1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 4 * 5 * Code for managing the extent btree and dynamically updating the writeback 6 * dirty sector count. 7 */ 8 9 #include "bcachefs.h" 10 #include "bkey_methods.h" 11 #include "btree_cache.h" 12 #include "btree_gc.h" 13 #include "btree_io.h" 14 #include "btree_iter.h" 15 #include "buckets.h" 16 #include "checksum.h" 17 #include "compress.h" 18 #include "debug.h" 19 #include "disk_groups.h" 20 #include "error.h" 21 #include "extents.h" 22 #include "inode.h" 23 #include "journal.h" 24 #include "replicas.h" 25 #include "super.h" 26 #include "super-io.h" 27 #include "trace.h" 28 #include "util.h" 29 30 static unsigned bch2_crc_field_size_max[] = { 31 [BCH_EXTENT_ENTRY_crc32] = CRC32_SIZE_MAX, 32 [BCH_EXTENT_ENTRY_crc64] = CRC64_SIZE_MAX, 33 [BCH_EXTENT_ENTRY_crc128] = CRC128_SIZE_MAX, 34 }; 35 36 static void bch2_extent_crc_pack(union bch_extent_crc *, 37 struct bch_extent_crc_unpacked, 38 enum bch_extent_entry_type); 39 40 struct bch_dev_io_failures *bch2_dev_io_failures(struct bch_io_failures *f, 41 unsigned dev) 42 { 43 struct bch_dev_io_failures *i; 44 45 for (i = f->devs; i < f->devs + f->nr; i++) 46 if (i->dev == dev) 47 return i; 48 49 return NULL; 50 } 51 52 void bch2_mark_io_failure(struct bch_io_failures *failed, 53 struct extent_ptr_decoded *p) 54 { 55 struct bch_dev_io_failures *f = bch2_dev_io_failures(failed, p->ptr.dev); 56 57 if (!f) { 58 BUG_ON(failed->nr >= ARRAY_SIZE(failed->devs)); 59 60 f = &failed->devs[failed->nr++]; 61 f->dev = p->ptr.dev; 62 f->idx = p->idx; 63 f->nr_failed = 1; 64 f->nr_retries = 0; 65 } else if (p->idx != f->idx) { 66 f->idx = p->idx; 67 f->nr_failed = 1; 68 f->nr_retries = 0; 69 } else { 70 f->nr_failed++; 71 } 72 } 73 74 static inline u64 dev_latency(struct bch_fs *c, unsigned dev) 75 { 76 struct bch_dev *ca = bch2_dev_rcu(c, dev); 77 return ca ? atomic64_read(&ca->cur_latency[READ]) : S64_MAX; 78 } 79 80 /* 81 * returns true if p1 is better than p2: 82 */ 83 static inline bool ptr_better(struct bch_fs *c, 84 const struct extent_ptr_decoded p1, 85 const struct extent_ptr_decoded p2) 86 { 87 if (likely(!p1.idx && !p2.idx)) { 88 u64 l1 = dev_latency(c, p1.ptr.dev); 89 u64 l2 = dev_latency(c, p2.ptr.dev); 90 91 /* Pick at random, biased in favor of the faster device: */ 92 93 return bch2_rand_range(l1 + l2) > l1; 94 } 95 96 if (bch2_force_reconstruct_read) 97 return p1.idx > p2.idx; 98 99 return p1.idx < p2.idx; 100 } 101 102 /* 103 * This picks a non-stale pointer, preferably from a device other than @avoid. 104 * Avoid can be NULL, meaning pick any. If there are no non-stale pointers to 105 * other devices, it will still pick a pointer from avoid. 106 */ 107 int bch2_bkey_pick_read_device(struct bch_fs *c, struct bkey_s_c k, 108 struct bch_io_failures *failed, 109 struct extent_ptr_decoded *pick) 110 { 111 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 112 const union bch_extent_entry *entry; 113 struct extent_ptr_decoded p; 114 struct bch_dev_io_failures *f; 115 int ret = 0; 116 117 if (k.k->type == KEY_TYPE_error) 118 return -BCH_ERR_key_type_error; 119 120 rcu_read_lock(); 121 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { 122 /* 123 * Unwritten extent: no need to actually read, treat it as a 124 * hole and return 0s: 125 */ 126 if (p.ptr.unwritten) { 127 ret = 0; 128 break; 129 } 130 131 /* 132 * If there are any dirty pointers it's an error if we can't 133 * read: 134 */ 135 if (!ret && !p.ptr.cached) 136 ret = -BCH_ERR_no_device_to_read_from; 137 138 struct bch_dev *ca = bch2_dev_rcu(c, p.ptr.dev); 139 140 if (p.ptr.cached && (!ca || dev_ptr_stale_rcu(ca, &p.ptr))) 141 continue; 142 143 f = failed ? bch2_dev_io_failures(failed, p.ptr.dev) : NULL; 144 if (f) 145 p.idx = f->nr_failed < f->nr_retries 146 ? f->idx 147 : f->idx + 1; 148 149 if (!p.idx && (!ca || !bch2_dev_is_readable(ca))) 150 p.idx++; 151 152 if (!p.idx && p.has_ec && bch2_force_reconstruct_read) 153 p.idx++; 154 155 if (p.idx > (unsigned) p.has_ec) 156 continue; 157 158 if (ret > 0 && !ptr_better(c, p, *pick)) 159 continue; 160 161 *pick = p; 162 ret = 1; 163 } 164 rcu_read_unlock(); 165 166 return ret; 167 } 168 169 /* KEY_TYPE_btree_ptr: */ 170 171 int bch2_btree_ptr_validate(struct bch_fs *c, struct bkey_s_c k, 172 enum bch_validate_flags flags) 173 { 174 int ret = 0; 175 176 bkey_fsck_err_on(bkey_val_u64s(k.k) > BCH_REPLICAS_MAX, 177 c, btree_ptr_val_too_big, 178 "value too big (%zu > %u)", bkey_val_u64s(k.k), BCH_REPLICAS_MAX); 179 180 ret = bch2_bkey_ptrs_validate(c, k, flags); 181 fsck_err: 182 return ret; 183 } 184 185 void bch2_btree_ptr_to_text(struct printbuf *out, struct bch_fs *c, 186 struct bkey_s_c k) 187 { 188 bch2_bkey_ptrs_to_text(out, c, k); 189 } 190 191 int bch2_btree_ptr_v2_validate(struct bch_fs *c, struct bkey_s_c k, 192 enum bch_validate_flags flags) 193 { 194 struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k); 195 int ret = 0; 196 197 bkey_fsck_err_on(bkey_val_u64s(k.k) > BKEY_BTREE_PTR_VAL_U64s_MAX, 198 c, btree_ptr_v2_val_too_big, 199 "value too big (%zu > %zu)", 200 bkey_val_u64s(k.k), BKEY_BTREE_PTR_VAL_U64s_MAX); 201 202 bkey_fsck_err_on(bpos_ge(bp.v->min_key, bp.k->p), 203 c, btree_ptr_v2_min_key_bad, 204 "min_key > key"); 205 206 if (flags & BCH_VALIDATE_write) 207 bkey_fsck_err_on(!bp.v->sectors_written, 208 c, btree_ptr_v2_written_0, 209 "sectors_written == 0"); 210 211 ret = bch2_bkey_ptrs_validate(c, k, flags); 212 fsck_err: 213 return ret; 214 } 215 216 void bch2_btree_ptr_v2_to_text(struct printbuf *out, struct bch_fs *c, 217 struct bkey_s_c k) 218 { 219 struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k); 220 221 prt_printf(out, "seq %llx written %u min_key %s", 222 le64_to_cpu(bp.v->seq), 223 le16_to_cpu(bp.v->sectors_written), 224 BTREE_PTR_RANGE_UPDATED(bp.v) ? "R " : ""); 225 226 bch2_bpos_to_text(out, bp.v->min_key); 227 prt_printf(out, " "); 228 bch2_bkey_ptrs_to_text(out, c, k); 229 } 230 231 void bch2_btree_ptr_v2_compat(enum btree_id btree_id, unsigned version, 232 unsigned big_endian, int write, 233 struct bkey_s k) 234 { 235 struct bkey_s_btree_ptr_v2 bp = bkey_s_to_btree_ptr_v2(k); 236 237 compat_bpos(0, btree_id, version, big_endian, write, &bp.v->min_key); 238 239 if (version < bcachefs_metadata_version_inode_btree_change && 240 btree_id_is_extents(btree_id) && 241 !bkey_eq(bp.v->min_key, POS_MIN)) 242 bp.v->min_key = write 243 ? bpos_nosnap_predecessor(bp.v->min_key) 244 : bpos_nosnap_successor(bp.v->min_key); 245 } 246 247 /* KEY_TYPE_extent: */ 248 249 bool bch2_extent_merge(struct bch_fs *c, struct bkey_s l, struct bkey_s_c r) 250 { 251 struct bkey_ptrs l_ptrs = bch2_bkey_ptrs(l); 252 struct bkey_ptrs_c r_ptrs = bch2_bkey_ptrs_c(r); 253 union bch_extent_entry *en_l; 254 const union bch_extent_entry *en_r; 255 struct extent_ptr_decoded lp, rp; 256 bool use_right_ptr; 257 258 en_l = l_ptrs.start; 259 en_r = r_ptrs.start; 260 while (en_l < l_ptrs.end && en_r < r_ptrs.end) { 261 if (extent_entry_type(en_l) != extent_entry_type(en_r)) 262 return false; 263 264 en_l = extent_entry_next(en_l); 265 en_r = extent_entry_next(en_r); 266 } 267 268 if (en_l < l_ptrs.end || en_r < r_ptrs.end) 269 return false; 270 271 en_l = l_ptrs.start; 272 en_r = r_ptrs.start; 273 lp.crc = bch2_extent_crc_unpack(l.k, NULL); 274 rp.crc = bch2_extent_crc_unpack(r.k, NULL); 275 276 while (__bkey_ptr_next_decode(l.k, l_ptrs.end, lp, en_l) && 277 __bkey_ptr_next_decode(r.k, r_ptrs.end, rp, en_r)) { 278 if (lp.ptr.offset + lp.crc.offset + lp.crc.live_size != 279 rp.ptr.offset + rp.crc.offset || 280 lp.ptr.dev != rp.ptr.dev || 281 lp.ptr.gen != rp.ptr.gen || 282 lp.ptr.unwritten != rp.ptr.unwritten || 283 lp.has_ec != rp.has_ec) 284 return false; 285 286 /* Extents may not straddle buckets: */ 287 rcu_read_lock(); 288 struct bch_dev *ca = bch2_dev_rcu(c, lp.ptr.dev); 289 bool same_bucket = ca && PTR_BUCKET_NR(ca, &lp.ptr) == PTR_BUCKET_NR(ca, &rp.ptr); 290 rcu_read_unlock(); 291 292 if (!same_bucket) 293 return false; 294 295 if (lp.has_ec != rp.has_ec || 296 (lp.has_ec && 297 (lp.ec.block != rp.ec.block || 298 lp.ec.redundancy != rp.ec.redundancy || 299 lp.ec.idx != rp.ec.idx))) 300 return false; 301 302 if (lp.crc.compression_type != rp.crc.compression_type || 303 lp.crc.nonce != rp.crc.nonce) 304 return false; 305 306 if (lp.crc.offset + lp.crc.live_size + rp.crc.live_size <= 307 lp.crc.uncompressed_size) { 308 /* can use left extent's crc entry */ 309 } else if (lp.crc.live_size <= rp.crc.offset) { 310 /* can use right extent's crc entry */ 311 } else { 312 /* check if checksums can be merged: */ 313 if (lp.crc.csum_type != rp.crc.csum_type || 314 lp.crc.nonce != rp.crc.nonce || 315 crc_is_compressed(lp.crc) || 316 !bch2_checksum_mergeable(lp.crc.csum_type)) 317 return false; 318 319 if (lp.crc.offset + lp.crc.live_size != lp.crc.compressed_size || 320 rp.crc.offset) 321 return false; 322 323 if (lp.crc.csum_type && 324 lp.crc.uncompressed_size + 325 rp.crc.uncompressed_size > (c->opts.encoded_extent_max >> 9)) 326 return false; 327 } 328 329 en_l = extent_entry_next(en_l); 330 en_r = extent_entry_next(en_r); 331 } 332 333 en_l = l_ptrs.start; 334 en_r = r_ptrs.start; 335 while (en_l < l_ptrs.end && en_r < r_ptrs.end) { 336 if (extent_entry_is_crc(en_l)) { 337 struct bch_extent_crc_unpacked crc_l = bch2_extent_crc_unpack(l.k, entry_to_crc(en_l)); 338 struct bch_extent_crc_unpacked crc_r = bch2_extent_crc_unpack(r.k, entry_to_crc(en_r)); 339 340 if (crc_l.uncompressed_size + crc_r.uncompressed_size > 341 bch2_crc_field_size_max[extent_entry_type(en_l)]) 342 return false; 343 } 344 345 en_l = extent_entry_next(en_l); 346 en_r = extent_entry_next(en_r); 347 } 348 349 use_right_ptr = false; 350 en_l = l_ptrs.start; 351 en_r = r_ptrs.start; 352 while (en_l < l_ptrs.end) { 353 if (extent_entry_type(en_l) == BCH_EXTENT_ENTRY_ptr && 354 use_right_ptr) 355 en_l->ptr = en_r->ptr; 356 357 if (extent_entry_is_crc(en_l)) { 358 struct bch_extent_crc_unpacked crc_l = 359 bch2_extent_crc_unpack(l.k, entry_to_crc(en_l)); 360 struct bch_extent_crc_unpacked crc_r = 361 bch2_extent_crc_unpack(r.k, entry_to_crc(en_r)); 362 363 use_right_ptr = false; 364 365 if (crc_l.offset + crc_l.live_size + crc_r.live_size <= 366 crc_l.uncompressed_size) { 367 /* can use left extent's crc entry */ 368 } else if (crc_l.live_size <= crc_r.offset) { 369 /* can use right extent's crc entry */ 370 crc_r.offset -= crc_l.live_size; 371 bch2_extent_crc_pack(entry_to_crc(en_l), crc_r, 372 extent_entry_type(en_l)); 373 use_right_ptr = true; 374 } else { 375 crc_l.csum = bch2_checksum_merge(crc_l.csum_type, 376 crc_l.csum, 377 crc_r.csum, 378 crc_r.uncompressed_size << 9); 379 380 crc_l.uncompressed_size += crc_r.uncompressed_size; 381 crc_l.compressed_size += crc_r.compressed_size; 382 bch2_extent_crc_pack(entry_to_crc(en_l), crc_l, 383 extent_entry_type(en_l)); 384 } 385 } 386 387 en_l = extent_entry_next(en_l); 388 en_r = extent_entry_next(en_r); 389 } 390 391 bch2_key_resize(l.k, l.k->size + r.k->size); 392 return true; 393 } 394 395 /* KEY_TYPE_reservation: */ 396 397 int bch2_reservation_validate(struct bch_fs *c, struct bkey_s_c k, 398 enum bch_validate_flags flags) 399 { 400 struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k); 401 int ret = 0; 402 403 bkey_fsck_err_on(!r.v->nr_replicas || r.v->nr_replicas > BCH_REPLICAS_MAX, 404 c, reservation_key_nr_replicas_invalid, 405 "invalid nr_replicas (%u)", r.v->nr_replicas); 406 fsck_err: 407 return ret; 408 } 409 410 void bch2_reservation_to_text(struct printbuf *out, struct bch_fs *c, 411 struct bkey_s_c k) 412 { 413 struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k); 414 415 prt_printf(out, "generation %u replicas %u", 416 le32_to_cpu(r.v->generation), 417 r.v->nr_replicas); 418 } 419 420 bool bch2_reservation_merge(struct bch_fs *c, struct bkey_s _l, struct bkey_s_c _r) 421 { 422 struct bkey_s_reservation l = bkey_s_to_reservation(_l); 423 struct bkey_s_c_reservation r = bkey_s_c_to_reservation(_r); 424 425 if (l.v->generation != r.v->generation || 426 l.v->nr_replicas != r.v->nr_replicas) 427 return false; 428 429 bch2_key_resize(l.k, l.k->size + r.k->size); 430 return true; 431 } 432 433 /* Extent checksum entries: */ 434 435 /* returns true if not equal */ 436 static inline bool bch2_crc_unpacked_cmp(struct bch_extent_crc_unpacked l, 437 struct bch_extent_crc_unpacked r) 438 { 439 return (l.csum_type != r.csum_type || 440 l.compression_type != r.compression_type || 441 l.compressed_size != r.compressed_size || 442 l.uncompressed_size != r.uncompressed_size || 443 l.offset != r.offset || 444 l.live_size != r.live_size || 445 l.nonce != r.nonce || 446 bch2_crc_cmp(l.csum, r.csum)); 447 } 448 449 static inline bool can_narrow_crc(struct bch_extent_crc_unpacked u, 450 struct bch_extent_crc_unpacked n) 451 { 452 return !crc_is_compressed(u) && 453 u.csum_type && 454 u.uncompressed_size > u.live_size && 455 bch2_csum_type_is_encryption(u.csum_type) == 456 bch2_csum_type_is_encryption(n.csum_type); 457 } 458 459 bool bch2_can_narrow_extent_crcs(struct bkey_s_c k, 460 struct bch_extent_crc_unpacked n) 461 { 462 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 463 struct bch_extent_crc_unpacked crc; 464 const union bch_extent_entry *i; 465 466 if (!n.csum_type) 467 return false; 468 469 bkey_for_each_crc(k.k, ptrs, crc, i) 470 if (can_narrow_crc(crc, n)) 471 return true; 472 473 return false; 474 } 475 476 /* 477 * We're writing another replica for this extent, so while we've got the data in 478 * memory we'll be computing a new checksum for the currently live data. 479 * 480 * If there are other replicas we aren't moving, and they are checksummed but 481 * not compressed, we can modify them to point to only the data that is 482 * currently live (so that readers won't have to bounce) while we've got the 483 * checksum we need: 484 */ 485 bool bch2_bkey_narrow_crcs(struct bkey_i *k, struct bch_extent_crc_unpacked n) 486 { 487 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); 488 struct bch_extent_crc_unpacked u; 489 struct extent_ptr_decoded p; 490 union bch_extent_entry *i; 491 bool ret = false; 492 493 /* Find a checksum entry that covers only live data: */ 494 if (!n.csum_type) { 495 bkey_for_each_crc(&k->k, ptrs, u, i) 496 if (!crc_is_compressed(u) && 497 u.csum_type && 498 u.live_size == u.uncompressed_size) { 499 n = u; 500 goto found; 501 } 502 return false; 503 } 504 found: 505 BUG_ON(crc_is_compressed(n)); 506 BUG_ON(n.offset); 507 BUG_ON(n.live_size != k->k.size); 508 509 restart_narrow_pointers: 510 ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); 511 512 bkey_for_each_ptr_decode(&k->k, ptrs, p, i) 513 if (can_narrow_crc(p.crc, n)) { 514 bch2_bkey_drop_ptr_noerror(bkey_i_to_s(k), &i->ptr); 515 p.ptr.offset += p.crc.offset; 516 p.crc = n; 517 bch2_extent_ptr_decoded_append(k, &p); 518 ret = true; 519 goto restart_narrow_pointers; 520 } 521 522 return ret; 523 } 524 525 static void bch2_extent_crc_pack(union bch_extent_crc *dst, 526 struct bch_extent_crc_unpacked src, 527 enum bch_extent_entry_type type) 528 { 529 #define set_common_fields(_dst, _src) \ 530 _dst.type = 1 << type; \ 531 _dst.csum_type = _src.csum_type, \ 532 _dst.compression_type = _src.compression_type, \ 533 _dst._compressed_size = _src.compressed_size - 1, \ 534 _dst._uncompressed_size = _src.uncompressed_size - 1, \ 535 _dst.offset = _src.offset 536 537 switch (type) { 538 case BCH_EXTENT_ENTRY_crc32: 539 set_common_fields(dst->crc32, src); 540 dst->crc32.csum = (u32 __force) *((__le32 *) &src.csum.lo); 541 break; 542 case BCH_EXTENT_ENTRY_crc64: 543 set_common_fields(dst->crc64, src); 544 dst->crc64.nonce = src.nonce; 545 dst->crc64.csum_lo = (u64 __force) src.csum.lo; 546 dst->crc64.csum_hi = (u64 __force) *((__le16 *) &src.csum.hi); 547 break; 548 case BCH_EXTENT_ENTRY_crc128: 549 set_common_fields(dst->crc128, src); 550 dst->crc128.nonce = src.nonce; 551 dst->crc128.csum = src.csum; 552 break; 553 default: 554 BUG(); 555 } 556 #undef set_common_fields 557 } 558 559 void bch2_extent_crc_append(struct bkey_i *k, 560 struct bch_extent_crc_unpacked new) 561 { 562 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); 563 union bch_extent_crc *crc = (void *) ptrs.end; 564 enum bch_extent_entry_type type; 565 566 if (bch_crc_bytes[new.csum_type] <= 4 && 567 new.uncompressed_size <= CRC32_SIZE_MAX && 568 new.nonce <= CRC32_NONCE_MAX) 569 type = BCH_EXTENT_ENTRY_crc32; 570 else if (bch_crc_bytes[new.csum_type] <= 10 && 571 new.uncompressed_size <= CRC64_SIZE_MAX && 572 new.nonce <= CRC64_NONCE_MAX) 573 type = BCH_EXTENT_ENTRY_crc64; 574 else if (bch_crc_bytes[new.csum_type] <= 16 && 575 new.uncompressed_size <= CRC128_SIZE_MAX && 576 new.nonce <= CRC128_NONCE_MAX) 577 type = BCH_EXTENT_ENTRY_crc128; 578 else 579 BUG(); 580 581 bch2_extent_crc_pack(crc, new, type); 582 583 k->k.u64s += extent_entry_u64s(ptrs.end); 584 585 EBUG_ON(bkey_val_u64s(&k->k) > BKEY_EXTENT_VAL_U64s_MAX); 586 } 587 588 /* Generic code for keys with pointers: */ 589 590 unsigned bch2_bkey_nr_ptrs(struct bkey_s_c k) 591 { 592 return bch2_bkey_devs(k).nr; 593 } 594 595 unsigned bch2_bkey_nr_ptrs_allocated(struct bkey_s_c k) 596 { 597 return k.k->type == KEY_TYPE_reservation 598 ? bkey_s_c_to_reservation(k).v->nr_replicas 599 : bch2_bkey_dirty_devs(k).nr; 600 } 601 602 unsigned bch2_bkey_nr_ptrs_fully_allocated(struct bkey_s_c k) 603 { 604 unsigned ret = 0; 605 606 if (k.k->type == KEY_TYPE_reservation) { 607 ret = bkey_s_c_to_reservation(k).v->nr_replicas; 608 } else { 609 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 610 const union bch_extent_entry *entry; 611 struct extent_ptr_decoded p; 612 613 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 614 ret += !p.ptr.cached && !crc_is_compressed(p.crc); 615 } 616 617 return ret; 618 } 619 620 unsigned bch2_bkey_sectors_compressed(struct bkey_s_c k) 621 { 622 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 623 const union bch_extent_entry *entry; 624 struct extent_ptr_decoded p; 625 unsigned ret = 0; 626 627 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 628 if (!p.ptr.cached && crc_is_compressed(p.crc)) 629 ret += p.crc.compressed_size; 630 631 return ret; 632 } 633 634 bool bch2_bkey_is_incompressible(struct bkey_s_c k) 635 { 636 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 637 const union bch_extent_entry *entry; 638 struct bch_extent_crc_unpacked crc; 639 640 bkey_for_each_crc(k.k, ptrs, crc, entry) 641 if (crc.compression_type == BCH_COMPRESSION_TYPE_incompressible) 642 return true; 643 return false; 644 } 645 646 unsigned bch2_bkey_replicas(struct bch_fs *c, struct bkey_s_c k) 647 { 648 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 649 const union bch_extent_entry *entry; 650 struct extent_ptr_decoded p = { 0 }; 651 unsigned replicas = 0; 652 653 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { 654 if (p.ptr.cached) 655 continue; 656 657 if (p.has_ec) 658 replicas += p.ec.redundancy; 659 660 replicas++; 661 662 } 663 664 return replicas; 665 } 666 667 static inline unsigned __extent_ptr_durability(struct bch_dev *ca, struct extent_ptr_decoded *p) 668 { 669 if (p->ptr.cached) 670 return 0; 671 672 return p->has_ec 673 ? p->ec.redundancy + 1 674 : ca->mi.durability; 675 } 676 677 unsigned bch2_extent_ptr_desired_durability(struct bch_fs *c, struct extent_ptr_decoded *p) 678 { 679 struct bch_dev *ca = bch2_dev_rcu(c, p->ptr.dev); 680 681 return ca ? __extent_ptr_durability(ca, p) : 0; 682 } 683 684 unsigned bch2_extent_ptr_durability(struct bch_fs *c, struct extent_ptr_decoded *p) 685 { 686 struct bch_dev *ca = bch2_dev_rcu(c, p->ptr.dev); 687 688 if (!ca || ca->mi.state == BCH_MEMBER_STATE_failed) 689 return 0; 690 691 return __extent_ptr_durability(ca, p); 692 } 693 694 unsigned bch2_bkey_durability(struct bch_fs *c, struct bkey_s_c k) 695 { 696 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 697 const union bch_extent_entry *entry; 698 struct extent_ptr_decoded p; 699 unsigned durability = 0; 700 701 rcu_read_lock(); 702 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 703 durability += bch2_extent_ptr_durability(c, &p); 704 rcu_read_unlock(); 705 706 return durability; 707 } 708 709 static unsigned bch2_bkey_durability_safe(struct bch_fs *c, struct bkey_s_c k) 710 { 711 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 712 const union bch_extent_entry *entry; 713 struct extent_ptr_decoded p; 714 unsigned durability = 0; 715 716 rcu_read_lock(); 717 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 718 if (p.ptr.dev < c->sb.nr_devices && c->devs[p.ptr.dev]) 719 durability += bch2_extent_ptr_durability(c, &p); 720 rcu_read_unlock(); 721 722 return durability; 723 } 724 725 void bch2_bkey_extent_entry_drop(struct bkey_i *k, union bch_extent_entry *entry) 726 { 727 union bch_extent_entry *end = bkey_val_end(bkey_i_to_s(k)); 728 union bch_extent_entry *next = extent_entry_next(entry); 729 730 memmove_u64s(entry, next, (u64 *) end - (u64 *) next); 731 k->k.u64s -= extent_entry_u64s(entry); 732 } 733 734 void bch2_extent_ptr_decoded_append(struct bkey_i *k, 735 struct extent_ptr_decoded *p) 736 { 737 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); 738 struct bch_extent_crc_unpacked crc = 739 bch2_extent_crc_unpack(&k->k, NULL); 740 union bch_extent_entry *pos; 741 742 if (!bch2_crc_unpacked_cmp(crc, p->crc)) { 743 pos = ptrs.start; 744 goto found; 745 } 746 747 bkey_for_each_crc(&k->k, ptrs, crc, pos) 748 if (!bch2_crc_unpacked_cmp(crc, p->crc)) { 749 pos = extent_entry_next(pos); 750 goto found; 751 } 752 753 bch2_extent_crc_append(k, p->crc); 754 pos = bkey_val_end(bkey_i_to_s(k)); 755 found: 756 p->ptr.type = 1 << BCH_EXTENT_ENTRY_ptr; 757 __extent_entry_insert(k, pos, to_entry(&p->ptr)); 758 759 if (p->has_ec) { 760 p->ec.type = 1 << BCH_EXTENT_ENTRY_stripe_ptr; 761 __extent_entry_insert(k, pos, to_entry(&p->ec)); 762 } 763 } 764 765 static union bch_extent_entry *extent_entry_prev(struct bkey_ptrs ptrs, 766 union bch_extent_entry *entry) 767 { 768 union bch_extent_entry *i = ptrs.start; 769 770 if (i == entry) 771 return NULL; 772 773 while (extent_entry_next(i) != entry) 774 i = extent_entry_next(i); 775 return i; 776 } 777 778 /* 779 * Returns pointer to the next entry after the one being dropped: 780 */ 781 void bch2_bkey_drop_ptr_noerror(struct bkey_s k, struct bch_extent_ptr *ptr) 782 { 783 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); 784 union bch_extent_entry *entry = to_entry(ptr), *next; 785 bool drop_crc = true; 786 787 if (k.k->type == KEY_TYPE_stripe) { 788 ptr->dev = BCH_SB_MEMBER_INVALID; 789 return; 790 } 791 792 EBUG_ON(ptr < &ptrs.start->ptr || 793 ptr >= &ptrs.end->ptr); 794 EBUG_ON(ptr->type != 1 << BCH_EXTENT_ENTRY_ptr); 795 796 for (next = extent_entry_next(entry); 797 next != ptrs.end; 798 next = extent_entry_next(next)) { 799 if (extent_entry_is_crc(next)) { 800 break; 801 } else if (extent_entry_is_ptr(next)) { 802 drop_crc = false; 803 break; 804 } 805 } 806 807 extent_entry_drop(k, entry); 808 809 while ((entry = extent_entry_prev(ptrs, entry))) { 810 if (extent_entry_is_ptr(entry)) 811 break; 812 813 if ((extent_entry_is_crc(entry) && drop_crc) || 814 extent_entry_is_stripe_ptr(entry)) 815 extent_entry_drop(k, entry); 816 } 817 } 818 819 void bch2_bkey_drop_ptr(struct bkey_s k, struct bch_extent_ptr *ptr) 820 { 821 if (k.k->type != KEY_TYPE_stripe) { 822 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k.s_c); 823 const union bch_extent_entry *entry; 824 struct extent_ptr_decoded p; 825 826 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 827 if (p.ptr.dev == ptr->dev && p.has_ec) { 828 ptr->dev = BCH_SB_MEMBER_INVALID; 829 return; 830 } 831 } 832 833 bool have_dirty = bch2_bkey_dirty_devs(k.s_c).nr; 834 835 bch2_bkey_drop_ptr_noerror(k, ptr); 836 837 /* 838 * If we deleted all the dirty pointers and there's still cached 839 * pointers, we could set the cached pointers to dirty if they're not 840 * stale - but to do that correctly we'd need to grab an open_bucket 841 * reference so that we don't race with bucket reuse: 842 */ 843 if (have_dirty && 844 !bch2_bkey_dirty_devs(k.s_c).nr) { 845 k.k->type = KEY_TYPE_error; 846 set_bkey_val_u64s(k.k, 0); 847 } else if (!bch2_bkey_nr_ptrs(k.s_c)) { 848 k.k->type = KEY_TYPE_deleted; 849 set_bkey_val_u64s(k.k, 0); 850 } 851 } 852 853 void bch2_bkey_drop_device(struct bkey_s k, unsigned dev) 854 { 855 bch2_bkey_drop_ptrs(k, ptr, ptr->dev == dev); 856 } 857 858 void bch2_bkey_drop_device_noerror(struct bkey_s k, unsigned dev) 859 { 860 bch2_bkey_drop_ptrs_noerror(k, ptr, ptr->dev == dev); 861 } 862 863 const struct bch_extent_ptr *bch2_bkey_has_device_c(struct bkey_s_c k, unsigned dev) 864 { 865 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 866 867 bkey_for_each_ptr(ptrs, ptr) 868 if (ptr->dev == dev) 869 return ptr; 870 871 return NULL; 872 } 873 874 bool bch2_bkey_has_target(struct bch_fs *c, struct bkey_s_c k, unsigned target) 875 { 876 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 877 struct bch_dev *ca; 878 bool ret = false; 879 880 rcu_read_lock(); 881 bkey_for_each_ptr(ptrs, ptr) 882 if (bch2_dev_in_target(c, ptr->dev, target) && 883 (ca = bch2_dev_rcu(c, ptr->dev)) && 884 (!ptr->cached || 885 !dev_ptr_stale_rcu(ca, ptr))) { 886 ret = true; 887 break; 888 } 889 rcu_read_unlock(); 890 891 return ret; 892 } 893 894 bool bch2_bkey_matches_ptr(struct bch_fs *c, struct bkey_s_c k, 895 struct bch_extent_ptr m, u64 offset) 896 { 897 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 898 const union bch_extent_entry *entry; 899 struct extent_ptr_decoded p; 900 901 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 902 if (p.ptr.dev == m.dev && 903 p.ptr.gen == m.gen && 904 (s64) p.ptr.offset + p.crc.offset - bkey_start_offset(k.k) == 905 (s64) m.offset - offset) 906 return true; 907 908 return false; 909 } 910 911 /* 912 * Returns true if two extents refer to the same data: 913 */ 914 bool bch2_extents_match(struct bkey_s_c k1, struct bkey_s_c k2) 915 { 916 if (k1.k->type != k2.k->type) 917 return false; 918 919 if (bkey_extent_is_direct_data(k1.k)) { 920 struct bkey_ptrs_c ptrs1 = bch2_bkey_ptrs_c(k1); 921 struct bkey_ptrs_c ptrs2 = bch2_bkey_ptrs_c(k2); 922 const union bch_extent_entry *entry1, *entry2; 923 struct extent_ptr_decoded p1, p2; 924 925 if (bkey_extent_is_unwritten(k1) != bkey_extent_is_unwritten(k2)) 926 return false; 927 928 bkey_for_each_ptr_decode(k1.k, ptrs1, p1, entry1) 929 bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2) 930 if (p1.ptr.dev == p2.ptr.dev && 931 p1.ptr.gen == p2.ptr.gen && 932 933 /* 934 * This checks that the two pointers point 935 * to the same region on disk - adjusting 936 * for the difference in where the extents 937 * start, since one may have been trimmed: 938 */ 939 (s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k1.k) == 940 (s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k2.k) && 941 942 /* 943 * This additionally checks that the 944 * extents overlap on disk, since the 945 * previous check may trigger spuriously 946 * when one extent is immediately partially 947 * overwritten with another extent (so that 948 * on disk they are adjacent) and 949 * compression is in use: 950 */ 951 ((p1.ptr.offset >= p2.ptr.offset && 952 p1.ptr.offset < p2.ptr.offset + p2.crc.compressed_size) || 953 (p2.ptr.offset >= p1.ptr.offset && 954 p2.ptr.offset < p1.ptr.offset + p1.crc.compressed_size))) 955 return true; 956 957 return false; 958 } else { 959 /* KEY_TYPE_deleted, etc. */ 960 return true; 961 } 962 } 963 964 struct bch_extent_ptr * 965 bch2_extent_has_ptr(struct bkey_s_c k1, struct extent_ptr_decoded p1, struct bkey_s k2) 966 { 967 struct bkey_ptrs ptrs2 = bch2_bkey_ptrs(k2); 968 union bch_extent_entry *entry2; 969 struct extent_ptr_decoded p2; 970 971 bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2) 972 if (p1.ptr.dev == p2.ptr.dev && 973 p1.ptr.gen == p2.ptr.gen && 974 (s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k1.k) == 975 (s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k2.k)) 976 return &entry2->ptr; 977 978 return NULL; 979 } 980 981 static bool want_cached_ptr(struct bch_fs *c, struct bch_io_opts *opts, 982 struct bch_extent_ptr *ptr) 983 { 984 if (!opts->promote_target || 985 !bch2_dev_in_target(c, ptr->dev, opts->promote_target)) 986 return false; 987 988 struct bch_dev *ca = bch2_dev_rcu_noerror(c, ptr->dev); 989 990 return ca && bch2_dev_is_readable(ca) && !dev_ptr_stale_rcu(ca, ptr); 991 } 992 993 void bch2_extent_ptr_set_cached(struct bch_fs *c, 994 struct bch_io_opts *opts, 995 struct bkey_s k, 996 struct bch_extent_ptr *ptr) 997 { 998 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); 999 union bch_extent_entry *entry; 1000 struct extent_ptr_decoded p; 1001 1002 rcu_read_lock(); 1003 if (!want_cached_ptr(c, opts, ptr)) { 1004 bch2_bkey_drop_ptr_noerror(k, ptr); 1005 goto out; 1006 } 1007 1008 /* 1009 * Stripes can't contain cached data, for - reasons. 1010 * 1011 * Possibly something we can fix in the future? 1012 */ 1013 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 1014 if (&entry->ptr == ptr) { 1015 if (p.has_ec) 1016 bch2_bkey_drop_ptr_noerror(k, ptr); 1017 else 1018 ptr->cached = true; 1019 goto out; 1020 } 1021 1022 BUG(); 1023 out: 1024 rcu_read_unlock(); 1025 } 1026 1027 /* 1028 * bch2_extent_normalize - clean up an extent, dropping stale pointers etc. 1029 * 1030 * Returns true if @k should be dropped entirely 1031 * 1032 * For existing keys, only called when btree nodes are being rewritten, not when 1033 * they're merely being compacted/resorted in memory. 1034 */ 1035 bool bch2_extent_normalize(struct bch_fs *c, struct bkey_s k) 1036 { 1037 struct bch_dev *ca; 1038 1039 rcu_read_lock(); 1040 bch2_bkey_drop_ptrs(k, ptr, 1041 ptr->cached && 1042 (!(ca = bch2_dev_rcu(c, ptr->dev)) || 1043 dev_ptr_stale_rcu(ca, ptr) > 0)); 1044 rcu_read_unlock(); 1045 1046 return bkey_deleted(k.k); 1047 } 1048 1049 /* 1050 * bch2_extent_normalize_by_opts - clean up an extent, dropping stale pointers etc. 1051 * 1052 * Like bch2_extent_normalize(), but also only keeps a single cached pointer on 1053 * the promote target. 1054 */ 1055 bool bch2_extent_normalize_by_opts(struct bch_fs *c, 1056 struct bch_io_opts *opts, 1057 struct bkey_s k) 1058 { 1059 struct bkey_ptrs ptrs; 1060 bool have_cached_ptr; 1061 1062 rcu_read_lock(); 1063 restart_drop_ptrs: 1064 ptrs = bch2_bkey_ptrs(k); 1065 have_cached_ptr = false; 1066 1067 bkey_for_each_ptr(ptrs, ptr) 1068 if (ptr->cached) { 1069 if (have_cached_ptr || !want_cached_ptr(c, opts, ptr)) { 1070 bch2_bkey_drop_ptr(k, ptr); 1071 goto restart_drop_ptrs; 1072 } 1073 have_cached_ptr = true; 1074 } 1075 rcu_read_unlock(); 1076 1077 return bkey_deleted(k.k); 1078 } 1079 1080 void bch2_extent_ptr_to_text(struct printbuf *out, struct bch_fs *c, const struct bch_extent_ptr *ptr) 1081 { 1082 out->atomic++; 1083 rcu_read_lock(); 1084 struct bch_dev *ca = bch2_dev_rcu_noerror(c, ptr->dev); 1085 if (!ca) { 1086 prt_printf(out, "ptr: %u:%llu gen %u%s", ptr->dev, 1087 (u64) ptr->offset, ptr->gen, 1088 ptr->cached ? " cached" : ""); 1089 } else { 1090 u32 offset; 1091 u64 b = sector_to_bucket_and_offset(ca, ptr->offset, &offset); 1092 1093 prt_printf(out, "ptr: %u:%llu:%u gen %u", 1094 ptr->dev, b, offset, ptr->gen); 1095 if (ca->mi.durability != 1) 1096 prt_printf(out, " d=%u", ca->mi.durability); 1097 if (ptr->cached) 1098 prt_str(out, " cached"); 1099 if (ptr->unwritten) 1100 prt_str(out, " unwritten"); 1101 int stale = dev_ptr_stale_rcu(ca, ptr); 1102 if (stale > 0) 1103 prt_printf(out, " stale"); 1104 else if (stale) 1105 prt_printf(out, " invalid"); 1106 } 1107 rcu_read_unlock(); 1108 --out->atomic; 1109 } 1110 1111 void bch2_extent_crc_unpacked_to_text(struct printbuf *out, struct bch_extent_crc_unpacked *crc) 1112 { 1113 prt_printf(out, "crc: c_size %u size %u offset %u nonce %u csum ", 1114 crc->compressed_size, 1115 crc->uncompressed_size, 1116 crc->offset, crc->nonce); 1117 bch2_prt_csum_type(out, crc->csum_type); 1118 prt_printf(out, " %0llx:%0llx ", crc->csum.hi, crc->csum.lo); 1119 prt_str(out, " compress "); 1120 bch2_prt_compression_type(out, crc->compression_type); 1121 } 1122 1123 void bch2_bkey_ptrs_to_text(struct printbuf *out, struct bch_fs *c, 1124 struct bkey_s_c k) 1125 { 1126 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1127 const union bch_extent_entry *entry; 1128 bool first = true; 1129 1130 if (c) 1131 prt_printf(out, "durability: %u ", bch2_bkey_durability_safe(c, k)); 1132 1133 bkey_extent_entry_for_each(ptrs, entry) { 1134 if (!first) 1135 prt_printf(out, " "); 1136 1137 switch (__extent_entry_type(entry)) { 1138 case BCH_EXTENT_ENTRY_ptr: 1139 bch2_extent_ptr_to_text(out, c, entry_to_ptr(entry)); 1140 break; 1141 1142 case BCH_EXTENT_ENTRY_crc32: 1143 case BCH_EXTENT_ENTRY_crc64: 1144 case BCH_EXTENT_ENTRY_crc128: { 1145 struct bch_extent_crc_unpacked crc = 1146 bch2_extent_crc_unpack(k.k, entry_to_crc(entry)); 1147 1148 bch2_extent_crc_unpacked_to_text(out, &crc); 1149 break; 1150 } 1151 case BCH_EXTENT_ENTRY_stripe_ptr: { 1152 const struct bch_extent_stripe_ptr *ec = &entry->stripe_ptr; 1153 1154 prt_printf(out, "ec: idx %llu block %u", 1155 (u64) ec->idx, ec->block); 1156 break; 1157 } 1158 case BCH_EXTENT_ENTRY_rebalance: { 1159 const struct bch_extent_rebalance *r = &entry->rebalance; 1160 1161 prt_str(out, "rebalance: target "); 1162 if (c) 1163 bch2_target_to_text(out, c, r->target); 1164 else 1165 prt_printf(out, "%u", r->target); 1166 prt_str(out, " compression "); 1167 bch2_compression_opt_to_text(out, r->compression); 1168 break; 1169 } 1170 default: 1171 prt_printf(out, "(invalid extent entry %.16llx)", *((u64 *) entry)); 1172 return; 1173 } 1174 1175 first = false; 1176 } 1177 } 1178 1179 static int extent_ptr_validate(struct bch_fs *c, 1180 struct bkey_s_c k, 1181 enum bch_validate_flags flags, 1182 const struct bch_extent_ptr *ptr, 1183 unsigned size_ondisk, 1184 bool metadata) 1185 { 1186 int ret = 0; 1187 1188 /* bad pointers are repaired by check_fix_ptrs(): */ 1189 rcu_read_lock(); 1190 struct bch_dev *ca = bch2_dev_rcu_noerror(c, ptr->dev); 1191 if (!ca) { 1192 rcu_read_unlock(); 1193 return 0; 1194 } 1195 u32 bucket_offset; 1196 u64 bucket = sector_to_bucket_and_offset(ca, ptr->offset, &bucket_offset); 1197 unsigned first_bucket = ca->mi.first_bucket; 1198 u64 nbuckets = ca->mi.nbuckets; 1199 unsigned bucket_size = ca->mi.bucket_size; 1200 rcu_read_unlock(); 1201 1202 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1203 bkey_for_each_ptr(ptrs, ptr2) 1204 bkey_fsck_err_on(ptr != ptr2 && ptr->dev == ptr2->dev, 1205 c, ptr_to_duplicate_device, 1206 "multiple pointers to same device (%u)", ptr->dev); 1207 1208 1209 bkey_fsck_err_on(bucket >= nbuckets, 1210 c, ptr_after_last_bucket, 1211 "pointer past last bucket (%llu > %llu)", bucket, nbuckets); 1212 bkey_fsck_err_on(bucket < first_bucket, 1213 c, ptr_before_first_bucket, 1214 "pointer before first bucket (%llu < %u)", bucket, first_bucket); 1215 bkey_fsck_err_on(bucket_offset + size_ondisk > bucket_size, 1216 c, ptr_spans_multiple_buckets, 1217 "pointer spans multiple buckets (%u + %u > %u)", 1218 bucket_offset, size_ondisk, bucket_size); 1219 fsck_err: 1220 return ret; 1221 } 1222 1223 int bch2_bkey_ptrs_validate(struct bch_fs *c, struct bkey_s_c k, 1224 enum bch_validate_flags flags) 1225 { 1226 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1227 const union bch_extent_entry *entry; 1228 struct bch_extent_crc_unpacked crc; 1229 unsigned size_ondisk = k.k->size; 1230 unsigned nonce = UINT_MAX; 1231 unsigned nr_ptrs = 0; 1232 bool have_written = false, have_unwritten = false, have_ec = false, crc_since_last_ptr = false; 1233 int ret = 0; 1234 1235 if (bkey_is_btree_ptr(k.k)) 1236 size_ondisk = btree_sectors(c); 1237 1238 bkey_extent_entry_for_each(ptrs, entry) { 1239 bkey_fsck_err_on(__extent_entry_type(entry) >= BCH_EXTENT_ENTRY_MAX, 1240 c, extent_ptrs_invalid_entry, 1241 "invalid extent entry type (got %u, max %u)", 1242 __extent_entry_type(entry), BCH_EXTENT_ENTRY_MAX); 1243 1244 bkey_fsck_err_on(bkey_is_btree_ptr(k.k) && 1245 !extent_entry_is_ptr(entry), 1246 c, btree_ptr_has_non_ptr, 1247 "has non ptr field"); 1248 1249 switch (extent_entry_type(entry)) { 1250 case BCH_EXTENT_ENTRY_ptr: 1251 ret = extent_ptr_validate(c, k, flags, &entry->ptr, size_ondisk, false); 1252 if (ret) 1253 return ret; 1254 1255 bkey_fsck_err_on(entry->ptr.cached && have_ec, 1256 c, ptr_cached_and_erasure_coded, 1257 "cached, erasure coded ptr"); 1258 1259 if (!entry->ptr.unwritten) 1260 have_written = true; 1261 else 1262 have_unwritten = true; 1263 1264 have_ec = false; 1265 crc_since_last_ptr = false; 1266 nr_ptrs++; 1267 break; 1268 case BCH_EXTENT_ENTRY_crc32: 1269 case BCH_EXTENT_ENTRY_crc64: 1270 case BCH_EXTENT_ENTRY_crc128: 1271 crc = bch2_extent_crc_unpack(k.k, entry_to_crc(entry)); 1272 1273 bkey_fsck_err_on(crc.offset + crc.live_size > crc.uncompressed_size, 1274 c, ptr_crc_uncompressed_size_too_small, 1275 "checksum offset + key size > uncompressed size"); 1276 bkey_fsck_err_on(!bch2_checksum_type_valid(c, crc.csum_type), 1277 c, ptr_crc_csum_type_unknown, 1278 "invalid checksum type"); 1279 bkey_fsck_err_on(crc.compression_type >= BCH_COMPRESSION_TYPE_NR, 1280 c, ptr_crc_compression_type_unknown, 1281 "invalid compression type"); 1282 1283 if (bch2_csum_type_is_encryption(crc.csum_type)) { 1284 if (nonce == UINT_MAX) 1285 nonce = crc.offset + crc.nonce; 1286 else if (nonce != crc.offset + crc.nonce) 1287 bkey_fsck_err(c, ptr_crc_nonce_mismatch, 1288 "incorrect nonce"); 1289 } 1290 1291 bkey_fsck_err_on(crc_since_last_ptr, 1292 c, ptr_crc_redundant, 1293 "redundant crc entry"); 1294 crc_since_last_ptr = true; 1295 1296 bkey_fsck_err_on(crc_is_encoded(crc) && 1297 (crc.uncompressed_size > c->opts.encoded_extent_max >> 9) && 1298 (flags & (BCH_VALIDATE_write|BCH_VALIDATE_commit)), 1299 c, ptr_crc_uncompressed_size_too_big, 1300 "too large encoded extent"); 1301 1302 size_ondisk = crc.compressed_size; 1303 break; 1304 case BCH_EXTENT_ENTRY_stripe_ptr: 1305 bkey_fsck_err_on(have_ec, 1306 c, ptr_stripe_redundant, 1307 "redundant stripe entry"); 1308 have_ec = true; 1309 break; 1310 case BCH_EXTENT_ENTRY_rebalance: { 1311 /* 1312 * this shouldn't be a fsck error, for forward 1313 * compatibility; the rebalance code should just refetch 1314 * the compression opt if it's unknown 1315 */ 1316 #if 0 1317 const struct bch_extent_rebalance *r = &entry->rebalance; 1318 1319 if (!bch2_compression_opt_valid(r->compression)) { 1320 struct bch_compression_opt opt = __bch2_compression_decode(r->compression); 1321 prt_printf(err, "invalid compression opt %u:%u", 1322 opt.type, opt.level); 1323 return -BCH_ERR_invalid_bkey; 1324 } 1325 #endif 1326 break; 1327 } 1328 } 1329 } 1330 1331 bkey_fsck_err_on(!nr_ptrs, 1332 c, extent_ptrs_no_ptrs, 1333 "no ptrs"); 1334 bkey_fsck_err_on(nr_ptrs > BCH_BKEY_PTRS_MAX, 1335 c, extent_ptrs_too_many_ptrs, 1336 "too many ptrs: %u > %u", nr_ptrs, BCH_BKEY_PTRS_MAX); 1337 bkey_fsck_err_on(have_written && have_unwritten, 1338 c, extent_ptrs_written_and_unwritten, 1339 "extent with unwritten and written ptrs"); 1340 bkey_fsck_err_on(k.k->type != KEY_TYPE_extent && have_unwritten, 1341 c, extent_ptrs_unwritten, 1342 "has unwritten ptrs"); 1343 bkey_fsck_err_on(crc_since_last_ptr, 1344 c, extent_ptrs_redundant_crc, 1345 "redundant crc entry"); 1346 bkey_fsck_err_on(have_ec, 1347 c, extent_ptrs_redundant_stripe, 1348 "redundant stripe entry"); 1349 fsck_err: 1350 return ret; 1351 } 1352 1353 void bch2_ptr_swab(struct bkey_s k) 1354 { 1355 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); 1356 union bch_extent_entry *entry; 1357 u64 *d; 1358 1359 for (d = (u64 *) ptrs.start; 1360 d != (u64 *) ptrs.end; 1361 d++) 1362 *d = swab64(*d); 1363 1364 for (entry = ptrs.start; 1365 entry < ptrs.end; 1366 entry = extent_entry_next(entry)) { 1367 switch (__extent_entry_type(entry)) { 1368 case BCH_EXTENT_ENTRY_ptr: 1369 break; 1370 case BCH_EXTENT_ENTRY_crc32: 1371 entry->crc32.csum = swab32(entry->crc32.csum); 1372 break; 1373 case BCH_EXTENT_ENTRY_crc64: 1374 entry->crc64.csum_hi = swab16(entry->crc64.csum_hi); 1375 entry->crc64.csum_lo = swab64(entry->crc64.csum_lo); 1376 break; 1377 case BCH_EXTENT_ENTRY_crc128: 1378 entry->crc128.csum.hi = (__force __le64) 1379 swab64((__force u64) entry->crc128.csum.hi); 1380 entry->crc128.csum.lo = (__force __le64) 1381 swab64((__force u64) entry->crc128.csum.lo); 1382 break; 1383 case BCH_EXTENT_ENTRY_stripe_ptr: 1384 break; 1385 case BCH_EXTENT_ENTRY_rebalance: 1386 break; 1387 default: 1388 /* Bad entry type: will be caught by validate() */ 1389 return; 1390 } 1391 } 1392 } 1393 1394 const struct bch_extent_rebalance *bch2_bkey_rebalance_opts(struct bkey_s_c k) 1395 { 1396 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1397 const union bch_extent_entry *entry; 1398 1399 bkey_extent_entry_for_each(ptrs, entry) 1400 if (__extent_entry_type(entry) == BCH_EXTENT_ENTRY_rebalance) 1401 return &entry->rebalance; 1402 1403 return NULL; 1404 } 1405 1406 unsigned bch2_bkey_ptrs_need_rebalance(struct bch_fs *c, struct bkey_s_c k, 1407 unsigned target, unsigned compression) 1408 { 1409 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1410 unsigned rewrite_ptrs = 0; 1411 1412 if (compression) { 1413 unsigned compression_type = bch2_compression_opt_to_type(compression); 1414 const union bch_extent_entry *entry; 1415 struct extent_ptr_decoded p; 1416 unsigned i = 0; 1417 1418 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { 1419 if (p.crc.compression_type == BCH_COMPRESSION_TYPE_incompressible || 1420 p.ptr.unwritten) { 1421 rewrite_ptrs = 0; 1422 goto incompressible; 1423 } 1424 1425 if (!p.ptr.cached && p.crc.compression_type != compression_type) 1426 rewrite_ptrs |= 1U << i; 1427 i++; 1428 } 1429 } 1430 incompressible: 1431 if (target && bch2_target_accepts_data(c, BCH_DATA_user, target)) { 1432 unsigned i = 0; 1433 1434 bkey_for_each_ptr(ptrs, ptr) { 1435 if (!ptr->cached && !bch2_dev_in_target(c, ptr->dev, target)) 1436 rewrite_ptrs |= 1U << i; 1437 i++; 1438 } 1439 } 1440 1441 return rewrite_ptrs; 1442 } 1443 1444 bool bch2_bkey_needs_rebalance(struct bch_fs *c, struct bkey_s_c k) 1445 { 1446 const struct bch_extent_rebalance *r = bch2_bkey_rebalance_opts(k); 1447 1448 /* 1449 * If it's an indirect extent, we don't delete the rebalance entry when 1450 * done so that we know what options were applied - check if it still 1451 * needs work done: 1452 */ 1453 if (r && 1454 k.k->type == KEY_TYPE_reflink_v && 1455 !bch2_bkey_ptrs_need_rebalance(c, k, r->target, r->compression)) 1456 r = NULL; 1457 1458 return r != NULL; 1459 } 1460 1461 static u64 __bch2_bkey_sectors_need_rebalance(struct bch_fs *c, struct bkey_s_c k, 1462 unsigned target, unsigned compression) 1463 { 1464 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1465 const union bch_extent_entry *entry; 1466 struct extent_ptr_decoded p; 1467 u64 sectors = 0; 1468 1469 if (compression) { 1470 unsigned compression_type = bch2_compression_opt_to_type(compression); 1471 1472 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { 1473 if (p.crc.compression_type == BCH_COMPRESSION_TYPE_incompressible || 1474 p.ptr.unwritten) { 1475 sectors = 0; 1476 goto incompressible; 1477 } 1478 1479 if (!p.ptr.cached && p.crc.compression_type != compression_type) 1480 sectors += p.crc.compressed_size; 1481 } 1482 } 1483 incompressible: 1484 if (target && bch2_target_accepts_data(c, BCH_DATA_user, target)) { 1485 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 1486 if (!p.ptr.cached && !bch2_dev_in_target(c, p.ptr.dev, target)) 1487 sectors += p.crc.compressed_size; 1488 } 1489 1490 return sectors; 1491 } 1492 1493 u64 bch2_bkey_sectors_need_rebalance(struct bch_fs *c, struct bkey_s_c k) 1494 { 1495 const struct bch_extent_rebalance *r = bch2_bkey_rebalance_opts(k); 1496 1497 return r ? __bch2_bkey_sectors_need_rebalance(c, k, r->target, r->compression) : 0; 1498 } 1499 1500 int bch2_bkey_set_needs_rebalance(struct bch_fs *c, struct bkey_i *_k, 1501 struct bch_io_opts *opts) 1502 { 1503 struct bkey_s k = bkey_i_to_s(_k); 1504 struct bch_extent_rebalance *r; 1505 unsigned target = opts->background_target; 1506 unsigned compression = background_compression(*opts); 1507 bool needs_rebalance; 1508 1509 if (!bkey_extent_is_direct_data(k.k)) 1510 return 0; 1511 1512 /* get existing rebalance entry: */ 1513 r = (struct bch_extent_rebalance *) bch2_bkey_rebalance_opts(k.s_c); 1514 if (r) { 1515 if (k.k->type == KEY_TYPE_reflink_v) { 1516 /* 1517 * indirect extents: existing options take precedence, 1518 * so that we don't move extents back and forth if 1519 * they're referenced by different inodes with different 1520 * options: 1521 */ 1522 if (r->target) 1523 target = r->target; 1524 if (r->compression) 1525 compression = r->compression; 1526 } 1527 1528 r->target = target; 1529 r->compression = compression; 1530 } 1531 1532 needs_rebalance = bch2_bkey_ptrs_need_rebalance(c, k.s_c, target, compression); 1533 1534 if (needs_rebalance && !r) { 1535 union bch_extent_entry *new = bkey_val_end(k); 1536 1537 new->rebalance.type = 1U << BCH_EXTENT_ENTRY_rebalance; 1538 new->rebalance.compression = compression; 1539 new->rebalance.target = target; 1540 new->rebalance.unused = 0; 1541 k.k->u64s += extent_entry_u64s(new); 1542 } else if (!needs_rebalance && r && k.k->type != KEY_TYPE_reflink_v) { 1543 /* 1544 * For indirect extents, don't delete the rebalance entry when 1545 * we're finished so that we know we specifically moved it or 1546 * compressed it to its current location/compression type 1547 */ 1548 extent_entry_drop(k, (union bch_extent_entry *) r); 1549 } 1550 1551 return 0; 1552 } 1553 1554 /* Generic extent code: */ 1555 1556 int bch2_cut_front_s(struct bpos where, struct bkey_s k) 1557 { 1558 unsigned new_val_u64s = bkey_val_u64s(k.k); 1559 int val_u64s_delta; 1560 u64 sub; 1561 1562 if (bkey_le(where, bkey_start_pos(k.k))) 1563 return 0; 1564 1565 EBUG_ON(bkey_gt(where, k.k->p)); 1566 1567 sub = where.offset - bkey_start_offset(k.k); 1568 1569 k.k->size -= sub; 1570 1571 if (!k.k->size) { 1572 k.k->type = KEY_TYPE_deleted; 1573 new_val_u64s = 0; 1574 } 1575 1576 switch (k.k->type) { 1577 case KEY_TYPE_extent: 1578 case KEY_TYPE_reflink_v: { 1579 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); 1580 union bch_extent_entry *entry; 1581 bool seen_crc = false; 1582 1583 bkey_extent_entry_for_each(ptrs, entry) { 1584 switch (extent_entry_type(entry)) { 1585 case BCH_EXTENT_ENTRY_ptr: 1586 if (!seen_crc) 1587 entry->ptr.offset += sub; 1588 break; 1589 case BCH_EXTENT_ENTRY_crc32: 1590 entry->crc32.offset += sub; 1591 break; 1592 case BCH_EXTENT_ENTRY_crc64: 1593 entry->crc64.offset += sub; 1594 break; 1595 case BCH_EXTENT_ENTRY_crc128: 1596 entry->crc128.offset += sub; 1597 break; 1598 case BCH_EXTENT_ENTRY_stripe_ptr: 1599 break; 1600 case BCH_EXTENT_ENTRY_rebalance: 1601 break; 1602 } 1603 1604 if (extent_entry_is_crc(entry)) 1605 seen_crc = true; 1606 } 1607 1608 break; 1609 } 1610 case KEY_TYPE_reflink_p: { 1611 struct bkey_s_reflink_p p = bkey_s_to_reflink_p(k); 1612 1613 le64_add_cpu(&p.v->idx, sub); 1614 break; 1615 } 1616 case KEY_TYPE_inline_data: 1617 case KEY_TYPE_indirect_inline_data: { 1618 void *p = bkey_inline_data_p(k); 1619 unsigned bytes = bkey_inline_data_bytes(k.k); 1620 1621 sub = min_t(u64, sub << 9, bytes); 1622 1623 memmove(p, p + sub, bytes - sub); 1624 1625 new_val_u64s -= sub >> 3; 1626 break; 1627 } 1628 } 1629 1630 val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s; 1631 BUG_ON(val_u64s_delta < 0); 1632 1633 set_bkey_val_u64s(k.k, new_val_u64s); 1634 memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64)); 1635 return -val_u64s_delta; 1636 } 1637 1638 int bch2_cut_back_s(struct bpos where, struct bkey_s k) 1639 { 1640 unsigned new_val_u64s = bkey_val_u64s(k.k); 1641 int val_u64s_delta; 1642 u64 len = 0; 1643 1644 if (bkey_ge(where, k.k->p)) 1645 return 0; 1646 1647 EBUG_ON(bkey_lt(where, bkey_start_pos(k.k))); 1648 1649 len = where.offset - bkey_start_offset(k.k); 1650 1651 k.k->p.offset = where.offset; 1652 k.k->size = len; 1653 1654 if (!len) { 1655 k.k->type = KEY_TYPE_deleted; 1656 new_val_u64s = 0; 1657 } 1658 1659 switch (k.k->type) { 1660 case KEY_TYPE_inline_data: 1661 case KEY_TYPE_indirect_inline_data: 1662 new_val_u64s = (bkey_inline_data_offset(k.k) + 1663 min(bkey_inline_data_bytes(k.k), k.k->size << 9)) >> 3; 1664 break; 1665 } 1666 1667 val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s; 1668 BUG_ON(val_u64s_delta < 0); 1669 1670 set_bkey_val_u64s(k.k, new_val_u64s); 1671 memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64)); 1672 return -val_u64s_delta; 1673 } 1674