1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 4 * 5 * Code for managing the extent btree and dynamically updating the writeback 6 * dirty sector count. 7 */ 8 9 #include "bcachefs.h" 10 #include "bkey_methods.h" 11 #include "btree_gc.h" 12 #include "btree_io.h" 13 #include "btree_iter.h" 14 #include "buckets.h" 15 #include "checksum.h" 16 #include "compress.h" 17 #include "debug.h" 18 #include "disk_groups.h" 19 #include "error.h" 20 #include "extents.h" 21 #include "inode.h" 22 #include "journal.h" 23 #include "replicas.h" 24 #include "super.h" 25 #include "super-io.h" 26 #include "trace.h" 27 #include "util.h" 28 29 static unsigned bch2_crc_field_size_max[] = { 30 [BCH_EXTENT_ENTRY_crc32] = CRC32_SIZE_MAX, 31 [BCH_EXTENT_ENTRY_crc64] = CRC64_SIZE_MAX, 32 [BCH_EXTENT_ENTRY_crc128] = CRC128_SIZE_MAX, 33 }; 34 35 static void bch2_extent_crc_pack(union bch_extent_crc *, 36 struct bch_extent_crc_unpacked, 37 enum bch_extent_entry_type); 38 39 static struct bch_dev_io_failures *dev_io_failures(struct bch_io_failures *f, 40 unsigned dev) 41 { 42 struct bch_dev_io_failures *i; 43 44 for (i = f->devs; i < f->devs + f->nr; i++) 45 if (i->dev == dev) 46 return i; 47 48 return NULL; 49 } 50 51 void bch2_mark_io_failure(struct bch_io_failures *failed, 52 struct extent_ptr_decoded *p) 53 { 54 struct bch_dev_io_failures *f = dev_io_failures(failed, p->ptr.dev); 55 56 if (!f) { 57 BUG_ON(failed->nr >= ARRAY_SIZE(failed->devs)); 58 59 f = &failed->devs[failed->nr++]; 60 f->dev = p->ptr.dev; 61 f->idx = p->idx; 62 f->nr_failed = 1; 63 f->nr_retries = 0; 64 } else if (p->idx != f->idx) { 65 f->idx = p->idx; 66 f->nr_failed = 1; 67 f->nr_retries = 0; 68 } else { 69 f->nr_failed++; 70 } 71 } 72 73 /* 74 * returns true if p1 is better than p2: 75 */ 76 static inline bool ptr_better(struct bch_fs *c, 77 const struct extent_ptr_decoded p1, 78 const struct extent_ptr_decoded p2) 79 { 80 if (likely(!p1.idx && !p2.idx)) { 81 struct bch_dev *dev1 = bch_dev_bkey_exists(c, p1.ptr.dev); 82 struct bch_dev *dev2 = bch_dev_bkey_exists(c, p2.ptr.dev); 83 84 u64 l1 = atomic64_read(&dev1->cur_latency[READ]); 85 u64 l2 = atomic64_read(&dev2->cur_latency[READ]); 86 87 /* Pick at random, biased in favor of the faster device: */ 88 89 return bch2_rand_range(l1 + l2) > l1; 90 } 91 92 if (bch2_force_reconstruct_read) 93 return p1.idx > p2.idx; 94 95 return p1.idx < p2.idx; 96 } 97 98 /* 99 * This picks a non-stale pointer, preferably from a device other than @avoid. 100 * Avoid can be NULL, meaning pick any. If there are no non-stale pointers to 101 * other devices, it will still pick a pointer from avoid. 102 */ 103 int bch2_bkey_pick_read_device(struct bch_fs *c, struct bkey_s_c k, 104 struct bch_io_failures *failed, 105 struct extent_ptr_decoded *pick) 106 { 107 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 108 const union bch_extent_entry *entry; 109 struct extent_ptr_decoded p; 110 struct bch_dev_io_failures *f; 111 struct bch_dev *ca; 112 int ret = 0; 113 114 if (k.k->type == KEY_TYPE_error) 115 return -EIO; 116 117 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { 118 /* 119 * Unwritten extent: no need to actually read, treat it as a 120 * hole and return 0s: 121 */ 122 if (p.ptr.unwritten) 123 return 0; 124 125 ca = bch_dev_bkey_exists(c, p.ptr.dev); 126 127 /* 128 * If there are any dirty pointers it's an error if we can't 129 * read: 130 */ 131 if (!ret && !p.ptr.cached) 132 ret = -EIO; 133 134 if (p.ptr.cached && ptr_stale(ca, &p.ptr)) 135 continue; 136 137 f = failed ? dev_io_failures(failed, p.ptr.dev) : NULL; 138 if (f) 139 p.idx = f->nr_failed < f->nr_retries 140 ? f->idx 141 : f->idx + 1; 142 143 if (!p.idx && 144 !bch2_dev_is_readable(ca)) 145 p.idx++; 146 147 if (bch2_force_reconstruct_read && 148 !p.idx && p.has_ec) 149 p.idx++; 150 151 if (p.idx >= (unsigned) p.has_ec + 1) 152 continue; 153 154 if (ret > 0 && !ptr_better(c, p, *pick)) 155 continue; 156 157 *pick = p; 158 ret = 1; 159 } 160 161 return ret; 162 } 163 164 /* KEY_TYPE_btree_ptr: */ 165 166 int bch2_btree_ptr_invalid(struct bch_fs *c, struct bkey_s_c k, 167 enum bkey_invalid_flags flags, 168 struct printbuf *err) 169 { 170 int ret = 0; 171 172 bkey_fsck_err_on(bkey_val_u64s(k.k) > BCH_REPLICAS_MAX, c, err, 173 btree_ptr_val_too_big, 174 "value too big (%zu > %u)", bkey_val_u64s(k.k), BCH_REPLICAS_MAX); 175 176 ret = bch2_bkey_ptrs_invalid(c, k, flags, err); 177 fsck_err: 178 return ret; 179 } 180 181 void bch2_btree_ptr_to_text(struct printbuf *out, struct bch_fs *c, 182 struct bkey_s_c k) 183 { 184 bch2_bkey_ptrs_to_text(out, c, k); 185 } 186 187 int bch2_btree_ptr_v2_invalid(struct bch_fs *c, struct bkey_s_c k, 188 enum bkey_invalid_flags flags, 189 struct printbuf *err) 190 { 191 int ret = 0; 192 193 bkey_fsck_err_on(bkey_val_u64s(k.k) > BKEY_BTREE_PTR_VAL_U64s_MAX, c, err, 194 btree_ptr_v2_val_too_big, 195 "value too big (%zu > %zu)", 196 bkey_val_u64s(k.k), BKEY_BTREE_PTR_VAL_U64s_MAX); 197 198 ret = bch2_bkey_ptrs_invalid(c, k, flags, err); 199 fsck_err: 200 return ret; 201 } 202 203 void bch2_btree_ptr_v2_to_text(struct printbuf *out, struct bch_fs *c, 204 struct bkey_s_c k) 205 { 206 struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k); 207 208 prt_printf(out, "seq %llx written %u min_key %s", 209 le64_to_cpu(bp.v->seq), 210 le16_to_cpu(bp.v->sectors_written), 211 BTREE_PTR_RANGE_UPDATED(bp.v) ? "R " : ""); 212 213 bch2_bpos_to_text(out, bp.v->min_key); 214 prt_printf(out, " "); 215 bch2_bkey_ptrs_to_text(out, c, k); 216 } 217 218 void bch2_btree_ptr_v2_compat(enum btree_id btree_id, unsigned version, 219 unsigned big_endian, int write, 220 struct bkey_s k) 221 { 222 struct bkey_s_btree_ptr_v2 bp = bkey_s_to_btree_ptr_v2(k); 223 224 compat_bpos(0, btree_id, version, big_endian, write, &bp.v->min_key); 225 226 if (version < bcachefs_metadata_version_inode_btree_change && 227 btree_id_is_extents(btree_id) && 228 !bkey_eq(bp.v->min_key, POS_MIN)) 229 bp.v->min_key = write 230 ? bpos_nosnap_predecessor(bp.v->min_key) 231 : bpos_nosnap_successor(bp.v->min_key); 232 } 233 234 /* KEY_TYPE_extent: */ 235 236 bool bch2_extent_merge(struct bch_fs *c, struct bkey_s l, struct bkey_s_c r) 237 { 238 struct bkey_ptrs l_ptrs = bch2_bkey_ptrs(l); 239 struct bkey_ptrs_c r_ptrs = bch2_bkey_ptrs_c(r); 240 union bch_extent_entry *en_l; 241 const union bch_extent_entry *en_r; 242 struct extent_ptr_decoded lp, rp; 243 bool use_right_ptr; 244 struct bch_dev *ca; 245 246 en_l = l_ptrs.start; 247 en_r = r_ptrs.start; 248 while (en_l < l_ptrs.end && en_r < r_ptrs.end) { 249 if (extent_entry_type(en_l) != extent_entry_type(en_r)) 250 return false; 251 252 en_l = extent_entry_next(en_l); 253 en_r = extent_entry_next(en_r); 254 } 255 256 if (en_l < l_ptrs.end || en_r < r_ptrs.end) 257 return false; 258 259 en_l = l_ptrs.start; 260 en_r = r_ptrs.start; 261 lp.crc = bch2_extent_crc_unpack(l.k, NULL); 262 rp.crc = bch2_extent_crc_unpack(r.k, NULL); 263 264 while (__bkey_ptr_next_decode(l.k, l_ptrs.end, lp, en_l) && 265 __bkey_ptr_next_decode(r.k, r_ptrs.end, rp, en_r)) { 266 if (lp.ptr.offset + lp.crc.offset + lp.crc.live_size != 267 rp.ptr.offset + rp.crc.offset || 268 lp.ptr.dev != rp.ptr.dev || 269 lp.ptr.gen != rp.ptr.gen || 270 lp.ptr.unwritten != rp.ptr.unwritten || 271 lp.has_ec != rp.has_ec) 272 return false; 273 274 /* Extents may not straddle buckets: */ 275 ca = bch_dev_bkey_exists(c, lp.ptr.dev); 276 if (PTR_BUCKET_NR(ca, &lp.ptr) != PTR_BUCKET_NR(ca, &rp.ptr)) 277 return false; 278 279 if (lp.has_ec != rp.has_ec || 280 (lp.has_ec && 281 (lp.ec.block != rp.ec.block || 282 lp.ec.redundancy != rp.ec.redundancy || 283 lp.ec.idx != rp.ec.idx))) 284 return false; 285 286 if (lp.crc.compression_type != rp.crc.compression_type || 287 lp.crc.nonce != rp.crc.nonce) 288 return false; 289 290 if (lp.crc.offset + lp.crc.live_size + rp.crc.live_size <= 291 lp.crc.uncompressed_size) { 292 /* can use left extent's crc entry */ 293 } else if (lp.crc.live_size <= rp.crc.offset) { 294 /* can use right extent's crc entry */ 295 } else { 296 /* check if checksums can be merged: */ 297 if (lp.crc.csum_type != rp.crc.csum_type || 298 lp.crc.nonce != rp.crc.nonce || 299 crc_is_compressed(lp.crc) || 300 !bch2_checksum_mergeable(lp.crc.csum_type)) 301 return false; 302 303 if (lp.crc.offset + lp.crc.live_size != lp.crc.compressed_size || 304 rp.crc.offset) 305 return false; 306 307 if (lp.crc.csum_type && 308 lp.crc.uncompressed_size + 309 rp.crc.uncompressed_size > (c->opts.encoded_extent_max >> 9)) 310 return false; 311 } 312 313 en_l = extent_entry_next(en_l); 314 en_r = extent_entry_next(en_r); 315 } 316 317 en_l = l_ptrs.start; 318 en_r = r_ptrs.start; 319 while (en_l < l_ptrs.end && en_r < r_ptrs.end) { 320 if (extent_entry_is_crc(en_l)) { 321 struct bch_extent_crc_unpacked crc_l = bch2_extent_crc_unpack(l.k, entry_to_crc(en_l)); 322 struct bch_extent_crc_unpacked crc_r = bch2_extent_crc_unpack(r.k, entry_to_crc(en_r)); 323 324 if (crc_l.uncompressed_size + crc_r.uncompressed_size > 325 bch2_crc_field_size_max[extent_entry_type(en_l)]) 326 return false; 327 } 328 329 en_l = extent_entry_next(en_l); 330 en_r = extent_entry_next(en_r); 331 } 332 333 use_right_ptr = false; 334 en_l = l_ptrs.start; 335 en_r = r_ptrs.start; 336 while (en_l < l_ptrs.end) { 337 if (extent_entry_type(en_l) == BCH_EXTENT_ENTRY_ptr && 338 use_right_ptr) 339 en_l->ptr = en_r->ptr; 340 341 if (extent_entry_is_crc(en_l)) { 342 struct bch_extent_crc_unpacked crc_l = 343 bch2_extent_crc_unpack(l.k, entry_to_crc(en_l)); 344 struct bch_extent_crc_unpacked crc_r = 345 bch2_extent_crc_unpack(r.k, entry_to_crc(en_r)); 346 347 use_right_ptr = false; 348 349 if (crc_l.offset + crc_l.live_size + crc_r.live_size <= 350 crc_l.uncompressed_size) { 351 /* can use left extent's crc entry */ 352 } else if (crc_l.live_size <= crc_r.offset) { 353 /* can use right extent's crc entry */ 354 crc_r.offset -= crc_l.live_size; 355 bch2_extent_crc_pack(entry_to_crc(en_l), crc_r, 356 extent_entry_type(en_l)); 357 use_right_ptr = true; 358 } else { 359 crc_l.csum = bch2_checksum_merge(crc_l.csum_type, 360 crc_l.csum, 361 crc_r.csum, 362 crc_r.uncompressed_size << 9); 363 364 crc_l.uncompressed_size += crc_r.uncompressed_size; 365 crc_l.compressed_size += crc_r.compressed_size; 366 bch2_extent_crc_pack(entry_to_crc(en_l), crc_l, 367 extent_entry_type(en_l)); 368 } 369 } 370 371 en_l = extent_entry_next(en_l); 372 en_r = extent_entry_next(en_r); 373 } 374 375 bch2_key_resize(l.k, l.k->size + r.k->size); 376 return true; 377 } 378 379 /* KEY_TYPE_reservation: */ 380 381 int bch2_reservation_invalid(struct bch_fs *c, struct bkey_s_c k, 382 enum bkey_invalid_flags flags, 383 struct printbuf *err) 384 { 385 struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k); 386 int ret = 0; 387 388 bkey_fsck_err_on(!r.v->nr_replicas || r.v->nr_replicas > BCH_REPLICAS_MAX, c, err, 389 reservation_key_nr_replicas_invalid, 390 "invalid nr_replicas (%u)", r.v->nr_replicas); 391 fsck_err: 392 return ret; 393 } 394 395 void bch2_reservation_to_text(struct printbuf *out, struct bch_fs *c, 396 struct bkey_s_c k) 397 { 398 struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k); 399 400 prt_printf(out, "generation %u replicas %u", 401 le32_to_cpu(r.v->generation), 402 r.v->nr_replicas); 403 } 404 405 bool bch2_reservation_merge(struct bch_fs *c, struct bkey_s _l, struct bkey_s_c _r) 406 { 407 struct bkey_s_reservation l = bkey_s_to_reservation(_l); 408 struct bkey_s_c_reservation r = bkey_s_c_to_reservation(_r); 409 410 if (l.v->generation != r.v->generation || 411 l.v->nr_replicas != r.v->nr_replicas) 412 return false; 413 414 bch2_key_resize(l.k, l.k->size + r.k->size); 415 return true; 416 } 417 418 /* Extent checksum entries: */ 419 420 /* returns true if not equal */ 421 static inline bool bch2_crc_unpacked_cmp(struct bch_extent_crc_unpacked l, 422 struct bch_extent_crc_unpacked r) 423 { 424 return (l.csum_type != r.csum_type || 425 l.compression_type != r.compression_type || 426 l.compressed_size != r.compressed_size || 427 l.uncompressed_size != r.uncompressed_size || 428 l.offset != r.offset || 429 l.live_size != r.live_size || 430 l.nonce != r.nonce || 431 bch2_crc_cmp(l.csum, r.csum)); 432 } 433 434 static inline bool can_narrow_crc(struct bch_extent_crc_unpacked u, 435 struct bch_extent_crc_unpacked n) 436 { 437 return !crc_is_compressed(u) && 438 u.csum_type && 439 u.uncompressed_size > u.live_size && 440 bch2_csum_type_is_encryption(u.csum_type) == 441 bch2_csum_type_is_encryption(n.csum_type); 442 } 443 444 bool bch2_can_narrow_extent_crcs(struct bkey_s_c k, 445 struct bch_extent_crc_unpacked n) 446 { 447 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 448 struct bch_extent_crc_unpacked crc; 449 const union bch_extent_entry *i; 450 451 if (!n.csum_type) 452 return false; 453 454 bkey_for_each_crc(k.k, ptrs, crc, i) 455 if (can_narrow_crc(crc, n)) 456 return true; 457 458 return false; 459 } 460 461 /* 462 * We're writing another replica for this extent, so while we've got the data in 463 * memory we'll be computing a new checksum for the currently live data. 464 * 465 * If there are other replicas we aren't moving, and they are checksummed but 466 * not compressed, we can modify them to point to only the data that is 467 * currently live (so that readers won't have to bounce) while we've got the 468 * checksum we need: 469 */ 470 bool bch2_bkey_narrow_crcs(struct bkey_i *k, struct bch_extent_crc_unpacked n) 471 { 472 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); 473 struct bch_extent_crc_unpacked u; 474 struct extent_ptr_decoded p; 475 union bch_extent_entry *i; 476 bool ret = false; 477 478 /* Find a checksum entry that covers only live data: */ 479 if (!n.csum_type) { 480 bkey_for_each_crc(&k->k, ptrs, u, i) 481 if (!crc_is_compressed(u) && 482 u.csum_type && 483 u.live_size == u.uncompressed_size) { 484 n = u; 485 goto found; 486 } 487 return false; 488 } 489 found: 490 BUG_ON(crc_is_compressed(n)); 491 BUG_ON(n.offset); 492 BUG_ON(n.live_size != k->k.size); 493 494 restart_narrow_pointers: 495 ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); 496 497 bkey_for_each_ptr_decode(&k->k, ptrs, p, i) 498 if (can_narrow_crc(p.crc, n)) { 499 bch2_bkey_drop_ptr_noerror(bkey_i_to_s(k), &i->ptr); 500 p.ptr.offset += p.crc.offset; 501 p.crc = n; 502 bch2_extent_ptr_decoded_append(k, &p); 503 ret = true; 504 goto restart_narrow_pointers; 505 } 506 507 return ret; 508 } 509 510 static void bch2_extent_crc_pack(union bch_extent_crc *dst, 511 struct bch_extent_crc_unpacked src, 512 enum bch_extent_entry_type type) 513 { 514 #define set_common_fields(_dst, _src) \ 515 _dst.type = 1 << type; \ 516 _dst.csum_type = _src.csum_type, \ 517 _dst.compression_type = _src.compression_type, \ 518 _dst._compressed_size = _src.compressed_size - 1, \ 519 _dst._uncompressed_size = _src.uncompressed_size - 1, \ 520 _dst.offset = _src.offset 521 522 switch (type) { 523 case BCH_EXTENT_ENTRY_crc32: 524 set_common_fields(dst->crc32, src); 525 dst->crc32.csum = (u32 __force) *((__le32 *) &src.csum.lo); 526 break; 527 case BCH_EXTENT_ENTRY_crc64: 528 set_common_fields(dst->crc64, src); 529 dst->crc64.nonce = src.nonce; 530 dst->crc64.csum_lo = (u64 __force) src.csum.lo; 531 dst->crc64.csum_hi = (u64 __force) *((__le16 *) &src.csum.hi); 532 break; 533 case BCH_EXTENT_ENTRY_crc128: 534 set_common_fields(dst->crc128, src); 535 dst->crc128.nonce = src.nonce; 536 dst->crc128.csum = src.csum; 537 break; 538 default: 539 BUG(); 540 } 541 #undef set_common_fields 542 } 543 544 void bch2_extent_crc_append(struct bkey_i *k, 545 struct bch_extent_crc_unpacked new) 546 { 547 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); 548 union bch_extent_crc *crc = (void *) ptrs.end; 549 enum bch_extent_entry_type type; 550 551 if (bch_crc_bytes[new.csum_type] <= 4 && 552 new.uncompressed_size <= CRC32_SIZE_MAX && 553 new.nonce <= CRC32_NONCE_MAX) 554 type = BCH_EXTENT_ENTRY_crc32; 555 else if (bch_crc_bytes[new.csum_type] <= 10 && 556 new.uncompressed_size <= CRC64_SIZE_MAX && 557 new.nonce <= CRC64_NONCE_MAX) 558 type = BCH_EXTENT_ENTRY_crc64; 559 else if (bch_crc_bytes[new.csum_type] <= 16 && 560 new.uncompressed_size <= CRC128_SIZE_MAX && 561 new.nonce <= CRC128_NONCE_MAX) 562 type = BCH_EXTENT_ENTRY_crc128; 563 else 564 BUG(); 565 566 bch2_extent_crc_pack(crc, new, type); 567 568 k->k.u64s += extent_entry_u64s(ptrs.end); 569 570 EBUG_ON(bkey_val_u64s(&k->k) > BKEY_EXTENT_VAL_U64s_MAX); 571 } 572 573 /* Generic code for keys with pointers: */ 574 575 unsigned bch2_bkey_nr_ptrs(struct bkey_s_c k) 576 { 577 return bch2_bkey_devs(k).nr; 578 } 579 580 unsigned bch2_bkey_nr_ptrs_allocated(struct bkey_s_c k) 581 { 582 return k.k->type == KEY_TYPE_reservation 583 ? bkey_s_c_to_reservation(k).v->nr_replicas 584 : bch2_bkey_dirty_devs(k).nr; 585 } 586 587 unsigned bch2_bkey_nr_ptrs_fully_allocated(struct bkey_s_c k) 588 { 589 unsigned ret = 0; 590 591 if (k.k->type == KEY_TYPE_reservation) { 592 ret = bkey_s_c_to_reservation(k).v->nr_replicas; 593 } else { 594 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 595 const union bch_extent_entry *entry; 596 struct extent_ptr_decoded p; 597 598 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 599 ret += !p.ptr.cached && !crc_is_compressed(p.crc); 600 } 601 602 return ret; 603 } 604 605 unsigned bch2_bkey_sectors_compressed(struct bkey_s_c k) 606 { 607 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 608 const union bch_extent_entry *entry; 609 struct extent_ptr_decoded p; 610 unsigned ret = 0; 611 612 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 613 if (!p.ptr.cached && crc_is_compressed(p.crc)) 614 ret += p.crc.compressed_size; 615 616 return ret; 617 } 618 619 bool bch2_bkey_is_incompressible(struct bkey_s_c k) 620 { 621 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 622 const union bch_extent_entry *entry; 623 struct bch_extent_crc_unpacked crc; 624 625 bkey_for_each_crc(k.k, ptrs, crc, entry) 626 if (crc.compression_type == BCH_COMPRESSION_TYPE_incompressible) 627 return true; 628 return false; 629 } 630 631 unsigned bch2_bkey_replicas(struct bch_fs *c, struct bkey_s_c k) 632 { 633 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 634 const union bch_extent_entry *entry; 635 struct extent_ptr_decoded p = { 0 }; 636 unsigned replicas = 0; 637 638 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { 639 if (p.ptr.cached) 640 continue; 641 642 if (p.has_ec) 643 replicas += p.ec.redundancy; 644 645 replicas++; 646 647 } 648 649 return replicas; 650 } 651 652 static inline unsigned __extent_ptr_durability(struct bch_dev *ca, struct extent_ptr_decoded *p) 653 { 654 if (p->ptr.cached) 655 return 0; 656 657 return p->has_ec 658 ? p->ec.redundancy + 1 659 : ca->mi.durability; 660 } 661 662 unsigned bch2_extent_ptr_desired_durability(struct bch_fs *c, struct extent_ptr_decoded *p) 663 { 664 struct bch_dev *ca = bch_dev_bkey_exists(c, p->ptr.dev); 665 666 return __extent_ptr_durability(ca, p); 667 } 668 669 unsigned bch2_extent_ptr_durability(struct bch_fs *c, struct extent_ptr_decoded *p) 670 { 671 struct bch_dev *ca = bch_dev_bkey_exists(c, p->ptr.dev); 672 673 if (ca->mi.state == BCH_MEMBER_STATE_failed) 674 return 0; 675 676 return __extent_ptr_durability(ca, p); 677 } 678 679 unsigned bch2_bkey_durability(struct bch_fs *c, struct bkey_s_c k) 680 { 681 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 682 const union bch_extent_entry *entry; 683 struct extent_ptr_decoded p; 684 unsigned durability = 0; 685 686 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 687 durability += bch2_extent_ptr_durability(c, &p); 688 689 return durability; 690 } 691 692 static unsigned bch2_bkey_durability_safe(struct bch_fs *c, struct bkey_s_c k) 693 { 694 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 695 const union bch_extent_entry *entry; 696 struct extent_ptr_decoded p; 697 unsigned durability = 0; 698 699 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 700 if (p.ptr.dev < c->sb.nr_devices && c->devs[p.ptr.dev]) 701 durability += bch2_extent_ptr_durability(c, &p); 702 703 return durability; 704 } 705 706 void bch2_bkey_extent_entry_drop(struct bkey_i *k, union bch_extent_entry *entry) 707 { 708 union bch_extent_entry *end = bkey_val_end(bkey_i_to_s(k)); 709 union bch_extent_entry *next = extent_entry_next(entry); 710 711 memmove_u64s(entry, next, (u64 *) end - (u64 *) next); 712 k->k.u64s -= extent_entry_u64s(entry); 713 } 714 715 void bch2_extent_ptr_decoded_append(struct bkey_i *k, 716 struct extent_ptr_decoded *p) 717 { 718 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); 719 struct bch_extent_crc_unpacked crc = 720 bch2_extent_crc_unpack(&k->k, NULL); 721 union bch_extent_entry *pos; 722 723 if (!bch2_crc_unpacked_cmp(crc, p->crc)) { 724 pos = ptrs.start; 725 goto found; 726 } 727 728 bkey_for_each_crc(&k->k, ptrs, crc, pos) 729 if (!bch2_crc_unpacked_cmp(crc, p->crc)) { 730 pos = extent_entry_next(pos); 731 goto found; 732 } 733 734 bch2_extent_crc_append(k, p->crc); 735 pos = bkey_val_end(bkey_i_to_s(k)); 736 found: 737 p->ptr.type = 1 << BCH_EXTENT_ENTRY_ptr; 738 __extent_entry_insert(k, pos, to_entry(&p->ptr)); 739 740 if (p->has_ec) { 741 p->ec.type = 1 << BCH_EXTENT_ENTRY_stripe_ptr; 742 __extent_entry_insert(k, pos, to_entry(&p->ec)); 743 } 744 } 745 746 static union bch_extent_entry *extent_entry_prev(struct bkey_ptrs ptrs, 747 union bch_extent_entry *entry) 748 { 749 union bch_extent_entry *i = ptrs.start; 750 751 if (i == entry) 752 return NULL; 753 754 while (extent_entry_next(i) != entry) 755 i = extent_entry_next(i); 756 return i; 757 } 758 759 /* 760 * Returns pointer to the next entry after the one being dropped: 761 */ 762 union bch_extent_entry *bch2_bkey_drop_ptr_noerror(struct bkey_s k, 763 struct bch_extent_ptr *ptr) 764 { 765 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); 766 union bch_extent_entry *entry = to_entry(ptr), *next; 767 union bch_extent_entry *ret = entry; 768 bool drop_crc = true; 769 770 EBUG_ON(ptr < &ptrs.start->ptr || 771 ptr >= &ptrs.end->ptr); 772 EBUG_ON(ptr->type != 1 << BCH_EXTENT_ENTRY_ptr); 773 774 for (next = extent_entry_next(entry); 775 next != ptrs.end; 776 next = extent_entry_next(next)) { 777 if (extent_entry_is_crc(next)) { 778 break; 779 } else if (extent_entry_is_ptr(next)) { 780 drop_crc = false; 781 break; 782 } 783 } 784 785 extent_entry_drop(k, entry); 786 787 while ((entry = extent_entry_prev(ptrs, entry))) { 788 if (extent_entry_is_ptr(entry)) 789 break; 790 791 if ((extent_entry_is_crc(entry) && drop_crc) || 792 extent_entry_is_stripe_ptr(entry)) { 793 ret = (void *) ret - extent_entry_bytes(entry); 794 extent_entry_drop(k, entry); 795 } 796 } 797 798 return ret; 799 } 800 801 union bch_extent_entry *bch2_bkey_drop_ptr(struct bkey_s k, 802 struct bch_extent_ptr *ptr) 803 { 804 bool have_dirty = bch2_bkey_dirty_devs(k.s_c).nr; 805 union bch_extent_entry *ret = 806 bch2_bkey_drop_ptr_noerror(k, ptr); 807 808 /* 809 * If we deleted all the dirty pointers and there's still cached 810 * pointers, we could set the cached pointers to dirty if they're not 811 * stale - but to do that correctly we'd need to grab an open_bucket 812 * reference so that we don't race with bucket reuse: 813 */ 814 if (have_dirty && 815 !bch2_bkey_dirty_devs(k.s_c).nr) { 816 k.k->type = KEY_TYPE_error; 817 set_bkey_val_u64s(k.k, 0); 818 ret = NULL; 819 } else if (!bch2_bkey_nr_ptrs(k.s_c)) { 820 k.k->type = KEY_TYPE_deleted; 821 set_bkey_val_u64s(k.k, 0); 822 ret = NULL; 823 } 824 825 return ret; 826 } 827 828 void bch2_bkey_drop_device(struct bkey_s k, unsigned dev) 829 { 830 struct bch_extent_ptr *ptr; 831 832 bch2_bkey_drop_ptrs(k, ptr, ptr->dev == dev); 833 } 834 835 void bch2_bkey_drop_device_noerror(struct bkey_s k, unsigned dev) 836 { 837 struct bch_extent_ptr *ptr = bch2_bkey_has_device(k, dev); 838 839 if (ptr) 840 bch2_bkey_drop_ptr_noerror(k, ptr); 841 } 842 843 const struct bch_extent_ptr *bch2_bkey_has_device_c(struct bkey_s_c k, unsigned dev) 844 { 845 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 846 const struct bch_extent_ptr *ptr; 847 848 bkey_for_each_ptr(ptrs, ptr) 849 if (ptr->dev == dev) 850 return ptr; 851 852 return NULL; 853 } 854 855 bool bch2_bkey_has_target(struct bch_fs *c, struct bkey_s_c k, unsigned target) 856 { 857 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 858 const struct bch_extent_ptr *ptr; 859 860 bkey_for_each_ptr(ptrs, ptr) 861 if (bch2_dev_in_target(c, ptr->dev, target) && 862 (!ptr->cached || 863 !ptr_stale(bch_dev_bkey_exists(c, ptr->dev), ptr))) 864 return true; 865 866 return false; 867 } 868 869 bool bch2_bkey_matches_ptr(struct bch_fs *c, struct bkey_s_c k, 870 struct bch_extent_ptr m, u64 offset) 871 { 872 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 873 const union bch_extent_entry *entry; 874 struct extent_ptr_decoded p; 875 876 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 877 if (p.ptr.dev == m.dev && 878 p.ptr.gen == m.gen && 879 (s64) p.ptr.offset + p.crc.offset - bkey_start_offset(k.k) == 880 (s64) m.offset - offset) 881 return true; 882 883 return false; 884 } 885 886 /* 887 * Returns true if two extents refer to the same data: 888 */ 889 bool bch2_extents_match(struct bkey_s_c k1, struct bkey_s_c k2) 890 { 891 if (k1.k->type != k2.k->type) 892 return false; 893 894 if (bkey_extent_is_direct_data(k1.k)) { 895 struct bkey_ptrs_c ptrs1 = bch2_bkey_ptrs_c(k1); 896 struct bkey_ptrs_c ptrs2 = bch2_bkey_ptrs_c(k2); 897 const union bch_extent_entry *entry1, *entry2; 898 struct extent_ptr_decoded p1, p2; 899 900 if (bkey_extent_is_unwritten(k1) != bkey_extent_is_unwritten(k2)) 901 return false; 902 903 bkey_for_each_ptr_decode(k1.k, ptrs1, p1, entry1) 904 bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2) 905 if (p1.ptr.dev == p2.ptr.dev && 906 p1.ptr.gen == p2.ptr.gen && 907 (s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k1.k) == 908 (s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k2.k)) 909 return true; 910 911 return false; 912 } else { 913 /* KEY_TYPE_deleted, etc. */ 914 return true; 915 } 916 } 917 918 struct bch_extent_ptr * 919 bch2_extent_has_ptr(struct bkey_s_c k1, struct extent_ptr_decoded p1, struct bkey_s k2) 920 { 921 struct bkey_ptrs ptrs2 = bch2_bkey_ptrs(k2); 922 union bch_extent_entry *entry2; 923 struct extent_ptr_decoded p2; 924 925 bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2) 926 if (p1.ptr.dev == p2.ptr.dev && 927 p1.ptr.gen == p2.ptr.gen && 928 (s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k1.k) == 929 (s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k2.k)) 930 return &entry2->ptr; 931 932 return NULL; 933 } 934 935 void bch2_extent_ptr_set_cached(struct bkey_s k, struct bch_extent_ptr *ptr) 936 { 937 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); 938 union bch_extent_entry *entry; 939 union bch_extent_entry *ec = NULL; 940 941 bkey_extent_entry_for_each(ptrs, entry) { 942 if (&entry->ptr == ptr) { 943 ptr->cached = true; 944 if (ec) 945 extent_entry_drop(k, ec); 946 return; 947 } 948 949 if (extent_entry_is_stripe_ptr(entry)) 950 ec = entry; 951 else if (extent_entry_is_ptr(entry)) 952 ec = NULL; 953 } 954 955 BUG(); 956 } 957 958 /* 959 * bch_extent_normalize - clean up an extent, dropping stale pointers etc. 960 * 961 * Returns true if @k should be dropped entirely 962 * 963 * For existing keys, only called when btree nodes are being rewritten, not when 964 * they're merely being compacted/resorted in memory. 965 */ 966 bool bch2_extent_normalize(struct bch_fs *c, struct bkey_s k) 967 { 968 struct bch_extent_ptr *ptr; 969 970 bch2_bkey_drop_ptrs(k, ptr, 971 ptr->cached && 972 ptr_stale(bch_dev_bkey_exists(c, ptr->dev), ptr)); 973 974 return bkey_deleted(k.k); 975 } 976 977 void bch2_bkey_ptrs_to_text(struct printbuf *out, struct bch_fs *c, 978 struct bkey_s_c k) 979 { 980 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 981 const union bch_extent_entry *entry; 982 bool first = true; 983 984 if (c) 985 prt_printf(out, "durability: %u ", bch2_bkey_durability_safe(c, k)); 986 987 bkey_extent_entry_for_each(ptrs, entry) { 988 if (!first) 989 prt_printf(out, " "); 990 991 switch (__extent_entry_type(entry)) { 992 case BCH_EXTENT_ENTRY_ptr: { 993 const struct bch_extent_ptr *ptr = entry_to_ptr(entry); 994 struct bch_dev *ca = c && ptr->dev < c->sb.nr_devices && c->devs[ptr->dev] 995 ? bch_dev_bkey_exists(c, ptr->dev) 996 : NULL; 997 998 if (!ca) { 999 prt_printf(out, "ptr: %u:%llu gen %u%s", ptr->dev, 1000 (u64) ptr->offset, ptr->gen, 1001 ptr->cached ? " cached" : ""); 1002 } else { 1003 u32 offset; 1004 u64 b = sector_to_bucket_and_offset(ca, ptr->offset, &offset); 1005 1006 prt_printf(out, "ptr: %u:%llu:%u gen %u", 1007 ptr->dev, b, offset, ptr->gen); 1008 if (ptr->cached) 1009 prt_str(out, " cached"); 1010 if (ptr->unwritten) 1011 prt_str(out, " unwritten"); 1012 if (ca && ptr_stale(ca, ptr)) 1013 prt_printf(out, " stale"); 1014 } 1015 break; 1016 } 1017 case BCH_EXTENT_ENTRY_crc32: 1018 case BCH_EXTENT_ENTRY_crc64: 1019 case BCH_EXTENT_ENTRY_crc128: { 1020 struct bch_extent_crc_unpacked crc = 1021 bch2_extent_crc_unpack(k.k, entry_to_crc(entry)); 1022 1023 prt_printf(out, "crc: c_size %u size %u offset %u nonce %u csum %s compress %s", 1024 crc.compressed_size, 1025 crc.uncompressed_size, 1026 crc.offset, crc.nonce, 1027 bch2_csum_types[crc.csum_type], 1028 bch2_compression_types[crc.compression_type]); 1029 break; 1030 } 1031 case BCH_EXTENT_ENTRY_stripe_ptr: { 1032 const struct bch_extent_stripe_ptr *ec = &entry->stripe_ptr; 1033 1034 prt_printf(out, "ec: idx %llu block %u", 1035 (u64) ec->idx, ec->block); 1036 break; 1037 } 1038 case BCH_EXTENT_ENTRY_rebalance: { 1039 const struct bch_extent_rebalance *r = &entry->rebalance; 1040 1041 prt_str(out, "rebalance: target "); 1042 if (c) 1043 bch2_target_to_text(out, c, r->target); 1044 else 1045 prt_printf(out, "%u", r->target); 1046 prt_str(out, " compression "); 1047 bch2_compression_opt_to_text(out, r->compression); 1048 break; 1049 } 1050 default: 1051 prt_printf(out, "(invalid extent entry %.16llx)", *((u64 *) entry)); 1052 return; 1053 } 1054 1055 first = false; 1056 } 1057 } 1058 1059 static int extent_ptr_invalid(struct bch_fs *c, 1060 struct bkey_s_c k, 1061 enum bkey_invalid_flags flags, 1062 const struct bch_extent_ptr *ptr, 1063 unsigned size_ondisk, 1064 bool metadata, 1065 struct printbuf *err) 1066 { 1067 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1068 const struct bch_extent_ptr *ptr2; 1069 u64 bucket; 1070 u32 bucket_offset; 1071 struct bch_dev *ca; 1072 int ret = 0; 1073 1074 if (!bch2_dev_exists2(c, ptr->dev)) { 1075 /* 1076 * If we're in the write path this key might have already been 1077 * overwritten, and we could be seeing a device that doesn't 1078 * exist anymore due to racing with device removal: 1079 */ 1080 if (flags & BKEY_INVALID_WRITE) 1081 return 0; 1082 1083 bkey_fsck_err(c, err, ptr_to_invalid_device, 1084 "pointer to invalid device (%u)", ptr->dev); 1085 } 1086 1087 ca = bch_dev_bkey_exists(c, ptr->dev); 1088 bkey_for_each_ptr(ptrs, ptr2) 1089 bkey_fsck_err_on(ptr != ptr2 && ptr->dev == ptr2->dev, c, err, 1090 ptr_to_duplicate_device, 1091 "multiple pointers to same device (%u)", ptr->dev); 1092 1093 bucket = sector_to_bucket_and_offset(ca, ptr->offset, &bucket_offset); 1094 1095 bkey_fsck_err_on(bucket >= ca->mi.nbuckets, c, err, 1096 ptr_after_last_bucket, 1097 "pointer past last bucket (%llu > %llu)", bucket, ca->mi.nbuckets); 1098 bkey_fsck_err_on(ptr->offset < bucket_to_sector(ca, ca->mi.first_bucket), c, err, 1099 ptr_before_first_bucket, 1100 "pointer before first bucket (%llu < %u)", bucket, ca->mi.first_bucket); 1101 bkey_fsck_err_on(bucket_offset + size_ondisk > ca->mi.bucket_size, c, err, 1102 ptr_spans_multiple_buckets, 1103 "pointer spans multiple buckets (%u + %u > %u)", 1104 bucket_offset, size_ondisk, ca->mi.bucket_size); 1105 fsck_err: 1106 return ret; 1107 } 1108 1109 int bch2_bkey_ptrs_invalid(struct bch_fs *c, struct bkey_s_c k, 1110 enum bkey_invalid_flags flags, 1111 struct printbuf *err) 1112 { 1113 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1114 const union bch_extent_entry *entry; 1115 struct bch_extent_crc_unpacked crc; 1116 unsigned size_ondisk = k.k->size; 1117 unsigned nonce = UINT_MAX; 1118 unsigned nr_ptrs = 0; 1119 bool have_written = false, have_unwritten = false, have_ec = false, crc_since_last_ptr = false; 1120 int ret = 0; 1121 1122 if (bkey_is_btree_ptr(k.k)) 1123 size_ondisk = btree_sectors(c); 1124 1125 bkey_extent_entry_for_each(ptrs, entry) { 1126 bkey_fsck_err_on(__extent_entry_type(entry) >= BCH_EXTENT_ENTRY_MAX, c, err, 1127 extent_ptrs_invalid_entry, 1128 "invalid extent entry type (got %u, max %u)", 1129 __extent_entry_type(entry), BCH_EXTENT_ENTRY_MAX); 1130 1131 bkey_fsck_err_on(bkey_is_btree_ptr(k.k) && 1132 !extent_entry_is_ptr(entry), c, err, 1133 btree_ptr_has_non_ptr, 1134 "has non ptr field"); 1135 1136 switch (extent_entry_type(entry)) { 1137 case BCH_EXTENT_ENTRY_ptr: 1138 ret = extent_ptr_invalid(c, k, flags, &entry->ptr, 1139 size_ondisk, false, err); 1140 if (ret) 1141 return ret; 1142 1143 bkey_fsck_err_on(entry->ptr.cached && have_ec, c, err, 1144 ptr_cached_and_erasure_coded, 1145 "cached, erasure coded ptr"); 1146 1147 if (!entry->ptr.unwritten) 1148 have_written = true; 1149 else 1150 have_unwritten = true; 1151 1152 have_ec = false; 1153 crc_since_last_ptr = false; 1154 nr_ptrs++; 1155 break; 1156 case BCH_EXTENT_ENTRY_crc32: 1157 case BCH_EXTENT_ENTRY_crc64: 1158 case BCH_EXTENT_ENTRY_crc128: 1159 crc = bch2_extent_crc_unpack(k.k, entry_to_crc(entry)); 1160 1161 bkey_fsck_err_on(crc.offset + crc.live_size > crc.uncompressed_size, c, err, 1162 ptr_crc_uncompressed_size_too_small, 1163 "checksum offset + key size > uncompressed size"); 1164 bkey_fsck_err_on(!bch2_checksum_type_valid(c, crc.csum_type), c, err, 1165 ptr_crc_csum_type_unknown, 1166 "invalid checksum type"); 1167 bkey_fsck_err_on(crc.compression_type >= BCH_COMPRESSION_TYPE_NR, c, err, 1168 ptr_crc_compression_type_unknown, 1169 "invalid compression type"); 1170 1171 if (bch2_csum_type_is_encryption(crc.csum_type)) { 1172 if (nonce == UINT_MAX) 1173 nonce = crc.offset + crc.nonce; 1174 else if (nonce != crc.offset + crc.nonce) 1175 bkey_fsck_err(c, err, ptr_crc_nonce_mismatch, 1176 "incorrect nonce"); 1177 } 1178 1179 bkey_fsck_err_on(crc_since_last_ptr, c, err, 1180 ptr_crc_redundant, 1181 "redundant crc entry"); 1182 crc_since_last_ptr = true; 1183 1184 bkey_fsck_err_on(crc_is_encoded(crc) && 1185 (crc.uncompressed_size > c->opts.encoded_extent_max >> 9) && 1186 (flags & (BKEY_INVALID_WRITE|BKEY_INVALID_COMMIT)), c, err, 1187 ptr_crc_uncompressed_size_too_big, 1188 "too large encoded extent"); 1189 1190 size_ondisk = crc.compressed_size; 1191 break; 1192 case BCH_EXTENT_ENTRY_stripe_ptr: 1193 bkey_fsck_err_on(have_ec, c, err, 1194 ptr_stripe_redundant, 1195 "redundant stripe entry"); 1196 have_ec = true; 1197 break; 1198 case BCH_EXTENT_ENTRY_rebalance: { 1199 const struct bch_extent_rebalance *r = &entry->rebalance; 1200 1201 if (!bch2_compression_opt_valid(r->compression)) { 1202 struct bch_compression_opt opt = __bch2_compression_decode(r->compression); 1203 prt_printf(err, "invalid compression opt %u:%u", 1204 opt.type, opt.level); 1205 return -BCH_ERR_invalid_bkey; 1206 } 1207 break; 1208 } 1209 } 1210 } 1211 1212 bkey_fsck_err_on(!nr_ptrs, c, err, 1213 extent_ptrs_no_ptrs, 1214 "no ptrs"); 1215 bkey_fsck_err_on(nr_ptrs > BCH_BKEY_PTRS_MAX, c, err, 1216 extent_ptrs_too_many_ptrs, 1217 "too many ptrs: %u > %u", nr_ptrs, BCH_BKEY_PTRS_MAX); 1218 bkey_fsck_err_on(have_written && have_unwritten, c, err, 1219 extent_ptrs_written_and_unwritten, 1220 "extent with unwritten and written ptrs"); 1221 bkey_fsck_err_on(k.k->type != KEY_TYPE_extent && have_unwritten, c, err, 1222 extent_ptrs_unwritten, 1223 "has unwritten ptrs"); 1224 bkey_fsck_err_on(crc_since_last_ptr, c, err, 1225 extent_ptrs_redundant_crc, 1226 "redundant crc entry"); 1227 bkey_fsck_err_on(have_ec, c, err, 1228 extent_ptrs_redundant_stripe, 1229 "redundant stripe entry"); 1230 fsck_err: 1231 return ret; 1232 } 1233 1234 void bch2_ptr_swab(struct bkey_s k) 1235 { 1236 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); 1237 union bch_extent_entry *entry; 1238 u64 *d; 1239 1240 for (d = (u64 *) ptrs.start; 1241 d != (u64 *) ptrs.end; 1242 d++) 1243 *d = swab64(*d); 1244 1245 for (entry = ptrs.start; 1246 entry < ptrs.end; 1247 entry = extent_entry_next(entry)) { 1248 switch (extent_entry_type(entry)) { 1249 case BCH_EXTENT_ENTRY_ptr: 1250 break; 1251 case BCH_EXTENT_ENTRY_crc32: 1252 entry->crc32.csum = swab32(entry->crc32.csum); 1253 break; 1254 case BCH_EXTENT_ENTRY_crc64: 1255 entry->crc64.csum_hi = swab16(entry->crc64.csum_hi); 1256 entry->crc64.csum_lo = swab64(entry->crc64.csum_lo); 1257 break; 1258 case BCH_EXTENT_ENTRY_crc128: 1259 entry->crc128.csum.hi = (__force __le64) 1260 swab64((__force u64) entry->crc128.csum.hi); 1261 entry->crc128.csum.lo = (__force __le64) 1262 swab64((__force u64) entry->crc128.csum.lo); 1263 break; 1264 case BCH_EXTENT_ENTRY_stripe_ptr: 1265 break; 1266 case BCH_EXTENT_ENTRY_rebalance: 1267 break; 1268 } 1269 } 1270 } 1271 1272 const struct bch_extent_rebalance *bch2_bkey_rebalance_opts(struct bkey_s_c k) 1273 { 1274 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1275 const union bch_extent_entry *entry; 1276 1277 bkey_extent_entry_for_each(ptrs, entry) 1278 if (__extent_entry_type(entry) == BCH_EXTENT_ENTRY_rebalance) 1279 return &entry->rebalance; 1280 1281 return NULL; 1282 } 1283 1284 unsigned bch2_bkey_ptrs_need_rebalance(struct bch_fs *c, struct bkey_s_c k, 1285 unsigned target, unsigned compression) 1286 { 1287 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1288 unsigned rewrite_ptrs = 0; 1289 1290 if (compression) { 1291 unsigned compression_type = bch2_compression_opt_to_type(compression); 1292 const union bch_extent_entry *entry; 1293 struct extent_ptr_decoded p; 1294 unsigned i = 0; 1295 1296 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { 1297 if (p.crc.compression_type == BCH_COMPRESSION_TYPE_incompressible) { 1298 rewrite_ptrs = 0; 1299 goto incompressible; 1300 } 1301 1302 if (!p.ptr.cached && p.crc.compression_type != compression_type) 1303 rewrite_ptrs |= 1U << i; 1304 i++; 1305 } 1306 } 1307 incompressible: 1308 if (target && bch2_target_accepts_data(c, BCH_DATA_user, target)) { 1309 const struct bch_extent_ptr *ptr; 1310 unsigned i = 0; 1311 1312 bkey_for_each_ptr(ptrs, ptr) { 1313 if (!ptr->cached && !bch2_dev_in_target(c, ptr->dev, target)) 1314 rewrite_ptrs |= 1U << i; 1315 i++; 1316 } 1317 } 1318 1319 return rewrite_ptrs; 1320 } 1321 1322 bool bch2_bkey_needs_rebalance(struct bch_fs *c, struct bkey_s_c k) 1323 { 1324 const struct bch_extent_rebalance *r = bch2_bkey_rebalance_opts(k); 1325 1326 /* 1327 * If it's an indirect extent, we don't delete the rebalance entry when 1328 * done so that we know what options were applied - check if it still 1329 * needs work done: 1330 */ 1331 if (r && 1332 k.k->type == KEY_TYPE_reflink_v && 1333 !bch2_bkey_ptrs_need_rebalance(c, k, r->target, r->compression)) 1334 r = NULL; 1335 1336 return r != NULL; 1337 } 1338 1339 int bch2_bkey_set_needs_rebalance(struct bch_fs *c, struct bkey_i *_k, 1340 unsigned target, unsigned compression) 1341 { 1342 struct bkey_s k = bkey_i_to_s(_k); 1343 struct bch_extent_rebalance *r; 1344 bool needs_rebalance; 1345 1346 if (!bkey_extent_is_direct_data(k.k)) 1347 return 0; 1348 1349 /* get existing rebalance entry: */ 1350 r = (struct bch_extent_rebalance *) bch2_bkey_rebalance_opts(k.s_c); 1351 if (r) { 1352 if (k.k->type == KEY_TYPE_reflink_v) { 1353 /* 1354 * indirect extents: existing options take precedence, 1355 * so that we don't move extents back and forth if 1356 * they're referenced by different inodes with different 1357 * options: 1358 */ 1359 if (r->target) 1360 target = r->target; 1361 if (r->compression) 1362 compression = r->compression; 1363 } 1364 1365 r->target = target; 1366 r->compression = compression; 1367 } 1368 1369 needs_rebalance = bch2_bkey_ptrs_need_rebalance(c, k.s_c, target, compression); 1370 1371 if (needs_rebalance && !r) { 1372 union bch_extent_entry *new = bkey_val_end(k); 1373 1374 new->rebalance.type = 1U << BCH_EXTENT_ENTRY_rebalance; 1375 new->rebalance.compression = compression; 1376 new->rebalance.target = target; 1377 new->rebalance.unused = 0; 1378 k.k->u64s += extent_entry_u64s(new); 1379 } else if (!needs_rebalance && r && k.k->type != KEY_TYPE_reflink_v) { 1380 /* 1381 * For indirect extents, don't delete the rebalance entry when 1382 * we're finished so that we know we specifically moved it or 1383 * compressed it to its current location/compression type 1384 */ 1385 extent_entry_drop(k, (union bch_extent_entry *) r); 1386 } 1387 1388 return 0; 1389 } 1390 1391 /* Generic extent code: */ 1392 1393 int bch2_cut_front_s(struct bpos where, struct bkey_s k) 1394 { 1395 unsigned new_val_u64s = bkey_val_u64s(k.k); 1396 int val_u64s_delta; 1397 u64 sub; 1398 1399 if (bkey_le(where, bkey_start_pos(k.k))) 1400 return 0; 1401 1402 EBUG_ON(bkey_gt(where, k.k->p)); 1403 1404 sub = where.offset - bkey_start_offset(k.k); 1405 1406 k.k->size -= sub; 1407 1408 if (!k.k->size) { 1409 k.k->type = KEY_TYPE_deleted; 1410 new_val_u64s = 0; 1411 } 1412 1413 switch (k.k->type) { 1414 case KEY_TYPE_extent: 1415 case KEY_TYPE_reflink_v: { 1416 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); 1417 union bch_extent_entry *entry; 1418 bool seen_crc = false; 1419 1420 bkey_extent_entry_for_each(ptrs, entry) { 1421 switch (extent_entry_type(entry)) { 1422 case BCH_EXTENT_ENTRY_ptr: 1423 if (!seen_crc) 1424 entry->ptr.offset += sub; 1425 break; 1426 case BCH_EXTENT_ENTRY_crc32: 1427 entry->crc32.offset += sub; 1428 break; 1429 case BCH_EXTENT_ENTRY_crc64: 1430 entry->crc64.offset += sub; 1431 break; 1432 case BCH_EXTENT_ENTRY_crc128: 1433 entry->crc128.offset += sub; 1434 break; 1435 case BCH_EXTENT_ENTRY_stripe_ptr: 1436 break; 1437 case BCH_EXTENT_ENTRY_rebalance: 1438 break; 1439 } 1440 1441 if (extent_entry_is_crc(entry)) 1442 seen_crc = true; 1443 } 1444 1445 break; 1446 } 1447 case KEY_TYPE_reflink_p: { 1448 struct bkey_s_reflink_p p = bkey_s_to_reflink_p(k); 1449 1450 le64_add_cpu(&p.v->idx, sub); 1451 break; 1452 } 1453 case KEY_TYPE_inline_data: 1454 case KEY_TYPE_indirect_inline_data: { 1455 void *p = bkey_inline_data_p(k); 1456 unsigned bytes = bkey_inline_data_bytes(k.k); 1457 1458 sub = min_t(u64, sub << 9, bytes); 1459 1460 memmove(p, p + sub, bytes - sub); 1461 1462 new_val_u64s -= sub >> 3; 1463 break; 1464 } 1465 } 1466 1467 val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s; 1468 BUG_ON(val_u64s_delta < 0); 1469 1470 set_bkey_val_u64s(k.k, new_val_u64s); 1471 memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64)); 1472 return -val_u64s_delta; 1473 } 1474 1475 int bch2_cut_back_s(struct bpos where, struct bkey_s k) 1476 { 1477 unsigned new_val_u64s = bkey_val_u64s(k.k); 1478 int val_u64s_delta; 1479 u64 len = 0; 1480 1481 if (bkey_ge(where, k.k->p)) 1482 return 0; 1483 1484 EBUG_ON(bkey_lt(where, bkey_start_pos(k.k))); 1485 1486 len = where.offset - bkey_start_offset(k.k); 1487 1488 k.k->p.offset = where.offset; 1489 k.k->size = len; 1490 1491 if (!len) { 1492 k.k->type = KEY_TYPE_deleted; 1493 new_val_u64s = 0; 1494 } 1495 1496 switch (k.k->type) { 1497 case KEY_TYPE_inline_data: 1498 case KEY_TYPE_indirect_inline_data: 1499 new_val_u64s = (bkey_inline_data_offset(k.k) + 1500 min(bkey_inline_data_bytes(k.k), k.k->size << 9)) >> 3; 1501 break; 1502 } 1503 1504 val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s; 1505 BUG_ON(val_u64s_delta < 0); 1506 1507 set_bkey_val_u64s(k.k, new_val_u64s); 1508 memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64)); 1509 return -val_u64s_delta; 1510 } 1511