1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 4 * 5 * Code for managing the extent btree and dynamically updating the writeback 6 * dirty sector count. 7 */ 8 9 #include "bcachefs.h" 10 #include "bkey_methods.h" 11 #include "btree_gc.h" 12 #include "btree_io.h" 13 #include "btree_iter.h" 14 #include "buckets.h" 15 #include "checksum.h" 16 #include "compress.h" 17 #include "debug.h" 18 #include "disk_groups.h" 19 #include "error.h" 20 #include "extents.h" 21 #include "inode.h" 22 #include "journal.h" 23 #include "replicas.h" 24 #include "super.h" 25 #include "super-io.h" 26 #include "trace.h" 27 #include "util.h" 28 29 static unsigned bch2_crc_field_size_max[] = { 30 [BCH_EXTENT_ENTRY_crc32] = CRC32_SIZE_MAX, 31 [BCH_EXTENT_ENTRY_crc64] = CRC64_SIZE_MAX, 32 [BCH_EXTENT_ENTRY_crc128] = CRC128_SIZE_MAX, 33 }; 34 35 static void bch2_extent_crc_pack(union bch_extent_crc *, 36 struct bch_extent_crc_unpacked, 37 enum bch_extent_entry_type); 38 39 static struct bch_dev_io_failures *dev_io_failures(struct bch_io_failures *f, 40 unsigned dev) 41 { 42 struct bch_dev_io_failures *i; 43 44 for (i = f->devs; i < f->devs + f->nr; i++) 45 if (i->dev == dev) 46 return i; 47 48 return NULL; 49 } 50 51 void bch2_mark_io_failure(struct bch_io_failures *failed, 52 struct extent_ptr_decoded *p) 53 { 54 struct bch_dev_io_failures *f = dev_io_failures(failed, p->ptr.dev); 55 56 if (!f) { 57 BUG_ON(failed->nr >= ARRAY_SIZE(failed->devs)); 58 59 f = &failed->devs[failed->nr++]; 60 f->dev = p->ptr.dev; 61 f->idx = p->idx; 62 f->nr_failed = 1; 63 f->nr_retries = 0; 64 } else if (p->idx != f->idx) { 65 f->idx = p->idx; 66 f->nr_failed = 1; 67 f->nr_retries = 0; 68 } else { 69 f->nr_failed++; 70 } 71 } 72 73 /* 74 * returns true if p1 is better than p2: 75 */ 76 static inline bool ptr_better(struct bch_fs *c, 77 const struct extent_ptr_decoded p1, 78 const struct extent_ptr_decoded p2) 79 { 80 if (likely(!p1.idx && !p2.idx)) { 81 struct bch_dev *dev1 = bch_dev_bkey_exists(c, p1.ptr.dev); 82 struct bch_dev *dev2 = bch_dev_bkey_exists(c, p2.ptr.dev); 83 84 u64 l1 = atomic64_read(&dev1->cur_latency[READ]); 85 u64 l2 = atomic64_read(&dev2->cur_latency[READ]); 86 87 /* Pick at random, biased in favor of the faster device: */ 88 89 return bch2_rand_range(l1 + l2) > l1; 90 } 91 92 if (bch2_force_reconstruct_read) 93 return p1.idx > p2.idx; 94 95 return p1.idx < p2.idx; 96 } 97 98 /* 99 * This picks a non-stale pointer, preferably from a device other than @avoid. 100 * Avoid can be NULL, meaning pick any. If there are no non-stale pointers to 101 * other devices, it will still pick a pointer from avoid. 102 */ 103 int bch2_bkey_pick_read_device(struct bch_fs *c, struct bkey_s_c k, 104 struct bch_io_failures *failed, 105 struct extent_ptr_decoded *pick) 106 { 107 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 108 const union bch_extent_entry *entry; 109 struct extent_ptr_decoded p; 110 struct bch_dev_io_failures *f; 111 struct bch_dev *ca; 112 int ret = 0; 113 114 if (k.k->type == KEY_TYPE_error) 115 return -EIO; 116 117 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { 118 /* 119 * Unwritten extent: no need to actually read, treat it as a 120 * hole and return 0s: 121 */ 122 if (p.ptr.unwritten) 123 return 0; 124 125 ca = bch_dev_bkey_exists(c, p.ptr.dev); 126 127 /* 128 * If there are any dirty pointers it's an error if we can't 129 * read: 130 */ 131 if (!ret && !p.ptr.cached) 132 ret = -EIO; 133 134 if (p.ptr.cached && ptr_stale(ca, &p.ptr)) 135 continue; 136 137 f = failed ? dev_io_failures(failed, p.ptr.dev) : NULL; 138 if (f) 139 p.idx = f->nr_failed < f->nr_retries 140 ? f->idx 141 : f->idx + 1; 142 143 if (!p.idx && 144 !bch2_dev_is_readable(ca)) 145 p.idx++; 146 147 if (bch2_force_reconstruct_read && 148 !p.idx && p.has_ec) 149 p.idx++; 150 151 if (p.idx >= (unsigned) p.has_ec + 1) 152 continue; 153 154 if (ret > 0 && !ptr_better(c, p, *pick)) 155 continue; 156 157 *pick = p; 158 ret = 1; 159 } 160 161 return ret; 162 } 163 164 /* KEY_TYPE_btree_ptr: */ 165 166 int bch2_btree_ptr_invalid(struct bch_fs *c, struct bkey_s_c k, 167 enum bkey_invalid_flags flags, 168 struct printbuf *err) 169 { 170 int ret = 0; 171 172 bkey_fsck_err_on(bkey_val_u64s(k.k) > BCH_REPLICAS_MAX, c, err, 173 btree_ptr_val_too_big, 174 "value too big (%zu > %u)", bkey_val_u64s(k.k), BCH_REPLICAS_MAX); 175 176 ret = bch2_bkey_ptrs_invalid(c, k, flags, err); 177 fsck_err: 178 return ret; 179 } 180 181 void bch2_btree_ptr_to_text(struct printbuf *out, struct bch_fs *c, 182 struct bkey_s_c k) 183 { 184 bch2_bkey_ptrs_to_text(out, c, k); 185 } 186 187 int bch2_btree_ptr_v2_invalid(struct bch_fs *c, struct bkey_s_c k, 188 enum bkey_invalid_flags flags, 189 struct printbuf *err) 190 { 191 int ret = 0; 192 193 bkey_fsck_err_on(bkey_val_u64s(k.k) > BKEY_BTREE_PTR_VAL_U64s_MAX, c, err, 194 btree_ptr_v2_val_too_big, 195 "value too big (%zu > %zu)", 196 bkey_val_u64s(k.k), BKEY_BTREE_PTR_VAL_U64s_MAX); 197 198 ret = bch2_bkey_ptrs_invalid(c, k, flags, err); 199 fsck_err: 200 return ret; 201 } 202 203 void bch2_btree_ptr_v2_to_text(struct printbuf *out, struct bch_fs *c, 204 struct bkey_s_c k) 205 { 206 struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k); 207 208 prt_printf(out, "seq %llx written %u min_key %s", 209 le64_to_cpu(bp.v->seq), 210 le16_to_cpu(bp.v->sectors_written), 211 BTREE_PTR_RANGE_UPDATED(bp.v) ? "R " : ""); 212 213 bch2_bpos_to_text(out, bp.v->min_key); 214 prt_printf(out, " "); 215 bch2_bkey_ptrs_to_text(out, c, k); 216 } 217 218 void bch2_btree_ptr_v2_compat(enum btree_id btree_id, unsigned version, 219 unsigned big_endian, int write, 220 struct bkey_s k) 221 { 222 struct bkey_s_btree_ptr_v2 bp = bkey_s_to_btree_ptr_v2(k); 223 224 compat_bpos(0, btree_id, version, big_endian, write, &bp.v->min_key); 225 226 if (version < bcachefs_metadata_version_inode_btree_change && 227 btree_id_is_extents(btree_id) && 228 !bkey_eq(bp.v->min_key, POS_MIN)) 229 bp.v->min_key = write 230 ? bpos_nosnap_predecessor(bp.v->min_key) 231 : bpos_nosnap_successor(bp.v->min_key); 232 } 233 234 /* KEY_TYPE_extent: */ 235 236 bool bch2_extent_merge(struct bch_fs *c, struct bkey_s l, struct bkey_s_c r) 237 { 238 struct bkey_ptrs l_ptrs = bch2_bkey_ptrs(l); 239 struct bkey_ptrs_c r_ptrs = bch2_bkey_ptrs_c(r); 240 union bch_extent_entry *en_l; 241 const union bch_extent_entry *en_r; 242 struct extent_ptr_decoded lp, rp; 243 bool use_right_ptr; 244 struct bch_dev *ca; 245 246 en_l = l_ptrs.start; 247 en_r = r_ptrs.start; 248 while (en_l < l_ptrs.end && en_r < r_ptrs.end) { 249 if (extent_entry_type(en_l) != extent_entry_type(en_r)) 250 return false; 251 252 en_l = extent_entry_next(en_l); 253 en_r = extent_entry_next(en_r); 254 } 255 256 if (en_l < l_ptrs.end || en_r < r_ptrs.end) 257 return false; 258 259 en_l = l_ptrs.start; 260 en_r = r_ptrs.start; 261 lp.crc = bch2_extent_crc_unpack(l.k, NULL); 262 rp.crc = bch2_extent_crc_unpack(r.k, NULL); 263 264 while (__bkey_ptr_next_decode(l.k, l_ptrs.end, lp, en_l) && 265 __bkey_ptr_next_decode(r.k, r_ptrs.end, rp, en_r)) { 266 if (lp.ptr.offset + lp.crc.offset + lp.crc.live_size != 267 rp.ptr.offset + rp.crc.offset || 268 lp.ptr.dev != rp.ptr.dev || 269 lp.ptr.gen != rp.ptr.gen || 270 lp.ptr.unwritten != rp.ptr.unwritten || 271 lp.has_ec != rp.has_ec) 272 return false; 273 274 /* Extents may not straddle buckets: */ 275 ca = bch_dev_bkey_exists(c, lp.ptr.dev); 276 if (PTR_BUCKET_NR(ca, &lp.ptr) != PTR_BUCKET_NR(ca, &rp.ptr)) 277 return false; 278 279 if (lp.has_ec != rp.has_ec || 280 (lp.has_ec && 281 (lp.ec.block != rp.ec.block || 282 lp.ec.redundancy != rp.ec.redundancy || 283 lp.ec.idx != rp.ec.idx))) 284 return false; 285 286 if (lp.crc.compression_type != rp.crc.compression_type || 287 lp.crc.nonce != rp.crc.nonce) 288 return false; 289 290 if (lp.crc.offset + lp.crc.live_size + rp.crc.live_size <= 291 lp.crc.uncompressed_size) { 292 /* can use left extent's crc entry */ 293 } else if (lp.crc.live_size <= rp.crc.offset) { 294 /* can use right extent's crc entry */ 295 } else { 296 /* check if checksums can be merged: */ 297 if (lp.crc.csum_type != rp.crc.csum_type || 298 lp.crc.nonce != rp.crc.nonce || 299 crc_is_compressed(lp.crc) || 300 !bch2_checksum_mergeable(lp.crc.csum_type)) 301 return false; 302 303 if (lp.crc.offset + lp.crc.live_size != lp.crc.compressed_size || 304 rp.crc.offset) 305 return false; 306 307 if (lp.crc.csum_type && 308 lp.crc.uncompressed_size + 309 rp.crc.uncompressed_size > (c->opts.encoded_extent_max >> 9)) 310 return false; 311 } 312 313 en_l = extent_entry_next(en_l); 314 en_r = extent_entry_next(en_r); 315 } 316 317 en_l = l_ptrs.start; 318 en_r = r_ptrs.start; 319 while (en_l < l_ptrs.end && en_r < r_ptrs.end) { 320 if (extent_entry_is_crc(en_l)) { 321 struct bch_extent_crc_unpacked crc_l = bch2_extent_crc_unpack(l.k, entry_to_crc(en_l)); 322 struct bch_extent_crc_unpacked crc_r = bch2_extent_crc_unpack(r.k, entry_to_crc(en_r)); 323 324 if (crc_l.uncompressed_size + crc_r.uncompressed_size > 325 bch2_crc_field_size_max[extent_entry_type(en_l)]) 326 return false; 327 } 328 329 en_l = extent_entry_next(en_l); 330 en_r = extent_entry_next(en_r); 331 } 332 333 use_right_ptr = false; 334 en_l = l_ptrs.start; 335 en_r = r_ptrs.start; 336 while (en_l < l_ptrs.end) { 337 if (extent_entry_type(en_l) == BCH_EXTENT_ENTRY_ptr && 338 use_right_ptr) 339 en_l->ptr = en_r->ptr; 340 341 if (extent_entry_is_crc(en_l)) { 342 struct bch_extent_crc_unpacked crc_l = 343 bch2_extent_crc_unpack(l.k, entry_to_crc(en_l)); 344 struct bch_extent_crc_unpacked crc_r = 345 bch2_extent_crc_unpack(r.k, entry_to_crc(en_r)); 346 347 use_right_ptr = false; 348 349 if (crc_l.offset + crc_l.live_size + crc_r.live_size <= 350 crc_l.uncompressed_size) { 351 /* can use left extent's crc entry */ 352 } else if (crc_l.live_size <= crc_r.offset) { 353 /* can use right extent's crc entry */ 354 crc_r.offset -= crc_l.live_size; 355 bch2_extent_crc_pack(entry_to_crc(en_l), crc_r, 356 extent_entry_type(en_l)); 357 use_right_ptr = true; 358 } else { 359 crc_l.csum = bch2_checksum_merge(crc_l.csum_type, 360 crc_l.csum, 361 crc_r.csum, 362 crc_r.uncompressed_size << 9); 363 364 crc_l.uncompressed_size += crc_r.uncompressed_size; 365 crc_l.compressed_size += crc_r.compressed_size; 366 bch2_extent_crc_pack(entry_to_crc(en_l), crc_l, 367 extent_entry_type(en_l)); 368 } 369 } 370 371 en_l = extent_entry_next(en_l); 372 en_r = extent_entry_next(en_r); 373 } 374 375 bch2_key_resize(l.k, l.k->size + r.k->size); 376 return true; 377 } 378 379 /* KEY_TYPE_reservation: */ 380 381 int bch2_reservation_invalid(struct bch_fs *c, struct bkey_s_c k, 382 enum bkey_invalid_flags flags, 383 struct printbuf *err) 384 { 385 struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k); 386 int ret = 0; 387 388 bkey_fsck_err_on(!r.v->nr_replicas || r.v->nr_replicas > BCH_REPLICAS_MAX, c, err, 389 reservation_key_nr_replicas_invalid, 390 "invalid nr_replicas (%u)", r.v->nr_replicas); 391 fsck_err: 392 return ret; 393 } 394 395 void bch2_reservation_to_text(struct printbuf *out, struct bch_fs *c, 396 struct bkey_s_c k) 397 { 398 struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k); 399 400 prt_printf(out, "generation %u replicas %u", 401 le32_to_cpu(r.v->generation), 402 r.v->nr_replicas); 403 } 404 405 bool bch2_reservation_merge(struct bch_fs *c, struct bkey_s _l, struct bkey_s_c _r) 406 { 407 struct bkey_s_reservation l = bkey_s_to_reservation(_l); 408 struct bkey_s_c_reservation r = bkey_s_c_to_reservation(_r); 409 410 if (l.v->generation != r.v->generation || 411 l.v->nr_replicas != r.v->nr_replicas) 412 return false; 413 414 bch2_key_resize(l.k, l.k->size + r.k->size); 415 return true; 416 } 417 418 /* Extent checksum entries: */ 419 420 /* returns true if not equal */ 421 static inline bool bch2_crc_unpacked_cmp(struct bch_extent_crc_unpacked l, 422 struct bch_extent_crc_unpacked r) 423 { 424 return (l.csum_type != r.csum_type || 425 l.compression_type != r.compression_type || 426 l.compressed_size != r.compressed_size || 427 l.uncompressed_size != r.uncompressed_size || 428 l.offset != r.offset || 429 l.live_size != r.live_size || 430 l.nonce != r.nonce || 431 bch2_crc_cmp(l.csum, r.csum)); 432 } 433 434 static inline bool can_narrow_crc(struct bch_extent_crc_unpacked u, 435 struct bch_extent_crc_unpacked n) 436 { 437 return !crc_is_compressed(u) && 438 u.csum_type && 439 u.uncompressed_size > u.live_size && 440 bch2_csum_type_is_encryption(u.csum_type) == 441 bch2_csum_type_is_encryption(n.csum_type); 442 } 443 444 bool bch2_can_narrow_extent_crcs(struct bkey_s_c k, 445 struct bch_extent_crc_unpacked n) 446 { 447 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 448 struct bch_extent_crc_unpacked crc; 449 const union bch_extent_entry *i; 450 451 if (!n.csum_type) 452 return false; 453 454 bkey_for_each_crc(k.k, ptrs, crc, i) 455 if (can_narrow_crc(crc, n)) 456 return true; 457 458 return false; 459 } 460 461 /* 462 * We're writing another replica for this extent, so while we've got the data in 463 * memory we'll be computing a new checksum for the currently live data. 464 * 465 * If there are other replicas we aren't moving, and they are checksummed but 466 * not compressed, we can modify them to point to only the data that is 467 * currently live (so that readers won't have to bounce) while we've got the 468 * checksum we need: 469 */ 470 bool bch2_bkey_narrow_crcs(struct bkey_i *k, struct bch_extent_crc_unpacked n) 471 { 472 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); 473 struct bch_extent_crc_unpacked u; 474 struct extent_ptr_decoded p; 475 union bch_extent_entry *i; 476 bool ret = false; 477 478 /* Find a checksum entry that covers only live data: */ 479 if (!n.csum_type) { 480 bkey_for_each_crc(&k->k, ptrs, u, i) 481 if (!crc_is_compressed(u) && 482 u.csum_type && 483 u.live_size == u.uncompressed_size) { 484 n = u; 485 goto found; 486 } 487 return false; 488 } 489 found: 490 BUG_ON(crc_is_compressed(n)); 491 BUG_ON(n.offset); 492 BUG_ON(n.live_size != k->k.size); 493 494 restart_narrow_pointers: 495 ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); 496 497 bkey_for_each_ptr_decode(&k->k, ptrs, p, i) 498 if (can_narrow_crc(p.crc, n)) { 499 bch2_bkey_drop_ptr_noerror(bkey_i_to_s(k), &i->ptr); 500 p.ptr.offset += p.crc.offset; 501 p.crc = n; 502 bch2_extent_ptr_decoded_append(k, &p); 503 ret = true; 504 goto restart_narrow_pointers; 505 } 506 507 return ret; 508 } 509 510 static void bch2_extent_crc_pack(union bch_extent_crc *dst, 511 struct bch_extent_crc_unpacked src, 512 enum bch_extent_entry_type type) 513 { 514 #define set_common_fields(_dst, _src) \ 515 _dst.type = 1 << type; \ 516 _dst.csum_type = _src.csum_type, \ 517 _dst.compression_type = _src.compression_type, \ 518 _dst._compressed_size = _src.compressed_size - 1, \ 519 _dst._uncompressed_size = _src.uncompressed_size - 1, \ 520 _dst.offset = _src.offset 521 522 switch (type) { 523 case BCH_EXTENT_ENTRY_crc32: 524 set_common_fields(dst->crc32, src); 525 dst->crc32.csum = (u32 __force) *((__le32 *) &src.csum.lo); 526 break; 527 case BCH_EXTENT_ENTRY_crc64: 528 set_common_fields(dst->crc64, src); 529 dst->crc64.nonce = src.nonce; 530 dst->crc64.csum_lo = (u64 __force) src.csum.lo; 531 dst->crc64.csum_hi = (u64 __force) *((__le16 *) &src.csum.hi); 532 break; 533 case BCH_EXTENT_ENTRY_crc128: 534 set_common_fields(dst->crc128, src); 535 dst->crc128.nonce = src.nonce; 536 dst->crc128.csum = src.csum; 537 break; 538 default: 539 BUG(); 540 } 541 #undef set_common_fields 542 } 543 544 void bch2_extent_crc_append(struct bkey_i *k, 545 struct bch_extent_crc_unpacked new) 546 { 547 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); 548 union bch_extent_crc *crc = (void *) ptrs.end; 549 enum bch_extent_entry_type type; 550 551 if (bch_crc_bytes[new.csum_type] <= 4 && 552 new.uncompressed_size <= CRC32_SIZE_MAX && 553 new.nonce <= CRC32_NONCE_MAX) 554 type = BCH_EXTENT_ENTRY_crc32; 555 else if (bch_crc_bytes[new.csum_type] <= 10 && 556 new.uncompressed_size <= CRC64_SIZE_MAX && 557 new.nonce <= CRC64_NONCE_MAX) 558 type = BCH_EXTENT_ENTRY_crc64; 559 else if (bch_crc_bytes[new.csum_type] <= 16 && 560 new.uncompressed_size <= CRC128_SIZE_MAX && 561 new.nonce <= CRC128_NONCE_MAX) 562 type = BCH_EXTENT_ENTRY_crc128; 563 else 564 BUG(); 565 566 bch2_extent_crc_pack(crc, new, type); 567 568 k->k.u64s += extent_entry_u64s(ptrs.end); 569 570 EBUG_ON(bkey_val_u64s(&k->k) > BKEY_EXTENT_VAL_U64s_MAX); 571 } 572 573 /* Generic code for keys with pointers: */ 574 575 unsigned bch2_bkey_nr_ptrs(struct bkey_s_c k) 576 { 577 return bch2_bkey_devs(k).nr; 578 } 579 580 unsigned bch2_bkey_nr_ptrs_allocated(struct bkey_s_c k) 581 { 582 return k.k->type == KEY_TYPE_reservation 583 ? bkey_s_c_to_reservation(k).v->nr_replicas 584 : bch2_bkey_dirty_devs(k).nr; 585 } 586 587 unsigned bch2_bkey_nr_ptrs_fully_allocated(struct bkey_s_c k) 588 { 589 unsigned ret = 0; 590 591 if (k.k->type == KEY_TYPE_reservation) { 592 ret = bkey_s_c_to_reservation(k).v->nr_replicas; 593 } else { 594 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 595 const union bch_extent_entry *entry; 596 struct extent_ptr_decoded p; 597 598 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 599 ret += !p.ptr.cached && !crc_is_compressed(p.crc); 600 } 601 602 return ret; 603 } 604 605 unsigned bch2_bkey_sectors_compressed(struct bkey_s_c k) 606 { 607 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 608 const union bch_extent_entry *entry; 609 struct extent_ptr_decoded p; 610 unsigned ret = 0; 611 612 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 613 if (!p.ptr.cached && crc_is_compressed(p.crc)) 614 ret += p.crc.compressed_size; 615 616 return ret; 617 } 618 619 bool bch2_bkey_is_incompressible(struct bkey_s_c k) 620 { 621 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 622 const union bch_extent_entry *entry; 623 struct bch_extent_crc_unpacked crc; 624 625 bkey_for_each_crc(k.k, ptrs, crc, entry) 626 if (crc.compression_type == BCH_COMPRESSION_TYPE_incompressible) 627 return true; 628 return false; 629 } 630 631 unsigned bch2_bkey_replicas(struct bch_fs *c, struct bkey_s_c k) 632 { 633 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 634 const union bch_extent_entry *entry; 635 struct extent_ptr_decoded p = { 0 }; 636 unsigned replicas = 0; 637 638 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { 639 if (p.ptr.cached) 640 continue; 641 642 if (p.has_ec) 643 replicas += p.ec.redundancy; 644 645 replicas++; 646 647 } 648 649 return replicas; 650 } 651 652 unsigned bch2_extent_ptr_desired_durability(struct bch_fs *c, struct extent_ptr_decoded *p) 653 { 654 struct bch_dev *ca; 655 656 if (p->ptr.cached) 657 return 0; 658 659 ca = bch_dev_bkey_exists(c, p->ptr.dev); 660 661 return ca->mi.durability + 662 (p->has_ec 663 ? p->ec.redundancy 664 : 0); 665 } 666 667 unsigned bch2_extent_ptr_durability(struct bch_fs *c, struct extent_ptr_decoded *p) 668 { 669 struct bch_dev *ca; 670 671 if (p->ptr.cached) 672 return 0; 673 674 ca = bch_dev_bkey_exists(c, p->ptr.dev); 675 676 if (ca->mi.state == BCH_MEMBER_STATE_failed) 677 return 0; 678 679 return ca->mi.durability + 680 (p->has_ec 681 ? p->ec.redundancy 682 : 0); 683 } 684 685 unsigned bch2_bkey_durability(struct bch_fs *c, struct bkey_s_c k) 686 { 687 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 688 const union bch_extent_entry *entry; 689 struct extent_ptr_decoded p; 690 unsigned durability = 0; 691 692 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 693 durability += bch2_extent_ptr_durability(c, &p); 694 695 return durability; 696 } 697 698 static unsigned bch2_bkey_durability_safe(struct bch_fs *c, struct bkey_s_c k) 699 { 700 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 701 const union bch_extent_entry *entry; 702 struct extent_ptr_decoded p; 703 unsigned durability = 0; 704 705 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 706 if (p.ptr.dev < c->sb.nr_devices && c->devs[p.ptr.dev]) 707 durability += bch2_extent_ptr_durability(c, &p); 708 709 return durability; 710 } 711 712 void bch2_bkey_extent_entry_drop(struct bkey_i *k, union bch_extent_entry *entry) 713 { 714 union bch_extent_entry *end = bkey_val_end(bkey_i_to_s(k)); 715 union bch_extent_entry *next = extent_entry_next(entry); 716 717 memmove_u64s(entry, next, (u64 *) end - (u64 *) next); 718 k->k.u64s -= extent_entry_u64s(entry); 719 } 720 721 void bch2_extent_ptr_decoded_append(struct bkey_i *k, 722 struct extent_ptr_decoded *p) 723 { 724 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); 725 struct bch_extent_crc_unpacked crc = 726 bch2_extent_crc_unpack(&k->k, NULL); 727 union bch_extent_entry *pos; 728 729 if (!bch2_crc_unpacked_cmp(crc, p->crc)) { 730 pos = ptrs.start; 731 goto found; 732 } 733 734 bkey_for_each_crc(&k->k, ptrs, crc, pos) 735 if (!bch2_crc_unpacked_cmp(crc, p->crc)) { 736 pos = extent_entry_next(pos); 737 goto found; 738 } 739 740 bch2_extent_crc_append(k, p->crc); 741 pos = bkey_val_end(bkey_i_to_s(k)); 742 found: 743 p->ptr.type = 1 << BCH_EXTENT_ENTRY_ptr; 744 __extent_entry_insert(k, pos, to_entry(&p->ptr)); 745 746 if (p->has_ec) { 747 p->ec.type = 1 << BCH_EXTENT_ENTRY_stripe_ptr; 748 __extent_entry_insert(k, pos, to_entry(&p->ec)); 749 } 750 } 751 752 static union bch_extent_entry *extent_entry_prev(struct bkey_ptrs ptrs, 753 union bch_extent_entry *entry) 754 { 755 union bch_extent_entry *i = ptrs.start; 756 757 if (i == entry) 758 return NULL; 759 760 while (extent_entry_next(i) != entry) 761 i = extent_entry_next(i); 762 return i; 763 } 764 765 /* 766 * Returns pointer to the next entry after the one being dropped: 767 */ 768 union bch_extent_entry *bch2_bkey_drop_ptr_noerror(struct bkey_s k, 769 struct bch_extent_ptr *ptr) 770 { 771 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); 772 union bch_extent_entry *entry = to_entry(ptr), *next; 773 union bch_extent_entry *ret = entry; 774 bool drop_crc = true; 775 776 EBUG_ON(ptr < &ptrs.start->ptr || 777 ptr >= &ptrs.end->ptr); 778 EBUG_ON(ptr->type != 1 << BCH_EXTENT_ENTRY_ptr); 779 780 for (next = extent_entry_next(entry); 781 next != ptrs.end; 782 next = extent_entry_next(next)) { 783 if (extent_entry_is_crc(next)) { 784 break; 785 } else if (extent_entry_is_ptr(next)) { 786 drop_crc = false; 787 break; 788 } 789 } 790 791 extent_entry_drop(k, entry); 792 793 while ((entry = extent_entry_prev(ptrs, entry))) { 794 if (extent_entry_is_ptr(entry)) 795 break; 796 797 if ((extent_entry_is_crc(entry) && drop_crc) || 798 extent_entry_is_stripe_ptr(entry)) { 799 ret = (void *) ret - extent_entry_bytes(entry); 800 extent_entry_drop(k, entry); 801 } 802 } 803 804 return ret; 805 } 806 807 union bch_extent_entry *bch2_bkey_drop_ptr(struct bkey_s k, 808 struct bch_extent_ptr *ptr) 809 { 810 bool have_dirty = bch2_bkey_dirty_devs(k.s_c).nr; 811 union bch_extent_entry *ret = 812 bch2_bkey_drop_ptr_noerror(k, ptr); 813 814 /* 815 * If we deleted all the dirty pointers and there's still cached 816 * pointers, we could set the cached pointers to dirty if they're not 817 * stale - but to do that correctly we'd need to grab an open_bucket 818 * reference so that we don't race with bucket reuse: 819 */ 820 if (have_dirty && 821 !bch2_bkey_dirty_devs(k.s_c).nr) { 822 k.k->type = KEY_TYPE_error; 823 set_bkey_val_u64s(k.k, 0); 824 ret = NULL; 825 } else if (!bch2_bkey_nr_ptrs(k.s_c)) { 826 k.k->type = KEY_TYPE_deleted; 827 set_bkey_val_u64s(k.k, 0); 828 ret = NULL; 829 } 830 831 return ret; 832 } 833 834 void bch2_bkey_drop_device(struct bkey_s k, unsigned dev) 835 { 836 struct bch_extent_ptr *ptr; 837 838 bch2_bkey_drop_ptrs(k, ptr, ptr->dev == dev); 839 } 840 841 void bch2_bkey_drop_device_noerror(struct bkey_s k, unsigned dev) 842 { 843 struct bch_extent_ptr *ptr = bch2_bkey_has_device(k, dev); 844 845 if (ptr) 846 bch2_bkey_drop_ptr_noerror(k, ptr); 847 } 848 849 const struct bch_extent_ptr *bch2_bkey_has_device_c(struct bkey_s_c k, unsigned dev) 850 { 851 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 852 const struct bch_extent_ptr *ptr; 853 854 bkey_for_each_ptr(ptrs, ptr) 855 if (ptr->dev == dev) 856 return ptr; 857 858 return NULL; 859 } 860 861 bool bch2_bkey_has_target(struct bch_fs *c, struct bkey_s_c k, unsigned target) 862 { 863 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 864 const struct bch_extent_ptr *ptr; 865 866 bkey_for_each_ptr(ptrs, ptr) 867 if (bch2_dev_in_target(c, ptr->dev, target) && 868 (!ptr->cached || 869 !ptr_stale(bch_dev_bkey_exists(c, ptr->dev), ptr))) 870 return true; 871 872 return false; 873 } 874 875 bool bch2_bkey_matches_ptr(struct bch_fs *c, struct bkey_s_c k, 876 struct bch_extent_ptr m, u64 offset) 877 { 878 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 879 const union bch_extent_entry *entry; 880 struct extent_ptr_decoded p; 881 882 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 883 if (p.ptr.dev == m.dev && 884 p.ptr.gen == m.gen && 885 (s64) p.ptr.offset + p.crc.offset - bkey_start_offset(k.k) == 886 (s64) m.offset - offset) 887 return true; 888 889 return false; 890 } 891 892 /* 893 * Returns true if two extents refer to the same data: 894 */ 895 bool bch2_extents_match(struct bkey_s_c k1, struct bkey_s_c k2) 896 { 897 if (k1.k->type != k2.k->type) 898 return false; 899 900 if (bkey_extent_is_direct_data(k1.k)) { 901 struct bkey_ptrs_c ptrs1 = bch2_bkey_ptrs_c(k1); 902 struct bkey_ptrs_c ptrs2 = bch2_bkey_ptrs_c(k2); 903 const union bch_extent_entry *entry1, *entry2; 904 struct extent_ptr_decoded p1, p2; 905 906 if (bkey_extent_is_unwritten(k1) != bkey_extent_is_unwritten(k2)) 907 return false; 908 909 bkey_for_each_ptr_decode(k1.k, ptrs1, p1, entry1) 910 bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2) 911 if (p1.ptr.dev == p2.ptr.dev && 912 p1.ptr.gen == p2.ptr.gen && 913 (s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k1.k) == 914 (s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k2.k)) 915 return true; 916 917 return false; 918 } else { 919 /* KEY_TYPE_deleted, etc. */ 920 return true; 921 } 922 } 923 924 struct bch_extent_ptr * 925 bch2_extent_has_ptr(struct bkey_s_c k1, struct extent_ptr_decoded p1, struct bkey_s k2) 926 { 927 struct bkey_ptrs ptrs2 = bch2_bkey_ptrs(k2); 928 union bch_extent_entry *entry2; 929 struct extent_ptr_decoded p2; 930 931 bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2) 932 if (p1.ptr.dev == p2.ptr.dev && 933 p1.ptr.gen == p2.ptr.gen && 934 (s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k1.k) == 935 (s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k2.k)) 936 return &entry2->ptr; 937 938 return NULL; 939 } 940 941 void bch2_extent_ptr_set_cached(struct bkey_s k, struct bch_extent_ptr *ptr) 942 { 943 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); 944 union bch_extent_entry *entry; 945 union bch_extent_entry *ec = NULL; 946 947 bkey_extent_entry_for_each(ptrs, entry) { 948 if (&entry->ptr == ptr) { 949 ptr->cached = true; 950 if (ec) 951 extent_entry_drop(k, ec); 952 return; 953 } 954 955 if (extent_entry_is_stripe_ptr(entry)) 956 ec = entry; 957 else if (extent_entry_is_ptr(entry)) 958 ec = NULL; 959 } 960 961 BUG(); 962 } 963 964 /* 965 * bch_extent_normalize - clean up an extent, dropping stale pointers etc. 966 * 967 * Returns true if @k should be dropped entirely 968 * 969 * For existing keys, only called when btree nodes are being rewritten, not when 970 * they're merely being compacted/resorted in memory. 971 */ 972 bool bch2_extent_normalize(struct bch_fs *c, struct bkey_s k) 973 { 974 struct bch_extent_ptr *ptr; 975 976 bch2_bkey_drop_ptrs(k, ptr, 977 ptr->cached && 978 ptr_stale(bch_dev_bkey_exists(c, ptr->dev), ptr)); 979 980 return bkey_deleted(k.k); 981 } 982 983 void bch2_bkey_ptrs_to_text(struct printbuf *out, struct bch_fs *c, 984 struct bkey_s_c k) 985 { 986 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 987 const union bch_extent_entry *entry; 988 bool first = true; 989 990 if (c) 991 prt_printf(out, "durability: %u ", bch2_bkey_durability_safe(c, k)); 992 993 bkey_extent_entry_for_each(ptrs, entry) { 994 if (!first) 995 prt_printf(out, " "); 996 997 switch (__extent_entry_type(entry)) { 998 case BCH_EXTENT_ENTRY_ptr: { 999 const struct bch_extent_ptr *ptr = entry_to_ptr(entry); 1000 struct bch_dev *ca = c && ptr->dev < c->sb.nr_devices && c->devs[ptr->dev] 1001 ? bch_dev_bkey_exists(c, ptr->dev) 1002 : NULL; 1003 1004 if (!ca) { 1005 prt_printf(out, "ptr: %u:%llu gen %u%s", ptr->dev, 1006 (u64) ptr->offset, ptr->gen, 1007 ptr->cached ? " cached" : ""); 1008 } else { 1009 u32 offset; 1010 u64 b = sector_to_bucket_and_offset(ca, ptr->offset, &offset); 1011 1012 prt_printf(out, "ptr: %u:%llu:%u gen %u", 1013 ptr->dev, b, offset, ptr->gen); 1014 if (ptr->cached) 1015 prt_str(out, " cached"); 1016 if (ptr->unwritten) 1017 prt_str(out, " unwritten"); 1018 if (ca && ptr_stale(ca, ptr)) 1019 prt_printf(out, " stale"); 1020 } 1021 break; 1022 } 1023 case BCH_EXTENT_ENTRY_crc32: 1024 case BCH_EXTENT_ENTRY_crc64: 1025 case BCH_EXTENT_ENTRY_crc128: { 1026 struct bch_extent_crc_unpacked crc = 1027 bch2_extent_crc_unpack(k.k, entry_to_crc(entry)); 1028 1029 prt_printf(out, "crc: c_size %u size %u offset %u nonce %u csum %s compress %s", 1030 crc.compressed_size, 1031 crc.uncompressed_size, 1032 crc.offset, crc.nonce, 1033 bch2_csum_types[crc.csum_type], 1034 bch2_compression_types[crc.compression_type]); 1035 break; 1036 } 1037 case BCH_EXTENT_ENTRY_stripe_ptr: { 1038 const struct bch_extent_stripe_ptr *ec = &entry->stripe_ptr; 1039 1040 prt_printf(out, "ec: idx %llu block %u", 1041 (u64) ec->idx, ec->block); 1042 break; 1043 } 1044 case BCH_EXTENT_ENTRY_rebalance: { 1045 const struct bch_extent_rebalance *r = &entry->rebalance; 1046 1047 prt_str(out, "rebalance: target "); 1048 if (c) 1049 bch2_target_to_text(out, c, r->target); 1050 else 1051 prt_printf(out, "%u", r->target); 1052 prt_str(out, " compression "); 1053 bch2_compression_opt_to_text(out, r->compression); 1054 break; 1055 } 1056 default: 1057 prt_printf(out, "(invalid extent entry %.16llx)", *((u64 *) entry)); 1058 return; 1059 } 1060 1061 first = false; 1062 } 1063 } 1064 1065 static int extent_ptr_invalid(struct bch_fs *c, 1066 struct bkey_s_c k, 1067 enum bkey_invalid_flags flags, 1068 const struct bch_extent_ptr *ptr, 1069 unsigned size_ondisk, 1070 bool metadata, 1071 struct printbuf *err) 1072 { 1073 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1074 const struct bch_extent_ptr *ptr2; 1075 u64 bucket; 1076 u32 bucket_offset; 1077 struct bch_dev *ca; 1078 int ret = 0; 1079 1080 if (!bch2_dev_exists2(c, ptr->dev)) { 1081 /* 1082 * If we're in the write path this key might have already been 1083 * overwritten, and we could be seeing a device that doesn't 1084 * exist anymore due to racing with device removal: 1085 */ 1086 if (flags & BKEY_INVALID_WRITE) 1087 return 0; 1088 1089 bkey_fsck_err(c, err, ptr_to_invalid_device, 1090 "pointer to invalid device (%u)", ptr->dev); 1091 } 1092 1093 ca = bch_dev_bkey_exists(c, ptr->dev); 1094 bkey_for_each_ptr(ptrs, ptr2) 1095 bkey_fsck_err_on(ptr != ptr2 && ptr->dev == ptr2->dev, c, err, 1096 ptr_to_duplicate_device, 1097 "multiple pointers to same device (%u)", ptr->dev); 1098 1099 bucket = sector_to_bucket_and_offset(ca, ptr->offset, &bucket_offset); 1100 1101 bkey_fsck_err_on(bucket >= ca->mi.nbuckets, c, err, 1102 ptr_after_last_bucket, 1103 "pointer past last bucket (%llu > %llu)", bucket, ca->mi.nbuckets); 1104 bkey_fsck_err_on(ptr->offset < bucket_to_sector(ca, ca->mi.first_bucket), c, err, 1105 ptr_before_first_bucket, 1106 "pointer before first bucket (%llu < %u)", bucket, ca->mi.first_bucket); 1107 bkey_fsck_err_on(bucket_offset + size_ondisk > ca->mi.bucket_size, c, err, 1108 ptr_spans_multiple_buckets, 1109 "pointer spans multiple buckets (%u + %u > %u)", 1110 bucket_offset, size_ondisk, ca->mi.bucket_size); 1111 fsck_err: 1112 return ret; 1113 } 1114 1115 int bch2_bkey_ptrs_invalid(struct bch_fs *c, struct bkey_s_c k, 1116 enum bkey_invalid_flags flags, 1117 struct printbuf *err) 1118 { 1119 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1120 const union bch_extent_entry *entry; 1121 struct bch_extent_crc_unpacked crc; 1122 unsigned size_ondisk = k.k->size; 1123 unsigned nonce = UINT_MAX; 1124 unsigned nr_ptrs = 0; 1125 bool have_written = false, have_unwritten = false, have_ec = false, crc_since_last_ptr = false; 1126 int ret = 0; 1127 1128 if (bkey_is_btree_ptr(k.k)) 1129 size_ondisk = btree_sectors(c); 1130 1131 bkey_extent_entry_for_each(ptrs, entry) { 1132 bkey_fsck_err_on(__extent_entry_type(entry) >= BCH_EXTENT_ENTRY_MAX, c, err, 1133 extent_ptrs_invalid_entry, 1134 "invalid extent entry type (got %u, max %u)", 1135 __extent_entry_type(entry), BCH_EXTENT_ENTRY_MAX); 1136 1137 bkey_fsck_err_on(bkey_is_btree_ptr(k.k) && 1138 !extent_entry_is_ptr(entry), c, err, 1139 btree_ptr_has_non_ptr, 1140 "has non ptr field"); 1141 1142 switch (extent_entry_type(entry)) { 1143 case BCH_EXTENT_ENTRY_ptr: 1144 ret = extent_ptr_invalid(c, k, flags, &entry->ptr, 1145 size_ondisk, false, err); 1146 if (ret) 1147 return ret; 1148 1149 bkey_fsck_err_on(entry->ptr.cached && have_ec, c, err, 1150 ptr_cached_and_erasure_coded, 1151 "cached, erasure coded ptr"); 1152 1153 if (!entry->ptr.unwritten) 1154 have_written = true; 1155 else 1156 have_unwritten = true; 1157 1158 have_ec = false; 1159 crc_since_last_ptr = false; 1160 nr_ptrs++; 1161 break; 1162 case BCH_EXTENT_ENTRY_crc32: 1163 case BCH_EXTENT_ENTRY_crc64: 1164 case BCH_EXTENT_ENTRY_crc128: 1165 crc = bch2_extent_crc_unpack(k.k, entry_to_crc(entry)); 1166 1167 bkey_fsck_err_on(crc.offset + crc.live_size > crc.uncompressed_size, c, err, 1168 ptr_crc_uncompressed_size_too_small, 1169 "checksum offset + key size > uncompressed size"); 1170 bkey_fsck_err_on(!bch2_checksum_type_valid(c, crc.csum_type), c, err, 1171 ptr_crc_csum_type_unknown, 1172 "invalid checksum type"); 1173 bkey_fsck_err_on(crc.compression_type >= BCH_COMPRESSION_TYPE_NR, c, err, 1174 ptr_crc_compression_type_unknown, 1175 "invalid compression type"); 1176 1177 if (bch2_csum_type_is_encryption(crc.csum_type)) { 1178 if (nonce == UINT_MAX) 1179 nonce = crc.offset + crc.nonce; 1180 else if (nonce != crc.offset + crc.nonce) 1181 bkey_fsck_err(c, err, ptr_crc_nonce_mismatch, 1182 "incorrect nonce"); 1183 } 1184 1185 bkey_fsck_err_on(crc_since_last_ptr, c, err, 1186 ptr_crc_redundant, 1187 "redundant crc entry"); 1188 crc_since_last_ptr = true; 1189 1190 bkey_fsck_err_on(crc_is_encoded(crc) && 1191 (crc.uncompressed_size > c->opts.encoded_extent_max >> 9) && 1192 (flags & (BKEY_INVALID_WRITE|BKEY_INVALID_COMMIT)), c, err, 1193 ptr_crc_uncompressed_size_too_big, 1194 "too large encoded extent"); 1195 1196 size_ondisk = crc.compressed_size; 1197 break; 1198 case BCH_EXTENT_ENTRY_stripe_ptr: 1199 bkey_fsck_err_on(have_ec, c, err, 1200 ptr_stripe_redundant, 1201 "redundant stripe entry"); 1202 have_ec = true; 1203 break; 1204 case BCH_EXTENT_ENTRY_rebalance: { 1205 const struct bch_extent_rebalance *r = &entry->rebalance; 1206 1207 if (!bch2_compression_opt_valid(r->compression)) { 1208 struct bch_compression_opt opt = __bch2_compression_decode(r->compression); 1209 prt_printf(err, "invalid compression opt %u:%u", 1210 opt.type, opt.level); 1211 return -BCH_ERR_invalid_bkey; 1212 } 1213 break; 1214 } 1215 } 1216 } 1217 1218 bkey_fsck_err_on(!nr_ptrs, c, err, 1219 extent_ptrs_no_ptrs, 1220 "no ptrs"); 1221 bkey_fsck_err_on(nr_ptrs > BCH_BKEY_PTRS_MAX, c, err, 1222 extent_ptrs_too_many_ptrs, 1223 "too many ptrs: %u > %u", nr_ptrs, BCH_BKEY_PTRS_MAX); 1224 bkey_fsck_err_on(have_written && have_unwritten, c, err, 1225 extent_ptrs_written_and_unwritten, 1226 "extent with unwritten and written ptrs"); 1227 bkey_fsck_err_on(k.k->type != KEY_TYPE_extent && have_unwritten, c, err, 1228 extent_ptrs_unwritten, 1229 "has unwritten ptrs"); 1230 bkey_fsck_err_on(crc_since_last_ptr, c, err, 1231 extent_ptrs_redundant_crc, 1232 "redundant crc entry"); 1233 bkey_fsck_err_on(have_ec, c, err, 1234 extent_ptrs_redundant_stripe, 1235 "redundant stripe entry"); 1236 fsck_err: 1237 return ret; 1238 } 1239 1240 void bch2_ptr_swab(struct bkey_s k) 1241 { 1242 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); 1243 union bch_extent_entry *entry; 1244 u64 *d; 1245 1246 for (d = (u64 *) ptrs.start; 1247 d != (u64 *) ptrs.end; 1248 d++) 1249 *d = swab64(*d); 1250 1251 for (entry = ptrs.start; 1252 entry < ptrs.end; 1253 entry = extent_entry_next(entry)) { 1254 switch (extent_entry_type(entry)) { 1255 case BCH_EXTENT_ENTRY_ptr: 1256 break; 1257 case BCH_EXTENT_ENTRY_crc32: 1258 entry->crc32.csum = swab32(entry->crc32.csum); 1259 break; 1260 case BCH_EXTENT_ENTRY_crc64: 1261 entry->crc64.csum_hi = swab16(entry->crc64.csum_hi); 1262 entry->crc64.csum_lo = swab64(entry->crc64.csum_lo); 1263 break; 1264 case BCH_EXTENT_ENTRY_crc128: 1265 entry->crc128.csum.hi = (__force __le64) 1266 swab64((__force u64) entry->crc128.csum.hi); 1267 entry->crc128.csum.lo = (__force __le64) 1268 swab64((__force u64) entry->crc128.csum.lo); 1269 break; 1270 case BCH_EXTENT_ENTRY_stripe_ptr: 1271 break; 1272 case BCH_EXTENT_ENTRY_rebalance: 1273 break; 1274 } 1275 } 1276 } 1277 1278 const struct bch_extent_rebalance *bch2_bkey_rebalance_opts(struct bkey_s_c k) 1279 { 1280 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1281 const union bch_extent_entry *entry; 1282 1283 bkey_extent_entry_for_each(ptrs, entry) 1284 if (__extent_entry_type(entry) == BCH_EXTENT_ENTRY_rebalance) 1285 return &entry->rebalance; 1286 1287 return NULL; 1288 } 1289 1290 unsigned bch2_bkey_ptrs_need_rebalance(struct bch_fs *c, struct bkey_s_c k, 1291 unsigned target, unsigned compression) 1292 { 1293 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1294 unsigned rewrite_ptrs = 0; 1295 1296 if (compression) { 1297 unsigned compression_type = bch2_compression_opt_to_type(compression); 1298 const union bch_extent_entry *entry; 1299 struct extent_ptr_decoded p; 1300 unsigned i = 0; 1301 1302 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { 1303 if (p.crc.compression_type == BCH_COMPRESSION_TYPE_incompressible) { 1304 rewrite_ptrs = 0; 1305 goto incompressible; 1306 } 1307 1308 if (!p.ptr.cached && p.crc.compression_type != compression_type) 1309 rewrite_ptrs |= 1U << i; 1310 i++; 1311 } 1312 } 1313 incompressible: 1314 if (target && bch2_target_accepts_data(c, BCH_DATA_user, target)) { 1315 const struct bch_extent_ptr *ptr; 1316 unsigned i = 0; 1317 1318 bkey_for_each_ptr(ptrs, ptr) { 1319 if (!ptr->cached && !bch2_dev_in_target(c, ptr->dev, target)) 1320 rewrite_ptrs |= 1U << i; 1321 i++; 1322 } 1323 } 1324 1325 return rewrite_ptrs; 1326 } 1327 1328 bool bch2_bkey_needs_rebalance(struct bch_fs *c, struct bkey_s_c k) 1329 { 1330 const struct bch_extent_rebalance *r = bch2_bkey_rebalance_opts(k); 1331 1332 /* 1333 * If it's an indirect extent, we don't delete the rebalance entry when 1334 * done so that we know what options were applied - check if it still 1335 * needs work done: 1336 */ 1337 if (r && 1338 k.k->type == KEY_TYPE_reflink_v && 1339 !bch2_bkey_ptrs_need_rebalance(c, k, r->target, r->compression)) 1340 r = NULL; 1341 1342 return r != NULL; 1343 } 1344 1345 int bch2_bkey_set_needs_rebalance(struct bch_fs *c, struct bkey_i *_k, 1346 unsigned target, unsigned compression) 1347 { 1348 struct bkey_s k = bkey_i_to_s(_k); 1349 struct bch_extent_rebalance *r; 1350 bool needs_rebalance; 1351 1352 if (!bkey_extent_is_direct_data(k.k)) 1353 return 0; 1354 1355 /* get existing rebalance entry: */ 1356 r = (struct bch_extent_rebalance *) bch2_bkey_rebalance_opts(k.s_c); 1357 if (r) { 1358 if (k.k->type == KEY_TYPE_reflink_v) { 1359 /* 1360 * indirect extents: existing options take precedence, 1361 * so that we don't move extents back and forth if 1362 * they're referenced by different inodes with different 1363 * options: 1364 */ 1365 if (r->target) 1366 target = r->target; 1367 if (r->compression) 1368 compression = r->compression; 1369 } 1370 1371 r->target = target; 1372 r->compression = compression; 1373 } 1374 1375 needs_rebalance = bch2_bkey_ptrs_need_rebalance(c, k.s_c, target, compression); 1376 1377 if (needs_rebalance && !r) { 1378 union bch_extent_entry *new = bkey_val_end(k); 1379 1380 new->rebalance.type = 1U << BCH_EXTENT_ENTRY_rebalance; 1381 new->rebalance.compression = compression; 1382 new->rebalance.target = target; 1383 new->rebalance.unused = 0; 1384 k.k->u64s += extent_entry_u64s(new); 1385 } else if (!needs_rebalance && r && k.k->type != KEY_TYPE_reflink_v) { 1386 /* 1387 * For indirect extents, don't delete the rebalance entry when 1388 * we're finished so that we know we specifically moved it or 1389 * compressed it to its current location/compression type 1390 */ 1391 extent_entry_drop(k, (union bch_extent_entry *) r); 1392 } 1393 1394 return 0; 1395 } 1396 1397 /* Generic extent code: */ 1398 1399 int bch2_cut_front_s(struct bpos where, struct bkey_s k) 1400 { 1401 unsigned new_val_u64s = bkey_val_u64s(k.k); 1402 int val_u64s_delta; 1403 u64 sub; 1404 1405 if (bkey_le(where, bkey_start_pos(k.k))) 1406 return 0; 1407 1408 EBUG_ON(bkey_gt(where, k.k->p)); 1409 1410 sub = where.offset - bkey_start_offset(k.k); 1411 1412 k.k->size -= sub; 1413 1414 if (!k.k->size) { 1415 k.k->type = KEY_TYPE_deleted; 1416 new_val_u64s = 0; 1417 } 1418 1419 switch (k.k->type) { 1420 case KEY_TYPE_extent: 1421 case KEY_TYPE_reflink_v: { 1422 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); 1423 union bch_extent_entry *entry; 1424 bool seen_crc = false; 1425 1426 bkey_extent_entry_for_each(ptrs, entry) { 1427 switch (extent_entry_type(entry)) { 1428 case BCH_EXTENT_ENTRY_ptr: 1429 if (!seen_crc) 1430 entry->ptr.offset += sub; 1431 break; 1432 case BCH_EXTENT_ENTRY_crc32: 1433 entry->crc32.offset += sub; 1434 break; 1435 case BCH_EXTENT_ENTRY_crc64: 1436 entry->crc64.offset += sub; 1437 break; 1438 case BCH_EXTENT_ENTRY_crc128: 1439 entry->crc128.offset += sub; 1440 break; 1441 case BCH_EXTENT_ENTRY_stripe_ptr: 1442 break; 1443 case BCH_EXTENT_ENTRY_rebalance: 1444 break; 1445 } 1446 1447 if (extent_entry_is_crc(entry)) 1448 seen_crc = true; 1449 } 1450 1451 break; 1452 } 1453 case KEY_TYPE_reflink_p: { 1454 struct bkey_s_reflink_p p = bkey_s_to_reflink_p(k); 1455 1456 le64_add_cpu(&p.v->idx, sub); 1457 break; 1458 } 1459 case KEY_TYPE_inline_data: 1460 case KEY_TYPE_indirect_inline_data: { 1461 void *p = bkey_inline_data_p(k); 1462 unsigned bytes = bkey_inline_data_bytes(k.k); 1463 1464 sub = min_t(u64, sub << 9, bytes); 1465 1466 memmove(p, p + sub, bytes - sub); 1467 1468 new_val_u64s -= sub >> 3; 1469 break; 1470 } 1471 } 1472 1473 val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s; 1474 BUG_ON(val_u64s_delta < 0); 1475 1476 set_bkey_val_u64s(k.k, new_val_u64s); 1477 memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64)); 1478 return -val_u64s_delta; 1479 } 1480 1481 int bch2_cut_back_s(struct bpos where, struct bkey_s k) 1482 { 1483 unsigned new_val_u64s = bkey_val_u64s(k.k); 1484 int val_u64s_delta; 1485 u64 len = 0; 1486 1487 if (bkey_ge(where, k.k->p)) 1488 return 0; 1489 1490 EBUG_ON(bkey_lt(where, bkey_start_pos(k.k))); 1491 1492 len = where.offset - bkey_start_offset(k.k); 1493 1494 k.k->p.offset = where.offset; 1495 k.k->size = len; 1496 1497 if (!len) { 1498 k.k->type = KEY_TYPE_deleted; 1499 new_val_u64s = 0; 1500 } 1501 1502 switch (k.k->type) { 1503 case KEY_TYPE_inline_data: 1504 case KEY_TYPE_indirect_inline_data: 1505 new_val_u64s = (bkey_inline_data_offset(k.k) + 1506 min(bkey_inline_data_bytes(k.k), k.k->size << 9)) >> 3; 1507 break; 1508 } 1509 1510 val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s; 1511 BUG_ON(val_u64s_delta < 0); 1512 1513 set_bkey_val_u64s(k.k, new_val_u64s); 1514 memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64)); 1515 return -val_u64s_delta; 1516 } 1517