1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 4 * 5 * Code for managing the extent btree and dynamically updating the writeback 6 * dirty sector count. 7 */ 8 9 #include "bcachefs.h" 10 #include "bkey_methods.h" 11 #include "btree_cache.h" 12 #include "btree_gc.h" 13 #include "btree_io.h" 14 #include "btree_iter.h" 15 #include "buckets.h" 16 #include "checksum.h" 17 #include "compress.h" 18 #include "debug.h" 19 #include "disk_groups.h" 20 #include "error.h" 21 #include "extents.h" 22 #include "inode.h" 23 #include "journal.h" 24 #include "replicas.h" 25 #include "super.h" 26 #include "super-io.h" 27 #include "trace.h" 28 #include "util.h" 29 30 static unsigned bch2_crc_field_size_max[] = { 31 [BCH_EXTENT_ENTRY_crc32] = CRC32_SIZE_MAX, 32 [BCH_EXTENT_ENTRY_crc64] = CRC64_SIZE_MAX, 33 [BCH_EXTENT_ENTRY_crc128] = CRC128_SIZE_MAX, 34 }; 35 36 static void bch2_extent_crc_pack(union bch_extent_crc *, 37 struct bch_extent_crc_unpacked, 38 enum bch_extent_entry_type); 39 40 static struct bch_dev_io_failures *dev_io_failures(struct bch_io_failures *f, 41 unsigned dev) 42 { 43 struct bch_dev_io_failures *i; 44 45 for (i = f->devs; i < f->devs + f->nr; i++) 46 if (i->dev == dev) 47 return i; 48 49 return NULL; 50 } 51 52 void bch2_mark_io_failure(struct bch_io_failures *failed, 53 struct extent_ptr_decoded *p) 54 { 55 struct bch_dev_io_failures *f = dev_io_failures(failed, p->ptr.dev); 56 57 if (!f) { 58 BUG_ON(failed->nr >= ARRAY_SIZE(failed->devs)); 59 60 f = &failed->devs[failed->nr++]; 61 f->dev = p->ptr.dev; 62 f->idx = p->idx; 63 f->nr_failed = 1; 64 f->nr_retries = 0; 65 } else if (p->idx != f->idx) { 66 f->idx = p->idx; 67 f->nr_failed = 1; 68 f->nr_retries = 0; 69 } else { 70 f->nr_failed++; 71 } 72 } 73 74 /* 75 * returns true if p1 is better than p2: 76 */ 77 static inline bool ptr_better(struct bch_fs *c, 78 const struct extent_ptr_decoded p1, 79 const struct extent_ptr_decoded p2) 80 { 81 if (likely(!p1.idx && !p2.idx)) { 82 struct bch_dev *dev1 = bch_dev_bkey_exists(c, p1.ptr.dev); 83 struct bch_dev *dev2 = bch_dev_bkey_exists(c, p2.ptr.dev); 84 85 u64 l1 = atomic64_read(&dev1->cur_latency[READ]); 86 u64 l2 = atomic64_read(&dev2->cur_latency[READ]); 87 88 /* Pick at random, biased in favor of the faster device: */ 89 90 return bch2_rand_range(l1 + l2) > l1; 91 } 92 93 if (bch2_force_reconstruct_read) 94 return p1.idx > p2.idx; 95 96 return p1.idx < p2.idx; 97 } 98 99 /* 100 * This picks a non-stale pointer, preferably from a device other than @avoid. 101 * Avoid can be NULL, meaning pick any. If there are no non-stale pointers to 102 * other devices, it will still pick a pointer from avoid. 103 */ 104 int bch2_bkey_pick_read_device(struct bch_fs *c, struct bkey_s_c k, 105 struct bch_io_failures *failed, 106 struct extent_ptr_decoded *pick) 107 { 108 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 109 const union bch_extent_entry *entry; 110 struct extent_ptr_decoded p; 111 struct bch_dev_io_failures *f; 112 struct bch_dev *ca; 113 int ret = 0; 114 115 if (k.k->type == KEY_TYPE_error) 116 return -EIO; 117 118 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { 119 /* 120 * Unwritten extent: no need to actually read, treat it as a 121 * hole and return 0s: 122 */ 123 if (p.ptr.unwritten) 124 return 0; 125 126 ca = bch_dev_bkey_exists(c, p.ptr.dev); 127 128 /* 129 * If there are any dirty pointers it's an error if we can't 130 * read: 131 */ 132 if (!ret && !p.ptr.cached) 133 ret = -EIO; 134 135 if (p.ptr.cached && ptr_stale(ca, &p.ptr)) 136 continue; 137 138 f = failed ? dev_io_failures(failed, p.ptr.dev) : NULL; 139 if (f) 140 p.idx = f->nr_failed < f->nr_retries 141 ? f->idx 142 : f->idx + 1; 143 144 if (!p.idx && 145 !bch2_dev_is_readable(ca)) 146 p.idx++; 147 148 if (bch2_force_reconstruct_read && 149 !p.idx && p.has_ec) 150 p.idx++; 151 152 if (p.idx >= (unsigned) p.has_ec + 1) 153 continue; 154 155 if (ret > 0 && !ptr_better(c, p, *pick)) 156 continue; 157 158 *pick = p; 159 ret = 1; 160 } 161 162 return ret; 163 } 164 165 /* KEY_TYPE_btree_ptr: */ 166 167 int bch2_btree_ptr_invalid(struct bch_fs *c, struct bkey_s_c k, 168 enum bkey_invalid_flags flags, 169 struct printbuf *err) 170 { 171 int ret = 0; 172 173 bkey_fsck_err_on(bkey_val_u64s(k.k) > BCH_REPLICAS_MAX, c, err, 174 btree_ptr_val_too_big, 175 "value too big (%zu > %u)", bkey_val_u64s(k.k), BCH_REPLICAS_MAX); 176 177 ret = bch2_bkey_ptrs_invalid(c, k, flags, err); 178 fsck_err: 179 return ret; 180 } 181 182 void bch2_btree_ptr_to_text(struct printbuf *out, struct bch_fs *c, 183 struct bkey_s_c k) 184 { 185 bch2_bkey_ptrs_to_text(out, c, k); 186 } 187 188 int bch2_btree_ptr_v2_invalid(struct bch_fs *c, struct bkey_s_c k, 189 enum bkey_invalid_flags flags, 190 struct printbuf *err) 191 { 192 int ret = 0; 193 194 bkey_fsck_err_on(bkey_val_u64s(k.k) > BKEY_BTREE_PTR_VAL_U64s_MAX, c, err, 195 btree_ptr_v2_val_too_big, 196 "value too big (%zu > %zu)", 197 bkey_val_u64s(k.k), BKEY_BTREE_PTR_VAL_U64s_MAX); 198 199 ret = bch2_bkey_ptrs_invalid(c, k, flags, err); 200 fsck_err: 201 return ret; 202 } 203 204 void bch2_btree_ptr_v2_to_text(struct printbuf *out, struct bch_fs *c, 205 struct bkey_s_c k) 206 { 207 struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k); 208 209 prt_printf(out, "seq %llx written %u min_key %s", 210 le64_to_cpu(bp.v->seq), 211 le16_to_cpu(bp.v->sectors_written), 212 BTREE_PTR_RANGE_UPDATED(bp.v) ? "R " : ""); 213 214 bch2_bpos_to_text(out, bp.v->min_key); 215 prt_printf(out, " "); 216 bch2_bkey_ptrs_to_text(out, c, k); 217 } 218 219 void bch2_btree_ptr_v2_compat(enum btree_id btree_id, unsigned version, 220 unsigned big_endian, int write, 221 struct bkey_s k) 222 { 223 struct bkey_s_btree_ptr_v2 bp = bkey_s_to_btree_ptr_v2(k); 224 225 compat_bpos(0, btree_id, version, big_endian, write, &bp.v->min_key); 226 227 if (version < bcachefs_metadata_version_inode_btree_change && 228 btree_id_is_extents(btree_id) && 229 !bkey_eq(bp.v->min_key, POS_MIN)) 230 bp.v->min_key = write 231 ? bpos_nosnap_predecessor(bp.v->min_key) 232 : bpos_nosnap_successor(bp.v->min_key); 233 } 234 235 /* KEY_TYPE_extent: */ 236 237 bool bch2_extent_merge(struct bch_fs *c, struct bkey_s l, struct bkey_s_c r) 238 { 239 struct bkey_ptrs l_ptrs = bch2_bkey_ptrs(l); 240 struct bkey_ptrs_c r_ptrs = bch2_bkey_ptrs_c(r); 241 union bch_extent_entry *en_l; 242 const union bch_extent_entry *en_r; 243 struct extent_ptr_decoded lp, rp; 244 bool use_right_ptr; 245 struct bch_dev *ca; 246 247 en_l = l_ptrs.start; 248 en_r = r_ptrs.start; 249 while (en_l < l_ptrs.end && en_r < r_ptrs.end) { 250 if (extent_entry_type(en_l) != extent_entry_type(en_r)) 251 return false; 252 253 en_l = extent_entry_next(en_l); 254 en_r = extent_entry_next(en_r); 255 } 256 257 if (en_l < l_ptrs.end || en_r < r_ptrs.end) 258 return false; 259 260 en_l = l_ptrs.start; 261 en_r = r_ptrs.start; 262 lp.crc = bch2_extent_crc_unpack(l.k, NULL); 263 rp.crc = bch2_extent_crc_unpack(r.k, NULL); 264 265 while (__bkey_ptr_next_decode(l.k, l_ptrs.end, lp, en_l) && 266 __bkey_ptr_next_decode(r.k, r_ptrs.end, rp, en_r)) { 267 if (lp.ptr.offset + lp.crc.offset + lp.crc.live_size != 268 rp.ptr.offset + rp.crc.offset || 269 lp.ptr.dev != rp.ptr.dev || 270 lp.ptr.gen != rp.ptr.gen || 271 lp.ptr.unwritten != rp.ptr.unwritten || 272 lp.has_ec != rp.has_ec) 273 return false; 274 275 /* Extents may not straddle buckets: */ 276 ca = bch_dev_bkey_exists(c, lp.ptr.dev); 277 if (PTR_BUCKET_NR(ca, &lp.ptr) != PTR_BUCKET_NR(ca, &rp.ptr)) 278 return false; 279 280 if (lp.has_ec != rp.has_ec || 281 (lp.has_ec && 282 (lp.ec.block != rp.ec.block || 283 lp.ec.redundancy != rp.ec.redundancy || 284 lp.ec.idx != rp.ec.idx))) 285 return false; 286 287 if (lp.crc.compression_type != rp.crc.compression_type || 288 lp.crc.nonce != rp.crc.nonce) 289 return false; 290 291 if (lp.crc.offset + lp.crc.live_size + rp.crc.live_size <= 292 lp.crc.uncompressed_size) { 293 /* can use left extent's crc entry */ 294 } else if (lp.crc.live_size <= rp.crc.offset) { 295 /* can use right extent's crc entry */ 296 } else { 297 /* check if checksums can be merged: */ 298 if (lp.crc.csum_type != rp.crc.csum_type || 299 lp.crc.nonce != rp.crc.nonce || 300 crc_is_compressed(lp.crc) || 301 !bch2_checksum_mergeable(lp.crc.csum_type)) 302 return false; 303 304 if (lp.crc.offset + lp.crc.live_size != lp.crc.compressed_size || 305 rp.crc.offset) 306 return false; 307 308 if (lp.crc.csum_type && 309 lp.crc.uncompressed_size + 310 rp.crc.uncompressed_size > (c->opts.encoded_extent_max >> 9)) 311 return false; 312 } 313 314 en_l = extent_entry_next(en_l); 315 en_r = extent_entry_next(en_r); 316 } 317 318 en_l = l_ptrs.start; 319 en_r = r_ptrs.start; 320 while (en_l < l_ptrs.end && en_r < r_ptrs.end) { 321 if (extent_entry_is_crc(en_l)) { 322 struct bch_extent_crc_unpacked crc_l = bch2_extent_crc_unpack(l.k, entry_to_crc(en_l)); 323 struct bch_extent_crc_unpacked crc_r = bch2_extent_crc_unpack(r.k, entry_to_crc(en_r)); 324 325 if (crc_l.uncompressed_size + crc_r.uncompressed_size > 326 bch2_crc_field_size_max[extent_entry_type(en_l)]) 327 return false; 328 } 329 330 en_l = extent_entry_next(en_l); 331 en_r = extent_entry_next(en_r); 332 } 333 334 use_right_ptr = false; 335 en_l = l_ptrs.start; 336 en_r = r_ptrs.start; 337 while (en_l < l_ptrs.end) { 338 if (extent_entry_type(en_l) == BCH_EXTENT_ENTRY_ptr && 339 use_right_ptr) 340 en_l->ptr = en_r->ptr; 341 342 if (extent_entry_is_crc(en_l)) { 343 struct bch_extent_crc_unpacked crc_l = 344 bch2_extent_crc_unpack(l.k, entry_to_crc(en_l)); 345 struct bch_extent_crc_unpacked crc_r = 346 bch2_extent_crc_unpack(r.k, entry_to_crc(en_r)); 347 348 use_right_ptr = false; 349 350 if (crc_l.offset + crc_l.live_size + crc_r.live_size <= 351 crc_l.uncompressed_size) { 352 /* can use left extent's crc entry */ 353 } else if (crc_l.live_size <= crc_r.offset) { 354 /* can use right extent's crc entry */ 355 crc_r.offset -= crc_l.live_size; 356 bch2_extent_crc_pack(entry_to_crc(en_l), crc_r, 357 extent_entry_type(en_l)); 358 use_right_ptr = true; 359 } else { 360 crc_l.csum = bch2_checksum_merge(crc_l.csum_type, 361 crc_l.csum, 362 crc_r.csum, 363 crc_r.uncompressed_size << 9); 364 365 crc_l.uncompressed_size += crc_r.uncompressed_size; 366 crc_l.compressed_size += crc_r.compressed_size; 367 bch2_extent_crc_pack(entry_to_crc(en_l), crc_l, 368 extent_entry_type(en_l)); 369 } 370 } 371 372 en_l = extent_entry_next(en_l); 373 en_r = extent_entry_next(en_r); 374 } 375 376 bch2_key_resize(l.k, l.k->size + r.k->size); 377 return true; 378 } 379 380 /* KEY_TYPE_reservation: */ 381 382 int bch2_reservation_invalid(struct bch_fs *c, struct bkey_s_c k, 383 enum bkey_invalid_flags flags, 384 struct printbuf *err) 385 { 386 struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k); 387 int ret = 0; 388 389 bkey_fsck_err_on(!r.v->nr_replicas || r.v->nr_replicas > BCH_REPLICAS_MAX, c, err, 390 reservation_key_nr_replicas_invalid, 391 "invalid nr_replicas (%u)", r.v->nr_replicas); 392 fsck_err: 393 return ret; 394 } 395 396 void bch2_reservation_to_text(struct printbuf *out, struct bch_fs *c, 397 struct bkey_s_c k) 398 { 399 struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k); 400 401 prt_printf(out, "generation %u replicas %u", 402 le32_to_cpu(r.v->generation), 403 r.v->nr_replicas); 404 } 405 406 bool bch2_reservation_merge(struct bch_fs *c, struct bkey_s _l, struct bkey_s_c _r) 407 { 408 struct bkey_s_reservation l = bkey_s_to_reservation(_l); 409 struct bkey_s_c_reservation r = bkey_s_c_to_reservation(_r); 410 411 if (l.v->generation != r.v->generation || 412 l.v->nr_replicas != r.v->nr_replicas) 413 return false; 414 415 bch2_key_resize(l.k, l.k->size + r.k->size); 416 return true; 417 } 418 419 /* Extent checksum entries: */ 420 421 /* returns true if not equal */ 422 static inline bool bch2_crc_unpacked_cmp(struct bch_extent_crc_unpacked l, 423 struct bch_extent_crc_unpacked r) 424 { 425 return (l.csum_type != r.csum_type || 426 l.compression_type != r.compression_type || 427 l.compressed_size != r.compressed_size || 428 l.uncompressed_size != r.uncompressed_size || 429 l.offset != r.offset || 430 l.live_size != r.live_size || 431 l.nonce != r.nonce || 432 bch2_crc_cmp(l.csum, r.csum)); 433 } 434 435 static inline bool can_narrow_crc(struct bch_extent_crc_unpacked u, 436 struct bch_extent_crc_unpacked n) 437 { 438 return !crc_is_compressed(u) && 439 u.csum_type && 440 u.uncompressed_size > u.live_size && 441 bch2_csum_type_is_encryption(u.csum_type) == 442 bch2_csum_type_is_encryption(n.csum_type); 443 } 444 445 bool bch2_can_narrow_extent_crcs(struct bkey_s_c k, 446 struct bch_extent_crc_unpacked n) 447 { 448 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 449 struct bch_extent_crc_unpacked crc; 450 const union bch_extent_entry *i; 451 452 if (!n.csum_type) 453 return false; 454 455 bkey_for_each_crc(k.k, ptrs, crc, i) 456 if (can_narrow_crc(crc, n)) 457 return true; 458 459 return false; 460 } 461 462 /* 463 * We're writing another replica for this extent, so while we've got the data in 464 * memory we'll be computing a new checksum for the currently live data. 465 * 466 * If there are other replicas we aren't moving, and they are checksummed but 467 * not compressed, we can modify them to point to only the data that is 468 * currently live (so that readers won't have to bounce) while we've got the 469 * checksum we need: 470 */ 471 bool bch2_bkey_narrow_crcs(struct bkey_i *k, struct bch_extent_crc_unpacked n) 472 { 473 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); 474 struct bch_extent_crc_unpacked u; 475 struct extent_ptr_decoded p; 476 union bch_extent_entry *i; 477 bool ret = false; 478 479 /* Find a checksum entry that covers only live data: */ 480 if (!n.csum_type) { 481 bkey_for_each_crc(&k->k, ptrs, u, i) 482 if (!crc_is_compressed(u) && 483 u.csum_type && 484 u.live_size == u.uncompressed_size) { 485 n = u; 486 goto found; 487 } 488 return false; 489 } 490 found: 491 BUG_ON(crc_is_compressed(n)); 492 BUG_ON(n.offset); 493 BUG_ON(n.live_size != k->k.size); 494 495 restart_narrow_pointers: 496 ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); 497 498 bkey_for_each_ptr_decode(&k->k, ptrs, p, i) 499 if (can_narrow_crc(p.crc, n)) { 500 bch2_bkey_drop_ptr_noerror(bkey_i_to_s(k), &i->ptr); 501 p.ptr.offset += p.crc.offset; 502 p.crc = n; 503 bch2_extent_ptr_decoded_append(k, &p); 504 ret = true; 505 goto restart_narrow_pointers; 506 } 507 508 return ret; 509 } 510 511 static void bch2_extent_crc_pack(union bch_extent_crc *dst, 512 struct bch_extent_crc_unpacked src, 513 enum bch_extent_entry_type type) 514 { 515 #define set_common_fields(_dst, _src) \ 516 _dst.type = 1 << type; \ 517 _dst.csum_type = _src.csum_type, \ 518 _dst.compression_type = _src.compression_type, \ 519 _dst._compressed_size = _src.compressed_size - 1, \ 520 _dst._uncompressed_size = _src.uncompressed_size - 1, \ 521 _dst.offset = _src.offset 522 523 switch (type) { 524 case BCH_EXTENT_ENTRY_crc32: 525 set_common_fields(dst->crc32, src); 526 dst->crc32.csum = (u32 __force) *((__le32 *) &src.csum.lo); 527 break; 528 case BCH_EXTENT_ENTRY_crc64: 529 set_common_fields(dst->crc64, src); 530 dst->crc64.nonce = src.nonce; 531 dst->crc64.csum_lo = (u64 __force) src.csum.lo; 532 dst->crc64.csum_hi = (u64 __force) *((__le16 *) &src.csum.hi); 533 break; 534 case BCH_EXTENT_ENTRY_crc128: 535 set_common_fields(dst->crc128, src); 536 dst->crc128.nonce = src.nonce; 537 dst->crc128.csum = src.csum; 538 break; 539 default: 540 BUG(); 541 } 542 #undef set_common_fields 543 } 544 545 void bch2_extent_crc_append(struct bkey_i *k, 546 struct bch_extent_crc_unpacked new) 547 { 548 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); 549 union bch_extent_crc *crc = (void *) ptrs.end; 550 enum bch_extent_entry_type type; 551 552 if (bch_crc_bytes[new.csum_type] <= 4 && 553 new.uncompressed_size <= CRC32_SIZE_MAX && 554 new.nonce <= CRC32_NONCE_MAX) 555 type = BCH_EXTENT_ENTRY_crc32; 556 else if (bch_crc_bytes[new.csum_type] <= 10 && 557 new.uncompressed_size <= CRC64_SIZE_MAX && 558 new.nonce <= CRC64_NONCE_MAX) 559 type = BCH_EXTENT_ENTRY_crc64; 560 else if (bch_crc_bytes[new.csum_type] <= 16 && 561 new.uncompressed_size <= CRC128_SIZE_MAX && 562 new.nonce <= CRC128_NONCE_MAX) 563 type = BCH_EXTENT_ENTRY_crc128; 564 else 565 BUG(); 566 567 bch2_extent_crc_pack(crc, new, type); 568 569 k->k.u64s += extent_entry_u64s(ptrs.end); 570 571 EBUG_ON(bkey_val_u64s(&k->k) > BKEY_EXTENT_VAL_U64s_MAX); 572 } 573 574 /* Generic code for keys with pointers: */ 575 576 unsigned bch2_bkey_nr_ptrs(struct bkey_s_c k) 577 { 578 return bch2_bkey_devs(k).nr; 579 } 580 581 unsigned bch2_bkey_nr_ptrs_allocated(struct bkey_s_c k) 582 { 583 return k.k->type == KEY_TYPE_reservation 584 ? bkey_s_c_to_reservation(k).v->nr_replicas 585 : bch2_bkey_dirty_devs(k).nr; 586 } 587 588 unsigned bch2_bkey_nr_ptrs_fully_allocated(struct bkey_s_c k) 589 { 590 unsigned ret = 0; 591 592 if (k.k->type == KEY_TYPE_reservation) { 593 ret = bkey_s_c_to_reservation(k).v->nr_replicas; 594 } else { 595 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 596 const union bch_extent_entry *entry; 597 struct extent_ptr_decoded p; 598 599 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 600 ret += !p.ptr.cached && !crc_is_compressed(p.crc); 601 } 602 603 return ret; 604 } 605 606 unsigned bch2_bkey_sectors_compressed(struct bkey_s_c k) 607 { 608 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 609 const union bch_extent_entry *entry; 610 struct extent_ptr_decoded p; 611 unsigned ret = 0; 612 613 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 614 if (!p.ptr.cached && crc_is_compressed(p.crc)) 615 ret += p.crc.compressed_size; 616 617 return ret; 618 } 619 620 bool bch2_bkey_is_incompressible(struct bkey_s_c k) 621 { 622 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 623 const union bch_extent_entry *entry; 624 struct bch_extent_crc_unpacked crc; 625 626 bkey_for_each_crc(k.k, ptrs, crc, entry) 627 if (crc.compression_type == BCH_COMPRESSION_TYPE_incompressible) 628 return true; 629 return false; 630 } 631 632 unsigned bch2_bkey_replicas(struct bch_fs *c, struct bkey_s_c k) 633 { 634 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 635 const union bch_extent_entry *entry; 636 struct extent_ptr_decoded p = { 0 }; 637 unsigned replicas = 0; 638 639 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { 640 if (p.ptr.cached) 641 continue; 642 643 if (p.has_ec) 644 replicas += p.ec.redundancy; 645 646 replicas++; 647 648 } 649 650 return replicas; 651 } 652 653 static inline unsigned __extent_ptr_durability(struct bch_dev *ca, struct extent_ptr_decoded *p) 654 { 655 if (p->ptr.cached) 656 return 0; 657 658 return p->has_ec 659 ? p->ec.redundancy + 1 660 : ca->mi.durability; 661 } 662 663 unsigned bch2_extent_ptr_desired_durability(struct bch_fs *c, struct extent_ptr_decoded *p) 664 { 665 struct bch_dev *ca = bch_dev_bkey_exists(c, p->ptr.dev); 666 667 return __extent_ptr_durability(ca, p); 668 } 669 670 unsigned bch2_extent_ptr_durability(struct bch_fs *c, struct extent_ptr_decoded *p) 671 { 672 struct bch_dev *ca = bch_dev_bkey_exists(c, p->ptr.dev); 673 674 if (ca->mi.state == BCH_MEMBER_STATE_failed) 675 return 0; 676 677 return __extent_ptr_durability(ca, p); 678 } 679 680 unsigned bch2_bkey_durability(struct bch_fs *c, struct bkey_s_c k) 681 { 682 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 683 const union bch_extent_entry *entry; 684 struct extent_ptr_decoded p; 685 unsigned durability = 0; 686 687 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 688 durability += bch2_extent_ptr_durability(c, &p); 689 690 return durability; 691 } 692 693 static unsigned bch2_bkey_durability_safe(struct bch_fs *c, struct bkey_s_c k) 694 { 695 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 696 const union bch_extent_entry *entry; 697 struct extent_ptr_decoded p; 698 unsigned durability = 0; 699 700 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 701 if (p.ptr.dev < c->sb.nr_devices && c->devs[p.ptr.dev]) 702 durability += bch2_extent_ptr_durability(c, &p); 703 704 return durability; 705 } 706 707 void bch2_bkey_extent_entry_drop(struct bkey_i *k, union bch_extent_entry *entry) 708 { 709 union bch_extent_entry *end = bkey_val_end(bkey_i_to_s(k)); 710 union bch_extent_entry *next = extent_entry_next(entry); 711 712 memmove_u64s(entry, next, (u64 *) end - (u64 *) next); 713 k->k.u64s -= extent_entry_u64s(entry); 714 } 715 716 void bch2_extent_ptr_decoded_append(struct bkey_i *k, 717 struct extent_ptr_decoded *p) 718 { 719 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); 720 struct bch_extent_crc_unpacked crc = 721 bch2_extent_crc_unpack(&k->k, NULL); 722 union bch_extent_entry *pos; 723 724 if (!bch2_crc_unpacked_cmp(crc, p->crc)) { 725 pos = ptrs.start; 726 goto found; 727 } 728 729 bkey_for_each_crc(&k->k, ptrs, crc, pos) 730 if (!bch2_crc_unpacked_cmp(crc, p->crc)) { 731 pos = extent_entry_next(pos); 732 goto found; 733 } 734 735 bch2_extent_crc_append(k, p->crc); 736 pos = bkey_val_end(bkey_i_to_s(k)); 737 found: 738 p->ptr.type = 1 << BCH_EXTENT_ENTRY_ptr; 739 __extent_entry_insert(k, pos, to_entry(&p->ptr)); 740 741 if (p->has_ec) { 742 p->ec.type = 1 << BCH_EXTENT_ENTRY_stripe_ptr; 743 __extent_entry_insert(k, pos, to_entry(&p->ec)); 744 } 745 } 746 747 static union bch_extent_entry *extent_entry_prev(struct bkey_ptrs ptrs, 748 union bch_extent_entry *entry) 749 { 750 union bch_extent_entry *i = ptrs.start; 751 752 if (i == entry) 753 return NULL; 754 755 while (extent_entry_next(i) != entry) 756 i = extent_entry_next(i); 757 return i; 758 } 759 760 /* 761 * Returns pointer to the next entry after the one being dropped: 762 */ 763 union bch_extent_entry *bch2_bkey_drop_ptr_noerror(struct bkey_s k, 764 struct bch_extent_ptr *ptr) 765 { 766 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); 767 union bch_extent_entry *entry = to_entry(ptr), *next; 768 union bch_extent_entry *ret = entry; 769 bool drop_crc = true; 770 771 EBUG_ON(ptr < &ptrs.start->ptr || 772 ptr >= &ptrs.end->ptr); 773 EBUG_ON(ptr->type != 1 << BCH_EXTENT_ENTRY_ptr); 774 775 for (next = extent_entry_next(entry); 776 next != ptrs.end; 777 next = extent_entry_next(next)) { 778 if (extent_entry_is_crc(next)) { 779 break; 780 } else if (extent_entry_is_ptr(next)) { 781 drop_crc = false; 782 break; 783 } 784 } 785 786 extent_entry_drop(k, entry); 787 788 while ((entry = extent_entry_prev(ptrs, entry))) { 789 if (extent_entry_is_ptr(entry)) 790 break; 791 792 if ((extent_entry_is_crc(entry) && drop_crc) || 793 extent_entry_is_stripe_ptr(entry)) { 794 ret = (void *) ret - extent_entry_bytes(entry); 795 extent_entry_drop(k, entry); 796 } 797 } 798 799 return ret; 800 } 801 802 union bch_extent_entry *bch2_bkey_drop_ptr(struct bkey_s k, 803 struct bch_extent_ptr *ptr) 804 { 805 bool have_dirty = bch2_bkey_dirty_devs(k.s_c).nr; 806 union bch_extent_entry *ret = 807 bch2_bkey_drop_ptr_noerror(k, ptr); 808 809 /* 810 * If we deleted all the dirty pointers and there's still cached 811 * pointers, we could set the cached pointers to dirty if they're not 812 * stale - but to do that correctly we'd need to grab an open_bucket 813 * reference so that we don't race with bucket reuse: 814 */ 815 if (have_dirty && 816 !bch2_bkey_dirty_devs(k.s_c).nr) { 817 k.k->type = KEY_TYPE_error; 818 set_bkey_val_u64s(k.k, 0); 819 ret = NULL; 820 } else if (!bch2_bkey_nr_ptrs(k.s_c)) { 821 k.k->type = KEY_TYPE_deleted; 822 set_bkey_val_u64s(k.k, 0); 823 ret = NULL; 824 } 825 826 return ret; 827 } 828 829 void bch2_bkey_drop_device(struct bkey_s k, unsigned dev) 830 { 831 struct bch_extent_ptr *ptr; 832 833 bch2_bkey_drop_ptrs(k, ptr, ptr->dev == dev); 834 } 835 836 void bch2_bkey_drop_device_noerror(struct bkey_s k, unsigned dev) 837 { 838 struct bch_extent_ptr *ptr = bch2_bkey_has_device(k, dev); 839 840 if (ptr) 841 bch2_bkey_drop_ptr_noerror(k, ptr); 842 } 843 844 const struct bch_extent_ptr *bch2_bkey_has_device_c(struct bkey_s_c k, unsigned dev) 845 { 846 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 847 848 bkey_for_each_ptr(ptrs, ptr) 849 if (ptr->dev == dev) 850 return ptr; 851 852 return NULL; 853 } 854 855 bool bch2_bkey_has_target(struct bch_fs *c, struct bkey_s_c k, unsigned target) 856 { 857 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 858 859 bkey_for_each_ptr(ptrs, ptr) 860 if (bch2_dev_in_target(c, ptr->dev, target) && 861 (!ptr->cached || 862 !ptr_stale(bch_dev_bkey_exists(c, ptr->dev), ptr))) 863 return true; 864 865 return false; 866 } 867 868 bool bch2_bkey_matches_ptr(struct bch_fs *c, struct bkey_s_c k, 869 struct bch_extent_ptr m, u64 offset) 870 { 871 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 872 const union bch_extent_entry *entry; 873 struct extent_ptr_decoded p; 874 875 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 876 if (p.ptr.dev == m.dev && 877 p.ptr.gen == m.gen && 878 (s64) p.ptr.offset + p.crc.offset - bkey_start_offset(k.k) == 879 (s64) m.offset - offset) 880 return true; 881 882 return false; 883 } 884 885 /* 886 * Returns true if two extents refer to the same data: 887 */ 888 bool bch2_extents_match(struct bkey_s_c k1, struct bkey_s_c k2) 889 { 890 if (k1.k->type != k2.k->type) 891 return false; 892 893 if (bkey_extent_is_direct_data(k1.k)) { 894 struct bkey_ptrs_c ptrs1 = bch2_bkey_ptrs_c(k1); 895 struct bkey_ptrs_c ptrs2 = bch2_bkey_ptrs_c(k2); 896 const union bch_extent_entry *entry1, *entry2; 897 struct extent_ptr_decoded p1, p2; 898 899 if (bkey_extent_is_unwritten(k1) != bkey_extent_is_unwritten(k2)) 900 return false; 901 902 bkey_for_each_ptr_decode(k1.k, ptrs1, p1, entry1) 903 bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2) 904 if (p1.ptr.dev == p2.ptr.dev && 905 p1.ptr.gen == p2.ptr.gen && 906 (s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k1.k) == 907 (s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k2.k)) 908 return true; 909 910 return false; 911 } else { 912 /* KEY_TYPE_deleted, etc. */ 913 return true; 914 } 915 } 916 917 struct bch_extent_ptr * 918 bch2_extent_has_ptr(struct bkey_s_c k1, struct extent_ptr_decoded p1, struct bkey_s k2) 919 { 920 struct bkey_ptrs ptrs2 = bch2_bkey_ptrs(k2); 921 union bch_extent_entry *entry2; 922 struct extent_ptr_decoded p2; 923 924 bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2) 925 if (p1.ptr.dev == p2.ptr.dev && 926 p1.ptr.gen == p2.ptr.gen && 927 (s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k1.k) == 928 (s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k2.k)) 929 return &entry2->ptr; 930 931 return NULL; 932 } 933 934 void bch2_extent_ptr_set_cached(struct bkey_s k, struct bch_extent_ptr *ptr) 935 { 936 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); 937 union bch_extent_entry *entry; 938 union bch_extent_entry *ec = NULL; 939 940 bkey_extent_entry_for_each(ptrs, entry) { 941 if (&entry->ptr == ptr) { 942 ptr->cached = true; 943 if (ec) 944 extent_entry_drop(k, ec); 945 return; 946 } 947 948 if (extent_entry_is_stripe_ptr(entry)) 949 ec = entry; 950 else if (extent_entry_is_ptr(entry)) 951 ec = NULL; 952 } 953 954 BUG(); 955 } 956 957 /* 958 * bch_extent_normalize - clean up an extent, dropping stale pointers etc. 959 * 960 * Returns true if @k should be dropped entirely 961 * 962 * For existing keys, only called when btree nodes are being rewritten, not when 963 * they're merely being compacted/resorted in memory. 964 */ 965 bool bch2_extent_normalize(struct bch_fs *c, struct bkey_s k) 966 { 967 struct bch_extent_ptr *ptr; 968 969 bch2_bkey_drop_ptrs(k, ptr, 970 ptr->cached && 971 ptr_stale(bch_dev_bkey_exists(c, ptr->dev), ptr)); 972 973 return bkey_deleted(k.k); 974 } 975 976 void bch2_bkey_ptrs_to_text(struct printbuf *out, struct bch_fs *c, 977 struct bkey_s_c k) 978 { 979 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 980 const union bch_extent_entry *entry; 981 bool first = true; 982 983 if (c) 984 prt_printf(out, "durability: %u ", bch2_bkey_durability_safe(c, k)); 985 986 bkey_extent_entry_for_each(ptrs, entry) { 987 if (!first) 988 prt_printf(out, " "); 989 990 switch (__extent_entry_type(entry)) { 991 case BCH_EXTENT_ENTRY_ptr: { 992 const struct bch_extent_ptr *ptr = entry_to_ptr(entry); 993 struct bch_dev *ca = c && ptr->dev < c->sb.nr_devices && c->devs[ptr->dev] 994 ? bch_dev_bkey_exists(c, ptr->dev) 995 : NULL; 996 997 if (!ca) { 998 prt_printf(out, "ptr: %u:%llu gen %u%s", ptr->dev, 999 (u64) ptr->offset, ptr->gen, 1000 ptr->cached ? " cached" : ""); 1001 } else { 1002 u32 offset; 1003 u64 b = sector_to_bucket_and_offset(ca, ptr->offset, &offset); 1004 1005 prt_printf(out, "ptr: %u:%llu:%u gen %u", 1006 ptr->dev, b, offset, ptr->gen); 1007 if (ptr->cached) 1008 prt_str(out, " cached"); 1009 if (ptr->unwritten) 1010 prt_str(out, " unwritten"); 1011 if (ca && ptr_stale(ca, ptr)) 1012 prt_printf(out, " stale"); 1013 } 1014 break; 1015 } 1016 case BCH_EXTENT_ENTRY_crc32: 1017 case BCH_EXTENT_ENTRY_crc64: 1018 case BCH_EXTENT_ENTRY_crc128: { 1019 struct bch_extent_crc_unpacked crc = 1020 bch2_extent_crc_unpack(k.k, entry_to_crc(entry)); 1021 1022 prt_printf(out, "crc: c_size %u size %u offset %u nonce %u csum %s compress ", 1023 crc.compressed_size, 1024 crc.uncompressed_size, 1025 crc.offset, crc.nonce, 1026 bch2_csum_types[crc.csum_type]); 1027 bch2_prt_compression_type(out, crc.compression_type); 1028 break; 1029 } 1030 case BCH_EXTENT_ENTRY_stripe_ptr: { 1031 const struct bch_extent_stripe_ptr *ec = &entry->stripe_ptr; 1032 1033 prt_printf(out, "ec: idx %llu block %u", 1034 (u64) ec->idx, ec->block); 1035 break; 1036 } 1037 case BCH_EXTENT_ENTRY_rebalance: { 1038 const struct bch_extent_rebalance *r = &entry->rebalance; 1039 1040 prt_str(out, "rebalance: target "); 1041 if (c) 1042 bch2_target_to_text(out, c, r->target); 1043 else 1044 prt_printf(out, "%u", r->target); 1045 prt_str(out, " compression "); 1046 bch2_compression_opt_to_text(out, r->compression); 1047 break; 1048 } 1049 default: 1050 prt_printf(out, "(invalid extent entry %.16llx)", *((u64 *) entry)); 1051 return; 1052 } 1053 1054 first = false; 1055 } 1056 } 1057 1058 static int extent_ptr_invalid(struct bch_fs *c, 1059 struct bkey_s_c k, 1060 enum bkey_invalid_flags flags, 1061 const struct bch_extent_ptr *ptr, 1062 unsigned size_ondisk, 1063 bool metadata, 1064 struct printbuf *err) 1065 { 1066 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1067 u64 bucket; 1068 u32 bucket_offset; 1069 struct bch_dev *ca; 1070 int ret = 0; 1071 1072 if (!bch2_dev_exists2(c, ptr->dev)) { 1073 /* 1074 * If we're in the write path this key might have already been 1075 * overwritten, and we could be seeing a device that doesn't 1076 * exist anymore due to racing with device removal: 1077 */ 1078 if (flags & BKEY_INVALID_WRITE) 1079 return 0; 1080 1081 bkey_fsck_err(c, err, ptr_to_invalid_device, 1082 "pointer to invalid device (%u)", ptr->dev); 1083 } 1084 1085 ca = bch_dev_bkey_exists(c, ptr->dev); 1086 bkey_for_each_ptr(ptrs, ptr2) 1087 bkey_fsck_err_on(ptr != ptr2 && ptr->dev == ptr2->dev, c, err, 1088 ptr_to_duplicate_device, 1089 "multiple pointers to same device (%u)", ptr->dev); 1090 1091 bucket = sector_to_bucket_and_offset(ca, ptr->offset, &bucket_offset); 1092 1093 bkey_fsck_err_on(bucket >= ca->mi.nbuckets, c, err, 1094 ptr_after_last_bucket, 1095 "pointer past last bucket (%llu > %llu)", bucket, ca->mi.nbuckets); 1096 bkey_fsck_err_on(ptr->offset < bucket_to_sector(ca, ca->mi.first_bucket), c, err, 1097 ptr_before_first_bucket, 1098 "pointer before first bucket (%llu < %u)", bucket, ca->mi.first_bucket); 1099 bkey_fsck_err_on(bucket_offset + size_ondisk > ca->mi.bucket_size, c, err, 1100 ptr_spans_multiple_buckets, 1101 "pointer spans multiple buckets (%u + %u > %u)", 1102 bucket_offset, size_ondisk, ca->mi.bucket_size); 1103 fsck_err: 1104 return ret; 1105 } 1106 1107 int bch2_bkey_ptrs_invalid(struct bch_fs *c, struct bkey_s_c k, 1108 enum bkey_invalid_flags flags, 1109 struct printbuf *err) 1110 { 1111 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1112 const union bch_extent_entry *entry; 1113 struct bch_extent_crc_unpacked crc; 1114 unsigned size_ondisk = k.k->size; 1115 unsigned nonce = UINT_MAX; 1116 unsigned nr_ptrs = 0; 1117 bool have_written = false, have_unwritten = false, have_ec = false, crc_since_last_ptr = false; 1118 int ret = 0; 1119 1120 if (bkey_is_btree_ptr(k.k)) 1121 size_ondisk = btree_sectors(c); 1122 1123 bkey_extent_entry_for_each(ptrs, entry) { 1124 bkey_fsck_err_on(__extent_entry_type(entry) >= BCH_EXTENT_ENTRY_MAX, c, err, 1125 extent_ptrs_invalid_entry, 1126 "invalid extent entry type (got %u, max %u)", 1127 __extent_entry_type(entry), BCH_EXTENT_ENTRY_MAX); 1128 1129 bkey_fsck_err_on(bkey_is_btree_ptr(k.k) && 1130 !extent_entry_is_ptr(entry), c, err, 1131 btree_ptr_has_non_ptr, 1132 "has non ptr field"); 1133 1134 switch (extent_entry_type(entry)) { 1135 case BCH_EXTENT_ENTRY_ptr: 1136 ret = extent_ptr_invalid(c, k, flags, &entry->ptr, 1137 size_ondisk, false, err); 1138 if (ret) 1139 return ret; 1140 1141 bkey_fsck_err_on(entry->ptr.cached && have_ec, c, err, 1142 ptr_cached_and_erasure_coded, 1143 "cached, erasure coded ptr"); 1144 1145 if (!entry->ptr.unwritten) 1146 have_written = true; 1147 else 1148 have_unwritten = true; 1149 1150 have_ec = false; 1151 crc_since_last_ptr = false; 1152 nr_ptrs++; 1153 break; 1154 case BCH_EXTENT_ENTRY_crc32: 1155 case BCH_EXTENT_ENTRY_crc64: 1156 case BCH_EXTENT_ENTRY_crc128: 1157 crc = bch2_extent_crc_unpack(k.k, entry_to_crc(entry)); 1158 1159 bkey_fsck_err_on(crc.offset + crc.live_size > crc.uncompressed_size, c, err, 1160 ptr_crc_uncompressed_size_too_small, 1161 "checksum offset + key size > uncompressed size"); 1162 bkey_fsck_err_on(!bch2_checksum_type_valid(c, crc.csum_type), c, err, 1163 ptr_crc_csum_type_unknown, 1164 "invalid checksum type"); 1165 bkey_fsck_err_on(crc.compression_type >= BCH_COMPRESSION_TYPE_NR, c, err, 1166 ptr_crc_compression_type_unknown, 1167 "invalid compression type"); 1168 1169 if (bch2_csum_type_is_encryption(crc.csum_type)) { 1170 if (nonce == UINT_MAX) 1171 nonce = crc.offset + crc.nonce; 1172 else if (nonce != crc.offset + crc.nonce) 1173 bkey_fsck_err(c, err, ptr_crc_nonce_mismatch, 1174 "incorrect nonce"); 1175 } 1176 1177 bkey_fsck_err_on(crc_since_last_ptr, c, err, 1178 ptr_crc_redundant, 1179 "redundant crc entry"); 1180 crc_since_last_ptr = true; 1181 1182 bkey_fsck_err_on(crc_is_encoded(crc) && 1183 (crc.uncompressed_size > c->opts.encoded_extent_max >> 9) && 1184 (flags & (BKEY_INVALID_WRITE|BKEY_INVALID_COMMIT)), c, err, 1185 ptr_crc_uncompressed_size_too_big, 1186 "too large encoded extent"); 1187 1188 size_ondisk = crc.compressed_size; 1189 break; 1190 case BCH_EXTENT_ENTRY_stripe_ptr: 1191 bkey_fsck_err_on(have_ec, c, err, 1192 ptr_stripe_redundant, 1193 "redundant stripe entry"); 1194 have_ec = true; 1195 break; 1196 case BCH_EXTENT_ENTRY_rebalance: { 1197 const struct bch_extent_rebalance *r = &entry->rebalance; 1198 1199 if (!bch2_compression_opt_valid(r->compression)) { 1200 struct bch_compression_opt opt = __bch2_compression_decode(r->compression); 1201 prt_printf(err, "invalid compression opt %u:%u", 1202 opt.type, opt.level); 1203 return -BCH_ERR_invalid_bkey; 1204 } 1205 break; 1206 } 1207 } 1208 } 1209 1210 bkey_fsck_err_on(!nr_ptrs, c, err, 1211 extent_ptrs_no_ptrs, 1212 "no ptrs"); 1213 bkey_fsck_err_on(nr_ptrs > BCH_BKEY_PTRS_MAX, c, err, 1214 extent_ptrs_too_many_ptrs, 1215 "too many ptrs: %u > %u", nr_ptrs, BCH_BKEY_PTRS_MAX); 1216 bkey_fsck_err_on(have_written && have_unwritten, c, err, 1217 extent_ptrs_written_and_unwritten, 1218 "extent with unwritten and written ptrs"); 1219 bkey_fsck_err_on(k.k->type != KEY_TYPE_extent && have_unwritten, c, err, 1220 extent_ptrs_unwritten, 1221 "has unwritten ptrs"); 1222 bkey_fsck_err_on(crc_since_last_ptr, c, err, 1223 extent_ptrs_redundant_crc, 1224 "redundant crc entry"); 1225 bkey_fsck_err_on(have_ec, c, err, 1226 extent_ptrs_redundant_stripe, 1227 "redundant stripe entry"); 1228 fsck_err: 1229 return ret; 1230 } 1231 1232 void bch2_ptr_swab(struct bkey_s k) 1233 { 1234 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); 1235 union bch_extent_entry *entry; 1236 u64 *d; 1237 1238 for (d = (u64 *) ptrs.start; 1239 d != (u64 *) ptrs.end; 1240 d++) 1241 *d = swab64(*d); 1242 1243 for (entry = ptrs.start; 1244 entry < ptrs.end; 1245 entry = extent_entry_next(entry)) { 1246 switch (extent_entry_type(entry)) { 1247 case BCH_EXTENT_ENTRY_ptr: 1248 break; 1249 case BCH_EXTENT_ENTRY_crc32: 1250 entry->crc32.csum = swab32(entry->crc32.csum); 1251 break; 1252 case BCH_EXTENT_ENTRY_crc64: 1253 entry->crc64.csum_hi = swab16(entry->crc64.csum_hi); 1254 entry->crc64.csum_lo = swab64(entry->crc64.csum_lo); 1255 break; 1256 case BCH_EXTENT_ENTRY_crc128: 1257 entry->crc128.csum.hi = (__force __le64) 1258 swab64((__force u64) entry->crc128.csum.hi); 1259 entry->crc128.csum.lo = (__force __le64) 1260 swab64((__force u64) entry->crc128.csum.lo); 1261 break; 1262 case BCH_EXTENT_ENTRY_stripe_ptr: 1263 break; 1264 case BCH_EXTENT_ENTRY_rebalance: 1265 break; 1266 } 1267 } 1268 } 1269 1270 const struct bch_extent_rebalance *bch2_bkey_rebalance_opts(struct bkey_s_c k) 1271 { 1272 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1273 const union bch_extent_entry *entry; 1274 1275 bkey_extent_entry_for_each(ptrs, entry) 1276 if (__extent_entry_type(entry) == BCH_EXTENT_ENTRY_rebalance) 1277 return &entry->rebalance; 1278 1279 return NULL; 1280 } 1281 1282 unsigned bch2_bkey_ptrs_need_rebalance(struct bch_fs *c, struct bkey_s_c k, 1283 unsigned target, unsigned compression) 1284 { 1285 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1286 unsigned rewrite_ptrs = 0; 1287 1288 if (compression) { 1289 unsigned compression_type = bch2_compression_opt_to_type(compression); 1290 const union bch_extent_entry *entry; 1291 struct extent_ptr_decoded p; 1292 unsigned i = 0; 1293 1294 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { 1295 if (p.crc.compression_type == BCH_COMPRESSION_TYPE_incompressible || 1296 p.ptr.unwritten) { 1297 rewrite_ptrs = 0; 1298 goto incompressible; 1299 } 1300 1301 if (!p.ptr.cached && p.crc.compression_type != compression_type) 1302 rewrite_ptrs |= 1U << i; 1303 i++; 1304 } 1305 } 1306 incompressible: 1307 if (target && bch2_target_accepts_data(c, BCH_DATA_user, target)) { 1308 unsigned i = 0; 1309 1310 bkey_for_each_ptr(ptrs, ptr) { 1311 if (!ptr->cached && !bch2_dev_in_target(c, ptr->dev, target)) 1312 rewrite_ptrs |= 1U << i; 1313 i++; 1314 } 1315 } 1316 1317 return rewrite_ptrs; 1318 } 1319 1320 bool bch2_bkey_needs_rebalance(struct bch_fs *c, struct bkey_s_c k) 1321 { 1322 const struct bch_extent_rebalance *r = bch2_bkey_rebalance_opts(k); 1323 1324 /* 1325 * If it's an indirect extent, we don't delete the rebalance entry when 1326 * done so that we know what options were applied - check if it still 1327 * needs work done: 1328 */ 1329 if (r && 1330 k.k->type == KEY_TYPE_reflink_v && 1331 !bch2_bkey_ptrs_need_rebalance(c, k, r->target, r->compression)) 1332 r = NULL; 1333 1334 return r != NULL; 1335 } 1336 1337 int bch2_bkey_set_needs_rebalance(struct bch_fs *c, struct bkey_i *_k, 1338 struct bch_io_opts *opts) 1339 { 1340 struct bkey_s k = bkey_i_to_s(_k); 1341 struct bch_extent_rebalance *r; 1342 unsigned target = opts->background_target; 1343 unsigned compression = background_compression(*opts); 1344 bool needs_rebalance; 1345 1346 if (!bkey_extent_is_direct_data(k.k)) 1347 return 0; 1348 1349 /* get existing rebalance entry: */ 1350 r = (struct bch_extent_rebalance *) bch2_bkey_rebalance_opts(k.s_c); 1351 if (r) { 1352 if (k.k->type == KEY_TYPE_reflink_v) { 1353 /* 1354 * indirect extents: existing options take precedence, 1355 * so that we don't move extents back and forth if 1356 * they're referenced by different inodes with different 1357 * options: 1358 */ 1359 if (r->target) 1360 target = r->target; 1361 if (r->compression) 1362 compression = r->compression; 1363 } 1364 1365 r->target = target; 1366 r->compression = compression; 1367 } 1368 1369 needs_rebalance = bch2_bkey_ptrs_need_rebalance(c, k.s_c, target, compression); 1370 1371 if (needs_rebalance && !r) { 1372 union bch_extent_entry *new = bkey_val_end(k); 1373 1374 new->rebalance.type = 1U << BCH_EXTENT_ENTRY_rebalance; 1375 new->rebalance.compression = compression; 1376 new->rebalance.target = target; 1377 new->rebalance.unused = 0; 1378 k.k->u64s += extent_entry_u64s(new); 1379 } else if (!needs_rebalance && r && k.k->type != KEY_TYPE_reflink_v) { 1380 /* 1381 * For indirect extents, don't delete the rebalance entry when 1382 * we're finished so that we know we specifically moved it or 1383 * compressed it to its current location/compression type 1384 */ 1385 extent_entry_drop(k, (union bch_extent_entry *) r); 1386 } 1387 1388 return 0; 1389 } 1390 1391 /* Generic extent code: */ 1392 1393 int bch2_cut_front_s(struct bpos where, struct bkey_s k) 1394 { 1395 unsigned new_val_u64s = bkey_val_u64s(k.k); 1396 int val_u64s_delta; 1397 u64 sub; 1398 1399 if (bkey_le(where, bkey_start_pos(k.k))) 1400 return 0; 1401 1402 EBUG_ON(bkey_gt(where, k.k->p)); 1403 1404 sub = where.offset - bkey_start_offset(k.k); 1405 1406 k.k->size -= sub; 1407 1408 if (!k.k->size) { 1409 k.k->type = KEY_TYPE_deleted; 1410 new_val_u64s = 0; 1411 } 1412 1413 switch (k.k->type) { 1414 case KEY_TYPE_extent: 1415 case KEY_TYPE_reflink_v: { 1416 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); 1417 union bch_extent_entry *entry; 1418 bool seen_crc = false; 1419 1420 bkey_extent_entry_for_each(ptrs, entry) { 1421 switch (extent_entry_type(entry)) { 1422 case BCH_EXTENT_ENTRY_ptr: 1423 if (!seen_crc) 1424 entry->ptr.offset += sub; 1425 break; 1426 case BCH_EXTENT_ENTRY_crc32: 1427 entry->crc32.offset += sub; 1428 break; 1429 case BCH_EXTENT_ENTRY_crc64: 1430 entry->crc64.offset += sub; 1431 break; 1432 case BCH_EXTENT_ENTRY_crc128: 1433 entry->crc128.offset += sub; 1434 break; 1435 case BCH_EXTENT_ENTRY_stripe_ptr: 1436 break; 1437 case BCH_EXTENT_ENTRY_rebalance: 1438 break; 1439 } 1440 1441 if (extent_entry_is_crc(entry)) 1442 seen_crc = true; 1443 } 1444 1445 break; 1446 } 1447 case KEY_TYPE_reflink_p: { 1448 struct bkey_s_reflink_p p = bkey_s_to_reflink_p(k); 1449 1450 le64_add_cpu(&p.v->idx, sub); 1451 break; 1452 } 1453 case KEY_TYPE_inline_data: 1454 case KEY_TYPE_indirect_inline_data: { 1455 void *p = bkey_inline_data_p(k); 1456 unsigned bytes = bkey_inline_data_bytes(k.k); 1457 1458 sub = min_t(u64, sub << 9, bytes); 1459 1460 memmove(p, p + sub, bytes - sub); 1461 1462 new_val_u64s -= sub >> 3; 1463 break; 1464 } 1465 } 1466 1467 val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s; 1468 BUG_ON(val_u64s_delta < 0); 1469 1470 set_bkey_val_u64s(k.k, new_val_u64s); 1471 memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64)); 1472 return -val_u64s_delta; 1473 } 1474 1475 int bch2_cut_back_s(struct bpos where, struct bkey_s k) 1476 { 1477 unsigned new_val_u64s = bkey_val_u64s(k.k); 1478 int val_u64s_delta; 1479 u64 len = 0; 1480 1481 if (bkey_ge(where, k.k->p)) 1482 return 0; 1483 1484 EBUG_ON(bkey_lt(where, bkey_start_pos(k.k))); 1485 1486 len = where.offset - bkey_start_offset(k.k); 1487 1488 k.k->p.offset = where.offset; 1489 k.k->size = len; 1490 1491 if (!len) { 1492 k.k->type = KEY_TYPE_deleted; 1493 new_val_u64s = 0; 1494 } 1495 1496 switch (k.k->type) { 1497 case KEY_TYPE_inline_data: 1498 case KEY_TYPE_indirect_inline_data: 1499 new_val_u64s = (bkey_inline_data_offset(k.k) + 1500 min(bkey_inline_data_bytes(k.k), k.k->size << 9)) >> 3; 1501 break; 1502 } 1503 1504 val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s; 1505 BUG_ON(val_u64s_delta < 0); 1506 1507 set_bkey_val_u64s(k.k, new_val_u64s); 1508 memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64)); 1509 return -val_u64s_delta; 1510 } 1511