1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "bcachefs_ioctl.h" 5 #include "btree_cache.h" 6 #include "btree_journal_iter.h" 7 #include "btree_update.h" 8 #include "btree_write_buffer.h" 9 #include "buckets.h" 10 #include "compress.h" 11 #include "disk_accounting.h" 12 #include "error.h" 13 #include "journal_io.h" 14 #include "replicas.h" 15 16 /* 17 * Notes on disk accounting: 18 * 19 * We have two parallel sets of counters to be concerned with, and both must be 20 * kept in sync. 21 * 22 * - Persistent/on disk accounting, stored in the accounting btree and updated 23 * via btree write buffer updates that treat new accounting keys as deltas to 24 * apply to existing values. But reading from a write buffer btree is 25 * expensive, so we also have 26 * 27 * - In memory accounting, where accounting is stored as an array of percpu 28 * counters, indexed by an eytzinger array of disk acounting keys/bpos (which 29 * are the same thing, excepting byte swabbing on big endian). 30 * 31 * Cheap to read, but non persistent. 32 * 33 * Disk accounting updates are generated by transactional triggers; these run as 34 * keys enter and leave the btree, and can compare old and new versions of keys; 35 * the output of these triggers are deltas to the various counters. 36 * 37 * Disk accounting updates are done as btree write buffer updates, where the 38 * counters in the disk accounting key are deltas that will be applied to the 39 * counter in the btree when the key is flushed by the write buffer (or journal 40 * replay). 41 * 42 * To do a disk accounting update: 43 * - initialize a disk_accounting_pos, to specify which counter is being update 44 * - initialize counter deltas, as an array of 1-3 s64s 45 * - call bch2_disk_accounting_mod() 46 * 47 * This queues up the accounting update to be done at transaction commit time. 48 * Underneath, it's a normal btree write buffer update. 49 * 50 * The transaction commit path is responsible for propagating updates to the in 51 * memory counters, with bch2_accounting_mem_mod(). 52 * 53 * The commit path also assigns every disk accounting update a unique version 54 * number, based on the journal sequence number and offset within that journal 55 * buffer; this is used by journal replay to determine which updates have been 56 * done. 57 * 58 * The transaction commit path also ensures that replicas entry accounting 59 * updates are properly marked in the superblock (so that we know whether we can 60 * mount without data being unavailable); it will update the superblock if 61 * bch2_accounting_mem_mod() tells it to. 62 */ 63 64 static const char * const disk_accounting_type_strs[] = { 65 #define x(t, n, ...) [n] = #t, 66 BCH_DISK_ACCOUNTING_TYPES() 67 #undef x 68 NULL 69 }; 70 71 static inline void accounting_key_init(struct bkey_i *k, struct disk_accounting_pos *pos, 72 s64 *d, unsigned nr) 73 { 74 struct bkey_i_accounting *acc = bkey_accounting_init(k); 75 76 acc->k.p = disk_accounting_pos_to_bpos(pos); 77 set_bkey_val_u64s(&acc->k, sizeof(struct bch_accounting) / sizeof(u64) + nr); 78 79 memcpy_u64s_small(acc->v.d, d, nr); 80 } 81 82 int bch2_disk_accounting_mod(struct btree_trans *trans, 83 struct disk_accounting_pos *k, 84 s64 *d, unsigned nr, bool gc) 85 { 86 /* Normalize: */ 87 switch (k->type) { 88 case BCH_DISK_ACCOUNTING_replicas: 89 bubble_sort(k->replicas.devs, k->replicas.nr_devs, u8_cmp); 90 break; 91 } 92 93 BUG_ON(nr > BCH_ACCOUNTING_MAX_COUNTERS); 94 95 struct { __BKEY_PADDED(k, BCH_ACCOUNTING_MAX_COUNTERS); } k_i; 96 97 accounting_key_init(&k_i.k, k, d, nr); 98 99 return likely(!gc) 100 ? bch2_trans_update_buffered(trans, BTREE_ID_accounting, &k_i.k) 101 : bch2_accounting_mem_add(trans, bkey_i_to_s_c_accounting(&k_i.k), true); 102 } 103 104 int bch2_mod_dev_cached_sectors(struct btree_trans *trans, 105 unsigned dev, s64 sectors, 106 bool gc) 107 { 108 struct disk_accounting_pos acc = { 109 .type = BCH_DISK_ACCOUNTING_replicas, 110 }; 111 112 bch2_replicas_entry_cached(&acc.replicas, dev); 113 114 return bch2_disk_accounting_mod(trans, &acc, §ors, 1, gc); 115 } 116 117 static inline bool is_zero(char *start, char *end) 118 { 119 BUG_ON(start > end); 120 121 for (; start < end; start++) 122 if (*start) 123 return false; 124 return true; 125 } 126 127 #define field_end(p, member) (((void *) (&p.member)) + sizeof(p.member)) 128 129 int bch2_accounting_validate(struct bch_fs *c, struct bkey_s_c k, 130 enum bch_validate_flags flags) 131 { 132 struct disk_accounting_pos acc_k; 133 bpos_to_disk_accounting_pos(&acc_k, k.k->p); 134 void *end = &acc_k + 1; 135 int ret = 0; 136 137 switch (acc_k.type) { 138 case BCH_DISK_ACCOUNTING_nr_inodes: 139 end = field_end(acc_k, nr_inodes); 140 break; 141 case BCH_DISK_ACCOUNTING_persistent_reserved: 142 end = field_end(acc_k, persistent_reserved); 143 break; 144 case BCH_DISK_ACCOUNTING_replicas: 145 bkey_fsck_err_on(!acc_k.replicas.nr_devs, 146 c, accounting_key_replicas_nr_devs_0, 147 "accounting key replicas entry with nr_devs=0"); 148 149 bkey_fsck_err_on(acc_k.replicas.nr_required > acc_k.replicas.nr_devs || 150 (acc_k.replicas.nr_required > 1 && 151 acc_k.replicas.nr_required == acc_k.replicas.nr_devs), 152 c, accounting_key_replicas_nr_required_bad, 153 "accounting key replicas entry with bad nr_required"); 154 155 for (unsigned i = 0; i + 1 < acc_k.replicas.nr_devs; i++) 156 bkey_fsck_err_on(acc_k.replicas.devs[i] >= acc_k.replicas.devs[i + 1], 157 c, accounting_key_replicas_devs_unsorted, 158 "accounting key replicas entry with unsorted devs"); 159 160 end = (void *) &acc_k.replicas + replicas_entry_bytes(&acc_k.replicas); 161 break; 162 case BCH_DISK_ACCOUNTING_dev_data_type: 163 end = field_end(acc_k, dev_data_type); 164 break; 165 case BCH_DISK_ACCOUNTING_compression: 166 end = field_end(acc_k, compression); 167 break; 168 case BCH_DISK_ACCOUNTING_snapshot: 169 end = field_end(acc_k, snapshot); 170 break; 171 case BCH_DISK_ACCOUNTING_btree: 172 end = field_end(acc_k, btree); 173 break; 174 case BCH_DISK_ACCOUNTING_rebalance_work: 175 end = field_end(acc_k, rebalance_work); 176 break; 177 } 178 179 bkey_fsck_err_on(!is_zero(end, (void *) (&acc_k + 1)), 180 c, accounting_key_junk_at_end, 181 "junk at end of accounting key"); 182 fsck_err: 183 return ret; 184 } 185 186 void bch2_accounting_key_to_text(struct printbuf *out, struct disk_accounting_pos *k) 187 { 188 if (k->type >= BCH_DISK_ACCOUNTING_TYPE_NR) { 189 prt_printf(out, "unknown type %u", k->type); 190 return; 191 } 192 193 prt_str(out, disk_accounting_type_strs[k->type]); 194 prt_str(out, " "); 195 196 switch (k->type) { 197 case BCH_DISK_ACCOUNTING_nr_inodes: 198 break; 199 case BCH_DISK_ACCOUNTING_persistent_reserved: 200 prt_printf(out, "replicas=%u", k->persistent_reserved.nr_replicas); 201 break; 202 case BCH_DISK_ACCOUNTING_replicas: 203 bch2_replicas_entry_to_text(out, &k->replicas); 204 break; 205 case BCH_DISK_ACCOUNTING_dev_data_type: 206 prt_printf(out, "dev=%u data_type=", k->dev_data_type.dev); 207 bch2_prt_data_type(out, k->dev_data_type.data_type); 208 break; 209 case BCH_DISK_ACCOUNTING_compression: 210 bch2_prt_compression_type(out, k->compression.type); 211 break; 212 case BCH_DISK_ACCOUNTING_snapshot: 213 prt_printf(out, "id=%u", k->snapshot.id); 214 break; 215 case BCH_DISK_ACCOUNTING_btree: 216 prt_printf(out, "btree=%s", bch2_btree_id_str(k->btree.id)); 217 break; 218 } 219 } 220 221 void bch2_accounting_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k) 222 { 223 struct bkey_s_c_accounting acc = bkey_s_c_to_accounting(k); 224 struct disk_accounting_pos acc_k; 225 bpos_to_disk_accounting_pos(&acc_k, k.k->p); 226 227 bch2_accounting_key_to_text(out, &acc_k); 228 229 for (unsigned i = 0; i < bch2_accounting_counters(k.k); i++) 230 prt_printf(out, " %lli", acc.v->d[i]); 231 } 232 233 void bch2_accounting_swab(struct bkey_s k) 234 { 235 for (u64 *p = (u64 *) k.v; 236 p < (u64 *) bkey_val_end(k); 237 p++) 238 *p = swab64(*p); 239 } 240 241 static inline bool accounting_to_replicas(struct bch_replicas_entry_v1 *r, struct bpos p) 242 { 243 struct disk_accounting_pos acc_k; 244 bpos_to_disk_accounting_pos(&acc_k, p); 245 246 switch (acc_k.type) { 247 case BCH_DISK_ACCOUNTING_replicas: 248 unsafe_memcpy(r, &acc_k.replicas, 249 replicas_entry_bytes(&acc_k.replicas), 250 "variable length struct"); 251 return true; 252 default: 253 return false; 254 } 255 } 256 257 static int bch2_accounting_update_sb_one(struct bch_fs *c, struct bpos p) 258 { 259 struct bch_replicas_padded r; 260 return accounting_to_replicas(&r.e, p) 261 ? bch2_mark_replicas(c, &r.e) 262 : 0; 263 } 264 265 /* 266 * Ensure accounting keys being updated are present in the superblock, when 267 * applicable (i.e. replicas updates) 268 */ 269 int bch2_accounting_update_sb(struct btree_trans *trans) 270 { 271 for (struct jset_entry *i = trans->journal_entries; 272 i != (void *) ((u64 *) trans->journal_entries + trans->journal_entries_u64s); 273 i = vstruct_next(i)) 274 if (jset_entry_is_key(i) && i->start->k.type == KEY_TYPE_accounting) { 275 int ret = bch2_accounting_update_sb_one(trans->c, i->start->k.p); 276 if (ret) 277 return ret; 278 } 279 280 return 0; 281 } 282 283 static int __bch2_accounting_mem_insert(struct bch_fs *c, struct bkey_s_c_accounting a) 284 { 285 struct bch_accounting_mem *acc = &c->accounting; 286 287 /* raced with another insert, already present: */ 288 if (eytzinger0_find(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]), 289 accounting_pos_cmp, &a.k->p) < acc->k.nr) 290 return 0; 291 292 struct accounting_mem_entry n = { 293 .pos = a.k->p, 294 .version = a.k->version, 295 .nr_counters = bch2_accounting_counters(a.k), 296 .v[0] = __alloc_percpu_gfp(n.nr_counters * sizeof(u64), 297 sizeof(u64), GFP_KERNEL), 298 }; 299 300 if (!n.v[0]) 301 goto err; 302 303 if (acc->gc_running) { 304 n.v[1] = __alloc_percpu_gfp(n.nr_counters * sizeof(u64), 305 sizeof(u64), GFP_KERNEL); 306 if (!n.v[1]) 307 goto err; 308 } 309 310 if (darray_push(&acc->k, n)) 311 goto err; 312 313 eytzinger0_sort(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]), 314 accounting_pos_cmp, NULL); 315 return 0; 316 err: 317 free_percpu(n.v[1]); 318 free_percpu(n.v[0]); 319 return -BCH_ERR_ENOMEM_disk_accounting; 320 } 321 322 int bch2_accounting_mem_insert(struct bch_fs *c, struct bkey_s_c_accounting a, bool gc) 323 { 324 struct bch_replicas_padded r; 325 326 if (accounting_to_replicas(&r.e, a.k->p) && 327 !bch2_replicas_marked_locked(c, &r.e)) 328 return -BCH_ERR_btree_insert_need_mark_replicas; 329 330 percpu_up_read(&c->mark_lock); 331 percpu_down_write(&c->mark_lock); 332 int ret = __bch2_accounting_mem_insert(c, a); 333 percpu_up_write(&c->mark_lock); 334 percpu_down_read(&c->mark_lock); 335 return ret; 336 } 337 338 static bool accounting_mem_entry_is_zero(struct accounting_mem_entry *e) 339 { 340 for (unsigned i = 0; i < e->nr_counters; i++) 341 if (percpu_u64_get(e->v[0] + i) || 342 (e->v[1] && 343 percpu_u64_get(e->v[1] + i))) 344 return false; 345 return true; 346 } 347 348 void bch2_accounting_mem_gc(struct bch_fs *c) 349 { 350 struct bch_accounting_mem *acc = &c->accounting; 351 352 percpu_down_write(&c->mark_lock); 353 struct accounting_mem_entry *dst = acc->k.data; 354 355 darray_for_each(acc->k, src) { 356 if (accounting_mem_entry_is_zero(src)) { 357 free_percpu(src->v[0]); 358 free_percpu(src->v[1]); 359 } else { 360 *dst++ = *src; 361 } 362 } 363 364 acc->k.nr = dst - acc->k.data; 365 eytzinger0_sort(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]), 366 accounting_pos_cmp, NULL); 367 percpu_up_write(&c->mark_lock); 368 } 369 370 /* 371 * Read out accounting keys for replicas entries, as an array of 372 * bch_replicas_usage entries. 373 * 374 * Note: this may be deprecated/removed at smoe point in the future and replaced 375 * with something more general, it exists to support the ioctl used by the 376 * 'bcachefs fs usage' command. 377 */ 378 int bch2_fs_replicas_usage_read(struct bch_fs *c, darray_char *usage) 379 { 380 struct bch_accounting_mem *acc = &c->accounting; 381 int ret = 0; 382 383 darray_init(usage); 384 385 percpu_down_read(&c->mark_lock); 386 darray_for_each(acc->k, i) { 387 struct { 388 struct bch_replicas_usage r; 389 u8 pad[BCH_BKEY_PTRS_MAX]; 390 } u; 391 392 if (!accounting_to_replicas(&u.r.r, i->pos)) 393 continue; 394 395 u64 sectors; 396 bch2_accounting_mem_read_counters(acc, i - acc->k.data, §ors, 1, false); 397 u.r.sectors = sectors; 398 399 ret = darray_make_room(usage, replicas_usage_bytes(&u.r)); 400 if (ret) 401 break; 402 403 memcpy(&darray_top(*usage), &u.r, replicas_usage_bytes(&u.r)); 404 usage->nr += replicas_usage_bytes(&u.r); 405 } 406 percpu_up_read(&c->mark_lock); 407 408 if (ret) 409 darray_exit(usage); 410 return ret; 411 } 412 413 int bch2_fs_accounting_read(struct bch_fs *c, darray_char *out_buf, unsigned accounting_types_mask) 414 { 415 416 struct bch_accounting_mem *acc = &c->accounting; 417 int ret = 0; 418 419 darray_init(out_buf); 420 421 percpu_down_read(&c->mark_lock); 422 darray_for_each(acc->k, i) { 423 struct disk_accounting_pos a_p; 424 bpos_to_disk_accounting_pos(&a_p, i->pos); 425 426 if (!(accounting_types_mask & BIT(a_p.type))) 427 continue; 428 429 ret = darray_make_room(out_buf, sizeof(struct bkey_i_accounting) + 430 sizeof(u64) * i->nr_counters); 431 if (ret) 432 break; 433 434 struct bkey_i_accounting *a_out = 435 bkey_accounting_init((void *) &darray_top(*out_buf)); 436 set_bkey_val_u64s(&a_out->k, i->nr_counters); 437 a_out->k.p = i->pos; 438 bch2_accounting_mem_read_counters(acc, i - acc->k.data, 439 a_out->v.d, i->nr_counters, false); 440 441 if (!bch2_accounting_key_is_zero(accounting_i_to_s_c(a_out))) 442 out_buf->nr += bkey_bytes(&a_out->k); 443 } 444 445 percpu_up_read(&c->mark_lock); 446 447 if (ret) 448 darray_exit(out_buf); 449 return ret; 450 } 451 452 void bch2_fs_accounting_to_text(struct printbuf *out, struct bch_fs *c) 453 { 454 struct bch_accounting_mem *acc = &c->accounting; 455 456 percpu_down_read(&c->mark_lock); 457 out->atomic++; 458 459 eytzinger0_for_each(i, acc->k.nr) { 460 struct disk_accounting_pos acc_k; 461 bpos_to_disk_accounting_pos(&acc_k, acc->k.data[i].pos); 462 463 bch2_accounting_key_to_text(out, &acc_k); 464 465 u64 v[BCH_ACCOUNTING_MAX_COUNTERS]; 466 bch2_accounting_mem_read_counters(acc, i, v, ARRAY_SIZE(v), false); 467 468 prt_str(out, ":"); 469 for (unsigned j = 0; j < acc->k.data[i].nr_counters; j++) 470 prt_printf(out, " %llu", v[j]); 471 prt_newline(out); 472 } 473 474 --out->atomic; 475 percpu_up_read(&c->mark_lock); 476 } 477 478 static void bch2_accounting_free_counters(struct bch_accounting_mem *acc, bool gc) 479 { 480 darray_for_each(acc->k, e) { 481 free_percpu(e->v[gc]); 482 e->v[gc] = NULL; 483 } 484 } 485 486 int bch2_gc_accounting_start(struct bch_fs *c) 487 { 488 struct bch_accounting_mem *acc = &c->accounting; 489 int ret = 0; 490 491 percpu_down_write(&c->mark_lock); 492 darray_for_each(acc->k, e) { 493 e->v[1] = __alloc_percpu_gfp(e->nr_counters * sizeof(u64), 494 sizeof(u64), GFP_KERNEL); 495 if (!e->v[1]) { 496 bch2_accounting_free_counters(acc, true); 497 ret = -BCH_ERR_ENOMEM_disk_accounting; 498 break; 499 } 500 } 501 502 acc->gc_running = !ret; 503 percpu_up_write(&c->mark_lock); 504 505 return ret; 506 } 507 508 int bch2_gc_accounting_done(struct bch_fs *c) 509 { 510 struct bch_accounting_mem *acc = &c->accounting; 511 struct btree_trans *trans = bch2_trans_get(c); 512 struct printbuf buf = PRINTBUF; 513 struct bpos pos = POS_MIN; 514 int ret = 0; 515 516 percpu_down_write(&c->mark_lock); 517 while (1) { 518 unsigned idx = eytzinger0_find_ge(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]), 519 accounting_pos_cmp, &pos); 520 521 if (idx >= acc->k.nr) 522 break; 523 524 struct accounting_mem_entry *e = acc->k.data + idx; 525 pos = bpos_successor(e->pos); 526 527 struct disk_accounting_pos acc_k; 528 bpos_to_disk_accounting_pos(&acc_k, e->pos); 529 530 if (acc_k.type >= BCH_DISK_ACCOUNTING_TYPE_NR) 531 continue; 532 533 u64 src_v[BCH_ACCOUNTING_MAX_COUNTERS]; 534 u64 dst_v[BCH_ACCOUNTING_MAX_COUNTERS]; 535 536 unsigned nr = e->nr_counters; 537 bch2_accounting_mem_read_counters(acc, idx, dst_v, nr, false); 538 bch2_accounting_mem_read_counters(acc, idx, src_v, nr, true); 539 540 if (memcmp(dst_v, src_v, nr * sizeof(u64))) { 541 printbuf_reset(&buf); 542 prt_str(&buf, "accounting mismatch for "); 543 bch2_accounting_key_to_text(&buf, &acc_k); 544 545 prt_str(&buf, ": got"); 546 for (unsigned j = 0; j < nr; j++) 547 prt_printf(&buf, " %llu", dst_v[j]); 548 549 prt_str(&buf, " should be"); 550 for (unsigned j = 0; j < nr; j++) 551 prt_printf(&buf, " %llu", src_v[j]); 552 553 for (unsigned j = 0; j < nr; j++) 554 src_v[j] -= dst_v[j]; 555 556 if (fsck_err(trans, accounting_mismatch, "%s", buf.buf)) { 557 percpu_up_write(&c->mark_lock); 558 ret = commit_do(trans, NULL, NULL, 0, 559 bch2_disk_accounting_mod(trans, &acc_k, src_v, nr, false)); 560 percpu_down_write(&c->mark_lock); 561 if (ret) 562 goto err; 563 564 if (!test_bit(BCH_FS_may_go_rw, &c->flags)) { 565 memset(&trans->fs_usage_delta, 0, sizeof(trans->fs_usage_delta)); 566 struct { __BKEY_PADDED(k, BCH_ACCOUNTING_MAX_COUNTERS); } k_i; 567 568 accounting_key_init(&k_i.k, &acc_k, src_v, nr); 569 bch2_accounting_mem_mod_locked(trans, bkey_i_to_s_c_accounting(&k_i.k), false, false); 570 571 preempt_disable(); 572 struct bch_fs_usage_base *dst = this_cpu_ptr(c->usage); 573 struct bch_fs_usage_base *src = &trans->fs_usage_delta; 574 acc_u64s((u64 *) dst, (u64 *) src, sizeof(*src) / sizeof(u64)); 575 preempt_enable(); 576 } 577 } 578 } 579 } 580 err: 581 fsck_err: 582 percpu_up_write(&c->mark_lock); 583 printbuf_exit(&buf); 584 bch2_trans_put(trans); 585 bch_err_fn(c, ret); 586 return ret; 587 } 588 589 static int accounting_read_key(struct btree_trans *trans, struct bkey_s_c k) 590 { 591 struct bch_fs *c = trans->c; 592 struct printbuf buf = PRINTBUF; 593 594 if (k.k->type != KEY_TYPE_accounting) 595 return 0; 596 597 percpu_down_read(&c->mark_lock); 598 int ret = bch2_accounting_mem_mod_locked(trans, bkey_s_c_to_accounting(k), false, true); 599 percpu_up_read(&c->mark_lock); 600 601 if (bch2_accounting_key_is_zero(bkey_s_c_to_accounting(k)) && 602 ret == -BCH_ERR_btree_insert_need_mark_replicas) 603 ret = 0; 604 605 struct disk_accounting_pos acc; 606 bpos_to_disk_accounting_pos(&acc, k.k->p); 607 608 if (fsck_err_on(ret == -BCH_ERR_btree_insert_need_mark_replicas, 609 trans, accounting_replicas_not_marked, 610 "accounting not marked in superblock replicas\n %s", 611 (bch2_accounting_key_to_text(&buf, &acc), 612 buf.buf))) 613 ret = bch2_accounting_update_sb_one(c, k.k->p); 614 fsck_err: 615 printbuf_exit(&buf); 616 return ret; 617 } 618 619 /* 620 * At startup time, initialize the in memory accounting from the btree (and 621 * journal) 622 */ 623 int bch2_accounting_read(struct bch_fs *c) 624 { 625 struct bch_accounting_mem *acc = &c->accounting; 626 struct btree_trans *trans = bch2_trans_get(c); 627 628 int ret = for_each_btree_key(trans, iter, 629 BTREE_ID_accounting, POS_MIN, 630 BTREE_ITER_prefetch|BTREE_ITER_all_snapshots, k, ({ 631 struct bkey u; 632 struct bkey_s_c k = bch2_btree_path_peek_slot_exact(btree_iter_path(trans, &iter), &u); 633 accounting_read_key(trans, k); 634 })); 635 if (ret) 636 goto err; 637 638 struct journal_keys *keys = &c->journal_keys; 639 struct journal_key *dst = keys->data; 640 move_gap(keys, keys->nr); 641 642 darray_for_each(*keys, i) { 643 if (i->k->k.type == KEY_TYPE_accounting) { 644 struct bkey_s_c k = bkey_i_to_s_c(i->k); 645 unsigned idx = eytzinger0_find(acc->k.data, acc->k.nr, 646 sizeof(acc->k.data[0]), 647 accounting_pos_cmp, &k.k->p); 648 649 bool applied = idx < acc->k.nr && 650 bversion_cmp(acc->k.data[idx].version, k.k->version) >= 0; 651 652 if (applied) 653 continue; 654 655 if (i + 1 < &darray_top(*keys) && 656 i[1].k->k.type == KEY_TYPE_accounting && 657 !journal_key_cmp(i, i + 1)) { 658 BUG_ON(bversion_cmp(i[0].k->k.version, i[1].k->k.version) >= 0); 659 660 i[1].journal_seq = i[0].journal_seq; 661 662 bch2_accounting_accumulate(bkey_i_to_accounting(i[1].k), 663 bkey_s_c_to_accounting(k)); 664 continue; 665 } 666 667 ret = accounting_read_key(trans, k); 668 if (ret) 669 goto err; 670 } 671 672 *dst++ = *i; 673 } 674 keys->gap = keys->nr = dst - keys->data; 675 676 percpu_down_read(&c->mark_lock); 677 preempt_disable(); 678 struct bch_fs_usage_base *usage = this_cpu_ptr(c->usage); 679 680 for (unsigned i = 0; i < acc->k.nr; i++) { 681 struct disk_accounting_pos k; 682 bpos_to_disk_accounting_pos(&k, acc->k.data[i].pos); 683 684 u64 v[BCH_ACCOUNTING_MAX_COUNTERS]; 685 bch2_accounting_mem_read_counters(acc, i, v, ARRAY_SIZE(v), false); 686 687 switch (k.type) { 688 case BCH_DISK_ACCOUNTING_persistent_reserved: 689 usage->reserved += v[0] * k.persistent_reserved.nr_replicas; 690 break; 691 case BCH_DISK_ACCOUNTING_replicas: 692 fs_usage_data_type_to_base(usage, k.replicas.data_type, v[0]); 693 break; 694 case BCH_DISK_ACCOUNTING_dev_data_type: 695 rcu_read_lock(); 696 struct bch_dev *ca = bch2_dev_rcu(c, k.dev_data_type.dev); 697 if (ca) { 698 struct bch_dev_usage_type __percpu *d = &ca->usage->d[k.dev_data_type.data_type]; 699 percpu_u64_set(&d->buckets, v[0]); 700 percpu_u64_set(&d->sectors, v[1]); 701 percpu_u64_set(&d->fragmented, v[2]); 702 703 if (k.dev_data_type.data_type == BCH_DATA_sb || 704 k.dev_data_type.data_type == BCH_DATA_journal) 705 usage->hidden += v[0] * ca->mi.bucket_size; 706 } 707 rcu_read_unlock(); 708 break; 709 } 710 } 711 preempt_enable(); 712 percpu_up_read(&c->mark_lock); 713 err: 714 bch2_trans_put(trans); 715 bch_err_fn(c, ret); 716 return ret; 717 } 718 719 int bch2_dev_usage_remove(struct bch_fs *c, unsigned dev) 720 { 721 return bch2_trans_run(c, 722 bch2_btree_write_buffer_flush_sync(trans) ?: 723 for_each_btree_key_commit(trans, iter, BTREE_ID_accounting, POS_MIN, 724 BTREE_ITER_all_snapshots, k, NULL, NULL, 0, ({ 725 struct disk_accounting_pos acc; 726 bpos_to_disk_accounting_pos(&acc, k.k->p); 727 728 acc.type == BCH_DISK_ACCOUNTING_dev_data_type && 729 acc.dev_data_type.dev == dev 730 ? bch2_btree_bit_mod_buffered(trans, BTREE_ID_accounting, k.k->p, 0) 731 : 0; 732 })) ?: 733 bch2_btree_write_buffer_flush_sync(trans)); 734 } 735 736 int bch2_dev_usage_init(struct bch_dev *ca, bool gc) 737 { 738 struct bch_fs *c = ca->fs; 739 struct disk_accounting_pos acc = { 740 .type = BCH_DISK_ACCOUNTING_dev_data_type, 741 .dev_data_type.dev = ca->dev_idx, 742 .dev_data_type.data_type = BCH_DATA_free, 743 }; 744 u64 v[3] = { ca->mi.nbuckets - ca->mi.first_bucket, 0, 0 }; 745 746 int ret = bch2_trans_do(c, NULL, NULL, 0, 747 bch2_disk_accounting_mod(trans, &acc, v, ARRAY_SIZE(v), gc)); 748 bch_err_fn(c, ret); 749 return ret; 750 } 751 752 void bch2_verify_accounting_clean(struct bch_fs *c) 753 { 754 bool mismatch = false; 755 struct bch_fs_usage_base base = {}, base_inmem = {}; 756 757 bch2_trans_run(c, 758 for_each_btree_key(trans, iter, 759 BTREE_ID_accounting, POS_MIN, 760 BTREE_ITER_all_snapshots, k, ({ 761 u64 v[BCH_ACCOUNTING_MAX_COUNTERS]; 762 struct bkey_s_c_accounting a = bkey_s_c_to_accounting(k); 763 unsigned nr = bch2_accounting_counters(k.k); 764 765 struct disk_accounting_pos acc_k; 766 bpos_to_disk_accounting_pos(&acc_k, k.k->p); 767 768 if (acc_k.type >= BCH_DISK_ACCOUNTING_TYPE_NR) 769 continue; 770 771 if (acc_k.type == BCH_DISK_ACCOUNTING_inum) 772 continue; 773 774 bch2_accounting_mem_read(c, k.k->p, v, nr); 775 776 if (memcmp(a.v->d, v, nr * sizeof(u64))) { 777 struct printbuf buf = PRINTBUF; 778 779 bch2_bkey_val_to_text(&buf, c, k); 780 prt_str(&buf, " !="); 781 for (unsigned j = 0; j < nr; j++) 782 prt_printf(&buf, " %llu", v[j]); 783 784 pr_err("%s", buf.buf); 785 printbuf_exit(&buf); 786 mismatch = true; 787 } 788 789 switch (acc_k.type) { 790 case BCH_DISK_ACCOUNTING_persistent_reserved: 791 base.reserved += acc_k.persistent_reserved.nr_replicas * a.v->d[0]; 792 break; 793 case BCH_DISK_ACCOUNTING_replicas: 794 fs_usage_data_type_to_base(&base, acc_k.replicas.data_type, a.v->d[0]); 795 break; 796 case BCH_DISK_ACCOUNTING_dev_data_type: { 797 rcu_read_lock(); 798 struct bch_dev *ca = bch2_dev_rcu(c, acc_k.dev_data_type.dev); 799 if (!ca) { 800 rcu_read_unlock(); 801 continue; 802 } 803 804 v[0] = percpu_u64_get(&ca->usage->d[acc_k.dev_data_type.data_type].buckets); 805 v[1] = percpu_u64_get(&ca->usage->d[acc_k.dev_data_type.data_type].sectors); 806 v[2] = percpu_u64_get(&ca->usage->d[acc_k.dev_data_type.data_type].fragmented); 807 rcu_read_unlock(); 808 809 if (memcmp(a.v->d, v, 3 * sizeof(u64))) { 810 struct printbuf buf = PRINTBUF; 811 812 bch2_bkey_val_to_text(&buf, c, k); 813 prt_str(&buf, " in mem"); 814 for (unsigned j = 0; j < nr; j++) 815 prt_printf(&buf, " %llu", v[j]); 816 817 pr_err("dev accounting mismatch: %s", buf.buf); 818 printbuf_exit(&buf); 819 mismatch = true; 820 } 821 } 822 } 823 824 0; 825 }))); 826 827 acc_u64s_percpu(&base_inmem.hidden, &c->usage->hidden, sizeof(base_inmem) / sizeof(u64)); 828 829 #define check(x) \ 830 if (base.x != base_inmem.x) { \ 831 pr_err("fs_usage_base.%s mismatch: %llu != %llu", #x, base.x, base_inmem.x); \ 832 mismatch = true; \ 833 } 834 835 //check(hidden); 836 check(btree); 837 check(data); 838 check(cached); 839 check(reserved); 840 check(nr_inodes); 841 842 WARN_ON(mismatch); 843 } 844 845 void bch2_accounting_gc_free(struct bch_fs *c) 846 { 847 lockdep_assert_held(&c->mark_lock); 848 849 struct bch_accounting_mem *acc = &c->accounting; 850 851 bch2_accounting_free_counters(acc, true); 852 acc->gc_running = false; 853 } 854 855 void bch2_fs_accounting_exit(struct bch_fs *c) 856 { 857 struct bch_accounting_mem *acc = &c->accounting; 858 859 bch2_accounting_free_counters(acc, false); 860 darray_exit(&acc->k); 861 } 862