xref: /linux/fs/bcachefs/fs-io-buffered.c (revision 881f1bb5e25c8982ed963b2d319fc0fc732e55db)
1 // SPDX-License-Identifier: GPL-2.0
2 #ifndef NO_BCACHEFS_FS
3 
4 #include "bcachefs.h"
5 #include "alloc_foreground.h"
6 #include "bkey_buf.h"
7 #include "fs-io.h"
8 #include "fs-io-buffered.h"
9 #include "fs-io-direct.h"
10 #include "fs-io-pagecache.h"
11 #include "io_read.h"
12 #include "io_write.h"
13 
14 #include <linux/backing-dev.h>
15 #include <linux/pagemap.h>
16 #include <linux/writeback.h>
17 
18 static inline bool bio_full(struct bio *bio, unsigned len)
19 {
20 	if (bio->bi_vcnt >= bio->bi_max_vecs)
21 		return true;
22 	if (bio->bi_iter.bi_size > UINT_MAX - len)
23 		return true;
24 	return false;
25 }
26 
27 /* readpage(s): */
28 
29 static void bch2_readpages_end_io(struct bio *bio)
30 {
31 	struct folio_iter fi;
32 
33 	bio_for_each_folio_all(fi, bio) {
34 		if (!bio->bi_status) {
35 			folio_mark_uptodate(fi.folio);
36 		} else {
37 			folio_clear_uptodate(fi.folio);
38 			folio_set_error(fi.folio);
39 		}
40 		folio_unlock(fi.folio);
41 	}
42 
43 	bio_put(bio);
44 }
45 
46 struct readpages_iter {
47 	struct address_space	*mapping;
48 	unsigned		idx;
49 	folios			folios;
50 };
51 
52 static int readpages_iter_init(struct readpages_iter *iter,
53 			       struct readahead_control *ractl)
54 {
55 	struct folio *folio;
56 
57 	*iter = (struct readpages_iter) { ractl->mapping };
58 
59 	while ((folio = __readahead_folio(ractl))) {
60 		if (!bch2_folio_create(folio, GFP_KERNEL) ||
61 		    darray_push(&iter->folios, folio)) {
62 			bch2_folio_release(folio);
63 			ractl->_nr_pages += folio_nr_pages(folio);
64 			ractl->_index -= folio_nr_pages(folio);
65 			return iter->folios.nr ? 0 : -ENOMEM;
66 		}
67 
68 		folio_put(folio);
69 	}
70 
71 	return 0;
72 }
73 
74 static inline struct folio *readpage_iter_peek(struct readpages_iter *iter)
75 {
76 	if (iter->idx >= iter->folios.nr)
77 		return NULL;
78 	return iter->folios.data[iter->idx];
79 }
80 
81 static inline void readpage_iter_advance(struct readpages_iter *iter)
82 {
83 	iter->idx++;
84 }
85 
86 static bool extent_partial_reads_expensive(struct bkey_s_c k)
87 {
88 	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
89 	struct bch_extent_crc_unpacked crc;
90 	const union bch_extent_entry *i;
91 
92 	bkey_for_each_crc(k.k, ptrs, crc, i)
93 		if (crc.csum_type || crc.compression_type)
94 			return true;
95 	return false;
96 }
97 
98 static int readpage_bio_extend(struct btree_trans *trans,
99 			       struct readpages_iter *iter,
100 			       struct bio *bio,
101 			       unsigned sectors_this_extent,
102 			       bool get_more)
103 {
104 	/* Don't hold btree locks while allocating memory: */
105 	bch2_trans_unlock(trans);
106 
107 	while (bio_sectors(bio) < sectors_this_extent &&
108 	       bio->bi_vcnt < bio->bi_max_vecs) {
109 		struct folio *folio = readpage_iter_peek(iter);
110 		int ret;
111 
112 		if (folio) {
113 			readpage_iter_advance(iter);
114 		} else {
115 			pgoff_t folio_offset = bio_end_sector(bio) >> PAGE_SECTORS_SHIFT;
116 
117 			if (!get_more)
118 				break;
119 
120 			folio = xa_load(&iter->mapping->i_pages, folio_offset);
121 			if (folio && !xa_is_value(folio))
122 				break;
123 
124 			folio = filemap_alloc_folio(readahead_gfp_mask(iter->mapping), 0);
125 			if (!folio)
126 				break;
127 
128 			if (!__bch2_folio_create(folio, GFP_KERNEL)) {
129 				folio_put(folio);
130 				break;
131 			}
132 
133 			ret = filemap_add_folio(iter->mapping, folio, folio_offset, GFP_KERNEL);
134 			if (ret) {
135 				__bch2_folio_release(folio);
136 				folio_put(folio);
137 				break;
138 			}
139 
140 			folio_put(folio);
141 		}
142 
143 		BUG_ON(folio_sector(folio) != bio_end_sector(bio));
144 
145 		BUG_ON(!bio_add_folio(bio, folio, folio_size(folio), 0));
146 	}
147 
148 	return bch2_trans_relock(trans);
149 }
150 
151 static void bchfs_read(struct btree_trans *trans,
152 		       struct bch_read_bio *rbio,
153 		       subvol_inum inum,
154 		       struct readpages_iter *readpages_iter)
155 {
156 	struct bch_fs *c = trans->c;
157 	struct btree_iter iter;
158 	struct bkey_buf sk;
159 	int flags = BCH_READ_RETRY_IF_STALE|
160 		BCH_READ_MAY_PROMOTE;
161 	u32 snapshot;
162 	int ret = 0;
163 
164 	rbio->c = c;
165 	rbio->start_time = local_clock();
166 	rbio->subvol = inum.subvol;
167 
168 	bch2_bkey_buf_init(&sk);
169 retry:
170 	bch2_trans_begin(trans);
171 	iter = (struct btree_iter) { NULL };
172 
173 	ret = bch2_subvolume_get_snapshot(trans, inum.subvol, &snapshot);
174 	if (ret)
175 		goto err;
176 
177 	bch2_trans_iter_init(trans, &iter, BTREE_ID_extents,
178 			     SPOS(inum.inum, rbio->bio.bi_iter.bi_sector, snapshot),
179 			     BTREE_ITER_SLOTS);
180 	while (1) {
181 		struct bkey_s_c k;
182 		unsigned bytes, sectors, offset_into_extent;
183 		enum btree_id data_btree = BTREE_ID_extents;
184 
185 		/*
186 		 * read_extent -> io_time_reset may cause a transaction restart
187 		 * without returning an error, we need to check for that here:
188 		 */
189 		ret = bch2_trans_relock(trans);
190 		if (ret)
191 			break;
192 
193 		bch2_btree_iter_set_pos(&iter,
194 				POS(inum.inum, rbio->bio.bi_iter.bi_sector));
195 
196 		k = bch2_btree_iter_peek_slot(&iter);
197 		ret = bkey_err(k);
198 		if (ret)
199 			break;
200 
201 		offset_into_extent = iter.pos.offset -
202 			bkey_start_offset(k.k);
203 		sectors = k.k->size - offset_into_extent;
204 
205 		bch2_bkey_buf_reassemble(&sk, c, k);
206 
207 		ret = bch2_read_indirect_extent(trans, &data_btree,
208 					&offset_into_extent, &sk);
209 		if (ret)
210 			break;
211 
212 		k = bkey_i_to_s_c(sk.k);
213 
214 		sectors = min(sectors, k.k->size - offset_into_extent);
215 
216 		if (readpages_iter) {
217 			ret = readpage_bio_extend(trans, readpages_iter, &rbio->bio, sectors,
218 						  extent_partial_reads_expensive(k));
219 			if (ret)
220 				break;
221 		}
222 
223 		bytes = min(sectors, bio_sectors(&rbio->bio)) << 9;
224 		swap(rbio->bio.bi_iter.bi_size, bytes);
225 
226 		if (rbio->bio.bi_iter.bi_size == bytes)
227 			flags |= BCH_READ_LAST_FRAGMENT;
228 
229 		bch2_bio_page_state_set(&rbio->bio, k);
230 
231 		bch2_read_extent(trans, rbio, iter.pos,
232 				 data_btree, k, offset_into_extent, flags);
233 
234 		if (flags & BCH_READ_LAST_FRAGMENT)
235 			break;
236 
237 		swap(rbio->bio.bi_iter.bi_size, bytes);
238 		bio_advance(&rbio->bio, bytes);
239 
240 		ret = btree_trans_too_many_iters(trans);
241 		if (ret)
242 			break;
243 	}
244 err:
245 	bch2_trans_iter_exit(trans, &iter);
246 
247 	if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
248 		goto retry;
249 
250 	if (ret) {
251 		bch_err_inum_offset_ratelimited(c,
252 				iter.pos.inode,
253 				iter.pos.offset << 9,
254 				"read error %i from btree lookup", ret);
255 		rbio->bio.bi_status = BLK_STS_IOERR;
256 		bio_endio(&rbio->bio);
257 	}
258 
259 	bch2_bkey_buf_exit(&sk, c);
260 }
261 
262 void bch2_readahead(struct readahead_control *ractl)
263 {
264 	struct bch_inode_info *inode = to_bch_ei(ractl->mapping->host);
265 	struct bch_fs *c = inode->v.i_sb->s_fs_info;
266 	struct bch_io_opts opts;
267 	struct btree_trans *trans = bch2_trans_get(c);
268 	struct folio *folio;
269 	struct readpages_iter readpages_iter;
270 
271 	bch2_inode_opts_get(&opts, c, &inode->ei_inode);
272 
273 	int ret = readpages_iter_init(&readpages_iter, ractl);
274 	if (ret)
275 		return;
276 
277 	bch2_pagecache_add_get(inode);
278 
279 	while ((folio = readpage_iter_peek(&readpages_iter))) {
280 		unsigned n = min_t(unsigned,
281 				   readpages_iter.folios.nr -
282 				   readpages_iter.idx,
283 				   BIO_MAX_VECS);
284 		struct bch_read_bio *rbio =
285 			rbio_init(bio_alloc_bioset(NULL, n, REQ_OP_READ,
286 						   GFP_KERNEL, &c->bio_read),
287 				  opts);
288 
289 		readpage_iter_advance(&readpages_iter);
290 
291 		rbio->bio.bi_iter.bi_sector = folio_sector(folio);
292 		rbio->bio.bi_end_io = bch2_readpages_end_io;
293 		BUG_ON(!bio_add_folio(&rbio->bio, folio, folio_size(folio), 0));
294 
295 		bchfs_read(trans, rbio, inode_inum(inode),
296 			   &readpages_iter);
297 		bch2_trans_unlock(trans);
298 	}
299 
300 	bch2_pagecache_add_put(inode);
301 
302 	bch2_trans_put(trans);
303 	darray_exit(&readpages_iter.folios);
304 }
305 
306 static void bch2_read_single_folio_end_io(struct bio *bio)
307 {
308 	complete(bio->bi_private);
309 }
310 
311 int bch2_read_single_folio(struct folio *folio, struct address_space *mapping)
312 {
313 	struct bch_inode_info *inode = to_bch_ei(mapping->host);
314 	struct bch_fs *c = inode->v.i_sb->s_fs_info;
315 	struct bch_read_bio *rbio;
316 	struct bch_io_opts opts;
317 	int ret;
318 	DECLARE_COMPLETION_ONSTACK(done);
319 
320 	if (!bch2_folio_create(folio, GFP_KERNEL))
321 		return -ENOMEM;
322 
323 	bch2_inode_opts_get(&opts, c, &inode->ei_inode);
324 
325 	rbio = rbio_init(bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_KERNEL, &c->bio_read),
326 			 opts);
327 	rbio->bio.bi_private = &done;
328 	rbio->bio.bi_end_io = bch2_read_single_folio_end_io;
329 
330 	rbio->bio.bi_opf = REQ_OP_READ|REQ_SYNC;
331 	rbio->bio.bi_iter.bi_sector = folio_sector(folio);
332 	BUG_ON(!bio_add_folio(&rbio->bio, folio, folio_size(folio), 0));
333 
334 	bch2_trans_run(c, (bchfs_read(trans, rbio, inode_inum(inode), NULL), 0));
335 	wait_for_completion(&done);
336 
337 	ret = blk_status_to_errno(rbio->bio.bi_status);
338 	bio_put(&rbio->bio);
339 
340 	if (ret < 0)
341 		return ret;
342 
343 	folio_mark_uptodate(folio);
344 	return 0;
345 }
346 
347 int bch2_read_folio(struct file *file, struct folio *folio)
348 {
349 	int ret;
350 
351 	ret = bch2_read_single_folio(folio, folio->mapping);
352 	folio_unlock(folio);
353 	return bch2_err_class(ret);
354 }
355 
356 /* writepages: */
357 
358 struct bch_writepage_io {
359 	struct bch_inode_info		*inode;
360 
361 	/* must be last: */
362 	struct bch_write_op		op;
363 };
364 
365 struct bch_writepage_state {
366 	struct bch_writepage_io	*io;
367 	struct bch_io_opts	opts;
368 	struct bch_folio_sector	*tmp;
369 	unsigned		tmp_sectors;
370 };
371 
372 static inline struct bch_writepage_state bch_writepage_state_init(struct bch_fs *c,
373 								  struct bch_inode_info *inode)
374 {
375 	struct bch_writepage_state ret = { 0 };
376 
377 	bch2_inode_opts_get(&ret.opts, c, &inode->ei_inode);
378 	return ret;
379 }
380 
381 /*
382  * Determine when a writepage io is full. We have to limit writepage bios to a
383  * single page per bvec (i.e. 1MB with 4k pages) because that is the limit to
384  * what the bounce path in bch2_write_extent() can handle. In theory we could
385  * loosen this restriction for non-bounce I/O, but we don't have that context
386  * here. Ideally, we can up this limit and make it configurable in the future
387  * when the bounce path can be enhanced to accommodate larger source bios.
388  */
389 static inline bool bch_io_full(struct bch_writepage_io *io, unsigned len)
390 {
391 	struct bio *bio = &io->op.wbio.bio;
392 	return bio_full(bio, len) ||
393 		(bio->bi_iter.bi_size + len > BIO_MAX_VECS * PAGE_SIZE);
394 }
395 
396 static void bch2_writepage_io_done(struct bch_write_op *op)
397 {
398 	struct bch_writepage_io *io =
399 		container_of(op, struct bch_writepage_io, op);
400 	struct bch_fs *c = io->op.c;
401 	struct bio *bio = &io->op.wbio.bio;
402 	struct folio_iter fi;
403 	unsigned i;
404 
405 	if (io->op.error) {
406 		set_bit(EI_INODE_ERROR, &io->inode->ei_flags);
407 
408 		bio_for_each_folio_all(fi, bio) {
409 			struct bch_folio *s;
410 
411 			folio_set_error(fi.folio);
412 			mapping_set_error(fi.folio->mapping, -EIO);
413 
414 			s = __bch2_folio(fi.folio);
415 			spin_lock(&s->lock);
416 			for (i = 0; i < folio_sectors(fi.folio); i++)
417 				s->s[i].nr_replicas = 0;
418 			spin_unlock(&s->lock);
419 		}
420 	}
421 
422 	if (io->op.flags & BCH_WRITE_WROTE_DATA_INLINE) {
423 		bio_for_each_folio_all(fi, bio) {
424 			struct bch_folio *s;
425 
426 			s = __bch2_folio(fi.folio);
427 			spin_lock(&s->lock);
428 			for (i = 0; i < folio_sectors(fi.folio); i++)
429 				s->s[i].nr_replicas = 0;
430 			spin_unlock(&s->lock);
431 		}
432 	}
433 
434 	/*
435 	 * racing with fallocate can cause us to add fewer sectors than
436 	 * expected - but we shouldn't add more sectors than expected:
437 	 */
438 	WARN_ON_ONCE(io->op.i_sectors_delta > 0);
439 
440 	/*
441 	 * (error (due to going RO) halfway through a page can screw that up
442 	 * slightly)
443 	 * XXX wtf?
444 	   BUG_ON(io->op.op.i_sectors_delta >= PAGE_SECTORS);
445 	 */
446 
447 	/*
448 	 * PageWriteback is effectively our ref on the inode - fixup i_blocks
449 	 * before calling end_page_writeback:
450 	 */
451 	bch2_i_sectors_acct(c, io->inode, NULL, io->op.i_sectors_delta);
452 
453 	bio_for_each_folio_all(fi, bio) {
454 		struct bch_folio *s = __bch2_folio(fi.folio);
455 
456 		if (atomic_dec_and_test(&s->write_count))
457 			folio_end_writeback(fi.folio);
458 	}
459 
460 	bio_put(&io->op.wbio.bio);
461 }
462 
463 static void bch2_writepage_do_io(struct bch_writepage_state *w)
464 {
465 	struct bch_writepage_io *io = w->io;
466 
467 	w->io = NULL;
468 	closure_call(&io->op.cl, bch2_write, NULL, NULL);
469 }
470 
471 /*
472  * Get a bch_writepage_io and add @page to it - appending to an existing one if
473  * possible, else allocating a new one:
474  */
475 static void bch2_writepage_io_alloc(struct bch_fs *c,
476 				    struct writeback_control *wbc,
477 				    struct bch_writepage_state *w,
478 				    struct bch_inode_info *inode,
479 				    u64 sector,
480 				    unsigned nr_replicas)
481 {
482 	struct bch_write_op *op;
483 
484 	w->io = container_of(bio_alloc_bioset(NULL, BIO_MAX_VECS,
485 					      REQ_OP_WRITE,
486 					      GFP_KERNEL,
487 					      &c->writepage_bioset),
488 			     struct bch_writepage_io, op.wbio.bio);
489 
490 	w->io->inode		= inode;
491 	op			= &w->io->op;
492 	bch2_write_op_init(op, c, w->opts);
493 	op->target		= w->opts.foreground_target;
494 	op->nr_replicas		= nr_replicas;
495 	op->res.nr_replicas	= nr_replicas;
496 	op->write_point		= writepoint_hashed(inode->ei_last_dirtied);
497 	op->subvol		= inode->ei_subvol;
498 	op->pos			= POS(inode->v.i_ino, sector);
499 	op->end_io		= bch2_writepage_io_done;
500 	op->devs_need_flush	= &inode->ei_devs_need_flush;
501 	op->wbio.bio.bi_iter.bi_sector = sector;
502 	op->wbio.bio.bi_opf	= wbc_to_write_flags(wbc);
503 }
504 
505 static int __bch2_writepage(struct folio *folio,
506 			    struct writeback_control *wbc,
507 			    void *data)
508 {
509 	struct bch_inode_info *inode = to_bch_ei(folio->mapping->host);
510 	struct bch_fs *c = inode->v.i_sb->s_fs_info;
511 	struct bch_writepage_state *w = data;
512 	struct bch_folio *s;
513 	unsigned i, offset, f_sectors, nr_replicas_this_write = U32_MAX;
514 	loff_t i_size = i_size_read(&inode->v);
515 	int ret;
516 
517 	EBUG_ON(!folio_test_uptodate(folio));
518 
519 	/* Is the folio fully inside i_size? */
520 	if (folio_end_pos(folio) <= i_size)
521 		goto do_io;
522 
523 	/* Is the folio fully outside i_size? (truncate in progress) */
524 	if (folio_pos(folio) >= i_size) {
525 		folio_unlock(folio);
526 		return 0;
527 	}
528 
529 	/*
530 	 * The folio straddles i_size.  It must be zeroed out on each and every
531 	 * writepage invocation because it may be mmapped.  "A file is mapped
532 	 * in multiples of the folio size.  For a file that is not a multiple of
533 	 * the  folio size, the remaining memory is zeroed when mapped, and
534 	 * writes to that region are not written out to the file."
535 	 */
536 	folio_zero_segment(folio,
537 			   i_size - folio_pos(folio),
538 			   folio_size(folio));
539 do_io:
540 	f_sectors = folio_sectors(folio);
541 	s = bch2_folio(folio);
542 
543 	if (f_sectors > w->tmp_sectors) {
544 		kfree(w->tmp);
545 		w->tmp = kcalloc(f_sectors, sizeof(struct bch_folio_sector), __GFP_NOFAIL);
546 		w->tmp_sectors = f_sectors;
547 	}
548 
549 	/*
550 	 * Things get really hairy with errors during writeback:
551 	 */
552 	ret = bch2_get_folio_disk_reservation(c, inode, folio, false);
553 	BUG_ON(ret);
554 
555 	/* Before unlocking the page, get copy of reservations: */
556 	spin_lock(&s->lock);
557 	memcpy(w->tmp, s->s, sizeof(struct bch_folio_sector) * f_sectors);
558 
559 	for (i = 0; i < f_sectors; i++) {
560 		if (s->s[i].state < SECTOR_dirty)
561 			continue;
562 
563 		nr_replicas_this_write =
564 			min_t(unsigned, nr_replicas_this_write,
565 			      s->s[i].nr_replicas +
566 			      s->s[i].replicas_reserved);
567 	}
568 
569 	for (i = 0; i < f_sectors; i++) {
570 		if (s->s[i].state < SECTOR_dirty)
571 			continue;
572 
573 		s->s[i].nr_replicas = w->opts.compression
574 			? 0 : nr_replicas_this_write;
575 
576 		s->s[i].replicas_reserved = 0;
577 		bch2_folio_sector_set(folio, s, i, SECTOR_allocated);
578 	}
579 	spin_unlock(&s->lock);
580 
581 	BUG_ON(atomic_read(&s->write_count));
582 	atomic_set(&s->write_count, 1);
583 
584 	BUG_ON(folio_test_writeback(folio));
585 	folio_start_writeback(folio);
586 
587 	folio_unlock(folio);
588 
589 	offset = 0;
590 	while (1) {
591 		unsigned sectors = 0, dirty_sectors = 0, reserved_sectors = 0;
592 		u64 sector;
593 
594 		while (offset < f_sectors &&
595 		       w->tmp[offset].state < SECTOR_dirty)
596 			offset++;
597 
598 		if (offset == f_sectors)
599 			break;
600 
601 		while (offset + sectors < f_sectors &&
602 		       w->tmp[offset + sectors].state >= SECTOR_dirty) {
603 			reserved_sectors += w->tmp[offset + sectors].replicas_reserved;
604 			dirty_sectors += w->tmp[offset + sectors].state == SECTOR_dirty;
605 			sectors++;
606 		}
607 		BUG_ON(!sectors);
608 
609 		sector = folio_sector(folio) + offset;
610 
611 		if (w->io &&
612 		    (w->io->op.res.nr_replicas != nr_replicas_this_write ||
613 		     bch_io_full(w->io, sectors << 9) ||
614 		     bio_end_sector(&w->io->op.wbio.bio) != sector))
615 			bch2_writepage_do_io(w);
616 
617 		if (!w->io)
618 			bch2_writepage_io_alloc(c, wbc, w, inode, sector,
619 						nr_replicas_this_write);
620 
621 		atomic_inc(&s->write_count);
622 
623 		BUG_ON(inode != w->io->inode);
624 		BUG_ON(!bio_add_folio(&w->io->op.wbio.bio, folio,
625 				     sectors << 9, offset << 9));
626 
627 		/* Check for writing past i_size: */
628 		WARN_ONCE((bio_end_sector(&w->io->op.wbio.bio) << 9) >
629 			  round_up(i_size, block_bytes(c)) &&
630 			  !test_bit(BCH_FS_emergency_ro, &c->flags),
631 			  "writing past i_size: %llu > %llu (unrounded %llu)\n",
632 			  bio_end_sector(&w->io->op.wbio.bio) << 9,
633 			  round_up(i_size, block_bytes(c)),
634 			  i_size);
635 
636 		w->io->op.res.sectors += reserved_sectors;
637 		w->io->op.i_sectors_delta -= dirty_sectors;
638 		w->io->op.new_i_size = i_size;
639 
640 		offset += sectors;
641 	}
642 
643 	if (atomic_dec_and_test(&s->write_count))
644 		folio_end_writeback(folio);
645 
646 	return 0;
647 }
648 
649 int bch2_writepages(struct address_space *mapping, struct writeback_control *wbc)
650 {
651 	struct bch_fs *c = mapping->host->i_sb->s_fs_info;
652 	struct bch_writepage_state w =
653 		bch_writepage_state_init(c, to_bch_ei(mapping->host));
654 	struct blk_plug plug;
655 	int ret;
656 
657 	blk_start_plug(&plug);
658 	ret = write_cache_pages(mapping, wbc, __bch2_writepage, &w);
659 	if (w.io)
660 		bch2_writepage_do_io(&w);
661 	blk_finish_plug(&plug);
662 	kfree(w.tmp);
663 	return bch2_err_class(ret);
664 }
665 
666 /* buffered writes: */
667 
668 int bch2_write_begin(struct file *file, struct address_space *mapping,
669 		     loff_t pos, unsigned len,
670 		     struct page **pagep, void **fsdata)
671 {
672 	struct bch_inode_info *inode = to_bch_ei(mapping->host);
673 	struct bch_fs *c = inode->v.i_sb->s_fs_info;
674 	struct bch2_folio_reservation *res;
675 	struct folio *folio;
676 	unsigned offset;
677 	int ret = -ENOMEM;
678 
679 	res = kmalloc(sizeof(*res), GFP_KERNEL);
680 	if (!res)
681 		return -ENOMEM;
682 
683 	bch2_folio_reservation_init(c, inode, res);
684 	*fsdata = res;
685 
686 	bch2_pagecache_add_get(inode);
687 
688 	folio = __filemap_get_folio(mapping, pos >> PAGE_SHIFT,
689 				FGP_LOCK|FGP_WRITE|FGP_CREAT|FGP_STABLE,
690 				mapping_gfp_mask(mapping));
691 	if (IS_ERR_OR_NULL(folio))
692 		goto err_unlock;
693 
694 	offset = pos - folio_pos(folio);
695 	len = min_t(size_t, len, folio_end_pos(folio) - pos);
696 
697 	if (folio_test_uptodate(folio))
698 		goto out;
699 
700 	/* If we're writing entire folio, don't need to read it in first: */
701 	if (!offset && len == folio_size(folio))
702 		goto out;
703 
704 	if (!offset && pos + len >= inode->v.i_size) {
705 		folio_zero_segment(folio, len, folio_size(folio));
706 		flush_dcache_folio(folio);
707 		goto out;
708 	}
709 
710 	if (folio_pos(folio) >= inode->v.i_size) {
711 		folio_zero_segments(folio, 0, offset, offset + len, folio_size(folio));
712 		flush_dcache_folio(folio);
713 		goto out;
714 	}
715 readpage:
716 	ret = bch2_read_single_folio(folio, mapping);
717 	if (ret)
718 		goto err;
719 out:
720 	ret = bch2_folio_set(c, inode_inum(inode), &folio, 1);
721 	if (ret)
722 		goto err;
723 
724 	ret = bch2_folio_reservation_get(c, inode, folio, res, offset, len);
725 	if (ret) {
726 		if (!folio_test_uptodate(folio)) {
727 			/*
728 			 * If the folio hasn't been read in, we won't know if we
729 			 * actually need a reservation - we don't actually need
730 			 * to read here, we just need to check if the folio is
731 			 * fully backed by uncompressed data:
732 			 */
733 			goto readpage;
734 		}
735 
736 		goto err;
737 	}
738 
739 	*pagep = &folio->page;
740 	return 0;
741 err:
742 	folio_unlock(folio);
743 	folio_put(folio);
744 	*pagep = NULL;
745 err_unlock:
746 	bch2_pagecache_add_put(inode);
747 	kfree(res);
748 	*fsdata = NULL;
749 	return bch2_err_class(ret);
750 }
751 
752 int bch2_write_end(struct file *file, struct address_space *mapping,
753 		   loff_t pos, unsigned len, unsigned copied,
754 		   struct page *page, void *fsdata)
755 {
756 	struct bch_inode_info *inode = to_bch_ei(mapping->host);
757 	struct bch_fs *c = inode->v.i_sb->s_fs_info;
758 	struct bch2_folio_reservation *res = fsdata;
759 	struct folio *folio = page_folio(page);
760 	unsigned offset = pos - folio_pos(folio);
761 
762 	lockdep_assert_held(&inode->v.i_rwsem);
763 	BUG_ON(offset + copied > folio_size(folio));
764 
765 	if (unlikely(copied < len && !folio_test_uptodate(folio))) {
766 		/*
767 		 * The folio needs to be read in, but that would destroy
768 		 * our partial write - simplest thing is to just force
769 		 * userspace to redo the write:
770 		 */
771 		folio_zero_range(folio, 0, folio_size(folio));
772 		flush_dcache_folio(folio);
773 		copied = 0;
774 	}
775 
776 	spin_lock(&inode->v.i_lock);
777 	if (pos + copied > inode->v.i_size)
778 		i_size_write(&inode->v, pos + copied);
779 	spin_unlock(&inode->v.i_lock);
780 
781 	if (copied) {
782 		if (!folio_test_uptodate(folio))
783 			folio_mark_uptodate(folio);
784 
785 		bch2_set_folio_dirty(c, inode, folio, res, offset, copied);
786 
787 		inode->ei_last_dirtied = (unsigned long) current;
788 	}
789 
790 	folio_unlock(folio);
791 	folio_put(folio);
792 	bch2_pagecache_add_put(inode);
793 
794 	bch2_folio_reservation_put(c, inode, res);
795 	kfree(res);
796 
797 	return copied;
798 }
799 
800 static noinline void folios_trunc(folios *fs, struct folio **fi)
801 {
802 	while (fs->data + fs->nr > fi) {
803 		struct folio *f = darray_pop(fs);
804 
805 		folio_unlock(f);
806 		folio_put(f);
807 	}
808 }
809 
810 static int __bch2_buffered_write(struct bch_inode_info *inode,
811 				 struct address_space *mapping,
812 				 struct iov_iter *iter,
813 				 loff_t pos, unsigned len,
814 				 bool inode_locked)
815 {
816 	struct bch_fs *c = inode->v.i_sb->s_fs_info;
817 	struct bch2_folio_reservation res;
818 	folios fs;
819 	struct folio *f;
820 	unsigned copied = 0, f_offset, f_copied;
821 	u64 end = pos + len, f_pos, f_len;
822 	loff_t last_folio_pos = inode->v.i_size;
823 	int ret = 0;
824 
825 	BUG_ON(!len);
826 
827 	bch2_folio_reservation_init(c, inode, &res);
828 	darray_init(&fs);
829 
830 	ret = bch2_filemap_get_contig_folios_d(mapping, pos, end,
831 				   FGP_LOCK|FGP_WRITE|FGP_STABLE|FGP_CREAT,
832 				   mapping_gfp_mask(mapping),
833 				   &fs);
834 	if (ret)
835 		goto out;
836 
837 	BUG_ON(!fs.nr);
838 
839 	/*
840 	 * If we're not using the inode lock, we need to lock all the folios for
841 	 * atomiticity of writes vs. other writes:
842 	 */
843 	if (!inode_locked && folio_end_pos(darray_last(fs)) < end) {
844 		ret = -BCH_ERR_need_inode_lock;
845 		goto out;
846 	}
847 
848 	f = darray_first(fs);
849 	if (pos != folio_pos(f) && !folio_test_uptodate(f)) {
850 		ret = bch2_read_single_folio(f, mapping);
851 		if (ret)
852 			goto out;
853 	}
854 
855 	f = darray_last(fs);
856 	end = min(end, folio_end_pos(f));
857 	last_folio_pos = folio_pos(f);
858 	if (end != folio_end_pos(f) && !folio_test_uptodate(f)) {
859 		if (end >= inode->v.i_size) {
860 			folio_zero_range(f, 0, folio_size(f));
861 		} else {
862 			ret = bch2_read_single_folio(f, mapping);
863 			if (ret)
864 				goto out;
865 		}
866 	}
867 
868 	ret = bch2_folio_set(c, inode_inum(inode), fs.data, fs.nr);
869 	if (ret)
870 		goto out;
871 
872 	f_pos = pos;
873 	f_offset = pos - folio_pos(darray_first(fs));
874 	darray_for_each(fs, fi) {
875 		f = *fi;
876 		f_len = min(end, folio_end_pos(f)) - f_pos;
877 
878 		/*
879 		 * XXX: per POSIX and fstests generic/275, on -ENOSPC we're
880 		 * supposed to write as much as we have disk space for.
881 		 *
882 		 * On failure here we should still write out a partial page if
883 		 * we aren't completely out of disk space - we don't do that
884 		 * yet:
885 		 */
886 		ret = bch2_folio_reservation_get(c, inode, f, &res, f_offset, f_len);
887 		if (unlikely(ret)) {
888 			folios_trunc(&fs, fi);
889 			if (!fs.nr)
890 				goto out;
891 
892 			end = min(end, folio_end_pos(darray_last(fs)));
893 			break;
894 		}
895 
896 		f_pos = folio_end_pos(f);
897 		f_offset = 0;
898 	}
899 
900 	if (mapping_writably_mapped(mapping))
901 		darray_for_each(fs, fi)
902 			flush_dcache_folio(*fi);
903 
904 	f_pos = pos;
905 	f_offset = pos - folio_pos(darray_first(fs));
906 	darray_for_each(fs, fi) {
907 		f = *fi;
908 		f_len = min(end, folio_end_pos(f)) - f_pos;
909 		f_copied = copy_page_from_iter_atomic(&f->page, f_offset, f_len, iter);
910 		if (!f_copied) {
911 			folios_trunc(&fs, fi);
912 			break;
913 		}
914 
915 		if (!folio_test_uptodate(f) &&
916 		    f_copied != folio_size(f) &&
917 		    pos + copied + f_copied < inode->v.i_size) {
918 			iov_iter_revert(iter, f_copied);
919 			folio_zero_range(f, 0, folio_size(f));
920 			folios_trunc(&fs, fi);
921 			break;
922 		}
923 
924 		flush_dcache_folio(f);
925 		copied += f_copied;
926 
927 		if (f_copied != f_len) {
928 			folios_trunc(&fs, fi + 1);
929 			break;
930 		}
931 
932 		f_pos = folio_end_pos(f);
933 		f_offset = 0;
934 	}
935 
936 	if (!copied)
937 		goto out;
938 
939 	end = pos + copied;
940 
941 	spin_lock(&inode->v.i_lock);
942 	if (end > inode->v.i_size) {
943 		BUG_ON(!inode_locked);
944 		i_size_write(&inode->v, end);
945 	}
946 	spin_unlock(&inode->v.i_lock);
947 
948 	f_pos = pos;
949 	f_offset = pos - folio_pos(darray_first(fs));
950 	darray_for_each(fs, fi) {
951 		f = *fi;
952 		f_len = min(end, folio_end_pos(f)) - f_pos;
953 
954 		if (!folio_test_uptodate(f))
955 			folio_mark_uptodate(f);
956 
957 		bch2_set_folio_dirty(c, inode, f, &res, f_offset, f_len);
958 
959 		f_pos = folio_end_pos(f);
960 		f_offset = 0;
961 	}
962 
963 	inode->ei_last_dirtied = (unsigned long) current;
964 out:
965 	darray_for_each(fs, fi) {
966 		folio_unlock(*fi);
967 		folio_put(*fi);
968 	}
969 
970 	/*
971 	 * If the last folio added to the mapping starts beyond current EOF, we
972 	 * performed a short write but left around at least one post-EOF folio.
973 	 * Clean up the mapping before we return.
974 	 */
975 	if (last_folio_pos >= inode->v.i_size)
976 		truncate_pagecache(&inode->v, inode->v.i_size);
977 
978 	darray_exit(&fs);
979 	bch2_folio_reservation_put(c, inode, &res);
980 
981 	return copied ?: ret;
982 }
983 
984 static ssize_t bch2_buffered_write(struct kiocb *iocb, struct iov_iter *iter)
985 {
986 	struct file *file = iocb->ki_filp;
987 	struct address_space *mapping = file->f_mapping;
988 	struct bch_inode_info *inode = file_bch_inode(file);
989 	loff_t pos;
990 	bool inode_locked = false;
991 	ssize_t written = 0, written2 = 0, ret = 0;
992 
993 	/*
994 	 * We don't take the inode lock unless i_size will be changing. Folio
995 	 * locks provide exclusion with other writes, and the pagecache add lock
996 	 * provides exclusion with truncate and hole punching.
997 	 *
998 	 * There is one nasty corner case where atomicity would be broken
999 	 * without great care: when copying data from userspace to the page
1000 	 * cache, we do that with faults disable - a page fault would recurse
1001 	 * back into the filesystem, taking filesystem locks again, and
1002 	 * deadlock; so it's done with faults disabled, and we fault in the user
1003 	 * buffer when we aren't holding locks.
1004 	 *
1005 	 * If we do part of the write, but we then race and in the userspace
1006 	 * buffer have been evicted and are no longer resident, then we have to
1007 	 * drop our folio locks to re-fault them in, breaking write atomicity.
1008 	 *
1009 	 * To fix this, we restart the write from the start, if we weren't
1010 	 * holding the inode lock.
1011 	 *
1012 	 * There is another wrinkle after that; if we restart the write from the
1013 	 * start, and then get an unrecoverable error, we _cannot_ claim to
1014 	 * userspace that we did not write data we actually did - so we must
1015 	 * track (written2) the most we ever wrote.
1016 	 */
1017 
1018 	if ((iocb->ki_flags & IOCB_APPEND) ||
1019 	    (iocb->ki_pos + iov_iter_count(iter) > i_size_read(&inode->v))) {
1020 		inode_lock(&inode->v);
1021 		inode_locked = true;
1022 	}
1023 
1024 	ret = generic_write_checks(iocb, iter);
1025 	if (ret <= 0)
1026 		goto unlock;
1027 
1028 	ret = file_remove_privs_flags(file, !inode_locked ? IOCB_NOWAIT : 0);
1029 	if (ret) {
1030 		if (!inode_locked) {
1031 			inode_lock(&inode->v);
1032 			inode_locked = true;
1033 			ret = file_remove_privs_flags(file, 0);
1034 		}
1035 		if (ret)
1036 			goto unlock;
1037 	}
1038 
1039 	ret = file_update_time(file);
1040 	if (ret)
1041 		goto unlock;
1042 
1043 	pos = iocb->ki_pos;
1044 
1045 	bch2_pagecache_add_get(inode);
1046 
1047 	if (!inode_locked &&
1048 	    (iocb->ki_pos + iov_iter_count(iter) > i_size_read(&inode->v)))
1049 		goto get_inode_lock;
1050 
1051 	do {
1052 		unsigned offset = pos & (PAGE_SIZE - 1);
1053 		unsigned bytes = iov_iter_count(iter);
1054 again:
1055 		/*
1056 		 * Bring in the user page that we will copy from _first_.
1057 		 * Otherwise there's a nasty deadlock on copying from the
1058 		 * same page as we're writing to, without it being marked
1059 		 * up-to-date.
1060 		 *
1061 		 * Not only is this an optimisation, but it is also required
1062 		 * to check that the address is actually valid, when atomic
1063 		 * usercopies are used, below.
1064 		 */
1065 		if (unlikely(fault_in_iov_iter_readable(iter, bytes))) {
1066 			bytes = min_t(unsigned long, iov_iter_count(iter),
1067 				      PAGE_SIZE - offset);
1068 
1069 			if (unlikely(fault_in_iov_iter_readable(iter, bytes))) {
1070 				ret = -EFAULT;
1071 				break;
1072 			}
1073 		}
1074 
1075 		if (unlikely(bytes != iov_iter_count(iter) && !inode_locked))
1076 			goto get_inode_lock;
1077 
1078 		if (unlikely(fatal_signal_pending(current))) {
1079 			ret = -EINTR;
1080 			break;
1081 		}
1082 
1083 		ret = __bch2_buffered_write(inode, mapping, iter, pos, bytes, inode_locked);
1084 		if (ret == -BCH_ERR_need_inode_lock)
1085 			goto get_inode_lock;
1086 		if (unlikely(ret < 0))
1087 			break;
1088 
1089 		cond_resched();
1090 
1091 		if (unlikely(ret == 0)) {
1092 			/*
1093 			 * If we were unable to copy any data at all, we must
1094 			 * fall back to a single segment length write.
1095 			 *
1096 			 * If we didn't fallback here, we could livelock
1097 			 * because not all segments in the iov can be copied at
1098 			 * once without a pagefault.
1099 			 */
1100 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
1101 				      iov_iter_single_seg_count(iter));
1102 			goto again;
1103 		}
1104 		pos += ret;
1105 		written += ret;
1106 		written2 = max(written, written2);
1107 
1108 		if (ret != bytes && !inode_locked)
1109 			goto get_inode_lock;
1110 		ret = 0;
1111 
1112 		balance_dirty_pages_ratelimited(mapping);
1113 
1114 		if (0) {
1115 get_inode_lock:
1116 			bch2_pagecache_add_put(inode);
1117 			inode_lock(&inode->v);
1118 			inode_locked = true;
1119 			bch2_pagecache_add_get(inode);
1120 
1121 			iov_iter_revert(iter, written);
1122 			pos -= written;
1123 			written = 0;
1124 			ret = 0;
1125 		}
1126 	} while (iov_iter_count(iter));
1127 	bch2_pagecache_add_put(inode);
1128 unlock:
1129 	if (inode_locked)
1130 		inode_unlock(&inode->v);
1131 
1132 	iocb->ki_pos += written;
1133 
1134 	ret = max(written, written2) ?: ret;
1135 	if (ret > 0)
1136 		ret = generic_write_sync(iocb, ret);
1137 	return ret;
1138 }
1139 
1140 ssize_t bch2_write_iter(struct kiocb *iocb, struct iov_iter *iter)
1141 {
1142 	ssize_t ret = iocb->ki_flags & IOCB_DIRECT
1143 		? bch2_direct_write(iocb, iter)
1144 		: bch2_buffered_write(iocb, iter);
1145 
1146 	return bch2_err_class(ret);
1147 }
1148 
1149 void bch2_fs_fs_io_buffered_exit(struct bch_fs *c)
1150 {
1151 	bioset_exit(&c->writepage_bioset);
1152 }
1153 
1154 int bch2_fs_fs_io_buffered_init(struct bch_fs *c)
1155 {
1156 	if (bioset_init(&c->writepage_bioset,
1157 			4, offsetof(struct bch_writepage_io, op.wbio.bio),
1158 			BIOSET_NEED_BVECS))
1159 		return -BCH_ERR_ENOMEM_writepage_bioset_init;
1160 
1161 	return 0;
1162 }
1163 
1164 #endif /* NO_BCACHEFS_FS */
1165