1 // SPDX-License-Identifier: GPL-2.0 2 #ifndef NO_BCACHEFS_FS 3 4 #include "bcachefs.h" 5 #include "alloc_foreground.h" 6 #include "bkey_buf.h" 7 #include "fs-io.h" 8 #include "fs-io-buffered.h" 9 #include "fs-io-direct.h" 10 #include "fs-io-pagecache.h" 11 #include "io_read.h" 12 #include "io_write.h" 13 14 #include <linux/backing-dev.h> 15 #include <linux/pagemap.h> 16 #include <linux/writeback.h> 17 18 static inline bool bio_full(struct bio *bio, unsigned len) 19 { 20 if (bio->bi_vcnt >= bio->bi_max_vecs) 21 return true; 22 if (bio->bi_iter.bi_size > UINT_MAX - len) 23 return true; 24 return false; 25 } 26 27 /* readpage(s): */ 28 29 static void bch2_readpages_end_io(struct bio *bio) 30 { 31 struct folio_iter fi; 32 33 bio_for_each_folio_all(fi, bio) 34 folio_end_read(fi.folio, bio->bi_status == BLK_STS_OK); 35 36 bio_put(bio); 37 } 38 39 struct readpages_iter { 40 struct address_space *mapping; 41 unsigned idx; 42 folios folios; 43 }; 44 45 static int readpages_iter_init(struct readpages_iter *iter, 46 struct readahead_control *ractl) 47 { 48 struct folio *folio; 49 50 *iter = (struct readpages_iter) { ractl->mapping }; 51 52 while ((folio = __readahead_folio(ractl))) { 53 if (!bch2_folio_create(folio, GFP_KERNEL) || 54 darray_push(&iter->folios, folio)) { 55 bch2_folio_release(folio); 56 ractl->_nr_pages += folio_nr_pages(folio); 57 ractl->_index -= folio_nr_pages(folio); 58 return iter->folios.nr ? 0 : -ENOMEM; 59 } 60 61 folio_put(folio); 62 } 63 64 return 0; 65 } 66 67 static inline struct folio *readpage_iter_peek(struct readpages_iter *iter) 68 { 69 if (iter->idx >= iter->folios.nr) 70 return NULL; 71 return iter->folios.data[iter->idx]; 72 } 73 74 static inline void readpage_iter_advance(struct readpages_iter *iter) 75 { 76 iter->idx++; 77 } 78 79 static bool extent_partial_reads_expensive(struct bkey_s_c k) 80 { 81 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 82 struct bch_extent_crc_unpacked crc; 83 const union bch_extent_entry *i; 84 85 bkey_for_each_crc(k.k, ptrs, crc, i) 86 if (crc.csum_type || crc.compression_type) 87 return true; 88 return false; 89 } 90 91 static int readpage_bio_extend(struct btree_trans *trans, 92 struct readpages_iter *iter, 93 struct bio *bio, 94 unsigned sectors_this_extent, 95 bool get_more) 96 { 97 /* Don't hold btree locks while allocating memory: */ 98 bch2_trans_unlock(trans); 99 100 while (bio_sectors(bio) < sectors_this_extent && 101 bio->bi_vcnt < bio->bi_max_vecs) { 102 struct folio *folio = readpage_iter_peek(iter); 103 int ret; 104 105 if (folio) { 106 readpage_iter_advance(iter); 107 } else { 108 pgoff_t folio_offset = bio_end_sector(bio) >> PAGE_SECTORS_SHIFT; 109 110 if (!get_more) 111 break; 112 113 unsigned sectors_remaining = sectors_this_extent - bio_sectors(bio); 114 115 if (sectors_remaining < PAGE_SECTORS << mapping_min_folio_order(iter->mapping)) 116 break; 117 118 unsigned order = ilog2(rounddown_pow_of_two(sectors_remaining) / PAGE_SECTORS); 119 120 /* ensure proper alignment */ 121 order = min(order, __ffs(folio_offset|BIT(31))); 122 123 folio = xa_load(&iter->mapping->i_pages, folio_offset); 124 if (folio && !xa_is_value(folio)) 125 break; 126 127 folio = filemap_alloc_folio(readahead_gfp_mask(iter->mapping), order); 128 if (!folio) 129 break; 130 131 if (!__bch2_folio_create(folio, GFP_KERNEL)) { 132 folio_put(folio); 133 break; 134 } 135 136 ret = filemap_add_folio(iter->mapping, folio, folio_offset, GFP_KERNEL); 137 if (ret) { 138 __bch2_folio_release(folio); 139 folio_put(folio); 140 break; 141 } 142 143 folio_put(folio); 144 } 145 146 BUG_ON(folio_sector(folio) != bio_end_sector(bio)); 147 148 BUG_ON(!bio_add_folio(bio, folio, folio_size(folio), 0)); 149 } 150 151 return bch2_trans_relock(trans); 152 } 153 154 static void bchfs_read(struct btree_trans *trans, 155 struct bch_read_bio *rbio, 156 subvol_inum inum, 157 struct readpages_iter *readpages_iter) 158 { 159 struct bch_fs *c = trans->c; 160 struct btree_iter iter; 161 struct bkey_buf sk; 162 int flags = BCH_READ_retry_if_stale| 163 BCH_READ_may_promote; 164 int ret = 0; 165 166 rbio->subvol = inum.subvol; 167 168 bch2_bkey_buf_init(&sk); 169 bch2_trans_begin(trans); 170 bch2_trans_iter_init(trans, &iter, BTREE_ID_extents, 171 POS(inum.inum, rbio->bio.bi_iter.bi_sector), 172 BTREE_ITER_slots); 173 while (1) { 174 struct bkey_s_c k; 175 unsigned bytes, sectors; 176 s64 offset_into_extent; 177 enum btree_id data_btree = BTREE_ID_extents; 178 179 bch2_trans_begin(trans); 180 181 u32 snapshot; 182 ret = bch2_subvolume_get_snapshot(trans, inum.subvol, &snapshot); 183 if (ret) 184 goto err; 185 186 bch2_btree_iter_set_snapshot(trans, &iter, snapshot); 187 188 bch2_btree_iter_set_pos(trans, &iter, 189 POS(inum.inum, rbio->bio.bi_iter.bi_sector)); 190 191 k = bch2_btree_iter_peek_slot(trans, &iter); 192 ret = bkey_err(k); 193 if (ret) 194 goto err; 195 196 offset_into_extent = iter.pos.offset - 197 bkey_start_offset(k.k); 198 sectors = k.k->size - offset_into_extent; 199 200 bch2_bkey_buf_reassemble(&sk, c, k); 201 202 ret = bch2_read_indirect_extent(trans, &data_btree, 203 &offset_into_extent, &sk); 204 if (ret) 205 goto err; 206 207 k = bkey_i_to_s_c(sk.k); 208 209 sectors = min_t(unsigned, sectors, k.k->size - offset_into_extent); 210 211 if (readpages_iter) { 212 ret = readpage_bio_extend(trans, readpages_iter, &rbio->bio, sectors, 213 extent_partial_reads_expensive(k)); 214 if (ret) 215 goto err; 216 } 217 218 bytes = min(sectors, bio_sectors(&rbio->bio)) << 9; 219 swap(rbio->bio.bi_iter.bi_size, bytes); 220 221 if (rbio->bio.bi_iter.bi_size == bytes) 222 flags |= BCH_READ_last_fragment; 223 224 bch2_bio_page_state_set(&rbio->bio, k); 225 226 bch2_read_extent(trans, rbio, iter.pos, 227 data_btree, k, offset_into_extent, flags); 228 /* 229 * Careful there's a landmine here if bch2_read_extent() ever 230 * starts returning transaction restarts here. 231 * 232 * We've changed rbio->bi_iter.bi_size to be "bytes we can read 233 * from this extent" with the swap call, and we restore it 234 * below. That restore needs to come before checking for 235 * errors. 236 * 237 * But unlike __bch2_read(), we use the rbio bvec iter, not one 238 * on the stack, so we can't do the restore right after the 239 * bch2_read_extent() call: we don't own that iterator anymore 240 * if BCH_READ_last_fragment is set, since we may have submitted 241 * that rbio instead of cloning it. 242 */ 243 244 if (flags & BCH_READ_last_fragment) 245 break; 246 247 swap(rbio->bio.bi_iter.bi_size, bytes); 248 bio_advance(&rbio->bio, bytes); 249 err: 250 if (ret && 251 !bch2_err_matches(ret, BCH_ERR_transaction_restart)) 252 break; 253 } 254 bch2_trans_iter_exit(trans, &iter); 255 256 if (ret) { 257 struct printbuf buf = PRINTBUF; 258 lockrestart_do(trans, 259 bch2_inum_offset_err_msg_trans(trans, &buf, inum, iter.pos.offset << 9)); 260 prt_printf(&buf, "read error %i from btree lookup", ret); 261 bch_err_ratelimited(c, "%s", buf.buf); 262 printbuf_exit(&buf); 263 264 rbio->bio.bi_status = BLK_STS_IOERR; 265 bio_endio(&rbio->bio); 266 } 267 268 bch2_bkey_buf_exit(&sk, c); 269 } 270 271 void bch2_readahead(struct readahead_control *ractl) 272 { 273 struct bch_inode_info *inode = to_bch_ei(ractl->mapping->host); 274 struct bch_fs *c = inode->v.i_sb->s_fs_info; 275 struct bch_io_opts opts; 276 struct folio *folio; 277 struct readpages_iter readpages_iter; 278 struct blk_plug plug; 279 280 bch2_inode_opts_get(&opts, c, &inode->ei_inode); 281 282 int ret = readpages_iter_init(&readpages_iter, ractl); 283 if (ret) 284 return; 285 286 /* 287 * Besides being a general performance optimization, plugging helps with 288 * avoiding btree transaction srcu warnings - submitting a bio can 289 * block, and we don't want todo that with the transaction locked. 290 * 291 * However, plugged bios are submitted when we schedule; we ideally 292 * would have our own scheduler hook to call unlock_long() before 293 * scheduling. 294 */ 295 blk_start_plug(&plug); 296 bch2_pagecache_add_get(inode); 297 298 struct btree_trans *trans = bch2_trans_get(c); 299 while ((folio = readpage_iter_peek(&readpages_iter))) { 300 unsigned n = min_t(unsigned, 301 readpages_iter.folios.nr - 302 readpages_iter.idx, 303 BIO_MAX_VECS); 304 struct bch_read_bio *rbio = 305 rbio_init(bio_alloc_bioset(NULL, n, REQ_OP_READ, 306 GFP_KERNEL, &c->bio_read), 307 c, 308 opts, 309 bch2_readpages_end_io); 310 311 readpage_iter_advance(&readpages_iter); 312 313 rbio->bio.bi_iter.bi_sector = folio_sector(folio); 314 BUG_ON(!bio_add_folio(&rbio->bio, folio, folio_size(folio), 0)); 315 316 bchfs_read(trans, rbio, inode_inum(inode), 317 &readpages_iter); 318 bch2_trans_unlock(trans); 319 } 320 bch2_trans_put(trans); 321 322 bch2_pagecache_add_put(inode); 323 blk_finish_plug(&plug); 324 darray_exit(&readpages_iter.folios); 325 } 326 327 static void bch2_read_single_folio_end_io(struct bio *bio) 328 { 329 complete(bio->bi_private); 330 } 331 332 int bch2_read_single_folio(struct folio *folio, struct address_space *mapping) 333 { 334 struct bch_inode_info *inode = to_bch_ei(mapping->host); 335 struct bch_fs *c = inode->v.i_sb->s_fs_info; 336 struct bch_read_bio *rbio; 337 struct bch_io_opts opts; 338 struct blk_plug plug; 339 int ret; 340 DECLARE_COMPLETION_ONSTACK(done); 341 342 BUG_ON(folio_test_uptodate(folio)); 343 BUG_ON(folio_test_dirty(folio)); 344 345 if (!bch2_folio_create(folio, GFP_KERNEL)) 346 return -ENOMEM; 347 348 bch2_inode_opts_get(&opts, c, &inode->ei_inode); 349 350 rbio = rbio_init(bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_KERNEL, &c->bio_read), 351 c, 352 opts, 353 bch2_read_single_folio_end_io); 354 rbio->bio.bi_private = &done; 355 rbio->bio.bi_opf = REQ_OP_READ|REQ_SYNC; 356 rbio->bio.bi_iter.bi_sector = folio_sector(folio); 357 BUG_ON(!bio_add_folio(&rbio->bio, folio, folio_size(folio), 0)); 358 359 blk_start_plug(&plug); 360 bch2_trans_run(c, (bchfs_read(trans, rbio, inode_inum(inode), NULL), 0)); 361 blk_finish_plug(&plug); 362 wait_for_completion(&done); 363 364 ret = blk_status_to_errno(rbio->bio.bi_status); 365 bio_put(&rbio->bio); 366 367 if (ret < 0) 368 return ret; 369 370 folio_mark_uptodate(folio); 371 return 0; 372 } 373 374 int bch2_read_folio(struct file *file, struct folio *folio) 375 { 376 int ret; 377 378 ret = bch2_read_single_folio(folio, folio->mapping); 379 folio_unlock(folio); 380 return bch2_err_class(ret); 381 } 382 383 /* writepages: */ 384 385 struct bch_writepage_io { 386 struct bch_inode_info *inode; 387 388 /* must be last: */ 389 struct bch_write_op op; 390 }; 391 392 struct bch_writepage_state { 393 struct bch_writepage_io *io; 394 struct bch_io_opts opts; 395 struct bch_folio_sector *tmp; 396 unsigned tmp_sectors; 397 }; 398 399 static inline struct bch_writepage_state bch_writepage_state_init(struct bch_fs *c, 400 struct bch_inode_info *inode) 401 { 402 struct bch_writepage_state ret = { 0 }; 403 404 bch2_inode_opts_get(&ret.opts, c, &inode->ei_inode); 405 return ret; 406 } 407 408 /* 409 * Determine when a writepage io is full. We have to limit writepage bios to a 410 * single page per bvec (i.e. 1MB with 4k pages) because that is the limit to 411 * what the bounce path in bch2_write_extent() can handle. In theory we could 412 * loosen this restriction for non-bounce I/O, but we don't have that context 413 * here. Ideally, we can up this limit and make it configurable in the future 414 * when the bounce path can be enhanced to accommodate larger source bios. 415 */ 416 static inline bool bch_io_full(struct bch_writepage_io *io, unsigned len) 417 { 418 struct bio *bio = &io->op.wbio.bio; 419 return bio_full(bio, len) || 420 (bio->bi_iter.bi_size + len > BIO_MAX_VECS * PAGE_SIZE); 421 } 422 423 static void bch2_writepage_io_done(struct bch_write_op *op) 424 { 425 struct bch_writepage_io *io = 426 container_of(op, struct bch_writepage_io, op); 427 struct bch_fs *c = io->op.c; 428 struct bio *bio = &io->op.wbio.bio; 429 struct folio_iter fi; 430 unsigned i; 431 432 if (io->op.error) { 433 set_bit(EI_INODE_ERROR, &io->inode->ei_flags); 434 435 bio_for_each_folio_all(fi, bio) { 436 struct bch_folio *s; 437 438 mapping_set_error(fi.folio->mapping, -EIO); 439 440 s = __bch2_folio(fi.folio); 441 spin_lock(&s->lock); 442 for (i = 0; i < folio_sectors(fi.folio); i++) 443 s->s[i].nr_replicas = 0; 444 spin_unlock(&s->lock); 445 } 446 } 447 448 if (io->op.flags & BCH_WRITE_wrote_data_inline) { 449 bio_for_each_folio_all(fi, bio) { 450 struct bch_folio *s; 451 452 s = __bch2_folio(fi.folio); 453 spin_lock(&s->lock); 454 for (i = 0; i < folio_sectors(fi.folio); i++) 455 s->s[i].nr_replicas = 0; 456 spin_unlock(&s->lock); 457 } 458 } 459 460 /* 461 * racing with fallocate can cause us to add fewer sectors than 462 * expected - but we shouldn't add more sectors than expected: 463 */ 464 WARN_ON_ONCE(io->op.i_sectors_delta > 0); 465 466 /* 467 * (error (due to going RO) halfway through a page can screw that up 468 * slightly) 469 * XXX wtf? 470 BUG_ON(io->op.op.i_sectors_delta >= PAGE_SECTORS); 471 */ 472 473 /* 474 * The writeback flag is effectively our ref on the inode - 475 * fixup i_blocks before calling folio_end_writeback: 476 */ 477 bch2_i_sectors_acct(c, io->inode, NULL, io->op.i_sectors_delta); 478 479 bio_for_each_folio_all(fi, bio) { 480 struct bch_folio *s = __bch2_folio(fi.folio); 481 482 if (atomic_dec_and_test(&s->write_count)) 483 folio_end_writeback(fi.folio); 484 } 485 486 bio_put(&io->op.wbio.bio); 487 } 488 489 static void bch2_writepage_do_io(struct bch_writepage_state *w) 490 { 491 struct bch_writepage_io *io = w->io; 492 493 w->io = NULL; 494 closure_call(&io->op.cl, bch2_write, NULL, NULL); 495 } 496 497 /* 498 * Get a bch_writepage_io and add @page to it - appending to an existing one if 499 * possible, else allocating a new one: 500 */ 501 static void bch2_writepage_io_alloc(struct bch_fs *c, 502 struct writeback_control *wbc, 503 struct bch_writepage_state *w, 504 struct bch_inode_info *inode, 505 u64 sector, 506 unsigned nr_replicas) 507 { 508 struct bch_write_op *op; 509 510 w->io = container_of(bio_alloc_bioset(NULL, BIO_MAX_VECS, 511 REQ_OP_WRITE, 512 GFP_KERNEL, 513 &c->writepage_bioset), 514 struct bch_writepage_io, op.wbio.bio); 515 516 w->io->inode = inode; 517 op = &w->io->op; 518 bch2_write_op_init(op, c, w->opts); 519 op->target = w->opts.foreground_target; 520 op->nr_replicas = nr_replicas; 521 op->res.nr_replicas = nr_replicas; 522 op->write_point = writepoint_hashed(inode->ei_last_dirtied); 523 op->subvol = inode->ei_inum.subvol; 524 op->pos = POS(inode->v.i_ino, sector); 525 op->end_io = bch2_writepage_io_done; 526 op->devs_need_flush = &inode->ei_devs_need_flush; 527 op->wbio.bio.bi_iter.bi_sector = sector; 528 op->wbio.bio.bi_opf = wbc_to_write_flags(wbc); 529 } 530 531 static int __bch2_writepage(struct folio *folio, 532 struct writeback_control *wbc, 533 void *data) 534 { 535 struct bch_inode_info *inode = to_bch_ei(folio->mapping->host); 536 struct bch_fs *c = inode->v.i_sb->s_fs_info; 537 struct bch_writepage_state *w = data; 538 struct bch_folio *s; 539 unsigned i, offset, f_sectors, nr_replicas_this_write = U32_MAX; 540 loff_t i_size = i_size_read(&inode->v); 541 int ret; 542 543 EBUG_ON(!folio_test_uptodate(folio)); 544 545 /* Is the folio fully inside i_size? */ 546 if (folio_end_pos(folio) <= i_size) 547 goto do_io; 548 549 /* Is the folio fully outside i_size? (truncate in progress) */ 550 if (folio_pos(folio) >= i_size) { 551 folio_unlock(folio); 552 return 0; 553 } 554 555 /* 556 * The folio straddles i_size. It must be zeroed out on each and every 557 * writepage invocation because it may be mmapped. "A file is mapped 558 * in multiples of the folio size. For a file that is not a multiple of 559 * the folio size, the remaining memory is zeroed when mapped, and 560 * writes to that region are not written out to the file." 561 */ 562 folio_zero_segment(folio, 563 i_size - folio_pos(folio), 564 folio_size(folio)); 565 do_io: 566 f_sectors = folio_sectors(folio); 567 s = bch2_folio(folio); 568 569 if (f_sectors > w->tmp_sectors) { 570 kfree(w->tmp); 571 w->tmp = kcalloc(f_sectors, sizeof(struct bch_folio_sector), GFP_NOFS|__GFP_NOFAIL); 572 w->tmp_sectors = f_sectors; 573 } 574 575 /* 576 * Things get really hairy with errors during writeback: 577 */ 578 ret = bch2_get_folio_disk_reservation(c, inode, folio, false); 579 BUG_ON(ret); 580 581 /* Before unlocking the page, get copy of reservations: */ 582 spin_lock(&s->lock); 583 memcpy(w->tmp, s->s, sizeof(struct bch_folio_sector) * f_sectors); 584 585 for (i = 0; i < f_sectors; i++) { 586 if (s->s[i].state < SECTOR_dirty) 587 continue; 588 589 nr_replicas_this_write = 590 min_t(unsigned, nr_replicas_this_write, 591 s->s[i].nr_replicas + 592 s->s[i].replicas_reserved); 593 } 594 595 for (i = 0; i < f_sectors; i++) { 596 if (s->s[i].state < SECTOR_dirty) 597 continue; 598 599 s->s[i].nr_replicas = w->opts.compression 600 ? 0 : nr_replicas_this_write; 601 602 s->s[i].replicas_reserved = 0; 603 bch2_folio_sector_set(folio, s, i, SECTOR_allocated); 604 } 605 spin_unlock(&s->lock); 606 607 BUG_ON(atomic_read(&s->write_count)); 608 atomic_set(&s->write_count, 1); 609 610 BUG_ON(folio_test_writeback(folio)); 611 folio_start_writeback(folio); 612 613 folio_unlock(folio); 614 615 offset = 0; 616 while (1) { 617 unsigned sectors = 0, dirty_sectors = 0, reserved_sectors = 0; 618 u64 sector; 619 620 while (offset < f_sectors && 621 w->tmp[offset].state < SECTOR_dirty) 622 offset++; 623 624 if (offset == f_sectors) 625 break; 626 627 while (offset + sectors < f_sectors && 628 w->tmp[offset + sectors].state >= SECTOR_dirty) { 629 reserved_sectors += w->tmp[offset + sectors].replicas_reserved; 630 dirty_sectors += w->tmp[offset + sectors].state == SECTOR_dirty; 631 sectors++; 632 } 633 BUG_ON(!sectors); 634 635 sector = folio_sector(folio) + offset; 636 637 if (w->io && 638 (w->io->op.res.nr_replicas != nr_replicas_this_write || 639 bch_io_full(w->io, sectors << 9) || 640 bio_end_sector(&w->io->op.wbio.bio) != sector)) 641 bch2_writepage_do_io(w); 642 643 if (!w->io) 644 bch2_writepage_io_alloc(c, wbc, w, inode, sector, 645 nr_replicas_this_write); 646 647 atomic_inc(&s->write_count); 648 649 BUG_ON(inode != w->io->inode); 650 BUG_ON(!bio_add_folio(&w->io->op.wbio.bio, folio, 651 sectors << 9, offset << 9)); 652 653 w->io->op.res.sectors += reserved_sectors; 654 w->io->op.i_sectors_delta -= dirty_sectors; 655 w->io->op.new_i_size = i_size; 656 657 offset += sectors; 658 } 659 660 if (atomic_dec_and_test(&s->write_count)) 661 folio_end_writeback(folio); 662 663 return 0; 664 } 665 666 int bch2_writepages(struct address_space *mapping, struct writeback_control *wbc) 667 { 668 struct bch_fs *c = mapping->host->i_sb->s_fs_info; 669 struct bch_writepage_state w = 670 bch_writepage_state_init(c, to_bch_ei(mapping->host)); 671 struct blk_plug plug; 672 int ret; 673 674 blk_start_plug(&plug); 675 ret = write_cache_pages(mapping, wbc, __bch2_writepage, &w); 676 if (w.io) 677 bch2_writepage_do_io(&w); 678 blk_finish_plug(&plug); 679 kfree(w.tmp); 680 return bch2_err_class(ret); 681 } 682 683 /* buffered writes: */ 684 685 int bch2_write_begin(struct file *file, struct address_space *mapping, 686 loff_t pos, unsigned len, 687 struct folio **foliop, void **fsdata) 688 { 689 struct bch_inode_info *inode = to_bch_ei(mapping->host); 690 struct bch_fs *c = inode->v.i_sb->s_fs_info; 691 struct bch2_folio_reservation *res; 692 struct folio *folio; 693 unsigned offset; 694 int ret = -ENOMEM; 695 696 res = kmalloc(sizeof(*res), GFP_KERNEL); 697 if (!res) 698 return -ENOMEM; 699 700 bch2_folio_reservation_init(c, inode, res); 701 *fsdata = res; 702 703 bch2_pagecache_add_get(inode); 704 705 folio = __filemap_get_folio(mapping, pos >> PAGE_SHIFT, 706 FGP_WRITEBEGIN | fgf_set_order(len), 707 mapping_gfp_mask(mapping)); 708 if (IS_ERR(folio)) 709 goto err_unlock; 710 711 offset = pos - folio_pos(folio); 712 len = min_t(size_t, len, folio_end_pos(folio) - pos); 713 714 if (folio_test_uptodate(folio)) 715 goto out; 716 717 /* If we're writing entire folio, don't need to read it in first: */ 718 if (!offset && len == folio_size(folio)) 719 goto out; 720 721 if (!offset && pos + len >= inode->v.i_size) { 722 folio_zero_segment(folio, len, folio_size(folio)); 723 flush_dcache_folio(folio); 724 goto out; 725 } 726 727 if (folio_pos(folio) >= inode->v.i_size) { 728 folio_zero_segments(folio, 0, offset, offset + len, folio_size(folio)); 729 flush_dcache_folio(folio); 730 goto out; 731 } 732 readpage: 733 ret = bch2_read_single_folio(folio, mapping); 734 if (ret) 735 goto err; 736 out: 737 ret = bch2_folio_set(c, inode_inum(inode), &folio, 1); 738 if (ret) 739 goto err; 740 741 ret = bch2_folio_reservation_get(c, inode, folio, res, offset, len); 742 if (ret) { 743 if (!folio_test_uptodate(folio)) { 744 /* 745 * If the folio hasn't been read in, we won't know if we 746 * actually need a reservation - we don't actually need 747 * to read here, we just need to check if the folio is 748 * fully backed by uncompressed data: 749 */ 750 goto readpage; 751 } 752 753 goto err; 754 } 755 756 *foliop = folio; 757 return 0; 758 err: 759 folio_unlock(folio); 760 folio_put(folio); 761 err_unlock: 762 bch2_pagecache_add_put(inode); 763 kfree(res); 764 *fsdata = NULL; 765 return bch2_err_class(ret); 766 } 767 768 int bch2_write_end(struct file *file, struct address_space *mapping, 769 loff_t pos, unsigned len, unsigned copied, 770 struct folio *folio, void *fsdata) 771 { 772 struct bch_inode_info *inode = to_bch_ei(mapping->host); 773 struct bch_fs *c = inode->v.i_sb->s_fs_info; 774 struct bch2_folio_reservation *res = fsdata; 775 unsigned offset = pos - folio_pos(folio); 776 777 lockdep_assert_held(&inode->v.i_rwsem); 778 BUG_ON(offset + copied > folio_size(folio)); 779 780 if (unlikely(copied < len && !folio_test_uptodate(folio))) { 781 /* 782 * The folio needs to be read in, but that would destroy 783 * our partial write - simplest thing is to just force 784 * userspace to redo the write: 785 */ 786 folio_zero_range(folio, 0, folio_size(folio)); 787 flush_dcache_folio(folio); 788 copied = 0; 789 } 790 791 spin_lock(&inode->v.i_lock); 792 if (pos + copied > inode->v.i_size) 793 i_size_write(&inode->v, pos + copied); 794 spin_unlock(&inode->v.i_lock); 795 796 if (copied) { 797 if (!folio_test_uptodate(folio)) 798 folio_mark_uptodate(folio); 799 800 bch2_set_folio_dirty(c, inode, folio, res, offset, copied); 801 802 inode->ei_last_dirtied = (unsigned long) current; 803 } 804 805 folio_unlock(folio); 806 folio_put(folio); 807 bch2_pagecache_add_put(inode); 808 809 bch2_folio_reservation_put(c, inode, res); 810 kfree(res); 811 812 return copied; 813 } 814 815 static noinline void folios_trunc(folios *fs, struct folio **fi) 816 { 817 while (fs->data + fs->nr > fi) { 818 struct folio *f = darray_pop(fs); 819 820 folio_unlock(f); 821 folio_put(f); 822 } 823 } 824 825 static int __bch2_buffered_write(struct bch_inode_info *inode, 826 struct address_space *mapping, 827 struct iov_iter *iter, 828 loff_t pos, unsigned len) 829 { 830 struct bch_fs *c = inode->v.i_sb->s_fs_info; 831 struct bch2_folio_reservation res; 832 folios fs; 833 struct folio *f; 834 unsigned copied = 0, f_offset, f_copied; 835 u64 end = pos + len, f_pos, f_len; 836 loff_t last_folio_pos = inode->v.i_size; 837 int ret = 0; 838 839 BUG_ON(!len); 840 841 bch2_folio_reservation_init(c, inode, &res); 842 darray_init(&fs); 843 844 ret = bch2_filemap_get_contig_folios_d(mapping, pos, end, 845 FGP_WRITEBEGIN | fgf_set_order(len), 846 mapping_gfp_mask(mapping), &fs); 847 if (ret) 848 goto out; 849 850 BUG_ON(!fs.nr); 851 852 f = darray_first(fs); 853 if (pos != folio_pos(f) && !folio_test_uptodate(f)) { 854 ret = bch2_read_single_folio(f, mapping); 855 if (ret) 856 goto out; 857 } 858 859 f = darray_last(fs); 860 end = min(end, folio_end_pos(f)); 861 last_folio_pos = folio_pos(f); 862 if (end != folio_end_pos(f) && !folio_test_uptodate(f)) { 863 if (end >= inode->v.i_size) { 864 folio_zero_range(f, 0, folio_size(f)); 865 } else { 866 ret = bch2_read_single_folio(f, mapping); 867 if (ret) 868 goto out; 869 } 870 } 871 872 ret = bch2_folio_set(c, inode_inum(inode), fs.data, fs.nr); 873 if (ret) 874 goto out; 875 876 f_pos = pos; 877 f_offset = pos - folio_pos(darray_first(fs)); 878 darray_for_each(fs, fi) { 879 ssize_t f_reserved; 880 881 f = *fi; 882 f_len = min(end, folio_end_pos(f)) - f_pos; 883 f_reserved = bch2_folio_reservation_get_partial(c, inode, f, &res, f_offset, f_len); 884 885 if (unlikely(f_reserved != f_len)) { 886 if (f_reserved < 0) { 887 if (f == darray_first(fs)) { 888 ret = f_reserved; 889 goto out; 890 } 891 892 folios_trunc(&fs, fi); 893 end = min(end, folio_end_pos(darray_last(fs))); 894 } else { 895 if (!folio_test_uptodate(f)) { 896 ret = bch2_read_single_folio(f, mapping); 897 if (ret) 898 goto out; 899 } 900 901 folios_trunc(&fs, fi + 1); 902 end = f_pos + f_reserved; 903 } 904 905 break; 906 } 907 908 f_pos = folio_end_pos(f); 909 f_offset = 0; 910 } 911 912 if (mapping_writably_mapped(mapping)) 913 darray_for_each(fs, fi) 914 flush_dcache_folio(*fi); 915 916 f_pos = pos; 917 f_offset = pos - folio_pos(darray_first(fs)); 918 darray_for_each(fs, fi) { 919 f = *fi; 920 f_len = min(end, folio_end_pos(f)) - f_pos; 921 f_copied = copy_folio_from_iter_atomic(f, f_offset, f_len, iter); 922 if (!f_copied) { 923 folios_trunc(&fs, fi); 924 break; 925 } 926 927 if (!folio_test_uptodate(f) && 928 f_copied != folio_size(f) && 929 pos + copied + f_copied < inode->v.i_size) { 930 iov_iter_revert(iter, f_copied); 931 folio_zero_range(f, 0, folio_size(f)); 932 folios_trunc(&fs, fi); 933 break; 934 } 935 936 flush_dcache_folio(f); 937 copied += f_copied; 938 939 if (f_copied != f_len) { 940 folios_trunc(&fs, fi + 1); 941 break; 942 } 943 944 f_pos = folio_end_pos(f); 945 f_offset = 0; 946 } 947 948 if (!copied) 949 goto out; 950 951 end = pos + copied; 952 953 spin_lock(&inode->v.i_lock); 954 if (end > inode->v.i_size) 955 i_size_write(&inode->v, end); 956 spin_unlock(&inode->v.i_lock); 957 958 f_pos = pos; 959 f_offset = pos - folio_pos(darray_first(fs)); 960 darray_for_each(fs, fi) { 961 f = *fi; 962 f_len = min(end, folio_end_pos(f)) - f_pos; 963 964 if (!folio_test_uptodate(f)) 965 folio_mark_uptodate(f); 966 967 bch2_set_folio_dirty(c, inode, f, &res, f_offset, f_len); 968 969 f_pos = folio_end_pos(f); 970 f_offset = 0; 971 } 972 973 inode->ei_last_dirtied = (unsigned long) current; 974 out: 975 darray_for_each(fs, fi) { 976 folio_unlock(*fi); 977 folio_put(*fi); 978 } 979 980 /* 981 * If the last folio added to the mapping starts beyond current EOF, we 982 * performed a short write but left around at least one post-EOF folio. 983 * Clean up the mapping before we return. 984 */ 985 if (last_folio_pos >= inode->v.i_size) 986 truncate_pagecache(&inode->v, inode->v.i_size); 987 988 darray_exit(&fs); 989 bch2_folio_reservation_put(c, inode, &res); 990 991 return copied ?: ret; 992 } 993 994 static ssize_t bch2_buffered_write(struct kiocb *iocb, struct iov_iter *iter) 995 { 996 struct file *file = iocb->ki_filp; 997 struct address_space *mapping = file->f_mapping; 998 struct bch_inode_info *inode = file_bch_inode(file); 999 loff_t pos = iocb->ki_pos; 1000 ssize_t written = 0; 1001 int ret = 0; 1002 1003 bch2_pagecache_add_get(inode); 1004 1005 do { 1006 unsigned offset = pos & (PAGE_SIZE - 1); 1007 unsigned bytes = iov_iter_count(iter); 1008 again: 1009 /* 1010 * Bring in the user page that we will copy from _first_. 1011 * Otherwise there's a nasty deadlock on copying from the 1012 * same page as we're writing to, without it being marked 1013 * up-to-date. 1014 * 1015 * Not only is this an optimisation, but it is also required 1016 * to check that the address is actually valid, when atomic 1017 * usercopies are used, below. 1018 */ 1019 if (unlikely(fault_in_iov_iter_readable(iter, bytes))) { 1020 bytes = min_t(unsigned long, iov_iter_count(iter), 1021 PAGE_SIZE - offset); 1022 1023 if (unlikely(fault_in_iov_iter_readable(iter, bytes))) { 1024 ret = -EFAULT; 1025 break; 1026 } 1027 } 1028 1029 if (unlikely(fatal_signal_pending(current))) { 1030 ret = -EINTR; 1031 break; 1032 } 1033 1034 ret = __bch2_buffered_write(inode, mapping, iter, pos, bytes); 1035 if (unlikely(ret < 0)) 1036 break; 1037 1038 cond_resched(); 1039 1040 if (unlikely(ret == 0)) { 1041 /* 1042 * If we were unable to copy any data at all, we must 1043 * fall back to a single segment length write. 1044 * 1045 * If we didn't fallback here, we could livelock 1046 * because not all segments in the iov can be copied at 1047 * once without a pagefault. 1048 */ 1049 bytes = min_t(unsigned long, PAGE_SIZE - offset, 1050 iov_iter_single_seg_count(iter)); 1051 goto again; 1052 } 1053 pos += ret; 1054 written += ret; 1055 ret = 0; 1056 1057 balance_dirty_pages_ratelimited(mapping); 1058 } while (iov_iter_count(iter)); 1059 1060 bch2_pagecache_add_put(inode); 1061 1062 return written ? written : ret; 1063 } 1064 1065 ssize_t bch2_write_iter(struct kiocb *iocb, struct iov_iter *from) 1066 { 1067 struct file *file = iocb->ki_filp; 1068 struct bch_inode_info *inode = file_bch_inode(file); 1069 ssize_t ret; 1070 1071 if (iocb->ki_flags & IOCB_DIRECT) { 1072 ret = bch2_direct_write(iocb, from); 1073 goto out; 1074 } 1075 1076 inode_lock(&inode->v); 1077 1078 ret = generic_write_checks(iocb, from); 1079 if (ret <= 0) 1080 goto unlock; 1081 1082 ret = file_remove_privs(file); 1083 if (ret) 1084 goto unlock; 1085 1086 ret = file_update_time(file); 1087 if (ret) 1088 goto unlock; 1089 1090 ret = bch2_buffered_write(iocb, from); 1091 if (likely(ret > 0)) 1092 iocb->ki_pos += ret; 1093 unlock: 1094 inode_unlock(&inode->v); 1095 1096 if (ret > 0) 1097 ret = generic_write_sync(iocb, ret); 1098 out: 1099 return bch2_err_class(ret); 1100 } 1101 1102 void bch2_fs_fs_io_buffered_exit(struct bch_fs *c) 1103 { 1104 bioset_exit(&c->writepage_bioset); 1105 } 1106 1107 int bch2_fs_fs_io_buffered_init(struct bch_fs *c) 1108 { 1109 if (bioset_init(&c->writepage_bioset, 1110 4, offsetof(struct bch_writepage_io, op.wbio.bio), 1111 BIOSET_NEED_BVECS)) 1112 return -BCH_ERR_ENOMEM_writepage_bioset_init; 1113 1114 return 0; 1115 } 1116 1117 #endif /* NO_BCACHEFS_FS */ 1118