1 // SPDX-License-Identifier: GPL-2.0 2 #ifndef NO_BCACHEFS_FS 3 4 #include "bcachefs.h" 5 #include "alloc_foreground.h" 6 #include "fs.h" 7 #include "fs-io.h" 8 #include "fs-io-direct.h" 9 #include "fs-io-pagecache.h" 10 #include "io_read.h" 11 #include "io_write.h" 12 13 #include <linux/kthread.h> 14 #include <linux/pagemap.h> 15 #include <linux/prefetch.h> 16 #include <linux/task_io_accounting_ops.h> 17 18 /* O_DIRECT reads */ 19 20 struct dio_read { 21 struct closure cl; 22 struct kiocb *req; 23 long ret; 24 bool should_dirty; 25 struct bch_read_bio rbio; 26 }; 27 28 static void bio_check_or_release(struct bio *bio, bool check_dirty) 29 { 30 if (check_dirty) { 31 bio_check_pages_dirty(bio); 32 } else { 33 bio_release_pages(bio, false); 34 bio_put(bio); 35 } 36 } 37 38 static CLOSURE_CALLBACK(bch2_dio_read_complete) 39 { 40 closure_type(dio, struct dio_read, cl); 41 42 dio->req->ki_complete(dio->req, dio->ret); 43 bio_check_or_release(&dio->rbio.bio, dio->should_dirty); 44 } 45 46 static void bch2_direct_IO_read_endio(struct bio *bio) 47 { 48 struct dio_read *dio = bio->bi_private; 49 50 if (bio->bi_status) 51 dio->ret = blk_status_to_errno(bio->bi_status); 52 53 closure_put(&dio->cl); 54 } 55 56 static void bch2_direct_IO_read_split_endio(struct bio *bio) 57 { 58 struct dio_read *dio = bio->bi_private; 59 bool should_dirty = dio->should_dirty; 60 61 bch2_direct_IO_read_endio(bio); 62 bio_check_or_release(bio, should_dirty); 63 } 64 65 static int bch2_direct_IO_read(struct kiocb *req, struct iov_iter *iter) 66 { 67 struct file *file = req->ki_filp; 68 struct bch_inode_info *inode = file_bch_inode(file); 69 struct bch_fs *c = inode->v.i_sb->s_fs_info; 70 struct bch_io_opts opts; 71 struct dio_read *dio; 72 struct bio *bio; 73 struct blk_plug plug; 74 loff_t offset = req->ki_pos; 75 bool sync = is_sync_kiocb(req); 76 size_t shorten; 77 ssize_t ret; 78 79 bch2_inode_opts_get(&opts, c, &inode->ei_inode); 80 81 /* bios must be 512 byte aligned: */ 82 if ((offset|iter->count) & (SECTOR_SIZE - 1)) 83 return -EINVAL; 84 85 ret = min_t(loff_t, iter->count, 86 max_t(loff_t, 0, i_size_read(&inode->v) - offset)); 87 88 if (!ret) 89 return ret; 90 91 shorten = iov_iter_count(iter) - round_up(ret, block_bytes(c)); 92 if (shorten >= iter->count) 93 shorten = 0; 94 iter->count -= shorten; 95 96 bio = bio_alloc_bioset(NULL, 97 bio_iov_vecs_to_alloc(iter, BIO_MAX_VECS), 98 REQ_OP_READ, 99 GFP_KERNEL, 100 &c->dio_read_bioset); 101 102 bio->bi_end_io = bch2_direct_IO_read_endio; 103 104 dio = container_of(bio, struct dio_read, rbio.bio); 105 closure_init(&dio->cl, NULL); 106 107 /* 108 * this is a _really_ horrible hack just to avoid an atomic sub at the 109 * end: 110 */ 111 if (!sync) { 112 set_closure_fn(&dio->cl, bch2_dio_read_complete, NULL); 113 atomic_set(&dio->cl.remaining, 114 CLOSURE_REMAINING_INITIALIZER - 115 CLOSURE_RUNNING + 116 CLOSURE_DESTRUCTOR); 117 } else { 118 atomic_set(&dio->cl.remaining, 119 CLOSURE_REMAINING_INITIALIZER + 1); 120 dio->cl.closure_get_happened = true; 121 } 122 123 dio->req = req; 124 dio->ret = ret; 125 /* 126 * This is one of the sketchier things I've encountered: we have to skip 127 * the dirtying of requests that are internal from the kernel (i.e. from 128 * loopback), because we'll deadlock on page_lock. 129 */ 130 dio->should_dirty = iter_is_iovec(iter); 131 132 blk_start_plug(&plug); 133 134 goto start; 135 while (iter->count) { 136 bio = bio_alloc_bioset(NULL, 137 bio_iov_vecs_to_alloc(iter, BIO_MAX_VECS), 138 REQ_OP_READ, 139 GFP_KERNEL, 140 &c->bio_read); 141 bio->bi_end_io = bch2_direct_IO_read_split_endio; 142 start: 143 bio->bi_opf = REQ_OP_READ|REQ_SYNC; 144 bio->bi_iter.bi_sector = offset >> 9; 145 bio->bi_private = dio; 146 147 ret = bio_iov_iter_get_pages(bio, iter); 148 if (ret < 0) { 149 /* XXX: fault inject this path */ 150 bio->bi_status = BLK_STS_RESOURCE; 151 bio_endio(bio); 152 break; 153 } 154 155 offset += bio->bi_iter.bi_size; 156 157 if (dio->should_dirty) 158 bio_set_pages_dirty(bio); 159 160 if (iter->count) 161 closure_get(&dio->cl); 162 163 bch2_read(c, rbio_init(bio, opts), inode_inum(inode)); 164 } 165 166 blk_finish_plug(&plug); 167 168 iter->count += shorten; 169 170 if (sync) { 171 closure_sync(&dio->cl); 172 closure_debug_destroy(&dio->cl); 173 ret = dio->ret; 174 bio_check_or_release(&dio->rbio.bio, dio->should_dirty); 175 return ret; 176 } else { 177 return -EIOCBQUEUED; 178 } 179 } 180 181 ssize_t bch2_read_iter(struct kiocb *iocb, struct iov_iter *iter) 182 { 183 struct file *file = iocb->ki_filp; 184 struct bch_inode_info *inode = file_bch_inode(file); 185 struct address_space *mapping = file->f_mapping; 186 size_t count = iov_iter_count(iter); 187 ssize_t ret = 0; 188 189 if (!count) 190 return 0; /* skip atime */ 191 192 if (iocb->ki_flags & IOCB_DIRECT) { 193 struct blk_plug plug; 194 195 if (unlikely(mapping->nrpages)) { 196 ret = filemap_write_and_wait_range(mapping, 197 iocb->ki_pos, 198 iocb->ki_pos + count - 1); 199 if (ret < 0) 200 goto out; 201 } 202 203 file_accessed(file); 204 205 blk_start_plug(&plug); 206 ret = bch2_direct_IO_read(iocb, iter); 207 blk_finish_plug(&plug); 208 209 if (ret >= 0) 210 iocb->ki_pos += ret; 211 } else { 212 bch2_pagecache_add_get(inode); 213 ret = filemap_read(iocb, iter, ret); 214 bch2_pagecache_add_put(inode); 215 } 216 out: 217 return bch2_err_class(ret); 218 } 219 220 /* O_DIRECT writes */ 221 222 struct dio_write { 223 struct kiocb *req; 224 struct address_space *mapping; 225 struct bch_inode_info *inode; 226 struct mm_struct *mm; 227 const struct iovec *iov; 228 unsigned loop:1, 229 extending:1, 230 sync:1, 231 flush:1; 232 struct quota_res quota_res; 233 u64 written; 234 235 struct iov_iter iter; 236 struct iovec inline_vecs[2]; 237 238 /* must be last: */ 239 struct bch_write_op op; 240 }; 241 242 static bool bch2_check_range_allocated(struct bch_fs *c, subvol_inum inum, 243 u64 offset, u64 size, 244 unsigned nr_replicas, bool compressed) 245 { 246 struct btree_trans *trans = bch2_trans_get(c); 247 struct btree_iter iter; 248 struct bkey_s_c k; 249 u64 end = offset + size; 250 u32 snapshot; 251 bool ret = true; 252 int err; 253 retry: 254 bch2_trans_begin(trans); 255 256 err = bch2_subvolume_get_snapshot(trans, inum.subvol, &snapshot); 257 if (err) 258 goto err; 259 260 for_each_btree_key_norestart(trans, iter, BTREE_ID_extents, 261 SPOS(inum.inum, offset, snapshot), 262 BTREE_ITER_slots, k, err) { 263 if (bkey_ge(bkey_start_pos(k.k), POS(inum.inum, end))) 264 break; 265 266 if (k.k->p.snapshot != snapshot || 267 nr_replicas > bch2_bkey_replicas(c, k) || 268 (!compressed && bch2_bkey_sectors_compressed(k))) { 269 ret = false; 270 break; 271 } 272 } 273 274 offset = iter.pos.offset; 275 bch2_trans_iter_exit(trans, &iter); 276 err: 277 if (bch2_err_matches(err, BCH_ERR_transaction_restart)) 278 goto retry; 279 bch2_trans_put(trans); 280 281 return err ? false : ret; 282 } 283 284 static noinline bool bch2_dio_write_check_allocated(struct dio_write *dio) 285 { 286 struct bch_fs *c = dio->op.c; 287 struct bch_inode_info *inode = dio->inode; 288 struct bio *bio = &dio->op.wbio.bio; 289 290 return bch2_check_range_allocated(c, inode_inum(inode), 291 dio->op.pos.offset, bio_sectors(bio), 292 dio->op.opts.data_replicas, 293 dio->op.opts.compression != 0); 294 } 295 296 static void bch2_dio_write_loop_async(struct bch_write_op *); 297 static __always_inline long bch2_dio_write_done(struct dio_write *dio); 298 299 /* 300 * We're going to return -EIOCBQUEUED, but we haven't finished consuming the 301 * iov_iter yet, so we need to stash a copy of the iovec: it might be on the 302 * caller's stack, we're not guaranteed that it will live for the duration of 303 * the IO: 304 */ 305 static noinline int bch2_dio_write_copy_iov(struct dio_write *dio) 306 { 307 struct iovec *iov = dio->inline_vecs; 308 309 /* 310 * iov_iter has a single embedded iovec - nothing to do: 311 */ 312 if (iter_is_ubuf(&dio->iter)) 313 return 0; 314 315 /* 316 * We don't currently handle non-iovec iov_iters here - return an error, 317 * and we'll fall back to doing the IO synchronously: 318 */ 319 if (!iter_is_iovec(&dio->iter)) 320 return -1; 321 322 if (dio->iter.nr_segs > ARRAY_SIZE(dio->inline_vecs)) { 323 dio->iov = iov = kmalloc_array(dio->iter.nr_segs, sizeof(*iov), 324 GFP_KERNEL); 325 if (unlikely(!iov)) 326 return -ENOMEM; 327 } 328 329 memcpy(iov, dio->iter.__iov, dio->iter.nr_segs * sizeof(*iov)); 330 dio->iter.__iov = iov; 331 return 0; 332 } 333 334 static CLOSURE_CALLBACK(bch2_dio_write_flush_done) 335 { 336 closure_type(dio, struct dio_write, op.cl); 337 struct bch_fs *c = dio->op.c; 338 339 closure_debug_destroy(cl); 340 341 dio->op.error = bch2_journal_error(&c->journal); 342 343 bch2_dio_write_done(dio); 344 } 345 346 static noinline void bch2_dio_write_flush(struct dio_write *dio) 347 { 348 struct bch_fs *c = dio->op.c; 349 struct bch_inode_unpacked inode; 350 int ret; 351 352 dio->flush = 0; 353 354 closure_init(&dio->op.cl, NULL); 355 356 if (!dio->op.error) { 357 ret = bch2_inode_find_by_inum(c, inode_inum(dio->inode), &inode); 358 if (ret) { 359 dio->op.error = ret; 360 } else { 361 bch2_journal_flush_seq_async(&c->journal, inode.bi_journal_seq, 362 &dio->op.cl); 363 bch2_inode_flush_nocow_writes_async(c, dio->inode, &dio->op.cl); 364 } 365 } 366 367 if (dio->sync) { 368 closure_sync(&dio->op.cl); 369 closure_debug_destroy(&dio->op.cl); 370 } else { 371 continue_at(&dio->op.cl, bch2_dio_write_flush_done, NULL); 372 } 373 } 374 375 static __always_inline long bch2_dio_write_done(struct dio_write *dio) 376 { 377 struct bch_fs *c = dio->op.c; 378 struct kiocb *req = dio->req; 379 struct bch_inode_info *inode = dio->inode; 380 bool sync = dio->sync; 381 long ret; 382 383 if (unlikely(dio->flush)) { 384 bch2_dio_write_flush(dio); 385 if (!sync) 386 return -EIOCBQUEUED; 387 } 388 389 bch2_pagecache_block_put(inode); 390 391 kfree(dio->iov); 392 393 ret = dio->op.error ?: ((long) dio->written << 9); 394 bio_put(&dio->op.wbio.bio); 395 396 bch2_write_ref_put(c, BCH_WRITE_REF_dio_write); 397 398 /* inode->i_dio_count is our ref on inode and thus bch_fs */ 399 inode_dio_end(&inode->v); 400 401 if (ret < 0) 402 ret = bch2_err_class(ret); 403 404 if (!sync) { 405 req->ki_complete(req, ret); 406 ret = -EIOCBQUEUED; 407 } 408 return ret; 409 } 410 411 static __always_inline void bch2_dio_write_end(struct dio_write *dio) 412 { 413 struct bch_fs *c = dio->op.c; 414 struct kiocb *req = dio->req; 415 struct bch_inode_info *inode = dio->inode; 416 struct bio *bio = &dio->op.wbio.bio; 417 418 req->ki_pos += (u64) dio->op.written << 9; 419 dio->written += dio->op.written; 420 421 if (dio->extending) { 422 spin_lock(&inode->v.i_lock); 423 if (req->ki_pos > inode->v.i_size) 424 i_size_write(&inode->v, req->ki_pos); 425 spin_unlock(&inode->v.i_lock); 426 } 427 428 if (dio->op.i_sectors_delta || dio->quota_res.sectors) { 429 mutex_lock(&inode->ei_quota_lock); 430 __bch2_i_sectors_acct(c, inode, &dio->quota_res, dio->op.i_sectors_delta); 431 __bch2_quota_reservation_put(c, inode, &dio->quota_res); 432 mutex_unlock(&inode->ei_quota_lock); 433 } 434 435 bio_release_pages(bio, false); 436 437 if (unlikely(dio->op.error)) 438 set_bit(EI_INODE_ERROR, &inode->ei_flags); 439 } 440 441 static __always_inline long bch2_dio_write_loop(struct dio_write *dio) 442 { 443 struct bch_fs *c = dio->op.c; 444 struct kiocb *req = dio->req; 445 struct address_space *mapping = dio->mapping; 446 struct bch_inode_info *inode = dio->inode; 447 struct bch_io_opts opts; 448 struct bio *bio = &dio->op.wbio.bio; 449 unsigned unaligned, iter_count; 450 bool sync = dio->sync, dropped_locks; 451 long ret; 452 453 bch2_inode_opts_get(&opts, c, &inode->ei_inode); 454 455 while (1) { 456 iter_count = dio->iter.count; 457 458 EBUG_ON(current->faults_disabled_mapping); 459 current->faults_disabled_mapping = mapping; 460 461 ret = bio_iov_iter_get_pages(bio, &dio->iter); 462 463 dropped_locks = fdm_dropped_locks(); 464 465 current->faults_disabled_mapping = NULL; 466 467 /* 468 * If the fault handler returned an error but also signalled 469 * that it dropped & retook ei_pagecache_lock, we just need to 470 * re-shoot down the page cache and retry: 471 */ 472 if (dropped_locks && ret) 473 ret = 0; 474 475 if (unlikely(ret < 0)) 476 goto err; 477 478 if (unlikely(dropped_locks)) { 479 ret = bch2_write_invalidate_inode_pages_range(mapping, 480 req->ki_pos, 481 req->ki_pos + iter_count - 1); 482 if (unlikely(ret)) 483 goto err; 484 485 if (!bio->bi_iter.bi_size) 486 continue; 487 } 488 489 unaligned = bio->bi_iter.bi_size & (block_bytes(c) - 1); 490 bio->bi_iter.bi_size -= unaligned; 491 iov_iter_revert(&dio->iter, unaligned); 492 493 if (!bio->bi_iter.bi_size) { 494 /* 495 * bio_iov_iter_get_pages was only able to get < 496 * blocksize worth of pages: 497 */ 498 ret = -EFAULT; 499 goto err; 500 } 501 502 bch2_write_op_init(&dio->op, c, opts); 503 dio->op.end_io = sync 504 ? NULL 505 : bch2_dio_write_loop_async; 506 dio->op.target = dio->op.opts.foreground_target; 507 dio->op.write_point = writepoint_hashed((unsigned long) current); 508 dio->op.nr_replicas = dio->op.opts.data_replicas; 509 dio->op.subvol = inode->ei_inum.subvol; 510 dio->op.pos = POS(inode->v.i_ino, (u64) req->ki_pos >> 9); 511 dio->op.devs_need_flush = &inode->ei_devs_need_flush; 512 513 if (sync) 514 dio->op.flags |= BCH_WRITE_SYNC; 515 dio->op.flags |= BCH_WRITE_CHECK_ENOSPC; 516 517 ret = bch2_quota_reservation_add(c, inode, &dio->quota_res, 518 bio_sectors(bio), true); 519 if (unlikely(ret)) 520 goto err; 521 522 ret = bch2_disk_reservation_get(c, &dio->op.res, bio_sectors(bio), 523 dio->op.opts.data_replicas, 0); 524 if (unlikely(ret) && 525 !bch2_dio_write_check_allocated(dio)) 526 goto err; 527 528 task_io_account_write(bio->bi_iter.bi_size); 529 530 if (unlikely(dio->iter.count) && 531 !dio->sync && 532 !dio->loop && 533 bch2_dio_write_copy_iov(dio)) 534 dio->sync = sync = true; 535 536 dio->loop = true; 537 closure_call(&dio->op.cl, bch2_write, NULL, NULL); 538 539 if (!sync) 540 return -EIOCBQUEUED; 541 542 bch2_dio_write_end(dio); 543 544 if (likely(!dio->iter.count) || dio->op.error) 545 break; 546 547 bio_reset(bio, NULL, REQ_OP_WRITE | REQ_SYNC | REQ_IDLE); 548 } 549 out: 550 return bch2_dio_write_done(dio); 551 err: 552 dio->op.error = ret; 553 554 bio_release_pages(bio, false); 555 556 bch2_quota_reservation_put(c, inode, &dio->quota_res); 557 goto out; 558 } 559 560 static noinline __cold void bch2_dio_write_continue(struct dio_write *dio) 561 { 562 struct mm_struct *mm = dio->mm; 563 564 bio_reset(&dio->op.wbio.bio, NULL, REQ_OP_WRITE); 565 566 if (mm) 567 kthread_use_mm(mm); 568 bch2_dio_write_loop(dio); 569 if (mm) 570 kthread_unuse_mm(mm); 571 } 572 573 static void bch2_dio_write_loop_async(struct bch_write_op *op) 574 { 575 struct dio_write *dio = container_of(op, struct dio_write, op); 576 577 bch2_dio_write_end(dio); 578 579 if (likely(!dio->iter.count) || dio->op.error) 580 bch2_dio_write_done(dio); 581 else 582 bch2_dio_write_continue(dio); 583 } 584 585 ssize_t bch2_direct_write(struct kiocb *req, struct iov_iter *iter) 586 { 587 struct file *file = req->ki_filp; 588 struct address_space *mapping = file->f_mapping; 589 struct bch_inode_info *inode = file_bch_inode(file); 590 struct bch_fs *c = inode->v.i_sb->s_fs_info; 591 struct dio_write *dio; 592 struct bio *bio; 593 bool locked = true, extending; 594 ssize_t ret; 595 596 prefetch(&c->opts); 597 prefetch((void *) &c->opts + 64); 598 prefetch(&inode->ei_inode); 599 prefetch((void *) &inode->ei_inode + 64); 600 601 if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_dio_write)) 602 return -EROFS; 603 604 inode_lock(&inode->v); 605 606 ret = generic_write_checks(req, iter); 607 if (unlikely(ret <= 0)) 608 goto err_put_write_ref; 609 610 ret = file_remove_privs(file); 611 if (unlikely(ret)) 612 goto err_put_write_ref; 613 614 ret = file_update_time(file); 615 if (unlikely(ret)) 616 goto err_put_write_ref; 617 618 if (unlikely((req->ki_pos|iter->count) & (block_bytes(c) - 1))) { 619 ret = -EINVAL; 620 goto err_put_write_ref; 621 } 622 623 inode_dio_begin(&inode->v); 624 bch2_pagecache_block_get(inode); 625 626 extending = req->ki_pos + iter->count > inode->v.i_size; 627 if (!extending) { 628 inode_unlock(&inode->v); 629 locked = false; 630 } 631 632 bio = bio_alloc_bioset(NULL, 633 bio_iov_vecs_to_alloc(iter, BIO_MAX_VECS), 634 REQ_OP_WRITE | REQ_SYNC | REQ_IDLE, 635 GFP_KERNEL, 636 &c->dio_write_bioset); 637 dio = container_of(bio, struct dio_write, op.wbio.bio); 638 dio->req = req; 639 dio->mapping = mapping; 640 dio->inode = inode; 641 dio->mm = current->mm; 642 dio->iov = NULL; 643 dio->loop = false; 644 dio->extending = extending; 645 dio->sync = is_sync_kiocb(req) || extending; 646 dio->flush = iocb_is_dsync(req) && !c->opts.journal_flush_disabled; 647 dio->quota_res.sectors = 0; 648 dio->written = 0; 649 dio->iter = *iter; 650 dio->op.c = c; 651 652 if (unlikely(mapping->nrpages)) { 653 ret = bch2_write_invalidate_inode_pages_range(mapping, 654 req->ki_pos, 655 req->ki_pos + iter->count - 1); 656 if (unlikely(ret)) 657 goto err_put_bio; 658 } 659 660 ret = bch2_dio_write_loop(dio); 661 out: 662 if (locked) 663 inode_unlock(&inode->v); 664 return ret; 665 err_put_bio: 666 bch2_pagecache_block_put(inode); 667 bio_put(bio); 668 inode_dio_end(&inode->v); 669 err_put_write_ref: 670 bch2_write_ref_put(c, BCH_WRITE_REF_dio_write); 671 goto out; 672 } 673 674 void bch2_fs_fs_io_direct_exit(struct bch_fs *c) 675 { 676 bioset_exit(&c->dio_write_bioset); 677 bioset_exit(&c->dio_read_bioset); 678 } 679 680 int bch2_fs_fs_io_direct_init(struct bch_fs *c) 681 { 682 if (bioset_init(&c->dio_read_bioset, 683 4, offsetof(struct dio_read, rbio.bio), 684 BIOSET_NEED_BVECS)) 685 return -BCH_ERR_ENOMEM_dio_read_bioset_init; 686 687 if (bioset_init(&c->dio_write_bioset, 688 4, offsetof(struct dio_write, op.wbio.bio), 689 BIOSET_NEED_BVECS)) 690 return -BCH_ERR_ENOMEM_dio_write_bioset_init; 691 692 return 0; 693 } 694 695 #endif /* NO_BCACHEFS_FS */ 696