956 			: 0;
957 		if (!crc_is_compressed(crc)) {
958 			dst_len = min(dst->bi_iter.bi_size, src->bi_iter.bi_size);
959 			dst_len = min_t(unsigned, dst_len, wp->sectors_free << 9);
960 
961 			if (op->csum_type)
962 				dst_len = min_t(unsigned, dst_len,
963 						c->opts.encoded_extent_max);
964 
965 			if (bounce) {
966 				swap(dst->bi_iter.bi_size, dst_len);
967 				bio_copy_data(dst, src);
968 				swap(dst->bi_iter.bi_size, dst_len);
969 			}
970 
971 			src_len = dst_len;
972 		}
973 
974 		BUG_ON(!src_len || !dst_len);
975 
976 		if (bch2_csum_type_is_encryption(op->csum_type)) {
977 			if (bversion_zero(version)) {
978 				version.lo = atomic64_inc_return(&c->key_version);
979 			} else {
980 				crc.nonce = op->nonce;
981 				op->nonce += src_len >> 9;
982 			}
983 		}
984 
985 		if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
986 		    !crc_is_compressed(crc) &&
987 		    bch2_csum_type_is_encryption(op->crc.csum_type) ==
988 		    bch2_csum_type_is_encryption(op->csum_type)) {
989 			u8 compression_type = crc.compression_type;
990 			u16 nonce = crc.nonce;
991 			/*
992 			 * Note: when we're using rechecksum(), we need to be
993 			 * checksumming @src because it has all the data our
994 			 * existing checksum covers - if we bounced (because we
995 			 * were trying to compress), @dst will only have the
996 			 * part of the data the new checksum will cover.
997 			 *
998 			 * But normally we want to be checksumming post bounce,
999 			 * because part of the reason for bouncing is so the
1000 			 * data can't be modified (by userspace) while it's in
1001 			 * flight.
1002 			 */
1003 			if (bch2_rechecksum_bio(c, src, version, op->crc,
1004 					&crc, &op->crc,
1005 					src_len >> 9,
1006 					bio_sectors(src) - (src_len >> 9),
1007 					op->csum_type))
1008 				goto csum_err;
1009 			/*
1010 			 * rchecksum_bio sets compression_type on crc from op->crc,
1011 			 * this isn't always correct as sometimes we're changing
1012 			 * an extent from uncompressed to incompressible.
1013 			 */
1014 			crc.compression_type = compression_type;
1015 			crc.nonce = nonce;
1016 		} else {
1017 			if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
1018 			    bch2_rechecksum_bio(c, src, version, op->crc,
1019 					NULL, &op->crc,
1020 					src_len >> 9,
1021 					bio_sectors(src) - (src_len >> 9),
1022 					op->crc.csum_type))
1023 				goto csum_err;
1024 
1025 			crc.compressed_size	= dst_len >> 9;
1026 			crc.uncompressed_size	= src_len >> 9;
1027 			crc.live_size		= src_len >> 9;
1028 
1029 			swap(dst->bi_iter.bi_size, dst_len);
1030 			ret = bch2_encrypt_bio(c, op->csum_type,
1031 					       extent_nonce(version, crc), dst);
1032 			if (ret)
1033 				goto err;
1034 
1035 			crc.csum = bch2_checksum_bio(c, op->csum_type,
1036 					 extent_nonce(version, crc), dst);
1037 			crc.csum_type = op->csum_type;
1038 			swap(dst->bi_iter.bi_size, dst_len);
1039 		}
1040 
1041 		init_append_extent(op, wp, version, crc);
1042 
1043 		if (dst != src)
1044 			bio_advance(dst, dst_len);
1045 		bio_advance(src, src_len);
1046 		total_output	+= dst_len;
1047 		total_input	+= src_len;
1048 	} while (dst->bi_iter.bi_size &&
1049 		 src->bi_iter.bi_size &&
1050 		 wp->sectors_free &&
1051 		 !bch2_keylist_realloc(&op->insert_keys,
1052 				      op->inline_keys,
1053 				      ARRAY_SIZE(op->inline_keys),
1054 				      BKEY_EXTENT_U64s_MAX));
1055 
1056 	more = src->bi_iter.bi_size != 0;
1057 
1058 	dst->bi_iter = saved_iter;
1059 
1060 	if (dst == src && more) {
1061 		BUG_ON(total_output != total_input);
1062 
1063 		dst = bio_split(src, total_input >> 9,
1064 				GFP_NOFS, &c->bio_write);
1065 		wbio_init(dst)->put_bio	= true;
1066 		/* copy WRITE_SYNC flag */
1067 		dst->bi_opf		= src->bi_opf;
1068 	}
1069 
1070 	dst->bi_iter.bi_size = total_output;
1071 do_write:
1072 	*_dst = dst;
1073 	return more;
1074 csum_err:
1075 	bch_err(c, "error verifying existing checksum while rewriting existing data (memory corruption?)");
1076 	ret = -EIO;
1077 err:
1078 	if (to_wbio(dst)->bounce)
1079 		bch2_bio_free_pages_pool(c, dst);
1080 	if (to_wbio(dst)->put_bio)
1081 		bio_put(dst);
1082 
1083 	return ret;
1084 }
1085 
1086 static bool bch2_extent_is_writeable(struct bch_write_op *op,
1087 				     struct bkey_s_c k)
1088 {
1089 	struct bch_fs *c = op->c;
1090 	struct bkey_s_c_extent e;
1091 	struct extent_ptr_decoded p;
1092 	const union bch_extent_entry *entry;
1093 	unsigned replicas = 0;
1094 
1095 	if (k.k->type != KEY_TYPE_extent)
1096 		return false;
1097 
1098 	e = bkey_s_c_to_extent(k);
1099 	extent_for_each_ptr_decode(e, p, entry) {
1100 		if (crc_is_encoded(p.crc) || p.has_ec)
1101 			return false;
1102 
1103 		replicas += bch2_extent_ptr_durability(c, &p);
1104 	}
1105 
1106 	return replicas >= op->opts.data_replicas;
1107 }
1108 
1109 static inline void bch2_nocow_write_unlock(struct bch_write_op *op)
1110 {
1111 	struct bch_fs *c = op->c;
1112 	const struct bch_extent_ptr *ptr;
1113 	struct bkey_i *k;
1114 
1115 	for_each_keylist_key(&op->insert_keys, k) {
1116 		struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k));
1117 
1118 		bkey_for_each_ptr(ptrs, ptr)
1119 			bch2_bucket_nocow_unlock(&c->nocow_locks,
1120 					       PTR_BUCKET_POS(c, ptr),
1121 					       BUCKET_NOCOW_LOCK_UPDATE);
1122 	}
1123 }
1124 
1125 static int bch2_nocow_write_convert_one_unwritten(struct btree_trans *trans,
1126 						  struct btree_iter *iter,
1127 						  struct bkey_i *orig,
1128 						  struct bkey_s_c k,
1129 						  u64 new_i_size)
1130 {
1131 	struct bkey_i *new;
1132 	struct bkey_ptrs ptrs;
1133 	struct bch_extent_ptr *ptr;
1134 	int ret;
1135 
1136 	if (!bch2_extents_match(bkey_i_to_s_c(orig), k)) {
1137 		/* trace this */
1138 		return 0;
1139 	}
1140 
1141 	new = bch2_bkey_make_mut_noupdate(trans, k);
1142 	ret = PTR_ERR_OR_ZERO(new);
1143 	if (ret)
1144 		return ret;
1145 
1146 	bch2_cut_front(bkey_start_pos(&orig->k), new);
1147 	bch2_cut_back(orig->k.p, new);
1148 
1149 	ptrs = bch2_bkey_ptrs(bkey_i_to_s(new));
1150 	bkey_for_each_ptr(ptrs, ptr)
1151 		ptr->unwritten = 0;
1152 
1153 	/*
1154 	 * Note that we're not calling bch2_subvol_get_snapshot() in this path -
1155 	 * that was done when we kicked off the write, and here it's important
1156 	 * that we update the extent that we wrote to - even if a snapshot has
1157 	 * since been created. The write is still outstanding, so we're ok
1158 	 * w.r.t. snapshot atomicity:
1159 	 */
1160 	return  bch2_extent_update_i_size_sectors(trans, iter,
1161 					min(new->k.p.offset << 9, new_i_size), 0) ?:
1162 		bch2_trans_update(trans, iter, new,
1163 				  BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE);
1164 }
1165 
1166 static void bch2_nocow_write_convert_unwritten(struct bch_write_op *op)
1167 {
1168 	struct bch_fs *c = op->c;
1169 	struct btree_trans *trans = bch2_trans_get(c);
1170 	struct btree_iter iter;
1171 	struct bkey_i *orig;
1172 	struct bkey_s_c k;
1173 	int ret;
1174 
1175 	for_each_keylist_key(&op->insert_keys, orig) {
1176 		ret = for_each_btree_key_upto_commit(trans, iter, BTREE_ID_extents,
1177 				     bkey_start_pos(&orig->k), orig->k.p,
1178 				     BTREE_ITER_INTENT, k,
1179 				     NULL, NULL, BTREE_INSERT_NOFAIL, ({
1180 			bch2_nocow_write_convert_one_unwritten(trans, &iter, orig, k, op->new_i_size);
1181 		}));
1182 
1183 		if (ret && !bch2_err_matches(ret, EROFS)) {
1184 			struct bkey_i *insert = bch2_keylist_front(&op->insert_keys);
1185 
1186 			bch_err_inum_offset_ratelimited(c,
1187 				insert->k.p.inode, insert->k.p.offset << 9,
1188 				"write error while doing btree update: %s",
1189 				bch2_err_str(ret));
1190 		}
1191 
1192 		if (ret) {
1193 			op->error = ret;
1194 			break;
1195 		}
1196 	}
1197 
1198 	bch2_trans_put(trans);
1199 }
1200 
1201 static void __bch2_nocow_write_done(struct bch_write_op *op)
1202 {
1203 	bch2_nocow_write_unlock(op);
1204 
1205 	if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) {
1206 		op->error = -EIO;
1207 	} else if (unlikely(op->flags & BCH_WRITE_CONVERT_UNWRITTEN))
1208 		bch2_nocow_write_convert_unwritten(op);
1209 }
1210 
1211 static void bch2_nocow_write_done(struct closure *cl)
1212 {
1213 	struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
1214 
1215 	__bch2_nocow_write_done(op);
1216 	bch2_write_done(cl);
1217 }
1218 
1219 static void bch2_nocow_write(struct bch_write_op *op)
1220 {
1221 	struct bch_fs *c = op->c;
1222 	struct btree_trans *trans;
1223 	struct btree_iter iter;
1224 	struct bkey_s_c k;
1225 	struct bkey_ptrs_c ptrs;
1226 	const struct bch_extent_ptr *ptr;
1227 	struct {
1228 		struct bpos	b;
1229 		unsigned	gen;
1230 		struct nocow_lock_bucket *l;
1231 	} buckets[BCH_REPLICAS_MAX];
1232 	unsigned nr_buckets = 0;
1233 	u32 snapshot;
1234 	int ret, i;
1235 
1236 	if (op->flags & BCH_WRITE_MOVE)
1237 		return;
1238 
1239 	trans = bch2_trans_get(c);
1240 retry:
1241 	bch2_trans_begin(trans);
1242 
1243 	ret = bch2_subvolume_get_snapshot(trans, op->subvol, &snapshot);
1244 	if (unlikely(ret))
1245 		goto err;
1246 
1247 	bch2_trans_iter_init(trans, &iter, BTREE_ID_extents,
1248 			     SPOS(op->pos.inode, op->pos.offset, snapshot),
1249 			     BTREE_ITER_SLOTS);
1250 	while (1) {
1251 		struct bio *bio = &op->wbio.bio;
1252 
1253 		nr_buckets = 0;
1254 
1255 		k = bch2_btree_iter_peek_slot(&iter);
1256 		ret = bkey_err(k);
1257 		if (ret)
1258 			break;
1259 
1260 		/* fall back to normal cow write path? */
1261 		if (unlikely(k.k->p.snapshot != snapshot ||
1262 			     !bch2_extent_is_writeable(op, k)))
1263 			break;
1264 
1265 		if (bch2_keylist_realloc(&op->insert_keys,
1266 					op->inline_keys,
1267 					ARRAY_SIZE(op->inline_keys),
1268 					k.k->u64s))
1269 			break;
1270 
1271 		/* Get iorefs before dropping btree locks: */
1272 		ptrs = bch2_bkey_ptrs_c(k);
1273 		bkey_for_each_ptr(ptrs, ptr) {
1274 			buckets[nr_buckets].b = PTR_BUCKET_POS(c, ptr);
1275 			buckets[nr_buckets].gen = ptr->gen;
1276 			buckets[nr_buckets].l =
1277 				bucket_nocow_lock(&c->nocow_locks,
1278 						  bucket_to_u64(buckets[nr_buckets].b));
1279 
1280 			prefetch(buckets[nr_buckets].l);
1281 
1282 			if (unlikely(!bch2_dev_get_ioref(bch_dev_bkey_exists(c, ptr->dev), WRITE)))
1283 				goto err_get_ioref;
1284 
1285 			nr_buckets++;
1286 
1287 			if (ptr->unwritten)
1288 				op->flags |= BCH_WRITE_CONVERT_UNWRITTEN;
1289 		}
1290 
1291 		/* Unlock before taking nocow locks, doing IO: */
1292 		bkey_reassemble(op->insert_keys.top, k);
1293 		bch2_trans_unlock(trans);
1294 
1295 		bch2_cut_front(op->pos, op->insert_keys.top);
1296 		if (op->flags & BCH_WRITE_CONVERT_UNWRITTEN)
1297 			bch2_cut_back(POS(op->pos.inode, op->pos.offset + bio_sectors(bio)), op->insert_keys.top);
1298 
1299 		for (i = 0; i < nr_buckets; i++) {
1300 			struct bch_dev *ca = bch_dev_bkey_exists(c, buckets[i].b.inode);
1301 			struct nocow_lock_bucket *l = buckets[i].l;
1302 			bool stale;
1303 
1304 			__bch2_bucket_nocow_lock(&c->nocow_locks, l,
1305 						 bucket_to_u64(buckets[i].b),
1306 						 BUCKET_NOCOW_LOCK_UPDATE);
1307 
1308 			rcu_read_lock();
1309 			stale = gen_after(*bucket_gen(ca, buckets[i].b.offset), buckets[i].gen);
1310 			rcu_read_unlock();
1311 
1312 			if (unlikely(stale))
1313 				goto err_bucket_stale;
1314 		}
1315 
1316 		bio = &op->wbio.bio;
1317 		if (k.k->p.offset < op->pos.offset + bio_sectors(bio)) {
1318 			bio = bio_split(bio, k.k->p.offset - op->pos.offset,
1319 					GFP_KERNEL, &c->bio_write);
1320 			wbio_init(bio)->put_bio = true;
1321 			bio->bi_opf = op->wbio.bio.bi_opf;
1322 		} else {
1323 			op->flags |= BCH_WRITE_DONE;
1324 		}
1325 
1326 		op->pos.offset += bio_sectors(bio);
1327 		op->written += bio_sectors(bio);
1328 
1329 		bio->bi_end_io	= bch2_write_endio;
1330 		bio->bi_private	= &op->cl;
1331 		bio->bi_opf |= REQ_OP_WRITE;
1332 		closure_get(&op->cl);
1333 		bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user,
1334 					  op->insert_keys.top, true);
1335 
1336 		bch2_keylist_push(&op->insert_keys);
1337 		if (op->flags & BCH_WRITE_DONE)
1338 			break;
1339 		bch2_btree_iter_advance(&iter);
1340 	}
1341 out:
1342 	bch2_trans_iter_exit(trans, &iter);
1343 err:
1344 	if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
1345 		goto retry;
1346 
1347 	if (ret) {
1348 		bch_err_inum_offset_ratelimited(c,
1349 				op->pos.inode,
1350 				op->pos.offset << 9,
1351 				"%s: btree lookup error %s",
1352 				__func__, bch2_err_str(ret));
1353 		op->error = ret;
1354 		op->flags |= BCH_WRITE_DONE;
1355 	}
1356 
1357 	bch2_trans_put(trans);
1358 
1359 	/* fallback to cow write path? */
1360 	if (!(op->flags & BCH_WRITE_DONE)) {
1361 		closure_sync(&op->cl);
1362 		__bch2_nocow_write_done(op);
1363 		op->insert_keys.top = op->insert_keys.keys;
1364 	} else if (op->flags & BCH_WRITE_SYNC) {
1365 		closure_sync(&op->cl);
1366 		bch2_nocow_write_done(&op->cl);
1367 	} else {
1368 		/*
1369 		 * XXX
1370 		 * needs to run out of process context because ei_quota_lock is
1371 		 * a mutex
1372 		 */
1373 		continue_at(&op->cl, bch2_nocow_write_done, index_update_wq(op));
1374 	}
1375 	return;
1376 err_get_ioref:
1377 	for (i = 0; i < nr_buckets; i++)
1378 		percpu_ref_put(&bch_dev_bkey_exists(c, buckets[i].b.inode)->io_ref);
1379 
1380 	/* Fall back to COW path: */
1381 	goto out;
1382 err_bucket_stale:
1383 	while (i >= 0) {
1384 		bch2_bucket_nocow_unlock(&c->nocow_locks,
1385 					 buckets[i].b,
1386 					 BUCKET_NOCOW_LOCK_UPDATE);
1387 		--i;
1388 	}
1389 	for (i = 0; i < nr_buckets; i++)
1390 		percpu_ref_put(&bch_dev_bkey_exists(c, buckets[i].b.inode)->io_ref);
1391 
1392 	/* We can retry this: */
1393 	ret = -BCH_ERR_transaction_restart;
1394 	goto out;
1395 }
1396 
1397 static void __bch2_write(struct bch_write_op *op)
1398 {
1399 	struct bch_fs *c = op->c;
1400 	struct write_point *wp = NULL;
1401 	struct bio *bio = NULL;
1402 	unsigned nofs_flags;
1403 	int ret;
1404 
1405 	nofs_flags = memalloc_nofs_save();
1406 
1407 	if (unlikely(op->opts.nocow && c->opts.nocow_enabled)) {
1408 		bch2_nocow_write(op);
1409 		if (op->flags & BCH_WRITE_DONE)
1410 			goto out_nofs_restore;
1411 	}
1412 again:
1413 	memset(&op->failed, 0, sizeof(op->failed));
1414 
1415 	do {
1416 		struct bkey_i *key_to_write;
1417 		unsigned key_to_write_offset = op->insert_keys.top_p -
1418 			op->insert_keys.keys_p;
1419 
1420 		/* +1 for possible cache device: */
1421 		if (op->open_buckets.nr + op->nr_replicas + 1 >
1422 		    ARRAY_SIZE(op->open_buckets.v))
1423 			break;
1424 
1425 		if (bch2_keylist_realloc(&op->insert_keys,
1426 					op->inline_keys,
1427 					ARRAY_SIZE(op->inline_keys),
1428 					BKEY_EXTENT_U64s_MAX))
1429 			break;
1430 
1431 		/*
1432 		 * The copygc thread is now global, which means it's no longer
1433 		 * freeing up space on specific disks, which means that
1434 		 * allocations for specific disks may hang arbitrarily long:
1435 		 */
1436 		ret = bch2_trans_do(c, NULL, NULL, 0,
1437 			bch2_alloc_sectors_start_trans(trans,
1438 				op->target,
1439 				op->opts.erasure_code && !(op->flags & BCH_WRITE_CACHED),
1440 				op->write_point,
1441 				&op->devs_have,
1442 				op->nr_replicas,
1443 				op->nr_replicas_required,
1444 				op->watermark,
1445 				op->flags,
1446 				(op->flags & (BCH_WRITE_ALLOC_NOWAIT|
1447 					      BCH_WRITE_ONLY_SPECIFIED_DEVS))
1448 				? NULL : &op->cl, &wp));
1449 		if (unlikely(ret)) {
1450 			if (bch2_err_matches(ret, BCH_ERR_operation_blocked))
1451 				break;
1452 
1453 			goto err;
1454 		}
1455 
1456 		EBUG_ON(!wp);
1457 
1458 		bch2_open_bucket_get(c, wp, &op->open_buckets);
1459 		ret = bch2_write_extent(op, wp, &bio);
1460 
1461 		bch2_alloc_sectors_done_inlined(c, wp);
1462 err:
1463 		if (ret <= 0) {
1464 			op->flags |= BCH_WRITE_DONE;
1465 
1466 			if (ret < 0) {
1467 				op->error = ret;
1468 				break;
1469 			}
1470 		}
1471 
1472 		bio->bi_end_io	= bch2_write_endio;
1473 		bio->bi_private	= &op->cl;
1474 		bio->bi_opf |= REQ_OP_WRITE;
1475 
1476 		closure_get(bio->bi_private);
1477 
1478 		key_to_write = (void *) (op->insert_keys.keys_p +
1479 					 key_to_write_offset);
1480 
1481 		bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user,
1482 					  key_to_write, false);
1483 	} while (ret);
1484 
1485 	/*
1486 	 * Sync or no?
1487 	 *
1488 	 * If we're running asynchronously, wne may still want to block
1489 	 * synchronously here if we weren't able to submit all of the IO at
1490 	 * once, as that signals backpressure to the caller.
1491 	 */
1492 	if ((op->flags & BCH_WRITE_SYNC) ||
1493 	    (!(op->flags & BCH_WRITE_DONE) &&
1494 	     !(op->flags & BCH_WRITE_IN_WORKER))) {
1495 		closure_sync(&op->cl);
1496 		__bch2_write_index(op);
1497 
1498 		if (!(op->flags & BCH_WRITE_DONE))
1499 			goto again;
1500 		bch2_write_done(&op->cl);
1501 	} else {
1502 		bch2_write_queue(op, wp);
1503 		continue_at(&op->cl, bch2_write_index, NULL);
1504 	}
1505 out_nofs_restore:
1506 	memalloc_nofs_restore(nofs_flags);
1507 }
1508 
1509 static void bch2_write_data_inline(struct bch_write_op *op, unsigned data_len)
1510 {
1511 	struct bio *bio = &op->wbio.bio;
1512 	struct bvec_iter iter;
1513 	struct bkey_i_inline_data *id;
1514 	unsigned sectors;
1515 	int ret;
1516 
1517 	op->flags |= BCH_WRITE_WROTE_DATA_INLINE;
1518 	op->flags |= BCH_WRITE_DONE;
1519 
1520 	bch2_check_set_feature(op->c, BCH_FEATURE_inline_data);
1521 
1522 	ret = bch2_keylist_realloc(&op->insert_keys, op->inline_keys,
1523 				   ARRAY_SIZE(op->inline_keys),
1524 				   BKEY_U64s + DIV_ROUND_UP(data_len, 8));
1525 	if (ret) {
1526 		op->error = ret;
1527 		goto err;
1528 	}
1529 
1530 	sectors = bio_sectors(bio);
1531 	op->pos.offset += sectors;
1532 
1533 	id = bkey_inline_data_init(op->insert_keys.top);
1534 	id->k.p		= op->pos;
1535 	id->k.version	= op->version;
1536 	id->k.size	= sectors;
1537 
1538 	iter = bio->bi_iter;
1539 	iter.bi_size = data_len;
1540 	memcpy_from_bio(id->v.data, bio, iter);
1541 
1542 	while (data_len & 7)
1543 		id->v.data[data_len++] = '\0';
1544 	set_bkey_val_bytes(&id->k, data_len);
1545 	bch2_keylist_push(&op->insert_keys);
1546 
1547 	__bch2_write_index(op);
1548 err:
1549 	bch2_write_done(&op->cl);
1550 }
1551 
1552 /**
1553  * bch2_write() - handle a write to a cache device or flash only volume
1554  * @cl:		&bch_write_op->cl
1555  *
1556  * This is the starting point for any data to end up in a cache device; it could
1557  * be from a normal write, or a writeback write, or a write to a flash only
1558  * volume - it's also used by the moving garbage collector to compact data in
1559  * mostly empty buckets.
1560  *
1561  * It first writes the data to the cache, creating a list of keys to be inserted
1562  * (if the data won't fit in a single open bucket, there will be multiple keys);
1563  * after the data is written it calls bch_journal, and after the keys have been
1564  * added to the next journal write they're inserted into the btree.
1565  *
1566  * If op->discard is true, instead of inserting the data it invalidates the
1567  * region of the cache represented by op->bio and op->inode.
1568  */
1569 void bch2_write(struct closure *cl)
1570 {
1571 	struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
1572 	struct bio *bio = &op->wbio.bio;
1573 	struct bch_fs *c = op->c;
1574 	unsigned data_len;
1575 
1576 	EBUG_ON(op->cl.parent);
1577 	BUG_ON(!op->nr_replicas);
1578 	BUG_ON(!op->write_point.v);
1579 	BUG_ON(bkey_eq(op->pos, POS_MAX));
1580 
1581 	op->start_time = local_clock();
1582 	bch2_keylist_init(&op->insert_keys, op->inline_keys);
1583 	wbio_init(bio)->put_bio = false;
1584 
1585 	if (bio->bi_iter.bi_size & (c->opts.block_size - 1)) {
1586 		bch_err_inum_offset_ratelimited(c,
1587 			op->pos.inode,
1588 			op->pos.offset << 9,
1589 			"misaligned write");
1590 		op->error = -EIO;
1591 		goto err;
1592 	}
1593 
1594 	if (c->opts.nochanges) {
1595 		op->error = -BCH_ERR_erofs_no_writes;
1596 		goto err;
1597 	}
1598 
1599 	if (!(op->flags & BCH_WRITE_MOVE) &&
1600 	    !bch2_write_ref_tryget(c, BCH_WRITE_REF_write)) {
1601 		op->error = -BCH_ERR_erofs_no_writes;
1602 		goto err;
1603 	}
1604 
1605 	this_cpu_add(c->counters[BCH_COUNTER_io_write], bio_sectors(bio));
1606 	bch2_increment_clock(c, bio_sectors(bio), WRITE);
1607 
1608 	data_len = min_t(u64, bio->bi_iter.bi_size,
1609 			 op->new_i_size - (op->pos.offset << 9));
1610 
1611 	if (c->opts.inline_data &&
1612 	    data_len <= min(block_bytes(c) / 2, 1024U)) {
1613 		bch2_write_data_inline(op, data_len);
1614 		return;
1615 	}
1616 
1617 	__bch2_write(op);
1618 	return;
1619 err:
1620 	bch2_disk_reservation_put(c, &op->res);
1621 
1622 	closure_debug_destroy(&op->cl);
1623 	if (op->end_io)
1624 		op->end_io(op);
1625 }
1626 
1627 static const char * const bch2_write_flags[] = {
1628 #define x(f)	#f,
1629 	BCH_WRITE_FLAGS()
1630 #undef x
1631 	NULL
1632 };
1633 
1634 void bch2_write_op_to_text(struct printbuf *out, struct bch_write_op *op)
1635 {
1636 	prt_str(out, "pos: ");
1637 	bch2_bpos_to_text(out, op->pos);
1638 	prt_newline(out);
1639 	printbuf_indent_add(out, 2);
1640 
1641 	prt_str(out, "started: ");
1642 	bch2_pr_time_units(out, local_clock() - op->start_time);
1643 	prt_newline(out);
1644 
1645 	prt_str(out, "flags: ");
1646 	prt_bitflags(out, bch2_write_flags, op->flags);
1647 	prt_newline(out);
1648 
1649 	prt_printf(out, "ref: %u", closure_nr_remaining(&op->cl));
1650 	prt_newline(out);
1651 
1652 	printbuf_indent_sub(out, 2);
1653 }
1654 
1655 void bch2_fs_io_write_exit(struct bch_fs *c)
1656 {
1657 	mempool_exit(&c->bio_bounce_pages);
1658 	bioset_exit(&c->bio_write);
1659 }
1660 
1661 int bch2_fs_io_write_init(struct bch_fs *c)
1662 {
1663 	if (bioset_init(&c->bio_write, 1, offsetof(struct bch_write_bio, bio),
1664 			BIOSET_NEED_BVECS))
1665 		return -BCH_ERR_ENOMEM_bio_write_init;
1666 
1667 	if (mempool_init_page_pool(&c->bio_bounce_pages,
1668 				   max_t(unsigned,
1669 					 c->opts.btree_node_size,
1670 					 c->opts.encoded_extent_max) /
1671 				   PAGE_SIZE, 0))
1672 		return -BCH_ERR_ENOMEM_bio_bounce_pages_init;
1673 
1674 	return 0;
1675 }
1676