1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 4 * 5 * Code for managing the extent btree and dynamically updating the writeback 6 * dirty sector count. 7 */ 8 9 #include "bcachefs.h" 10 #include "bkey_methods.h" 11 #include "btree_cache.h" 12 #include "btree_gc.h" 13 #include "btree_io.h" 14 #include "btree_iter.h" 15 #include "buckets.h" 16 #include "checksum.h" 17 #include "compress.h" 18 #include "debug.h" 19 #include "disk_groups.h" 20 #include "error.h" 21 #include "extents.h" 22 #include "inode.h" 23 #include "journal.h" 24 #include "replicas.h" 25 #include "super.h" 26 #include "super-io.h" 27 #include "trace.h" 28 #include "util.h" 29 30 static unsigned bch2_crc_field_size_max[] = { 31 [BCH_EXTENT_ENTRY_crc32] = CRC32_SIZE_MAX, 32 [BCH_EXTENT_ENTRY_crc64] = CRC64_SIZE_MAX, 33 [BCH_EXTENT_ENTRY_crc128] = CRC128_SIZE_MAX, 34 }; 35 36 static void bch2_extent_crc_pack(union bch_extent_crc *, 37 struct bch_extent_crc_unpacked, 38 enum bch_extent_entry_type); 39 40 static struct bch_dev_io_failures *dev_io_failures(struct bch_io_failures *f, 41 unsigned dev) 42 { 43 struct bch_dev_io_failures *i; 44 45 for (i = f->devs; i < f->devs + f->nr; i++) 46 if (i->dev == dev) 47 return i; 48 49 return NULL; 50 } 51 52 void bch2_mark_io_failure(struct bch_io_failures *failed, 53 struct extent_ptr_decoded *p) 54 { 55 struct bch_dev_io_failures *f = dev_io_failures(failed, p->ptr.dev); 56 57 if (!f) { 58 BUG_ON(failed->nr >= ARRAY_SIZE(failed->devs)); 59 60 f = &failed->devs[failed->nr++]; 61 f->dev = p->ptr.dev; 62 f->idx = p->idx; 63 f->nr_failed = 1; 64 f->nr_retries = 0; 65 } else if (p->idx != f->idx) { 66 f->idx = p->idx; 67 f->nr_failed = 1; 68 f->nr_retries = 0; 69 } else { 70 f->nr_failed++; 71 } 72 } 73 74 /* 75 * returns true if p1 is better than p2: 76 */ 77 static inline bool ptr_better(struct bch_fs *c, 78 const struct extent_ptr_decoded p1, 79 const struct extent_ptr_decoded p2) 80 { 81 if (likely(!p1.idx && !p2.idx)) { 82 struct bch_dev *dev1 = bch_dev_bkey_exists(c, p1.ptr.dev); 83 struct bch_dev *dev2 = bch_dev_bkey_exists(c, p2.ptr.dev); 84 85 u64 l1 = atomic64_read(&dev1->cur_latency[READ]); 86 u64 l2 = atomic64_read(&dev2->cur_latency[READ]); 87 88 /* Pick at random, biased in favor of the faster device: */ 89 90 return bch2_rand_range(l1 + l2) > l1; 91 } 92 93 if (bch2_force_reconstruct_read) 94 return p1.idx > p2.idx; 95 96 return p1.idx < p2.idx; 97 } 98 99 /* 100 * This picks a non-stale pointer, preferably from a device other than @avoid. 101 * Avoid can be NULL, meaning pick any. If there are no non-stale pointers to 102 * other devices, it will still pick a pointer from avoid. 103 */ 104 int bch2_bkey_pick_read_device(struct bch_fs *c, struct bkey_s_c k, 105 struct bch_io_failures *failed, 106 struct extent_ptr_decoded *pick) 107 { 108 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 109 const union bch_extent_entry *entry; 110 struct extent_ptr_decoded p; 111 struct bch_dev_io_failures *f; 112 struct bch_dev *ca; 113 int ret = 0; 114 115 if (k.k->type == KEY_TYPE_error) 116 return -EIO; 117 118 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { 119 /* 120 * Unwritten extent: no need to actually read, treat it as a 121 * hole and return 0s: 122 */ 123 if (p.ptr.unwritten) 124 return 0; 125 126 ca = bch_dev_bkey_exists(c, p.ptr.dev); 127 128 /* 129 * If there are any dirty pointers it's an error if we can't 130 * read: 131 */ 132 if (!ret && !p.ptr.cached) 133 ret = -EIO; 134 135 if (p.ptr.cached && ptr_stale(ca, &p.ptr)) 136 continue; 137 138 f = failed ? dev_io_failures(failed, p.ptr.dev) : NULL; 139 if (f) 140 p.idx = f->nr_failed < f->nr_retries 141 ? f->idx 142 : f->idx + 1; 143 144 if (!p.idx && 145 !bch2_dev_is_readable(ca)) 146 p.idx++; 147 148 if (bch2_force_reconstruct_read && 149 !p.idx && p.has_ec) 150 p.idx++; 151 152 if (p.idx >= (unsigned) p.has_ec + 1) 153 continue; 154 155 if (ret > 0 && !ptr_better(c, p, *pick)) 156 continue; 157 158 *pick = p; 159 ret = 1; 160 } 161 162 return ret; 163 } 164 165 /* KEY_TYPE_btree_ptr: */ 166 167 int bch2_btree_ptr_invalid(struct bch_fs *c, struct bkey_s_c k, 168 enum bkey_invalid_flags flags, 169 struct printbuf *err) 170 { 171 int ret = 0; 172 173 bkey_fsck_err_on(bkey_val_u64s(k.k) > BCH_REPLICAS_MAX, c, err, 174 btree_ptr_val_too_big, 175 "value too big (%zu > %u)", bkey_val_u64s(k.k), BCH_REPLICAS_MAX); 176 177 ret = bch2_bkey_ptrs_invalid(c, k, flags, err); 178 fsck_err: 179 return ret; 180 } 181 182 void bch2_btree_ptr_to_text(struct printbuf *out, struct bch_fs *c, 183 struct bkey_s_c k) 184 { 185 bch2_bkey_ptrs_to_text(out, c, k); 186 } 187 188 int bch2_btree_ptr_v2_invalid(struct bch_fs *c, struct bkey_s_c k, 189 enum bkey_invalid_flags flags, 190 struct printbuf *err) 191 { 192 struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k); 193 int ret = 0; 194 195 bkey_fsck_err_on(bkey_val_u64s(k.k) > BKEY_BTREE_PTR_VAL_U64s_MAX, 196 c, err, btree_ptr_v2_val_too_big, 197 "value too big (%zu > %zu)", 198 bkey_val_u64s(k.k), BKEY_BTREE_PTR_VAL_U64s_MAX); 199 200 bkey_fsck_err_on(bpos_ge(bp.v->min_key, bp.k->p), 201 c, err, btree_ptr_v2_min_key_bad, 202 "min_key > key"); 203 204 ret = bch2_bkey_ptrs_invalid(c, k, flags, err); 205 fsck_err: 206 return ret; 207 } 208 209 void bch2_btree_ptr_v2_to_text(struct printbuf *out, struct bch_fs *c, 210 struct bkey_s_c k) 211 { 212 struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k); 213 214 prt_printf(out, "seq %llx written %u min_key %s", 215 le64_to_cpu(bp.v->seq), 216 le16_to_cpu(bp.v->sectors_written), 217 BTREE_PTR_RANGE_UPDATED(bp.v) ? "R " : ""); 218 219 bch2_bpos_to_text(out, bp.v->min_key); 220 prt_printf(out, " "); 221 bch2_bkey_ptrs_to_text(out, c, k); 222 } 223 224 void bch2_btree_ptr_v2_compat(enum btree_id btree_id, unsigned version, 225 unsigned big_endian, int write, 226 struct bkey_s k) 227 { 228 struct bkey_s_btree_ptr_v2 bp = bkey_s_to_btree_ptr_v2(k); 229 230 compat_bpos(0, btree_id, version, big_endian, write, &bp.v->min_key); 231 232 if (version < bcachefs_metadata_version_inode_btree_change && 233 btree_id_is_extents(btree_id) && 234 !bkey_eq(bp.v->min_key, POS_MIN)) 235 bp.v->min_key = write 236 ? bpos_nosnap_predecessor(bp.v->min_key) 237 : bpos_nosnap_successor(bp.v->min_key); 238 } 239 240 /* KEY_TYPE_extent: */ 241 242 bool bch2_extent_merge(struct bch_fs *c, struct bkey_s l, struct bkey_s_c r) 243 { 244 struct bkey_ptrs l_ptrs = bch2_bkey_ptrs(l); 245 struct bkey_ptrs_c r_ptrs = bch2_bkey_ptrs_c(r); 246 union bch_extent_entry *en_l; 247 const union bch_extent_entry *en_r; 248 struct extent_ptr_decoded lp, rp; 249 bool use_right_ptr; 250 struct bch_dev *ca; 251 252 en_l = l_ptrs.start; 253 en_r = r_ptrs.start; 254 while (en_l < l_ptrs.end && en_r < r_ptrs.end) { 255 if (extent_entry_type(en_l) != extent_entry_type(en_r)) 256 return false; 257 258 en_l = extent_entry_next(en_l); 259 en_r = extent_entry_next(en_r); 260 } 261 262 if (en_l < l_ptrs.end || en_r < r_ptrs.end) 263 return false; 264 265 en_l = l_ptrs.start; 266 en_r = r_ptrs.start; 267 lp.crc = bch2_extent_crc_unpack(l.k, NULL); 268 rp.crc = bch2_extent_crc_unpack(r.k, NULL); 269 270 while (__bkey_ptr_next_decode(l.k, l_ptrs.end, lp, en_l) && 271 __bkey_ptr_next_decode(r.k, r_ptrs.end, rp, en_r)) { 272 if (lp.ptr.offset + lp.crc.offset + lp.crc.live_size != 273 rp.ptr.offset + rp.crc.offset || 274 lp.ptr.dev != rp.ptr.dev || 275 lp.ptr.gen != rp.ptr.gen || 276 lp.ptr.unwritten != rp.ptr.unwritten || 277 lp.has_ec != rp.has_ec) 278 return false; 279 280 /* Extents may not straddle buckets: */ 281 ca = bch_dev_bkey_exists(c, lp.ptr.dev); 282 if (PTR_BUCKET_NR(ca, &lp.ptr) != PTR_BUCKET_NR(ca, &rp.ptr)) 283 return false; 284 285 if (lp.has_ec != rp.has_ec || 286 (lp.has_ec && 287 (lp.ec.block != rp.ec.block || 288 lp.ec.redundancy != rp.ec.redundancy || 289 lp.ec.idx != rp.ec.idx))) 290 return false; 291 292 if (lp.crc.compression_type != rp.crc.compression_type || 293 lp.crc.nonce != rp.crc.nonce) 294 return false; 295 296 if (lp.crc.offset + lp.crc.live_size + rp.crc.live_size <= 297 lp.crc.uncompressed_size) { 298 /* can use left extent's crc entry */ 299 } else if (lp.crc.live_size <= rp.crc.offset) { 300 /* can use right extent's crc entry */ 301 } else { 302 /* check if checksums can be merged: */ 303 if (lp.crc.csum_type != rp.crc.csum_type || 304 lp.crc.nonce != rp.crc.nonce || 305 crc_is_compressed(lp.crc) || 306 !bch2_checksum_mergeable(lp.crc.csum_type)) 307 return false; 308 309 if (lp.crc.offset + lp.crc.live_size != lp.crc.compressed_size || 310 rp.crc.offset) 311 return false; 312 313 if (lp.crc.csum_type && 314 lp.crc.uncompressed_size + 315 rp.crc.uncompressed_size > (c->opts.encoded_extent_max >> 9)) 316 return false; 317 } 318 319 en_l = extent_entry_next(en_l); 320 en_r = extent_entry_next(en_r); 321 } 322 323 en_l = l_ptrs.start; 324 en_r = r_ptrs.start; 325 while (en_l < l_ptrs.end && en_r < r_ptrs.end) { 326 if (extent_entry_is_crc(en_l)) { 327 struct bch_extent_crc_unpacked crc_l = bch2_extent_crc_unpack(l.k, entry_to_crc(en_l)); 328 struct bch_extent_crc_unpacked crc_r = bch2_extent_crc_unpack(r.k, entry_to_crc(en_r)); 329 330 if (crc_l.uncompressed_size + crc_r.uncompressed_size > 331 bch2_crc_field_size_max[extent_entry_type(en_l)]) 332 return false; 333 } 334 335 en_l = extent_entry_next(en_l); 336 en_r = extent_entry_next(en_r); 337 } 338 339 use_right_ptr = false; 340 en_l = l_ptrs.start; 341 en_r = r_ptrs.start; 342 while (en_l < l_ptrs.end) { 343 if (extent_entry_type(en_l) == BCH_EXTENT_ENTRY_ptr && 344 use_right_ptr) 345 en_l->ptr = en_r->ptr; 346 347 if (extent_entry_is_crc(en_l)) { 348 struct bch_extent_crc_unpacked crc_l = 349 bch2_extent_crc_unpack(l.k, entry_to_crc(en_l)); 350 struct bch_extent_crc_unpacked crc_r = 351 bch2_extent_crc_unpack(r.k, entry_to_crc(en_r)); 352 353 use_right_ptr = false; 354 355 if (crc_l.offset + crc_l.live_size + crc_r.live_size <= 356 crc_l.uncompressed_size) { 357 /* can use left extent's crc entry */ 358 } else if (crc_l.live_size <= crc_r.offset) { 359 /* can use right extent's crc entry */ 360 crc_r.offset -= crc_l.live_size; 361 bch2_extent_crc_pack(entry_to_crc(en_l), crc_r, 362 extent_entry_type(en_l)); 363 use_right_ptr = true; 364 } else { 365 crc_l.csum = bch2_checksum_merge(crc_l.csum_type, 366 crc_l.csum, 367 crc_r.csum, 368 crc_r.uncompressed_size << 9); 369 370 crc_l.uncompressed_size += crc_r.uncompressed_size; 371 crc_l.compressed_size += crc_r.compressed_size; 372 bch2_extent_crc_pack(entry_to_crc(en_l), crc_l, 373 extent_entry_type(en_l)); 374 } 375 } 376 377 en_l = extent_entry_next(en_l); 378 en_r = extent_entry_next(en_r); 379 } 380 381 bch2_key_resize(l.k, l.k->size + r.k->size); 382 return true; 383 } 384 385 /* KEY_TYPE_reservation: */ 386 387 int bch2_reservation_invalid(struct bch_fs *c, struct bkey_s_c k, 388 enum bkey_invalid_flags flags, 389 struct printbuf *err) 390 { 391 struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k); 392 int ret = 0; 393 394 bkey_fsck_err_on(!r.v->nr_replicas || r.v->nr_replicas > BCH_REPLICAS_MAX, c, err, 395 reservation_key_nr_replicas_invalid, 396 "invalid nr_replicas (%u)", r.v->nr_replicas); 397 fsck_err: 398 return ret; 399 } 400 401 void bch2_reservation_to_text(struct printbuf *out, struct bch_fs *c, 402 struct bkey_s_c k) 403 { 404 struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k); 405 406 prt_printf(out, "generation %u replicas %u", 407 le32_to_cpu(r.v->generation), 408 r.v->nr_replicas); 409 } 410 411 bool bch2_reservation_merge(struct bch_fs *c, struct bkey_s _l, struct bkey_s_c _r) 412 { 413 struct bkey_s_reservation l = bkey_s_to_reservation(_l); 414 struct bkey_s_c_reservation r = bkey_s_c_to_reservation(_r); 415 416 if (l.v->generation != r.v->generation || 417 l.v->nr_replicas != r.v->nr_replicas) 418 return false; 419 420 bch2_key_resize(l.k, l.k->size + r.k->size); 421 return true; 422 } 423 424 /* Extent checksum entries: */ 425 426 /* returns true if not equal */ 427 static inline bool bch2_crc_unpacked_cmp(struct bch_extent_crc_unpacked l, 428 struct bch_extent_crc_unpacked r) 429 { 430 return (l.csum_type != r.csum_type || 431 l.compression_type != r.compression_type || 432 l.compressed_size != r.compressed_size || 433 l.uncompressed_size != r.uncompressed_size || 434 l.offset != r.offset || 435 l.live_size != r.live_size || 436 l.nonce != r.nonce || 437 bch2_crc_cmp(l.csum, r.csum)); 438 } 439 440 static inline bool can_narrow_crc(struct bch_extent_crc_unpacked u, 441 struct bch_extent_crc_unpacked n) 442 { 443 return !crc_is_compressed(u) && 444 u.csum_type && 445 u.uncompressed_size > u.live_size && 446 bch2_csum_type_is_encryption(u.csum_type) == 447 bch2_csum_type_is_encryption(n.csum_type); 448 } 449 450 bool bch2_can_narrow_extent_crcs(struct bkey_s_c k, 451 struct bch_extent_crc_unpacked n) 452 { 453 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 454 struct bch_extent_crc_unpacked crc; 455 const union bch_extent_entry *i; 456 457 if (!n.csum_type) 458 return false; 459 460 bkey_for_each_crc(k.k, ptrs, crc, i) 461 if (can_narrow_crc(crc, n)) 462 return true; 463 464 return false; 465 } 466 467 /* 468 * We're writing another replica for this extent, so while we've got the data in 469 * memory we'll be computing a new checksum for the currently live data. 470 * 471 * If there are other replicas we aren't moving, and they are checksummed but 472 * not compressed, we can modify them to point to only the data that is 473 * currently live (so that readers won't have to bounce) while we've got the 474 * checksum we need: 475 */ 476 bool bch2_bkey_narrow_crcs(struct bkey_i *k, struct bch_extent_crc_unpacked n) 477 { 478 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); 479 struct bch_extent_crc_unpacked u; 480 struct extent_ptr_decoded p; 481 union bch_extent_entry *i; 482 bool ret = false; 483 484 /* Find a checksum entry that covers only live data: */ 485 if (!n.csum_type) { 486 bkey_for_each_crc(&k->k, ptrs, u, i) 487 if (!crc_is_compressed(u) && 488 u.csum_type && 489 u.live_size == u.uncompressed_size) { 490 n = u; 491 goto found; 492 } 493 return false; 494 } 495 found: 496 BUG_ON(crc_is_compressed(n)); 497 BUG_ON(n.offset); 498 BUG_ON(n.live_size != k->k.size); 499 500 restart_narrow_pointers: 501 ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); 502 503 bkey_for_each_ptr_decode(&k->k, ptrs, p, i) 504 if (can_narrow_crc(p.crc, n)) { 505 bch2_bkey_drop_ptr_noerror(bkey_i_to_s(k), &i->ptr); 506 p.ptr.offset += p.crc.offset; 507 p.crc = n; 508 bch2_extent_ptr_decoded_append(k, &p); 509 ret = true; 510 goto restart_narrow_pointers; 511 } 512 513 return ret; 514 } 515 516 static void bch2_extent_crc_pack(union bch_extent_crc *dst, 517 struct bch_extent_crc_unpacked src, 518 enum bch_extent_entry_type type) 519 { 520 #define set_common_fields(_dst, _src) \ 521 _dst.type = 1 << type; \ 522 _dst.csum_type = _src.csum_type, \ 523 _dst.compression_type = _src.compression_type, \ 524 _dst._compressed_size = _src.compressed_size - 1, \ 525 _dst._uncompressed_size = _src.uncompressed_size - 1, \ 526 _dst.offset = _src.offset 527 528 switch (type) { 529 case BCH_EXTENT_ENTRY_crc32: 530 set_common_fields(dst->crc32, src); 531 dst->crc32.csum = (u32 __force) *((__le32 *) &src.csum.lo); 532 break; 533 case BCH_EXTENT_ENTRY_crc64: 534 set_common_fields(dst->crc64, src); 535 dst->crc64.nonce = src.nonce; 536 dst->crc64.csum_lo = (u64 __force) src.csum.lo; 537 dst->crc64.csum_hi = (u64 __force) *((__le16 *) &src.csum.hi); 538 break; 539 case BCH_EXTENT_ENTRY_crc128: 540 set_common_fields(dst->crc128, src); 541 dst->crc128.nonce = src.nonce; 542 dst->crc128.csum = src.csum; 543 break; 544 default: 545 BUG(); 546 } 547 #undef set_common_fields 548 } 549 550 void bch2_extent_crc_append(struct bkey_i *k, 551 struct bch_extent_crc_unpacked new) 552 { 553 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); 554 union bch_extent_crc *crc = (void *) ptrs.end; 555 enum bch_extent_entry_type type; 556 557 if (bch_crc_bytes[new.csum_type] <= 4 && 558 new.uncompressed_size <= CRC32_SIZE_MAX && 559 new.nonce <= CRC32_NONCE_MAX) 560 type = BCH_EXTENT_ENTRY_crc32; 561 else if (bch_crc_bytes[new.csum_type] <= 10 && 562 new.uncompressed_size <= CRC64_SIZE_MAX && 563 new.nonce <= CRC64_NONCE_MAX) 564 type = BCH_EXTENT_ENTRY_crc64; 565 else if (bch_crc_bytes[new.csum_type] <= 16 && 566 new.uncompressed_size <= CRC128_SIZE_MAX && 567 new.nonce <= CRC128_NONCE_MAX) 568 type = BCH_EXTENT_ENTRY_crc128; 569 else 570 BUG(); 571 572 bch2_extent_crc_pack(crc, new, type); 573 574 k->k.u64s += extent_entry_u64s(ptrs.end); 575 576 EBUG_ON(bkey_val_u64s(&k->k) > BKEY_EXTENT_VAL_U64s_MAX); 577 } 578 579 /* Generic code for keys with pointers: */ 580 581 unsigned bch2_bkey_nr_ptrs(struct bkey_s_c k) 582 { 583 return bch2_bkey_devs(k).nr; 584 } 585 586 unsigned bch2_bkey_nr_ptrs_allocated(struct bkey_s_c k) 587 { 588 return k.k->type == KEY_TYPE_reservation 589 ? bkey_s_c_to_reservation(k).v->nr_replicas 590 : bch2_bkey_dirty_devs(k).nr; 591 } 592 593 unsigned bch2_bkey_nr_ptrs_fully_allocated(struct bkey_s_c k) 594 { 595 unsigned ret = 0; 596 597 if (k.k->type == KEY_TYPE_reservation) { 598 ret = bkey_s_c_to_reservation(k).v->nr_replicas; 599 } else { 600 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 601 const union bch_extent_entry *entry; 602 struct extent_ptr_decoded p; 603 604 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 605 ret += !p.ptr.cached && !crc_is_compressed(p.crc); 606 } 607 608 return ret; 609 } 610 611 unsigned bch2_bkey_sectors_compressed(struct bkey_s_c k) 612 { 613 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 614 const union bch_extent_entry *entry; 615 struct extent_ptr_decoded p; 616 unsigned ret = 0; 617 618 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 619 if (!p.ptr.cached && crc_is_compressed(p.crc)) 620 ret += p.crc.compressed_size; 621 622 return ret; 623 } 624 625 bool bch2_bkey_is_incompressible(struct bkey_s_c k) 626 { 627 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 628 const union bch_extent_entry *entry; 629 struct bch_extent_crc_unpacked crc; 630 631 bkey_for_each_crc(k.k, ptrs, crc, entry) 632 if (crc.compression_type == BCH_COMPRESSION_TYPE_incompressible) 633 return true; 634 return false; 635 } 636 637 unsigned bch2_bkey_replicas(struct bch_fs *c, struct bkey_s_c k) 638 { 639 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 640 const union bch_extent_entry *entry; 641 struct extent_ptr_decoded p = { 0 }; 642 unsigned replicas = 0; 643 644 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { 645 if (p.ptr.cached) 646 continue; 647 648 if (p.has_ec) 649 replicas += p.ec.redundancy; 650 651 replicas++; 652 653 } 654 655 return replicas; 656 } 657 658 static inline unsigned __extent_ptr_durability(struct bch_dev *ca, struct extent_ptr_decoded *p) 659 { 660 if (p->ptr.cached) 661 return 0; 662 663 return p->has_ec 664 ? p->ec.redundancy + 1 665 : ca->mi.durability; 666 } 667 668 unsigned bch2_extent_ptr_desired_durability(struct bch_fs *c, struct extent_ptr_decoded *p) 669 { 670 struct bch_dev *ca = bch_dev_bkey_exists(c, p->ptr.dev); 671 672 return __extent_ptr_durability(ca, p); 673 } 674 675 unsigned bch2_extent_ptr_durability(struct bch_fs *c, struct extent_ptr_decoded *p) 676 { 677 struct bch_dev *ca = bch_dev_bkey_exists(c, p->ptr.dev); 678 679 if (ca->mi.state == BCH_MEMBER_STATE_failed) 680 return 0; 681 682 return __extent_ptr_durability(ca, p); 683 } 684 685 unsigned bch2_bkey_durability(struct bch_fs *c, struct bkey_s_c k) 686 { 687 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 688 const union bch_extent_entry *entry; 689 struct extent_ptr_decoded p; 690 unsigned durability = 0; 691 692 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 693 durability += bch2_extent_ptr_durability(c, &p); 694 695 return durability; 696 } 697 698 static unsigned bch2_bkey_durability_safe(struct bch_fs *c, struct bkey_s_c k) 699 { 700 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 701 const union bch_extent_entry *entry; 702 struct extent_ptr_decoded p; 703 unsigned durability = 0; 704 705 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 706 if (p.ptr.dev < c->sb.nr_devices && c->devs[p.ptr.dev]) 707 durability += bch2_extent_ptr_durability(c, &p); 708 709 return durability; 710 } 711 712 void bch2_bkey_extent_entry_drop(struct bkey_i *k, union bch_extent_entry *entry) 713 { 714 union bch_extent_entry *end = bkey_val_end(bkey_i_to_s(k)); 715 union bch_extent_entry *next = extent_entry_next(entry); 716 717 memmove_u64s(entry, next, (u64 *) end - (u64 *) next); 718 k->k.u64s -= extent_entry_u64s(entry); 719 } 720 721 void bch2_extent_ptr_decoded_append(struct bkey_i *k, 722 struct extent_ptr_decoded *p) 723 { 724 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); 725 struct bch_extent_crc_unpacked crc = 726 bch2_extent_crc_unpack(&k->k, NULL); 727 union bch_extent_entry *pos; 728 729 if (!bch2_crc_unpacked_cmp(crc, p->crc)) { 730 pos = ptrs.start; 731 goto found; 732 } 733 734 bkey_for_each_crc(&k->k, ptrs, crc, pos) 735 if (!bch2_crc_unpacked_cmp(crc, p->crc)) { 736 pos = extent_entry_next(pos); 737 goto found; 738 } 739 740 bch2_extent_crc_append(k, p->crc); 741 pos = bkey_val_end(bkey_i_to_s(k)); 742 found: 743 p->ptr.type = 1 << BCH_EXTENT_ENTRY_ptr; 744 __extent_entry_insert(k, pos, to_entry(&p->ptr)); 745 746 if (p->has_ec) { 747 p->ec.type = 1 << BCH_EXTENT_ENTRY_stripe_ptr; 748 __extent_entry_insert(k, pos, to_entry(&p->ec)); 749 } 750 } 751 752 static union bch_extent_entry *extent_entry_prev(struct bkey_ptrs ptrs, 753 union bch_extent_entry *entry) 754 { 755 union bch_extent_entry *i = ptrs.start; 756 757 if (i == entry) 758 return NULL; 759 760 while (extent_entry_next(i) != entry) 761 i = extent_entry_next(i); 762 return i; 763 } 764 765 /* 766 * Returns pointer to the next entry after the one being dropped: 767 */ 768 union bch_extent_entry *bch2_bkey_drop_ptr_noerror(struct bkey_s k, 769 struct bch_extent_ptr *ptr) 770 { 771 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); 772 union bch_extent_entry *entry = to_entry(ptr), *next; 773 union bch_extent_entry *ret = entry; 774 bool drop_crc = true; 775 776 EBUG_ON(ptr < &ptrs.start->ptr || 777 ptr >= &ptrs.end->ptr); 778 EBUG_ON(ptr->type != 1 << BCH_EXTENT_ENTRY_ptr); 779 780 for (next = extent_entry_next(entry); 781 next != ptrs.end; 782 next = extent_entry_next(next)) { 783 if (extent_entry_is_crc(next)) { 784 break; 785 } else if (extent_entry_is_ptr(next)) { 786 drop_crc = false; 787 break; 788 } 789 } 790 791 extent_entry_drop(k, entry); 792 793 while ((entry = extent_entry_prev(ptrs, entry))) { 794 if (extent_entry_is_ptr(entry)) 795 break; 796 797 if ((extent_entry_is_crc(entry) && drop_crc) || 798 extent_entry_is_stripe_ptr(entry)) { 799 ret = (void *) ret - extent_entry_bytes(entry); 800 extent_entry_drop(k, entry); 801 } 802 } 803 804 return ret; 805 } 806 807 union bch_extent_entry *bch2_bkey_drop_ptr(struct bkey_s k, 808 struct bch_extent_ptr *ptr) 809 { 810 bool have_dirty = bch2_bkey_dirty_devs(k.s_c).nr; 811 union bch_extent_entry *ret = 812 bch2_bkey_drop_ptr_noerror(k, ptr); 813 814 /* 815 * If we deleted all the dirty pointers and there's still cached 816 * pointers, we could set the cached pointers to dirty if they're not 817 * stale - but to do that correctly we'd need to grab an open_bucket 818 * reference so that we don't race with bucket reuse: 819 */ 820 if (have_dirty && 821 !bch2_bkey_dirty_devs(k.s_c).nr) { 822 k.k->type = KEY_TYPE_error; 823 set_bkey_val_u64s(k.k, 0); 824 ret = NULL; 825 } else if (!bch2_bkey_nr_ptrs(k.s_c)) { 826 k.k->type = KEY_TYPE_deleted; 827 set_bkey_val_u64s(k.k, 0); 828 ret = NULL; 829 } 830 831 return ret; 832 } 833 834 void bch2_bkey_drop_device(struct bkey_s k, unsigned dev) 835 { 836 struct bch_extent_ptr *ptr; 837 838 bch2_bkey_drop_ptrs(k, ptr, ptr->dev == dev); 839 } 840 841 void bch2_bkey_drop_device_noerror(struct bkey_s k, unsigned dev) 842 { 843 struct bch_extent_ptr *ptr = bch2_bkey_has_device(k, dev); 844 845 if (ptr) 846 bch2_bkey_drop_ptr_noerror(k, ptr); 847 } 848 849 const struct bch_extent_ptr *bch2_bkey_has_device_c(struct bkey_s_c k, unsigned dev) 850 { 851 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 852 853 bkey_for_each_ptr(ptrs, ptr) 854 if (ptr->dev == dev) 855 return ptr; 856 857 return NULL; 858 } 859 860 bool bch2_bkey_has_target(struct bch_fs *c, struct bkey_s_c k, unsigned target) 861 { 862 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 863 864 bkey_for_each_ptr(ptrs, ptr) 865 if (bch2_dev_in_target(c, ptr->dev, target) && 866 (!ptr->cached || 867 !ptr_stale(bch_dev_bkey_exists(c, ptr->dev), ptr))) 868 return true; 869 870 return false; 871 } 872 873 bool bch2_bkey_matches_ptr(struct bch_fs *c, struct bkey_s_c k, 874 struct bch_extent_ptr m, u64 offset) 875 { 876 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 877 const union bch_extent_entry *entry; 878 struct extent_ptr_decoded p; 879 880 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 881 if (p.ptr.dev == m.dev && 882 p.ptr.gen == m.gen && 883 (s64) p.ptr.offset + p.crc.offset - bkey_start_offset(k.k) == 884 (s64) m.offset - offset) 885 return true; 886 887 return false; 888 } 889 890 /* 891 * Returns true if two extents refer to the same data: 892 */ 893 bool bch2_extents_match(struct bkey_s_c k1, struct bkey_s_c k2) 894 { 895 if (k1.k->type != k2.k->type) 896 return false; 897 898 if (bkey_extent_is_direct_data(k1.k)) { 899 struct bkey_ptrs_c ptrs1 = bch2_bkey_ptrs_c(k1); 900 struct bkey_ptrs_c ptrs2 = bch2_bkey_ptrs_c(k2); 901 const union bch_extent_entry *entry1, *entry2; 902 struct extent_ptr_decoded p1, p2; 903 904 if (bkey_extent_is_unwritten(k1) != bkey_extent_is_unwritten(k2)) 905 return false; 906 907 bkey_for_each_ptr_decode(k1.k, ptrs1, p1, entry1) 908 bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2) 909 if (p1.ptr.dev == p2.ptr.dev && 910 p1.ptr.gen == p2.ptr.gen && 911 (s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k1.k) == 912 (s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k2.k)) 913 return true; 914 915 return false; 916 } else { 917 /* KEY_TYPE_deleted, etc. */ 918 return true; 919 } 920 } 921 922 struct bch_extent_ptr * 923 bch2_extent_has_ptr(struct bkey_s_c k1, struct extent_ptr_decoded p1, struct bkey_s k2) 924 { 925 struct bkey_ptrs ptrs2 = bch2_bkey_ptrs(k2); 926 union bch_extent_entry *entry2; 927 struct extent_ptr_decoded p2; 928 929 bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2) 930 if (p1.ptr.dev == p2.ptr.dev && 931 p1.ptr.gen == p2.ptr.gen && 932 (s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k1.k) == 933 (s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k2.k)) 934 return &entry2->ptr; 935 936 return NULL; 937 } 938 939 void bch2_extent_ptr_set_cached(struct bkey_s k, struct bch_extent_ptr *ptr) 940 { 941 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); 942 union bch_extent_entry *entry; 943 union bch_extent_entry *ec = NULL; 944 945 bkey_extent_entry_for_each(ptrs, entry) { 946 if (&entry->ptr == ptr) { 947 ptr->cached = true; 948 if (ec) 949 extent_entry_drop(k, ec); 950 return; 951 } 952 953 if (extent_entry_is_stripe_ptr(entry)) 954 ec = entry; 955 else if (extent_entry_is_ptr(entry)) 956 ec = NULL; 957 } 958 959 BUG(); 960 } 961 962 /* 963 * bch_extent_normalize - clean up an extent, dropping stale pointers etc. 964 * 965 * Returns true if @k should be dropped entirely 966 * 967 * For existing keys, only called when btree nodes are being rewritten, not when 968 * they're merely being compacted/resorted in memory. 969 */ 970 bool bch2_extent_normalize(struct bch_fs *c, struct bkey_s k) 971 { 972 struct bch_extent_ptr *ptr; 973 974 bch2_bkey_drop_ptrs(k, ptr, 975 ptr->cached && 976 ptr_stale(bch_dev_bkey_exists(c, ptr->dev), ptr)); 977 978 return bkey_deleted(k.k); 979 } 980 981 void bch2_extent_ptr_to_text(struct printbuf *out, struct bch_fs *c, const struct bch_extent_ptr *ptr) 982 { 983 struct bch_dev *ca = c && ptr->dev < c->sb.nr_devices && c->devs[ptr->dev] 984 ? bch_dev_bkey_exists(c, ptr->dev) 985 : NULL; 986 987 if (!ca) { 988 prt_printf(out, "ptr: %u:%llu gen %u%s", ptr->dev, 989 (u64) ptr->offset, ptr->gen, 990 ptr->cached ? " cached" : ""); 991 } else { 992 u32 offset; 993 u64 b = sector_to_bucket_and_offset(ca, ptr->offset, &offset); 994 995 prt_printf(out, "ptr: %u:%llu:%u gen %u", 996 ptr->dev, b, offset, ptr->gen); 997 if (ptr->cached) 998 prt_str(out, " cached"); 999 if (ptr->unwritten) 1000 prt_str(out, " unwritten"); 1001 if (b >= ca->mi.first_bucket && 1002 b < ca->mi.nbuckets && 1003 ptr_stale(ca, ptr)) 1004 prt_printf(out, " stale"); 1005 } 1006 } 1007 1008 void bch2_bkey_ptrs_to_text(struct printbuf *out, struct bch_fs *c, 1009 struct bkey_s_c k) 1010 { 1011 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1012 const union bch_extent_entry *entry; 1013 bool first = true; 1014 1015 if (c) 1016 prt_printf(out, "durability: %u ", bch2_bkey_durability_safe(c, k)); 1017 1018 bkey_extent_entry_for_each(ptrs, entry) { 1019 if (!first) 1020 prt_printf(out, " "); 1021 1022 switch (__extent_entry_type(entry)) { 1023 case BCH_EXTENT_ENTRY_ptr: 1024 bch2_extent_ptr_to_text(out, c, entry_to_ptr(entry)); 1025 break; 1026 1027 case BCH_EXTENT_ENTRY_crc32: 1028 case BCH_EXTENT_ENTRY_crc64: 1029 case BCH_EXTENT_ENTRY_crc128: { 1030 struct bch_extent_crc_unpacked crc = 1031 bch2_extent_crc_unpack(k.k, entry_to_crc(entry)); 1032 1033 prt_printf(out, "crc: c_size %u size %u offset %u nonce %u csum ", 1034 crc.compressed_size, 1035 crc.uncompressed_size, 1036 crc.offset, crc.nonce); 1037 bch2_prt_csum_type(out, crc.csum_type); 1038 prt_str(out, " compress "); 1039 bch2_prt_compression_type(out, crc.compression_type); 1040 break; 1041 } 1042 case BCH_EXTENT_ENTRY_stripe_ptr: { 1043 const struct bch_extent_stripe_ptr *ec = &entry->stripe_ptr; 1044 1045 prt_printf(out, "ec: idx %llu block %u", 1046 (u64) ec->idx, ec->block); 1047 break; 1048 } 1049 case BCH_EXTENT_ENTRY_rebalance: { 1050 const struct bch_extent_rebalance *r = &entry->rebalance; 1051 1052 prt_str(out, "rebalance: target "); 1053 if (c) 1054 bch2_target_to_text(out, c, r->target); 1055 else 1056 prt_printf(out, "%u", r->target); 1057 prt_str(out, " compression "); 1058 bch2_compression_opt_to_text(out, r->compression); 1059 break; 1060 } 1061 default: 1062 prt_printf(out, "(invalid extent entry %.16llx)", *((u64 *) entry)); 1063 return; 1064 } 1065 1066 first = false; 1067 } 1068 } 1069 1070 static int extent_ptr_invalid(struct bch_fs *c, 1071 struct bkey_s_c k, 1072 enum bkey_invalid_flags flags, 1073 const struct bch_extent_ptr *ptr, 1074 unsigned size_ondisk, 1075 bool metadata, 1076 struct printbuf *err) 1077 { 1078 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1079 u64 bucket; 1080 u32 bucket_offset; 1081 struct bch_dev *ca; 1082 int ret = 0; 1083 1084 if (!bch2_dev_exists2(c, ptr->dev)) { 1085 /* 1086 * If we're in the write path this key might have already been 1087 * overwritten, and we could be seeing a device that doesn't 1088 * exist anymore due to racing with device removal: 1089 */ 1090 if (flags & BKEY_INVALID_WRITE) 1091 return 0; 1092 1093 bkey_fsck_err(c, err, ptr_to_invalid_device, 1094 "pointer to invalid device (%u)", ptr->dev); 1095 } 1096 1097 ca = bch_dev_bkey_exists(c, ptr->dev); 1098 bkey_for_each_ptr(ptrs, ptr2) 1099 bkey_fsck_err_on(ptr != ptr2 && ptr->dev == ptr2->dev, c, err, 1100 ptr_to_duplicate_device, 1101 "multiple pointers to same device (%u)", ptr->dev); 1102 1103 bucket = sector_to_bucket_and_offset(ca, ptr->offset, &bucket_offset); 1104 1105 bkey_fsck_err_on(bucket >= ca->mi.nbuckets, c, err, 1106 ptr_after_last_bucket, 1107 "pointer past last bucket (%llu > %llu)", bucket, ca->mi.nbuckets); 1108 bkey_fsck_err_on(ptr->offset < bucket_to_sector(ca, ca->mi.first_bucket), c, err, 1109 ptr_before_first_bucket, 1110 "pointer before first bucket (%llu < %u)", bucket, ca->mi.first_bucket); 1111 bkey_fsck_err_on(bucket_offset + size_ondisk > ca->mi.bucket_size, c, err, 1112 ptr_spans_multiple_buckets, 1113 "pointer spans multiple buckets (%u + %u > %u)", 1114 bucket_offset, size_ondisk, ca->mi.bucket_size); 1115 fsck_err: 1116 return ret; 1117 } 1118 1119 int bch2_bkey_ptrs_invalid(struct bch_fs *c, struct bkey_s_c k, 1120 enum bkey_invalid_flags flags, 1121 struct printbuf *err) 1122 { 1123 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1124 const union bch_extent_entry *entry; 1125 struct bch_extent_crc_unpacked crc; 1126 unsigned size_ondisk = k.k->size; 1127 unsigned nonce = UINT_MAX; 1128 unsigned nr_ptrs = 0; 1129 bool have_written = false, have_unwritten = false, have_ec = false, crc_since_last_ptr = false; 1130 int ret = 0; 1131 1132 if (bkey_is_btree_ptr(k.k)) 1133 size_ondisk = btree_sectors(c); 1134 1135 bkey_extent_entry_for_each(ptrs, entry) { 1136 bkey_fsck_err_on(__extent_entry_type(entry) >= BCH_EXTENT_ENTRY_MAX, c, err, 1137 extent_ptrs_invalid_entry, 1138 "invalid extent entry type (got %u, max %u)", 1139 __extent_entry_type(entry), BCH_EXTENT_ENTRY_MAX); 1140 1141 bkey_fsck_err_on(bkey_is_btree_ptr(k.k) && 1142 !extent_entry_is_ptr(entry), c, err, 1143 btree_ptr_has_non_ptr, 1144 "has non ptr field"); 1145 1146 switch (extent_entry_type(entry)) { 1147 case BCH_EXTENT_ENTRY_ptr: 1148 ret = extent_ptr_invalid(c, k, flags, &entry->ptr, 1149 size_ondisk, false, err); 1150 if (ret) 1151 return ret; 1152 1153 bkey_fsck_err_on(entry->ptr.cached && have_ec, c, err, 1154 ptr_cached_and_erasure_coded, 1155 "cached, erasure coded ptr"); 1156 1157 if (!entry->ptr.unwritten) 1158 have_written = true; 1159 else 1160 have_unwritten = true; 1161 1162 have_ec = false; 1163 crc_since_last_ptr = false; 1164 nr_ptrs++; 1165 break; 1166 case BCH_EXTENT_ENTRY_crc32: 1167 case BCH_EXTENT_ENTRY_crc64: 1168 case BCH_EXTENT_ENTRY_crc128: 1169 crc = bch2_extent_crc_unpack(k.k, entry_to_crc(entry)); 1170 1171 bkey_fsck_err_on(crc.offset + crc.live_size > crc.uncompressed_size, c, err, 1172 ptr_crc_uncompressed_size_too_small, 1173 "checksum offset + key size > uncompressed size"); 1174 bkey_fsck_err_on(!bch2_checksum_type_valid(c, crc.csum_type), c, err, 1175 ptr_crc_csum_type_unknown, 1176 "invalid checksum type"); 1177 bkey_fsck_err_on(crc.compression_type >= BCH_COMPRESSION_TYPE_NR, c, err, 1178 ptr_crc_compression_type_unknown, 1179 "invalid compression type"); 1180 1181 if (bch2_csum_type_is_encryption(crc.csum_type)) { 1182 if (nonce == UINT_MAX) 1183 nonce = crc.offset + crc.nonce; 1184 else if (nonce != crc.offset + crc.nonce) 1185 bkey_fsck_err(c, err, ptr_crc_nonce_mismatch, 1186 "incorrect nonce"); 1187 } 1188 1189 bkey_fsck_err_on(crc_since_last_ptr, c, err, 1190 ptr_crc_redundant, 1191 "redundant crc entry"); 1192 crc_since_last_ptr = true; 1193 1194 bkey_fsck_err_on(crc_is_encoded(crc) && 1195 (crc.uncompressed_size > c->opts.encoded_extent_max >> 9) && 1196 (flags & (BKEY_INVALID_WRITE|BKEY_INVALID_COMMIT)), c, err, 1197 ptr_crc_uncompressed_size_too_big, 1198 "too large encoded extent"); 1199 1200 size_ondisk = crc.compressed_size; 1201 break; 1202 case BCH_EXTENT_ENTRY_stripe_ptr: 1203 bkey_fsck_err_on(have_ec, c, err, 1204 ptr_stripe_redundant, 1205 "redundant stripe entry"); 1206 have_ec = true; 1207 break; 1208 case BCH_EXTENT_ENTRY_rebalance: { 1209 const struct bch_extent_rebalance *r = &entry->rebalance; 1210 1211 if (!bch2_compression_opt_valid(r->compression)) { 1212 struct bch_compression_opt opt = __bch2_compression_decode(r->compression); 1213 prt_printf(err, "invalid compression opt %u:%u", 1214 opt.type, opt.level); 1215 return -BCH_ERR_invalid_bkey; 1216 } 1217 break; 1218 } 1219 } 1220 } 1221 1222 bkey_fsck_err_on(!nr_ptrs, c, err, 1223 extent_ptrs_no_ptrs, 1224 "no ptrs"); 1225 bkey_fsck_err_on(nr_ptrs > BCH_BKEY_PTRS_MAX, c, err, 1226 extent_ptrs_too_many_ptrs, 1227 "too many ptrs: %u > %u", nr_ptrs, BCH_BKEY_PTRS_MAX); 1228 bkey_fsck_err_on(have_written && have_unwritten, c, err, 1229 extent_ptrs_written_and_unwritten, 1230 "extent with unwritten and written ptrs"); 1231 bkey_fsck_err_on(k.k->type != KEY_TYPE_extent && have_unwritten, c, err, 1232 extent_ptrs_unwritten, 1233 "has unwritten ptrs"); 1234 bkey_fsck_err_on(crc_since_last_ptr, c, err, 1235 extent_ptrs_redundant_crc, 1236 "redundant crc entry"); 1237 bkey_fsck_err_on(have_ec, c, err, 1238 extent_ptrs_redundant_stripe, 1239 "redundant stripe entry"); 1240 fsck_err: 1241 return ret; 1242 } 1243 1244 void bch2_ptr_swab(struct bkey_s k) 1245 { 1246 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); 1247 union bch_extent_entry *entry; 1248 u64 *d; 1249 1250 for (d = (u64 *) ptrs.start; 1251 d != (u64 *) ptrs.end; 1252 d++) 1253 *d = swab64(*d); 1254 1255 for (entry = ptrs.start; 1256 entry < ptrs.end; 1257 entry = extent_entry_next(entry)) { 1258 switch (extent_entry_type(entry)) { 1259 case BCH_EXTENT_ENTRY_ptr: 1260 break; 1261 case BCH_EXTENT_ENTRY_crc32: 1262 entry->crc32.csum = swab32(entry->crc32.csum); 1263 break; 1264 case BCH_EXTENT_ENTRY_crc64: 1265 entry->crc64.csum_hi = swab16(entry->crc64.csum_hi); 1266 entry->crc64.csum_lo = swab64(entry->crc64.csum_lo); 1267 break; 1268 case BCH_EXTENT_ENTRY_crc128: 1269 entry->crc128.csum.hi = (__force __le64) 1270 swab64((__force u64) entry->crc128.csum.hi); 1271 entry->crc128.csum.lo = (__force __le64) 1272 swab64((__force u64) entry->crc128.csum.lo); 1273 break; 1274 case BCH_EXTENT_ENTRY_stripe_ptr: 1275 break; 1276 case BCH_EXTENT_ENTRY_rebalance: 1277 break; 1278 } 1279 } 1280 } 1281 1282 const struct bch_extent_rebalance *bch2_bkey_rebalance_opts(struct bkey_s_c k) 1283 { 1284 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1285 const union bch_extent_entry *entry; 1286 1287 bkey_extent_entry_for_each(ptrs, entry) 1288 if (__extent_entry_type(entry) == BCH_EXTENT_ENTRY_rebalance) 1289 return &entry->rebalance; 1290 1291 return NULL; 1292 } 1293 1294 unsigned bch2_bkey_ptrs_need_rebalance(struct bch_fs *c, struct bkey_s_c k, 1295 unsigned target, unsigned compression) 1296 { 1297 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1298 unsigned rewrite_ptrs = 0; 1299 1300 if (compression) { 1301 unsigned compression_type = bch2_compression_opt_to_type(compression); 1302 const union bch_extent_entry *entry; 1303 struct extent_ptr_decoded p; 1304 unsigned i = 0; 1305 1306 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { 1307 if (p.crc.compression_type == BCH_COMPRESSION_TYPE_incompressible || 1308 p.ptr.unwritten) { 1309 rewrite_ptrs = 0; 1310 goto incompressible; 1311 } 1312 1313 if (!p.ptr.cached && p.crc.compression_type != compression_type) 1314 rewrite_ptrs |= 1U << i; 1315 i++; 1316 } 1317 } 1318 incompressible: 1319 if (target && bch2_target_accepts_data(c, BCH_DATA_user, target)) { 1320 unsigned i = 0; 1321 1322 bkey_for_each_ptr(ptrs, ptr) { 1323 if (!ptr->cached && !bch2_dev_in_target(c, ptr->dev, target)) 1324 rewrite_ptrs |= 1U << i; 1325 i++; 1326 } 1327 } 1328 1329 return rewrite_ptrs; 1330 } 1331 1332 bool bch2_bkey_needs_rebalance(struct bch_fs *c, struct bkey_s_c k) 1333 { 1334 const struct bch_extent_rebalance *r = bch2_bkey_rebalance_opts(k); 1335 1336 /* 1337 * If it's an indirect extent, we don't delete the rebalance entry when 1338 * done so that we know what options were applied - check if it still 1339 * needs work done: 1340 */ 1341 if (r && 1342 k.k->type == KEY_TYPE_reflink_v && 1343 !bch2_bkey_ptrs_need_rebalance(c, k, r->target, r->compression)) 1344 r = NULL; 1345 1346 return r != NULL; 1347 } 1348 1349 int bch2_bkey_set_needs_rebalance(struct bch_fs *c, struct bkey_i *_k, 1350 struct bch_io_opts *opts) 1351 { 1352 struct bkey_s k = bkey_i_to_s(_k); 1353 struct bch_extent_rebalance *r; 1354 unsigned target = opts->background_target; 1355 unsigned compression = background_compression(*opts); 1356 bool needs_rebalance; 1357 1358 if (!bkey_extent_is_direct_data(k.k)) 1359 return 0; 1360 1361 /* get existing rebalance entry: */ 1362 r = (struct bch_extent_rebalance *) bch2_bkey_rebalance_opts(k.s_c); 1363 if (r) { 1364 if (k.k->type == KEY_TYPE_reflink_v) { 1365 /* 1366 * indirect extents: existing options take precedence, 1367 * so that we don't move extents back and forth if 1368 * they're referenced by different inodes with different 1369 * options: 1370 */ 1371 if (r->target) 1372 target = r->target; 1373 if (r->compression) 1374 compression = r->compression; 1375 } 1376 1377 r->target = target; 1378 r->compression = compression; 1379 } 1380 1381 needs_rebalance = bch2_bkey_ptrs_need_rebalance(c, k.s_c, target, compression); 1382 1383 if (needs_rebalance && !r) { 1384 union bch_extent_entry *new = bkey_val_end(k); 1385 1386 new->rebalance.type = 1U << BCH_EXTENT_ENTRY_rebalance; 1387 new->rebalance.compression = compression; 1388 new->rebalance.target = target; 1389 new->rebalance.unused = 0; 1390 k.k->u64s += extent_entry_u64s(new); 1391 } else if (!needs_rebalance && r && k.k->type != KEY_TYPE_reflink_v) { 1392 /* 1393 * For indirect extents, don't delete the rebalance entry when 1394 * we're finished so that we know we specifically moved it or 1395 * compressed it to its current location/compression type 1396 */ 1397 extent_entry_drop(k, (union bch_extent_entry *) r); 1398 } 1399 1400 return 0; 1401 } 1402 1403 /* Generic extent code: */ 1404 1405 int bch2_cut_front_s(struct bpos where, struct bkey_s k) 1406 { 1407 unsigned new_val_u64s = bkey_val_u64s(k.k); 1408 int val_u64s_delta; 1409 u64 sub; 1410 1411 if (bkey_le(where, bkey_start_pos(k.k))) 1412 return 0; 1413 1414 EBUG_ON(bkey_gt(where, k.k->p)); 1415 1416 sub = where.offset - bkey_start_offset(k.k); 1417 1418 k.k->size -= sub; 1419 1420 if (!k.k->size) { 1421 k.k->type = KEY_TYPE_deleted; 1422 new_val_u64s = 0; 1423 } 1424 1425 switch (k.k->type) { 1426 case KEY_TYPE_extent: 1427 case KEY_TYPE_reflink_v: { 1428 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); 1429 union bch_extent_entry *entry; 1430 bool seen_crc = false; 1431 1432 bkey_extent_entry_for_each(ptrs, entry) { 1433 switch (extent_entry_type(entry)) { 1434 case BCH_EXTENT_ENTRY_ptr: 1435 if (!seen_crc) 1436 entry->ptr.offset += sub; 1437 break; 1438 case BCH_EXTENT_ENTRY_crc32: 1439 entry->crc32.offset += sub; 1440 break; 1441 case BCH_EXTENT_ENTRY_crc64: 1442 entry->crc64.offset += sub; 1443 break; 1444 case BCH_EXTENT_ENTRY_crc128: 1445 entry->crc128.offset += sub; 1446 break; 1447 case BCH_EXTENT_ENTRY_stripe_ptr: 1448 break; 1449 case BCH_EXTENT_ENTRY_rebalance: 1450 break; 1451 } 1452 1453 if (extent_entry_is_crc(entry)) 1454 seen_crc = true; 1455 } 1456 1457 break; 1458 } 1459 case KEY_TYPE_reflink_p: { 1460 struct bkey_s_reflink_p p = bkey_s_to_reflink_p(k); 1461 1462 le64_add_cpu(&p.v->idx, sub); 1463 break; 1464 } 1465 case KEY_TYPE_inline_data: 1466 case KEY_TYPE_indirect_inline_data: { 1467 void *p = bkey_inline_data_p(k); 1468 unsigned bytes = bkey_inline_data_bytes(k.k); 1469 1470 sub = min_t(u64, sub << 9, bytes); 1471 1472 memmove(p, p + sub, bytes - sub); 1473 1474 new_val_u64s -= sub >> 3; 1475 break; 1476 } 1477 } 1478 1479 val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s; 1480 BUG_ON(val_u64s_delta < 0); 1481 1482 set_bkey_val_u64s(k.k, new_val_u64s); 1483 memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64)); 1484 return -val_u64s_delta; 1485 } 1486 1487 int bch2_cut_back_s(struct bpos where, struct bkey_s k) 1488 { 1489 unsigned new_val_u64s = bkey_val_u64s(k.k); 1490 int val_u64s_delta; 1491 u64 len = 0; 1492 1493 if (bkey_ge(where, k.k->p)) 1494 return 0; 1495 1496 EBUG_ON(bkey_lt(where, bkey_start_pos(k.k))); 1497 1498 len = where.offset - bkey_start_offset(k.k); 1499 1500 k.k->p.offset = where.offset; 1501 k.k->size = len; 1502 1503 if (!len) { 1504 k.k->type = KEY_TYPE_deleted; 1505 new_val_u64s = 0; 1506 } 1507 1508 switch (k.k->type) { 1509 case KEY_TYPE_inline_data: 1510 case KEY_TYPE_indirect_inline_data: 1511 new_val_u64s = (bkey_inline_data_offset(k.k) + 1512 min(bkey_inline_data_bytes(k.k), k.k->size << 9)) >> 3; 1513 break; 1514 } 1515 1516 val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s; 1517 BUG_ON(val_u64s_delta < 0); 1518 1519 set_bkey_val_u64s(k.k, new_val_u64s); 1520 memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64)); 1521 return -val_u64s_delta; 1522 } 1523