1 // SPDX-License-Identifier: GPL-2.0 2 #ifndef NO_BCACHEFS_FS 3 4 #include "bcachefs.h" 5 #include "alloc_foreground.h" 6 #include "bkey_buf.h" 7 #include "fs-io.h" 8 #include "fs-io-buffered.h" 9 #include "fs-io-direct.h" 10 #include "fs-io-pagecache.h" 11 #include "io_read.h" 12 #include "io_write.h" 13 14 #include <linux/backing-dev.h> 15 #include <linux/pagemap.h> 16 #include <linux/writeback.h> 17 18 static inline bool bio_full(struct bio *bio, unsigned len) 19 { 20 if (bio->bi_vcnt >= bio->bi_max_vecs) 21 return true; 22 if (bio->bi_iter.bi_size > UINT_MAX - len) 23 return true; 24 return false; 25 } 26 27 /* readpage(s): */ 28 29 static void bch2_readpages_end_io(struct bio *bio) 30 { 31 struct folio_iter fi; 32 33 bio_for_each_folio_all(fi, bio) 34 folio_end_read(fi.folio, bio->bi_status == BLK_STS_OK); 35 36 bio_put(bio); 37 } 38 39 struct readpages_iter { 40 struct address_space *mapping; 41 unsigned idx; 42 folios folios; 43 }; 44 45 static int readpages_iter_init(struct readpages_iter *iter, 46 struct readahead_control *ractl) 47 { 48 struct folio *folio; 49 50 *iter = (struct readpages_iter) { ractl->mapping }; 51 52 while ((folio = __readahead_folio(ractl))) { 53 if (!bch2_folio_create(folio, GFP_KERNEL) || 54 darray_push(&iter->folios, folio)) { 55 bch2_folio_release(folio); 56 ractl->_nr_pages += folio_nr_pages(folio); 57 ractl->_index -= folio_nr_pages(folio); 58 return iter->folios.nr ? 0 : -ENOMEM; 59 } 60 61 folio_put(folio); 62 } 63 64 return 0; 65 } 66 67 static inline struct folio *readpage_iter_peek(struct readpages_iter *iter) 68 { 69 if (iter->idx >= iter->folios.nr) 70 return NULL; 71 return iter->folios.data[iter->idx]; 72 } 73 74 static inline void readpage_iter_advance(struct readpages_iter *iter) 75 { 76 iter->idx++; 77 } 78 79 static bool extent_partial_reads_expensive(struct bkey_s_c k) 80 { 81 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 82 struct bch_extent_crc_unpacked crc; 83 const union bch_extent_entry *i; 84 85 bkey_for_each_crc(k.k, ptrs, crc, i) 86 if (crc.csum_type || crc.compression_type) 87 return true; 88 return false; 89 } 90 91 static int readpage_bio_extend(struct btree_trans *trans, 92 struct readpages_iter *iter, 93 struct bio *bio, 94 unsigned sectors_this_extent, 95 bool get_more) 96 { 97 /* Don't hold btree locks while allocating memory: */ 98 bch2_trans_unlock(trans); 99 100 while (bio_sectors(bio) < sectors_this_extent && 101 bio->bi_vcnt < bio->bi_max_vecs) { 102 struct folio *folio = readpage_iter_peek(iter); 103 int ret; 104 105 if (folio) { 106 readpage_iter_advance(iter); 107 } else { 108 pgoff_t folio_offset = bio_end_sector(bio) >> PAGE_SECTORS_SHIFT; 109 110 if (!get_more) 111 break; 112 113 unsigned sectors_remaining = sectors_this_extent - bio_sectors(bio); 114 115 if (sectors_remaining < PAGE_SECTORS << mapping_min_folio_order(iter->mapping)) 116 break; 117 118 unsigned order = ilog2(rounddown_pow_of_two(sectors_remaining) / PAGE_SECTORS); 119 120 /* ensure proper alignment */ 121 order = min(order, __ffs(folio_offset|BIT(31))); 122 123 folio = xa_load(&iter->mapping->i_pages, folio_offset); 124 if (folio && !xa_is_value(folio)) 125 break; 126 127 folio = filemap_alloc_folio(readahead_gfp_mask(iter->mapping), order); 128 if (!folio) 129 break; 130 131 if (!__bch2_folio_create(folio, GFP_KERNEL)) { 132 folio_put(folio); 133 break; 134 } 135 136 ret = filemap_add_folio(iter->mapping, folio, folio_offset, GFP_KERNEL); 137 if (ret) { 138 __bch2_folio_release(folio); 139 folio_put(folio); 140 break; 141 } 142 143 folio_put(folio); 144 } 145 146 BUG_ON(folio_sector(folio) != bio_end_sector(bio)); 147 148 BUG_ON(!bio_add_folio(bio, folio, folio_size(folio), 0)); 149 } 150 151 return bch2_trans_relock(trans); 152 } 153 154 static void bchfs_read(struct btree_trans *trans, 155 struct bch_read_bio *rbio, 156 subvol_inum inum, 157 struct readpages_iter *readpages_iter) 158 { 159 struct bch_fs *c = trans->c; 160 struct btree_iter iter; 161 struct bkey_buf sk; 162 int flags = BCH_READ_retry_if_stale| 163 BCH_READ_may_promote; 164 int ret = 0; 165 166 rbio->subvol = inum.subvol; 167 168 bch2_bkey_buf_init(&sk); 169 bch2_trans_begin(trans); 170 bch2_trans_iter_init(trans, &iter, BTREE_ID_extents, 171 POS(inum.inum, rbio->bio.bi_iter.bi_sector), 172 BTREE_ITER_slots); 173 while (1) { 174 struct bkey_s_c k; 175 unsigned bytes, sectors; 176 s64 offset_into_extent; 177 enum btree_id data_btree = BTREE_ID_extents; 178 179 bch2_trans_begin(trans); 180 181 u32 snapshot; 182 ret = bch2_subvolume_get_snapshot(trans, inum.subvol, &snapshot); 183 if (ret) 184 goto err; 185 186 bch2_btree_iter_set_snapshot(trans, &iter, snapshot); 187 188 bch2_btree_iter_set_pos(trans, &iter, 189 POS(inum.inum, rbio->bio.bi_iter.bi_sector)); 190 191 k = bch2_btree_iter_peek_slot(trans, &iter); 192 ret = bkey_err(k); 193 if (ret) 194 goto err; 195 196 offset_into_extent = iter.pos.offset - 197 bkey_start_offset(k.k); 198 sectors = k.k->size - offset_into_extent; 199 200 bch2_bkey_buf_reassemble(&sk, c, k); 201 202 ret = bch2_read_indirect_extent(trans, &data_btree, 203 &offset_into_extent, &sk); 204 if (ret) 205 goto err; 206 207 k = bkey_i_to_s_c(sk.k); 208 209 sectors = min_t(unsigned, sectors, k.k->size - offset_into_extent); 210 211 if (readpages_iter) { 212 ret = readpage_bio_extend(trans, readpages_iter, &rbio->bio, sectors, 213 extent_partial_reads_expensive(k)); 214 if (ret) 215 goto err; 216 } 217 218 bytes = min(sectors, bio_sectors(&rbio->bio)) << 9; 219 swap(rbio->bio.bi_iter.bi_size, bytes); 220 221 if (rbio->bio.bi_iter.bi_size == bytes) 222 flags |= BCH_READ_last_fragment; 223 224 bch2_bio_page_state_set(&rbio->bio, k); 225 226 bch2_read_extent(trans, rbio, iter.pos, 227 data_btree, k, offset_into_extent, flags); 228 /* 229 * Careful there's a landmine here if bch2_read_extent() ever 230 * starts returning transaction restarts here. 231 * 232 * We've changed rbio->bi_iter.bi_size to be "bytes we can read 233 * from this extent" with the swap call, and we restore it 234 * below. That restore needs to come before checking for 235 * errors. 236 * 237 * But unlike __bch2_read(), we use the rbio bvec iter, not one 238 * on the stack, so we can't do the restore right after the 239 * bch2_read_extent() call: we don't own that iterator anymore 240 * if BCH_READ_last_fragment is set, since we may have submitted 241 * that rbio instead of cloning it. 242 */ 243 244 if (flags & BCH_READ_last_fragment) 245 break; 246 247 swap(rbio->bio.bi_iter.bi_size, bytes); 248 bio_advance(&rbio->bio, bytes); 249 err: 250 if (ret && 251 !bch2_err_matches(ret, BCH_ERR_transaction_restart)) 252 break; 253 } 254 bch2_trans_iter_exit(trans, &iter); 255 256 if (ret) { 257 struct printbuf buf = PRINTBUF; 258 lockrestart_do(trans, 259 bch2_inum_offset_err_msg_trans(trans, &buf, inum, iter.pos.offset << 9)); 260 prt_printf(&buf, "read error %i from btree lookup", ret); 261 bch_err_ratelimited(c, "%s", buf.buf); 262 printbuf_exit(&buf); 263 264 rbio->bio.bi_status = BLK_STS_IOERR; 265 bio_endio(&rbio->bio); 266 } 267 268 bch2_bkey_buf_exit(&sk, c); 269 } 270 271 void bch2_readahead(struct readahead_control *ractl) 272 { 273 struct bch_inode_info *inode = to_bch_ei(ractl->mapping->host); 274 struct bch_fs *c = inode->v.i_sb->s_fs_info; 275 struct bch_io_opts opts; 276 struct folio *folio; 277 struct readpages_iter readpages_iter; 278 struct blk_plug plug; 279 280 bch2_inode_opts_get(&opts, c, &inode->ei_inode); 281 282 int ret = readpages_iter_init(&readpages_iter, ractl); 283 if (ret) 284 return; 285 286 /* 287 * Besides being a general performance optimization, plugging helps with 288 * avoiding btree transaction srcu warnings - submitting a bio can 289 * block, and we don't want todo that with the transaction locked. 290 * 291 * However, plugged bios are submitted when we schedule; we ideally 292 * would have our own scheduler hook to call unlock_long() before 293 * scheduling. 294 */ 295 blk_start_plug(&plug); 296 bch2_pagecache_add_get(inode); 297 298 struct btree_trans *trans = bch2_trans_get(c); 299 while ((folio = readpage_iter_peek(&readpages_iter))) { 300 unsigned n = min_t(unsigned, 301 readpages_iter.folios.nr - 302 readpages_iter.idx, 303 BIO_MAX_VECS); 304 struct bch_read_bio *rbio = 305 rbio_init(bio_alloc_bioset(NULL, n, REQ_OP_READ, 306 GFP_KERNEL, &c->bio_read), 307 c, 308 opts, 309 bch2_readpages_end_io); 310 311 readpage_iter_advance(&readpages_iter); 312 313 rbio->bio.bi_iter.bi_sector = folio_sector(folio); 314 BUG_ON(!bio_add_folio(&rbio->bio, folio, folio_size(folio), 0)); 315 316 bchfs_read(trans, rbio, inode_inum(inode), 317 &readpages_iter); 318 bch2_trans_unlock(trans); 319 } 320 bch2_trans_put(trans); 321 322 bch2_pagecache_add_put(inode); 323 blk_finish_plug(&plug); 324 darray_exit(&readpages_iter.folios); 325 } 326 327 static void bch2_read_single_folio_end_io(struct bio *bio) 328 { 329 complete(bio->bi_private); 330 } 331 332 int bch2_read_single_folio(struct folio *folio, struct address_space *mapping) 333 { 334 struct bch_inode_info *inode = to_bch_ei(mapping->host); 335 struct bch_fs *c = inode->v.i_sb->s_fs_info; 336 struct bch_read_bio *rbio; 337 struct bch_io_opts opts; 338 struct blk_plug plug; 339 int ret; 340 DECLARE_COMPLETION_ONSTACK(done); 341 342 BUG_ON(folio_test_uptodate(folio)); 343 BUG_ON(folio_test_dirty(folio)); 344 345 if (!bch2_folio_create(folio, GFP_KERNEL)) 346 return -ENOMEM; 347 348 bch2_inode_opts_get(&opts, c, &inode->ei_inode); 349 350 rbio = rbio_init(bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_KERNEL, &c->bio_read), 351 c, 352 opts, 353 bch2_read_single_folio_end_io); 354 rbio->bio.bi_private = &done; 355 rbio->bio.bi_opf = REQ_OP_READ|REQ_SYNC; 356 rbio->bio.bi_iter.bi_sector = folio_sector(folio); 357 BUG_ON(!bio_add_folio(&rbio->bio, folio, folio_size(folio), 0)); 358 359 blk_start_plug(&plug); 360 bch2_trans_run(c, (bchfs_read(trans, rbio, inode_inum(inode), NULL), 0)); 361 blk_finish_plug(&plug); 362 wait_for_completion(&done); 363 364 ret = blk_status_to_errno(rbio->bio.bi_status); 365 bio_put(&rbio->bio); 366 367 if (ret < 0) 368 return ret; 369 370 folio_mark_uptodate(folio); 371 return 0; 372 } 373 374 int bch2_read_folio(struct file *file, struct folio *folio) 375 { 376 int ret; 377 378 ret = bch2_read_single_folio(folio, folio->mapping); 379 folio_unlock(folio); 380 return bch2_err_class(ret); 381 } 382 383 /* writepages: */ 384 385 struct bch_writepage_io { 386 struct bch_inode_info *inode; 387 388 /* must be last: */ 389 struct bch_write_op op; 390 }; 391 392 struct bch_writepage_state { 393 struct bch_writepage_io *io; 394 struct bch_io_opts opts; 395 struct bch_folio_sector *tmp; 396 unsigned tmp_sectors; 397 struct blk_plug plug; 398 }; 399 400 /* 401 * Determine when a writepage io is full. We have to limit writepage bios to a 402 * single page per bvec (i.e. 1MB with 4k pages) because that is the limit to 403 * what the bounce path in bch2_write_extent() can handle. In theory we could 404 * loosen this restriction for non-bounce I/O, but we don't have that context 405 * here. Ideally, we can up this limit and make it configurable in the future 406 * when the bounce path can be enhanced to accommodate larger source bios. 407 */ 408 static inline bool bch_io_full(struct bch_writepage_io *io, unsigned len) 409 { 410 struct bio *bio = &io->op.wbio.bio; 411 return bio_full(bio, len) || 412 (bio->bi_iter.bi_size + len > BIO_MAX_VECS * PAGE_SIZE); 413 } 414 415 static void bch2_writepage_io_done(struct bch_write_op *op) 416 { 417 struct bch_writepage_io *io = 418 container_of(op, struct bch_writepage_io, op); 419 struct bch_fs *c = io->op.c; 420 struct bio *bio = &io->op.wbio.bio; 421 struct folio_iter fi; 422 unsigned i; 423 424 if (io->op.error) { 425 set_bit(EI_INODE_ERROR, &io->inode->ei_flags); 426 427 bio_for_each_folio_all(fi, bio) { 428 struct bch_folio *s; 429 430 mapping_set_error(fi.folio->mapping, -EIO); 431 432 s = __bch2_folio(fi.folio); 433 spin_lock(&s->lock); 434 for (i = 0; i < folio_sectors(fi.folio); i++) 435 s->s[i].nr_replicas = 0; 436 spin_unlock(&s->lock); 437 } 438 } 439 440 if (io->op.flags & BCH_WRITE_wrote_data_inline) { 441 bio_for_each_folio_all(fi, bio) { 442 struct bch_folio *s; 443 444 s = __bch2_folio(fi.folio); 445 spin_lock(&s->lock); 446 for (i = 0; i < folio_sectors(fi.folio); i++) 447 s->s[i].nr_replicas = 0; 448 spin_unlock(&s->lock); 449 } 450 } 451 452 /* 453 * racing with fallocate can cause us to add fewer sectors than 454 * expected - but we shouldn't add more sectors than expected: 455 */ 456 WARN_ON_ONCE(io->op.i_sectors_delta > 0); 457 458 /* 459 * (error (due to going RO) halfway through a page can screw that up 460 * slightly) 461 * XXX wtf? 462 BUG_ON(io->op.op.i_sectors_delta >= PAGE_SECTORS); 463 */ 464 465 /* 466 * The writeback flag is effectively our ref on the inode - 467 * fixup i_blocks before calling folio_end_writeback: 468 */ 469 bch2_i_sectors_acct(c, io->inode, NULL, io->op.i_sectors_delta); 470 471 bio_for_each_folio_all(fi, bio) { 472 struct bch_folio *s = __bch2_folio(fi.folio); 473 474 if (atomic_dec_and_test(&s->write_count)) 475 folio_end_writeback(fi.folio); 476 } 477 478 bio_put(&io->op.wbio.bio); 479 } 480 481 static void bch2_writepage_do_io(struct bch_writepage_state *w) 482 { 483 struct bch_writepage_io *io = w->io; 484 485 w->io = NULL; 486 closure_call(&io->op.cl, bch2_write, NULL, NULL); 487 } 488 489 /* 490 * Get a bch_writepage_io and add @page to it - appending to an existing one if 491 * possible, else allocating a new one: 492 */ 493 static void bch2_writepage_io_alloc(struct bch_fs *c, 494 struct writeback_control *wbc, 495 struct bch_writepage_state *w, 496 struct bch_inode_info *inode, 497 u64 sector, 498 unsigned nr_replicas) 499 { 500 struct bch_write_op *op; 501 502 w->io = container_of(bio_alloc_bioset(NULL, BIO_MAX_VECS, 503 REQ_OP_WRITE, 504 GFP_KERNEL, 505 &c->writepage_bioset), 506 struct bch_writepage_io, op.wbio.bio); 507 508 w->io->inode = inode; 509 op = &w->io->op; 510 bch2_write_op_init(op, c, w->opts); 511 op->target = w->opts.foreground_target; 512 op->nr_replicas = nr_replicas; 513 op->res.nr_replicas = nr_replicas; 514 op->write_point = writepoint_hashed(inode->ei_last_dirtied); 515 op->subvol = inode->ei_inum.subvol; 516 op->pos = POS(inode->v.i_ino, sector); 517 op->end_io = bch2_writepage_io_done; 518 op->devs_need_flush = &inode->ei_devs_need_flush; 519 op->wbio.bio.bi_iter.bi_sector = sector; 520 op->wbio.bio.bi_opf = wbc_to_write_flags(wbc); 521 } 522 523 static int __bch2_writepage(struct folio *folio, 524 struct writeback_control *wbc, 525 void *data) 526 { 527 struct bch_inode_info *inode = to_bch_ei(folio->mapping->host); 528 struct bch_fs *c = inode->v.i_sb->s_fs_info; 529 struct bch_writepage_state *w = data; 530 struct bch_folio *s; 531 unsigned i, offset, f_sectors, nr_replicas_this_write = U32_MAX; 532 loff_t i_size = i_size_read(&inode->v); 533 int ret; 534 535 EBUG_ON(!folio_test_uptodate(folio)); 536 537 /* Is the folio fully inside i_size? */ 538 if (folio_end_pos(folio) <= i_size) 539 goto do_io; 540 541 /* Is the folio fully outside i_size? (truncate in progress) */ 542 if (folio_pos(folio) >= i_size) { 543 folio_unlock(folio); 544 return 0; 545 } 546 547 /* 548 * The folio straddles i_size. It must be zeroed out on each and every 549 * writepage invocation because it may be mmapped. "A file is mapped 550 * in multiples of the folio size. For a file that is not a multiple of 551 * the folio size, the remaining memory is zeroed when mapped, and 552 * writes to that region are not written out to the file." 553 */ 554 folio_zero_segment(folio, 555 i_size - folio_pos(folio), 556 folio_size(folio)); 557 do_io: 558 f_sectors = folio_sectors(folio); 559 s = bch2_folio(folio); 560 561 if (f_sectors > w->tmp_sectors) { 562 kfree(w->tmp); 563 w->tmp = kcalloc(f_sectors, sizeof(struct bch_folio_sector), GFP_NOFS|__GFP_NOFAIL); 564 w->tmp_sectors = f_sectors; 565 } 566 567 /* 568 * Things get really hairy with errors during writeback: 569 */ 570 ret = bch2_get_folio_disk_reservation(c, inode, folio, false); 571 BUG_ON(ret); 572 573 /* Before unlocking the page, get copy of reservations: */ 574 spin_lock(&s->lock); 575 memcpy(w->tmp, s->s, sizeof(struct bch_folio_sector) * f_sectors); 576 577 for (i = 0; i < f_sectors; i++) { 578 if (s->s[i].state < SECTOR_dirty) 579 continue; 580 581 nr_replicas_this_write = 582 min_t(unsigned, nr_replicas_this_write, 583 s->s[i].nr_replicas + 584 s->s[i].replicas_reserved); 585 } 586 587 for (i = 0; i < f_sectors; i++) { 588 if (s->s[i].state < SECTOR_dirty) 589 continue; 590 591 s->s[i].nr_replicas = w->opts.compression 592 ? 0 : nr_replicas_this_write; 593 594 s->s[i].replicas_reserved = 0; 595 bch2_folio_sector_set(folio, s, i, SECTOR_allocated); 596 } 597 spin_unlock(&s->lock); 598 599 BUG_ON(atomic_read(&s->write_count)); 600 atomic_set(&s->write_count, 1); 601 602 BUG_ON(folio_test_writeback(folio)); 603 folio_start_writeback(folio); 604 605 folio_unlock(folio); 606 607 offset = 0; 608 while (1) { 609 unsigned sectors = 0, dirty_sectors = 0, reserved_sectors = 0; 610 u64 sector; 611 612 while (offset < f_sectors && 613 w->tmp[offset].state < SECTOR_dirty) 614 offset++; 615 616 if (offset == f_sectors) 617 break; 618 619 while (offset + sectors < f_sectors && 620 w->tmp[offset + sectors].state >= SECTOR_dirty) { 621 reserved_sectors += w->tmp[offset + sectors].replicas_reserved; 622 dirty_sectors += w->tmp[offset + sectors].state == SECTOR_dirty; 623 sectors++; 624 } 625 BUG_ON(!sectors); 626 627 sector = folio_sector(folio) + offset; 628 629 if (w->io && 630 (w->io->op.res.nr_replicas != nr_replicas_this_write || 631 bch_io_full(w->io, sectors << 9) || 632 bio_end_sector(&w->io->op.wbio.bio) != sector)) 633 bch2_writepage_do_io(w); 634 635 if (!w->io) 636 bch2_writepage_io_alloc(c, wbc, w, inode, sector, 637 nr_replicas_this_write); 638 639 atomic_inc(&s->write_count); 640 641 BUG_ON(inode != w->io->inode); 642 BUG_ON(!bio_add_folio(&w->io->op.wbio.bio, folio, 643 sectors << 9, offset << 9)); 644 645 w->io->op.res.sectors += reserved_sectors; 646 w->io->op.i_sectors_delta -= dirty_sectors; 647 w->io->op.new_i_size = i_size; 648 649 offset += sectors; 650 } 651 652 if (atomic_dec_and_test(&s->write_count)) 653 folio_end_writeback(folio); 654 655 return 0; 656 } 657 658 int bch2_writepages(struct address_space *mapping, struct writeback_control *wbc) 659 { 660 struct bch_fs *c = mapping->host->i_sb->s_fs_info; 661 struct bch_writepage_state *w = kzalloc(sizeof(*w), GFP_NOFS|__GFP_NOFAIL); 662 663 bch2_inode_opts_get(&w->opts, c, &to_bch_ei(mapping->host)->ei_inode); 664 665 blk_start_plug(&w->plug); 666 int ret = write_cache_pages(mapping, wbc, __bch2_writepage, w); 667 if (w->io) 668 bch2_writepage_do_io(w); 669 blk_finish_plug(&w->plug); 670 kfree(w->tmp); 671 kfree(w); 672 return bch2_err_class(ret); 673 } 674 675 /* buffered writes: */ 676 677 int bch2_write_begin(struct file *file, struct address_space *mapping, 678 loff_t pos, unsigned len, 679 struct folio **foliop, void **fsdata) 680 { 681 struct bch_inode_info *inode = to_bch_ei(mapping->host); 682 struct bch_fs *c = inode->v.i_sb->s_fs_info; 683 struct bch2_folio_reservation *res; 684 struct folio *folio; 685 unsigned offset; 686 int ret = -ENOMEM; 687 688 res = kmalloc(sizeof(*res), GFP_KERNEL); 689 if (!res) 690 return -ENOMEM; 691 692 bch2_folio_reservation_init(c, inode, res); 693 *fsdata = res; 694 695 bch2_pagecache_add_get(inode); 696 697 folio = __filemap_get_folio(mapping, pos >> PAGE_SHIFT, 698 FGP_WRITEBEGIN | fgf_set_order(len), 699 mapping_gfp_mask(mapping)); 700 if (IS_ERR(folio)) 701 goto err_unlock; 702 703 offset = pos - folio_pos(folio); 704 len = min_t(size_t, len, folio_end_pos(folio) - pos); 705 706 if (folio_test_uptodate(folio)) 707 goto out; 708 709 /* If we're writing entire folio, don't need to read it in first: */ 710 if (!offset && len == folio_size(folio)) 711 goto out; 712 713 if (!offset && pos + len >= inode->v.i_size) { 714 folio_zero_segment(folio, len, folio_size(folio)); 715 flush_dcache_folio(folio); 716 goto out; 717 } 718 719 if (folio_pos(folio) >= inode->v.i_size) { 720 folio_zero_segments(folio, 0, offset, offset + len, folio_size(folio)); 721 flush_dcache_folio(folio); 722 goto out; 723 } 724 readpage: 725 ret = bch2_read_single_folio(folio, mapping); 726 if (ret) 727 goto err; 728 out: 729 ret = bch2_folio_set(c, inode_inum(inode), &folio, 1); 730 if (ret) 731 goto err; 732 733 ret = bch2_folio_reservation_get(c, inode, folio, res, offset, len); 734 if (ret) { 735 if (!folio_test_uptodate(folio)) { 736 /* 737 * If the folio hasn't been read in, we won't know if we 738 * actually need a reservation - we don't actually need 739 * to read here, we just need to check if the folio is 740 * fully backed by uncompressed data: 741 */ 742 goto readpage; 743 } 744 745 goto err; 746 } 747 748 *foliop = folio; 749 return 0; 750 err: 751 folio_unlock(folio); 752 folio_put(folio); 753 err_unlock: 754 bch2_pagecache_add_put(inode); 755 kfree(res); 756 *fsdata = NULL; 757 return bch2_err_class(ret); 758 } 759 760 int bch2_write_end(struct file *file, struct address_space *mapping, 761 loff_t pos, unsigned len, unsigned copied, 762 struct folio *folio, void *fsdata) 763 { 764 struct bch_inode_info *inode = to_bch_ei(mapping->host); 765 struct bch_fs *c = inode->v.i_sb->s_fs_info; 766 struct bch2_folio_reservation *res = fsdata; 767 unsigned offset = pos - folio_pos(folio); 768 769 lockdep_assert_held(&inode->v.i_rwsem); 770 BUG_ON(offset + copied > folio_size(folio)); 771 772 if (unlikely(copied < len && !folio_test_uptodate(folio))) { 773 /* 774 * The folio needs to be read in, but that would destroy 775 * our partial write - simplest thing is to just force 776 * userspace to redo the write: 777 */ 778 folio_zero_range(folio, 0, folio_size(folio)); 779 flush_dcache_folio(folio); 780 copied = 0; 781 } 782 783 spin_lock(&inode->v.i_lock); 784 if (pos + copied > inode->v.i_size) 785 i_size_write(&inode->v, pos + copied); 786 spin_unlock(&inode->v.i_lock); 787 788 if (copied) { 789 if (!folio_test_uptodate(folio)) 790 folio_mark_uptodate(folio); 791 792 bch2_set_folio_dirty(c, inode, folio, res, offset, copied); 793 794 inode->ei_last_dirtied = (unsigned long) current; 795 } 796 797 folio_unlock(folio); 798 folio_put(folio); 799 bch2_pagecache_add_put(inode); 800 801 bch2_folio_reservation_put(c, inode, res); 802 kfree(res); 803 804 return copied; 805 } 806 807 static noinline void folios_trunc(folios *fs, struct folio **fi) 808 { 809 while (fs->data + fs->nr > fi) { 810 struct folio *f = darray_pop(fs); 811 812 folio_unlock(f); 813 folio_put(f); 814 } 815 } 816 817 static int __bch2_buffered_write(struct bch_inode_info *inode, 818 struct address_space *mapping, 819 struct iov_iter *iter, 820 loff_t pos, unsigned len) 821 { 822 struct bch_fs *c = inode->v.i_sb->s_fs_info; 823 struct bch2_folio_reservation res; 824 folios fs; 825 struct folio *f; 826 unsigned copied = 0, f_offset, f_copied; 827 u64 end = pos + len, f_pos, f_len; 828 loff_t last_folio_pos = inode->v.i_size; 829 int ret = 0; 830 831 BUG_ON(!len); 832 833 bch2_folio_reservation_init(c, inode, &res); 834 darray_init(&fs); 835 836 ret = bch2_filemap_get_contig_folios_d(mapping, pos, end, 837 FGP_WRITEBEGIN | fgf_set_order(len), 838 mapping_gfp_mask(mapping), &fs); 839 if (ret) 840 goto out; 841 842 BUG_ON(!fs.nr); 843 844 f = darray_first(fs); 845 if (pos != folio_pos(f) && !folio_test_uptodate(f)) { 846 ret = bch2_read_single_folio(f, mapping); 847 if (ret) 848 goto out; 849 } 850 851 f = darray_last(fs); 852 end = min(end, folio_end_pos(f)); 853 last_folio_pos = folio_pos(f); 854 if (end != folio_end_pos(f) && !folio_test_uptodate(f)) { 855 if (end >= inode->v.i_size) { 856 folio_zero_range(f, 0, folio_size(f)); 857 } else { 858 ret = bch2_read_single_folio(f, mapping); 859 if (ret) 860 goto out; 861 } 862 } 863 864 ret = bch2_folio_set(c, inode_inum(inode), fs.data, fs.nr); 865 if (ret) 866 goto out; 867 868 f_pos = pos; 869 f_offset = pos - folio_pos(darray_first(fs)); 870 darray_for_each(fs, fi) { 871 ssize_t f_reserved; 872 873 f = *fi; 874 f_len = min(end, folio_end_pos(f)) - f_pos; 875 f_reserved = bch2_folio_reservation_get_partial(c, inode, f, &res, f_offset, f_len); 876 877 if (unlikely(f_reserved != f_len)) { 878 if (f_reserved < 0) { 879 if (f == darray_first(fs)) { 880 ret = f_reserved; 881 goto out; 882 } 883 884 folios_trunc(&fs, fi); 885 end = min(end, folio_end_pos(darray_last(fs))); 886 } else { 887 if (!folio_test_uptodate(f)) { 888 ret = bch2_read_single_folio(f, mapping); 889 if (ret) 890 goto out; 891 } 892 893 folios_trunc(&fs, fi + 1); 894 end = f_pos + f_reserved; 895 } 896 897 break; 898 } 899 900 f_pos = folio_end_pos(f); 901 f_offset = 0; 902 } 903 904 if (mapping_writably_mapped(mapping)) 905 darray_for_each(fs, fi) 906 flush_dcache_folio(*fi); 907 908 f_pos = pos; 909 f_offset = pos - folio_pos(darray_first(fs)); 910 darray_for_each(fs, fi) { 911 f = *fi; 912 f_len = min(end, folio_end_pos(f)) - f_pos; 913 f_copied = copy_folio_from_iter_atomic(f, f_offset, f_len, iter); 914 if (!f_copied) { 915 folios_trunc(&fs, fi); 916 break; 917 } 918 919 if (!folio_test_uptodate(f) && 920 f_copied != folio_size(f) && 921 pos + copied + f_copied < inode->v.i_size) { 922 iov_iter_revert(iter, f_copied); 923 folio_zero_range(f, 0, folio_size(f)); 924 folios_trunc(&fs, fi); 925 break; 926 } 927 928 flush_dcache_folio(f); 929 copied += f_copied; 930 931 if (f_copied != f_len) { 932 folios_trunc(&fs, fi + 1); 933 break; 934 } 935 936 f_pos = folio_end_pos(f); 937 f_offset = 0; 938 } 939 940 if (!copied) 941 goto out; 942 943 end = pos + copied; 944 945 spin_lock(&inode->v.i_lock); 946 if (end > inode->v.i_size) 947 i_size_write(&inode->v, end); 948 spin_unlock(&inode->v.i_lock); 949 950 f_pos = pos; 951 f_offset = pos - folio_pos(darray_first(fs)); 952 darray_for_each(fs, fi) { 953 f = *fi; 954 f_len = min(end, folio_end_pos(f)) - f_pos; 955 956 if (!folio_test_uptodate(f)) 957 folio_mark_uptodate(f); 958 959 bch2_set_folio_dirty(c, inode, f, &res, f_offset, f_len); 960 961 f_pos = folio_end_pos(f); 962 f_offset = 0; 963 } 964 965 inode->ei_last_dirtied = (unsigned long) current; 966 out: 967 darray_for_each(fs, fi) { 968 folio_unlock(*fi); 969 folio_put(*fi); 970 } 971 972 /* 973 * If the last folio added to the mapping starts beyond current EOF, we 974 * performed a short write but left around at least one post-EOF folio. 975 * Clean up the mapping before we return. 976 */ 977 if (last_folio_pos >= inode->v.i_size) 978 truncate_pagecache(&inode->v, inode->v.i_size); 979 980 darray_exit(&fs); 981 bch2_folio_reservation_put(c, inode, &res); 982 983 return copied ?: ret; 984 } 985 986 static ssize_t bch2_buffered_write(struct kiocb *iocb, struct iov_iter *iter) 987 { 988 struct file *file = iocb->ki_filp; 989 struct address_space *mapping = file->f_mapping; 990 struct bch_inode_info *inode = file_bch_inode(file); 991 loff_t pos = iocb->ki_pos; 992 ssize_t written = 0; 993 int ret = 0; 994 995 bch2_pagecache_add_get(inode); 996 997 do { 998 unsigned offset = pos & (PAGE_SIZE - 1); 999 unsigned bytes = iov_iter_count(iter); 1000 again: 1001 /* 1002 * Bring in the user page that we will copy from _first_. 1003 * Otherwise there's a nasty deadlock on copying from the 1004 * same page as we're writing to, without it being marked 1005 * up-to-date. 1006 * 1007 * Not only is this an optimisation, but it is also required 1008 * to check that the address is actually valid, when atomic 1009 * usercopies are used, below. 1010 */ 1011 if (unlikely(fault_in_iov_iter_readable(iter, bytes))) { 1012 bytes = min_t(unsigned long, iov_iter_count(iter), 1013 PAGE_SIZE - offset); 1014 1015 if (unlikely(fault_in_iov_iter_readable(iter, bytes))) { 1016 ret = -EFAULT; 1017 break; 1018 } 1019 } 1020 1021 if (unlikely(fatal_signal_pending(current))) { 1022 ret = -EINTR; 1023 break; 1024 } 1025 1026 ret = __bch2_buffered_write(inode, mapping, iter, pos, bytes); 1027 if (unlikely(ret < 0)) 1028 break; 1029 1030 cond_resched(); 1031 1032 if (unlikely(ret == 0)) { 1033 /* 1034 * If we were unable to copy any data at all, we must 1035 * fall back to a single segment length write. 1036 * 1037 * If we didn't fallback here, we could livelock 1038 * because not all segments in the iov can be copied at 1039 * once without a pagefault. 1040 */ 1041 bytes = min_t(unsigned long, PAGE_SIZE - offset, 1042 iov_iter_single_seg_count(iter)); 1043 goto again; 1044 } 1045 pos += ret; 1046 written += ret; 1047 ret = 0; 1048 1049 balance_dirty_pages_ratelimited(mapping); 1050 } while (iov_iter_count(iter)); 1051 1052 bch2_pagecache_add_put(inode); 1053 1054 return written ? written : ret; 1055 } 1056 1057 ssize_t bch2_write_iter(struct kiocb *iocb, struct iov_iter *from) 1058 { 1059 struct file *file = iocb->ki_filp; 1060 struct bch_inode_info *inode = file_bch_inode(file); 1061 ssize_t ret; 1062 1063 if (iocb->ki_flags & IOCB_DIRECT) { 1064 ret = bch2_direct_write(iocb, from); 1065 goto out; 1066 } 1067 1068 inode_lock(&inode->v); 1069 1070 ret = generic_write_checks(iocb, from); 1071 if (ret <= 0) 1072 goto unlock; 1073 1074 ret = file_remove_privs(file); 1075 if (ret) 1076 goto unlock; 1077 1078 ret = file_update_time(file); 1079 if (ret) 1080 goto unlock; 1081 1082 ret = bch2_buffered_write(iocb, from); 1083 if (likely(ret > 0)) 1084 iocb->ki_pos += ret; 1085 unlock: 1086 inode_unlock(&inode->v); 1087 1088 if (ret > 0) 1089 ret = generic_write_sync(iocb, ret); 1090 out: 1091 return bch2_err_class(ret); 1092 } 1093 1094 void bch2_fs_fs_io_buffered_exit(struct bch_fs *c) 1095 { 1096 bioset_exit(&c->writepage_bioset); 1097 } 1098 1099 int bch2_fs_fs_io_buffered_init(struct bch_fs *c) 1100 { 1101 if (bioset_init(&c->writepage_bioset, 1102 4, offsetof(struct bch_writepage_io, op.wbio.bio), 1103 BIOSET_NEED_BVECS)) 1104 return -BCH_ERR_ENOMEM_writepage_bioset_init; 1105 1106 return 0; 1107 } 1108 1109 #endif /* NO_BCACHEFS_FS */ 1110