1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "bcachefs_ioctl.h" 5 #include "btree_cache.h" 6 #include "btree_journal_iter.h" 7 #include "btree_update.h" 8 #include "btree_write_buffer.h" 9 #include "buckets.h" 10 #include "compress.h" 11 #include "disk_accounting.h" 12 #include "error.h" 13 #include "journal_io.h" 14 #include "replicas.h" 15 16 /* 17 * Notes on disk accounting: 18 * 19 * We have two parallel sets of counters to be concerned with, and both must be 20 * kept in sync. 21 * 22 * - Persistent/on disk accounting, stored in the accounting btree and updated 23 * via btree write buffer updates that treat new accounting keys as deltas to 24 * apply to existing values. But reading from a write buffer btree is 25 * expensive, so we also have 26 * 27 * - In memory accounting, where accounting is stored as an array of percpu 28 * counters, indexed by an eytzinger array of disk acounting keys/bpos (which 29 * are the same thing, excepting byte swabbing on big endian). 30 * 31 * Cheap to read, but non persistent. 32 * 33 * Disk accounting updates are generated by transactional triggers; these run as 34 * keys enter and leave the btree, and can compare old and new versions of keys; 35 * the output of these triggers are deltas to the various counters. 36 * 37 * Disk accounting updates are done as btree write buffer updates, where the 38 * counters in the disk accounting key are deltas that will be applied to the 39 * counter in the btree when the key is flushed by the write buffer (or journal 40 * replay). 41 * 42 * To do a disk accounting update: 43 * - initialize a disk_accounting_pos, to specify which counter is being update 44 * - initialize counter deltas, as an array of 1-3 s64s 45 * - call bch2_disk_accounting_mod() 46 * 47 * This queues up the accounting update to be done at transaction commit time. 48 * Underneath, it's a normal btree write buffer update. 49 * 50 * The transaction commit path is responsible for propagating updates to the in 51 * memory counters, with bch2_accounting_mem_mod(). 52 * 53 * The commit path also assigns every disk accounting update a unique version 54 * number, based on the journal sequence number and offset within that journal 55 * buffer; this is used by journal replay to determine which updates have been 56 * done. 57 * 58 * The transaction commit path also ensures that replicas entry accounting 59 * updates are properly marked in the superblock (so that we know whether we can 60 * mount without data being unavailable); it will update the superblock if 61 * bch2_accounting_mem_mod() tells it to. 62 */ 63 64 static const char * const disk_accounting_type_strs[] = { 65 #define x(t, n, ...) [n] = #t, 66 BCH_DISK_ACCOUNTING_TYPES() 67 #undef x 68 NULL 69 }; 70 71 static inline void accounting_key_init(struct bkey_i *k, struct disk_accounting_pos *pos, 72 s64 *d, unsigned nr) 73 { 74 struct bkey_i_accounting *acc = bkey_accounting_init(k); 75 76 acc->k.p = disk_accounting_pos_to_bpos(pos); 77 set_bkey_val_u64s(&acc->k, sizeof(struct bch_accounting) / sizeof(u64) + nr); 78 79 memcpy_u64s_small(acc->v.d, d, nr); 80 } 81 82 int bch2_disk_accounting_mod(struct btree_trans *trans, 83 struct disk_accounting_pos *k, 84 s64 *d, unsigned nr, bool gc) 85 { 86 /* Normalize: */ 87 switch (k->type) { 88 case BCH_DISK_ACCOUNTING_replicas: 89 bubble_sort(k->replicas.devs, k->replicas.nr_devs, u8_cmp); 90 break; 91 } 92 93 BUG_ON(nr > BCH_ACCOUNTING_MAX_COUNTERS); 94 95 struct { __BKEY_PADDED(k, BCH_ACCOUNTING_MAX_COUNTERS); } k_i; 96 97 accounting_key_init(&k_i.k, k, d, nr); 98 99 return likely(!gc) 100 ? bch2_trans_update_buffered(trans, BTREE_ID_accounting, &k_i.k) 101 : bch2_accounting_mem_add(trans, bkey_i_to_s_c_accounting(&k_i.k), true); 102 } 103 104 int bch2_mod_dev_cached_sectors(struct btree_trans *trans, 105 unsigned dev, s64 sectors, 106 bool gc) 107 { 108 struct disk_accounting_pos acc = { 109 .type = BCH_DISK_ACCOUNTING_replicas, 110 }; 111 112 bch2_replicas_entry_cached(&acc.replicas, dev); 113 114 return bch2_disk_accounting_mod(trans, &acc, §ors, 1, gc); 115 } 116 117 static inline bool is_zero(char *start, char *end) 118 { 119 BUG_ON(start > end); 120 121 for (; start < end; start++) 122 if (*start) 123 return false; 124 return true; 125 } 126 127 #define field_end(p, member) (((void *) (&p.member)) + sizeof(p.member)) 128 129 int bch2_accounting_validate(struct bch_fs *c, struct bkey_s_c k, 130 enum bch_validate_flags flags) 131 { 132 struct disk_accounting_pos acc_k; 133 bpos_to_disk_accounting_pos(&acc_k, k.k->p); 134 void *end = &acc_k + 1; 135 int ret = 0; 136 137 bkey_fsck_err_on(bversion_zero(k.k->bversion), 138 c, accounting_key_version_0, 139 "accounting key with version=0"); 140 141 switch (acc_k.type) { 142 case BCH_DISK_ACCOUNTING_nr_inodes: 143 end = field_end(acc_k, nr_inodes); 144 break; 145 case BCH_DISK_ACCOUNTING_persistent_reserved: 146 end = field_end(acc_k, persistent_reserved); 147 break; 148 case BCH_DISK_ACCOUNTING_replicas: 149 bkey_fsck_err_on(!acc_k.replicas.nr_devs, 150 c, accounting_key_replicas_nr_devs_0, 151 "accounting key replicas entry with nr_devs=0"); 152 153 bkey_fsck_err_on(acc_k.replicas.nr_required > acc_k.replicas.nr_devs || 154 (acc_k.replicas.nr_required > 1 && 155 acc_k.replicas.nr_required == acc_k.replicas.nr_devs), 156 c, accounting_key_replicas_nr_required_bad, 157 "accounting key replicas entry with bad nr_required"); 158 159 for (unsigned i = 0; i + 1 < acc_k.replicas.nr_devs; i++) 160 bkey_fsck_err_on(acc_k.replicas.devs[i] >= acc_k.replicas.devs[i + 1], 161 c, accounting_key_replicas_devs_unsorted, 162 "accounting key replicas entry with unsorted devs"); 163 164 end = (void *) &acc_k.replicas + replicas_entry_bytes(&acc_k.replicas); 165 break; 166 case BCH_DISK_ACCOUNTING_dev_data_type: 167 end = field_end(acc_k, dev_data_type); 168 break; 169 case BCH_DISK_ACCOUNTING_compression: 170 end = field_end(acc_k, compression); 171 break; 172 case BCH_DISK_ACCOUNTING_snapshot: 173 end = field_end(acc_k, snapshot); 174 break; 175 case BCH_DISK_ACCOUNTING_btree: 176 end = field_end(acc_k, btree); 177 break; 178 case BCH_DISK_ACCOUNTING_rebalance_work: 179 end = field_end(acc_k, rebalance_work); 180 break; 181 } 182 183 bkey_fsck_err_on(!is_zero(end, (void *) (&acc_k + 1)), 184 c, accounting_key_junk_at_end, 185 "junk at end of accounting key"); 186 fsck_err: 187 return ret; 188 } 189 190 void bch2_accounting_key_to_text(struct printbuf *out, struct disk_accounting_pos *k) 191 { 192 if (k->type >= BCH_DISK_ACCOUNTING_TYPE_NR) { 193 prt_printf(out, "unknown type %u", k->type); 194 return; 195 } 196 197 prt_str(out, disk_accounting_type_strs[k->type]); 198 prt_str(out, " "); 199 200 switch (k->type) { 201 case BCH_DISK_ACCOUNTING_nr_inodes: 202 break; 203 case BCH_DISK_ACCOUNTING_persistent_reserved: 204 prt_printf(out, "replicas=%u", k->persistent_reserved.nr_replicas); 205 break; 206 case BCH_DISK_ACCOUNTING_replicas: 207 bch2_replicas_entry_to_text(out, &k->replicas); 208 break; 209 case BCH_DISK_ACCOUNTING_dev_data_type: 210 prt_printf(out, "dev=%u data_type=", k->dev_data_type.dev); 211 bch2_prt_data_type(out, k->dev_data_type.data_type); 212 break; 213 case BCH_DISK_ACCOUNTING_compression: 214 bch2_prt_compression_type(out, k->compression.type); 215 break; 216 case BCH_DISK_ACCOUNTING_snapshot: 217 prt_printf(out, "id=%u", k->snapshot.id); 218 break; 219 case BCH_DISK_ACCOUNTING_btree: 220 prt_printf(out, "btree=%s", bch2_btree_id_str(k->btree.id)); 221 break; 222 } 223 } 224 225 void bch2_accounting_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k) 226 { 227 struct bkey_s_c_accounting acc = bkey_s_c_to_accounting(k); 228 struct disk_accounting_pos acc_k; 229 bpos_to_disk_accounting_pos(&acc_k, k.k->p); 230 231 bch2_accounting_key_to_text(out, &acc_k); 232 233 for (unsigned i = 0; i < bch2_accounting_counters(k.k); i++) 234 prt_printf(out, " %lli", acc.v->d[i]); 235 } 236 237 void bch2_accounting_swab(struct bkey_s k) 238 { 239 for (u64 *p = (u64 *) k.v; 240 p < (u64 *) bkey_val_end(k); 241 p++) 242 *p = swab64(*p); 243 } 244 245 static inline bool accounting_to_replicas(struct bch_replicas_entry_v1 *r, struct bpos p) 246 { 247 struct disk_accounting_pos acc_k; 248 bpos_to_disk_accounting_pos(&acc_k, p); 249 250 switch (acc_k.type) { 251 case BCH_DISK_ACCOUNTING_replicas: 252 unsafe_memcpy(r, &acc_k.replicas, 253 replicas_entry_bytes(&acc_k.replicas), 254 "variable length struct"); 255 return true; 256 default: 257 return false; 258 } 259 } 260 261 static int bch2_accounting_update_sb_one(struct bch_fs *c, struct bpos p) 262 { 263 struct bch_replicas_padded r; 264 return accounting_to_replicas(&r.e, p) 265 ? bch2_mark_replicas(c, &r.e) 266 : 0; 267 } 268 269 /* 270 * Ensure accounting keys being updated are present in the superblock, when 271 * applicable (i.e. replicas updates) 272 */ 273 int bch2_accounting_update_sb(struct btree_trans *trans) 274 { 275 for (struct jset_entry *i = trans->journal_entries; 276 i != (void *) ((u64 *) trans->journal_entries + trans->journal_entries_u64s); 277 i = vstruct_next(i)) 278 if (jset_entry_is_key(i) && i->start->k.type == KEY_TYPE_accounting) { 279 int ret = bch2_accounting_update_sb_one(trans->c, i->start->k.p); 280 if (ret) 281 return ret; 282 } 283 284 return 0; 285 } 286 287 static int __bch2_accounting_mem_insert(struct bch_fs *c, struct bkey_s_c_accounting a) 288 { 289 struct bch_accounting_mem *acc = &c->accounting; 290 291 /* raced with another insert, already present: */ 292 if (eytzinger0_find(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]), 293 accounting_pos_cmp, &a.k->p) < acc->k.nr) 294 return 0; 295 296 struct accounting_mem_entry n = { 297 .pos = a.k->p, 298 .bversion = a.k->bversion, 299 .nr_counters = bch2_accounting_counters(a.k), 300 .v[0] = __alloc_percpu_gfp(n.nr_counters * sizeof(u64), 301 sizeof(u64), GFP_KERNEL), 302 }; 303 304 if (!n.v[0]) 305 goto err; 306 307 if (acc->gc_running) { 308 n.v[1] = __alloc_percpu_gfp(n.nr_counters * sizeof(u64), 309 sizeof(u64), GFP_KERNEL); 310 if (!n.v[1]) 311 goto err; 312 } 313 314 if (darray_push(&acc->k, n)) 315 goto err; 316 317 eytzinger0_sort(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]), 318 accounting_pos_cmp, NULL); 319 return 0; 320 err: 321 free_percpu(n.v[1]); 322 free_percpu(n.v[0]); 323 return -BCH_ERR_ENOMEM_disk_accounting; 324 } 325 326 int bch2_accounting_mem_insert(struct bch_fs *c, struct bkey_s_c_accounting a, 327 enum bch_accounting_mode mode) 328 { 329 struct bch_replicas_padded r; 330 331 if (mode != BCH_ACCOUNTING_read && 332 accounting_to_replicas(&r.e, a.k->p) && 333 !bch2_replicas_marked_locked(c, &r.e)) 334 return -BCH_ERR_btree_insert_need_mark_replicas; 335 336 percpu_up_read(&c->mark_lock); 337 percpu_down_write(&c->mark_lock); 338 int ret = __bch2_accounting_mem_insert(c, a); 339 percpu_up_write(&c->mark_lock); 340 percpu_down_read(&c->mark_lock); 341 return ret; 342 } 343 344 static bool accounting_mem_entry_is_zero(struct accounting_mem_entry *e) 345 { 346 for (unsigned i = 0; i < e->nr_counters; i++) 347 if (percpu_u64_get(e->v[0] + i) || 348 (e->v[1] && 349 percpu_u64_get(e->v[1] + i))) 350 return false; 351 return true; 352 } 353 354 void bch2_accounting_mem_gc(struct bch_fs *c) 355 { 356 struct bch_accounting_mem *acc = &c->accounting; 357 358 percpu_down_write(&c->mark_lock); 359 struct accounting_mem_entry *dst = acc->k.data; 360 361 darray_for_each(acc->k, src) { 362 if (accounting_mem_entry_is_zero(src)) { 363 free_percpu(src->v[0]); 364 free_percpu(src->v[1]); 365 } else { 366 *dst++ = *src; 367 } 368 } 369 370 acc->k.nr = dst - acc->k.data; 371 eytzinger0_sort(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]), 372 accounting_pos_cmp, NULL); 373 percpu_up_write(&c->mark_lock); 374 } 375 376 /* 377 * Read out accounting keys for replicas entries, as an array of 378 * bch_replicas_usage entries. 379 * 380 * Note: this may be deprecated/removed at smoe point in the future and replaced 381 * with something more general, it exists to support the ioctl used by the 382 * 'bcachefs fs usage' command. 383 */ 384 int bch2_fs_replicas_usage_read(struct bch_fs *c, darray_char *usage) 385 { 386 struct bch_accounting_mem *acc = &c->accounting; 387 int ret = 0; 388 389 darray_init(usage); 390 391 percpu_down_read(&c->mark_lock); 392 darray_for_each(acc->k, i) { 393 struct { 394 struct bch_replicas_usage r; 395 u8 pad[BCH_BKEY_PTRS_MAX]; 396 } u; 397 398 if (!accounting_to_replicas(&u.r.r, i->pos)) 399 continue; 400 401 u64 sectors; 402 bch2_accounting_mem_read_counters(acc, i - acc->k.data, §ors, 1, false); 403 u.r.sectors = sectors; 404 405 ret = darray_make_room(usage, replicas_usage_bytes(&u.r)); 406 if (ret) 407 break; 408 409 memcpy(&darray_top(*usage), &u.r, replicas_usage_bytes(&u.r)); 410 usage->nr += replicas_usage_bytes(&u.r); 411 } 412 percpu_up_read(&c->mark_lock); 413 414 if (ret) 415 darray_exit(usage); 416 return ret; 417 } 418 419 int bch2_fs_accounting_read(struct bch_fs *c, darray_char *out_buf, unsigned accounting_types_mask) 420 { 421 422 struct bch_accounting_mem *acc = &c->accounting; 423 int ret = 0; 424 425 darray_init(out_buf); 426 427 percpu_down_read(&c->mark_lock); 428 darray_for_each(acc->k, i) { 429 struct disk_accounting_pos a_p; 430 bpos_to_disk_accounting_pos(&a_p, i->pos); 431 432 if (!(accounting_types_mask & BIT(a_p.type))) 433 continue; 434 435 ret = darray_make_room(out_buf, sizeof(struct bkey_i_accounting) + 436 sizeof(u64) * i->nr_counters); 437 if (ret) 438 break; 439 440 struct bkey_i_accounting *a_out = 441 bkey_accounting_init((void *) &darray_top(*out_buf)); 442 set_bkey_val_u64s(&a_out->k, i->nr_counters); 443 a_out->k.p = i->pos; 444 bch2_accounting_mem_read_counters(acc, i - acc->k.data, 445 a_out->v.d, i->nr_counters, false); 446 447 if (!bch2_accounting_key_is_zero(accounting_i_to_s_c(a_out))) 448 out_buf->nr += bkey_bytes(&a_out->k); 449 } 450 451 percpu_up_read(&c->mark_lock); 452 453 if (ret) 454 darray_exit(out_buf); 455 return ret; 456 } 457 458 void bch2_fs_accounting_to_text(struct printbuf *out, struct bch_fs *c) 459 { 460 struct bch_accounting_mem *acc = &c->accounting; 461 462 percpu_down_read(&c->mark_lock); 463 out->atomic++; 464 465 eytzinger0_for_each(i, acc->k.nr) { 466 struct disk_accounting_pos acc_k; 467 bpos_to_disk_accounting_pos(&acc_k, acc->k.data[i].pos); 468 469 bch2_accounting_key_to_text(out, &acc_k); 470 471 u64 v[BCH_ACCOUNTING_MAX_COUNTERS]; 472 bch2_accounting_mem_read_counters(acc, i, v, ARRAY_SIZE(v), false); 473 474 prt_str(out, ":"); 475 for (unsigned j = 0; j < acc->k.data[i].nr_counters; j++) 476 prt_printf(out, " %llu", v[j]); 477 prt_newline(out); 478 } 479 480 --out->atomic; 481 percpu_up_read(&c->mark_lock); 482 } 483 484 static void bch2_accounting_free_counters(struct bch_accounting_mem *acc, bool gc) 485 { 486 darray_for_each(acc->k, e) { 487 free_percpu(e->v[gc]); 488 e->v[gc] = NULL; 489 } 490 } 491 492 int bch2_gc_accounting_start(struct bch_fs *c) 493 { 494 struct bch_accounting_mem *acc = &c->accounting; 495 int ret = 0; 496 497 percpu_down_write(&c->mark_lock); 498 darray_for_each(acc->k, e) { 499 e->v[1] = __alloc_percpu_gfp(e->nr_counters * sizeof(u64), 500 sizeof(u64), GFP_KERNEL); 501 if (!e->v[1]) { 502 bch2_accounting_free_counters(acc, true); 503 ret = -BCH_ERR_ENOMEM_disk_accounting; 504 break; 505 } 506 } 507 508 acc->gc_running = !ret; 509 percpu_up_write(&c->mark_lock); 510 511 return ret; 512 } 513 514 int bch2_gc_accounting_done(struct bch_fs *c) 515 { 516 struct bch_accounting_mem *acc = &c->accounting; 517 struct btree_trans *trans = bch2_trans_get(c); 518 struct printbuf buf = PRINTBUF; 519 struct bpos pos = POS_MIN; 520 int ret = 0; 521 522 percpu_down_write(&c->mark_lock); 523 while (1) { 524 unsigned idx = eytzinger0_find_ge(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]), 525 accounting_pos_cmp, &pos); 526 527 if (idx >= acc->k.nr) 528 break; 529 530 struct accounting_mem_entry *e = acc->k.data + idx; 531 pos = bpos_successor(e->pos); 532 533 struct disk_accounting_pos acc_k; 534 bpos_to_disk_accounting_pos(&acc_k, e->pos); 535 536 if (acc_k.type >= BCH_DISK_ACCOUNTING_TYPE_NR) 537 continue; 538 539 u64 src_v[BCH_ACCOUNTING_MAX_COUNTERS]; 540 u64 dst_v[BCH_ACCOUNTING_MAX_COUNTERS]; 541 542 unsigned nr = e->nr_counters; 543 bch2_accounting_mem_read_counters(acc, idx, dst_v, nr, false); 544 bch2_accounting_mem_read_counters(acc, idx, src_v, nr, true); 545 546 if (memcmp(dst_v, src_v, nr * sizeof(u64))) { 547 printbuf_reset(&buf); 548 prt_str(&buf, "accounting mismatch for "); 549 bch2_accounting_key_to_text(&buf, &acc_k); 550 551 prt_str(&buf, ": got"); 552 for (unsigned j = 0; j < nr; j++) 553 prt_printf(&buf, " %llu", dst_v[j]); 554 555 prt_str(&buf, " should be"); 556 for (unsigned j = 0; j < nr; j++) 557 prt_printf(&buf, " %llu", src_v[j]); 558 559 for (unsigned j = 0; j < nr; j++) 560 src_v[j] -= dst_v[j]; 561 562 if (fsck_err(trans, accounting_mismatch, "%s", buf.buf)) { 563 percpu_up_write(&c->mark_lock); 564 ret = commit_do(trans, NULL, NULL, 0, 565 bch2_disk_accounting_mod(trans, &acc_k, src_v, nr, false)); 566 percpu_down_write(&c->mark_lock); 567 if (ret) 568 goto err; 569 570 if (!test_bit(BCH_FS_may_go_rw, &c->flags)) { 571 memset(&trans->fs_usage_delta, 0, sizeof(trans->fs_usage_delta)); 572 struct { __BKEY_PADDED(k, BCH_ACCOUNTING_MAX_COUNTERS); } k_i; 573 574 accounting_key_init(&k_i.k, &acc_k, src_v, nr); 575 bch2_accounting_mem_mod_locked(trans, 576 bkey_i_to_s_c_accounting(&k_i.k), 577 BCH_ACCOUNTING_normal); 578 579 preempt_disable(); 580 struct bch_fs_usage_base *dst = this_cpu_ptr(c->usage); 581 struct bch_fs_usage_base *src = &trans->fs_usage_delta; 582 acc_u64s((u64 *) dst, (u64 *) src, sizeof(*src) / sizeof(u64)); 583 preempt_enable(); 584 } 585 } 586 } 587 } 588 err: 589 fsck_err: 590 percpu_up_write(&c->mark_lock); 591 printbuf_exit(&buf); 592 bch2_trans_put(trans); 593 bch_err_fn(c, ret); 594 return ret; 595 } 596 597 static int accounting_read_key(struct btree_trans *trans, struct bkey_s_c k) 598 { 599 struct bch_fs *c = trans->c; 600 601 if (k.k->type != KEY_TYPE_accounting) 602 return 0; 603 604 percpu_down_read(&c->mark_lock); 605 int ret = bch2_accounting_mem_mod_locked(trans, bkey_s_c_to_accounting(k), 606 BCH_ACCOUNTING_read); 607 percpu_up_read(&c->mark_lock); 608 return ret; 609 } 610 611 /* 612 * At startup time, initialize the in memory accounting from the btree (and 613 * journal) 614 */ 615 int bch2_accounting_read(struct bch_fs *c) 616 { 617 struct bch_accounting_mem *acc = &c->accounting; 618 struct btree_trans *trans = bch2_trans_get(c); 619 struct printbuf buf = PRINTBUF; 620 621 int ret = for_each_btree_key(trans, iter, 622 BTREE_ID_accounting, POS_MIN, 623 BTREE_ITER_prefetch|BTREE_ITER_all_snapshots, k, ({ 624 struct bkey u; 625 struct bkey_s_c k = bch2_btree_path_peek_slot_exact(btree_iter_path(trans, &iter), &u); 626 accounting_read_key(trans, k); 627 })); 628 if (ret) 629 goto err; 630 631 struct journal_keys *keys = &c->journal_keys; 632 struct journal_key *dst = keys->data; 633 move_gap(keys, keys->nr); 634 635 darray_for_each(*keys, i) { 636 if (i->k->k.type == KEY_TYPE_accounting) { 637 struct bkey_s_c k = bkey_i_to_s_c(i->k); 638 unsigned idx = eytzinger0_find(acc->k.data, acc->k.nr, 639 sizeof(acc->k.data[0]), 640 accounting_pos_cmp, &k.k->p); 641 642 bool applied = idx < acc->k.nr && 643 bversion_cmp(acc->k.data[idx].bversion, k.k->bversion) >= 0; 644 645 if (applied) 646 continue; 647 648 if (i + 1 < &darray_top(*keys) && 649 i[1].k->k.type == KEY_TYPE_accounting && 650 !journal_key_cmp(i, i + 1)) { 651 WARN_ON(bversion_cmp(i[0].k->k.bversion, i[1].k->k.bversion) >= 0); 652 653 i[1].journal_seq = i[0].journal_seq; 654 655 bch2_accounting_accumulate(bkey_i_to_accounting(i[1].k), 656 bkey_s_c_to_accounting(k)); 657 continue; 658 } 659 660 ret = accounting_read_key(trans, k); 661 if (ret) 662 goto err; 663 } 664 665 *dst++ = *i; 666 } 667 keys->gap = keys->nr = dst - keys->data; 668 669 percpu_down_read(&c->mark_lock); 670 for (unsigned i = 0; i < acc->k.nr; i++) { 671 u64 v[BCH_ACCOUNTING_MAX_COUNTERS]; 672 bch2_accounting_mem_read_counters(acc, i, v, ARRAY_SIZE(v), false); 673 674 if (bch2_is_zero(v, sizeof(v[0]) * acc->k.data[i].nr_counters)) 675 continue; 676 677 struct bch_replicas_padded r; 678 if (!accounting_to_replicas(&r.e, acc->k.data[i].pos)) 679 continue; 680 681 /* 682 * If the replicas entry is invalid it'll get cleaned up by 683 * check_allocations: 684 */ 685 if (bch2_replicas_entry_validate(&r.e, c, &buf)) 686 continue; 687 688 struct disk_accounting_pos k; 689 bpos_to_disk_accounting_pos(&k, acc->k.data[i].pos); 690 691 if (fsck_err_on(!bch2_replicas_marked_locked(c, &r.e), 692 trans, accounting_replicas_not_marked, 693 "accounting not marked in superblock replicas\n %s", 694 (printbuf_reset(&buf), 695 bch2_accounting_key_to_text(&buf, &k), 696 buf.buf))) { 697 /* 698 * We're not RW yet and still single threaded, dropping 699 * and retaking lock is ok: 700 */ 701 percpu_up_read(&c->mark_lock); 702 ret = bch2_mark_replicas(c, &r.e); 703 if (ret) 704 goto fsck_err; 705 percpu_down_read(&c->mark_lock); 706 } 707 } 708 709 preempt_disable(); 710 struct bch_fs_usage_base *usage = this_cpu_ptr(c->usage); 711 712 for (unsigned i = 0; i < acc->k.nr; i++) { 713 struct disk_accounting_pos k; 714 bpos_to_disk_accounting_pos(&k, acc->k.data[i].pos); 715 716 u64 v[BCH_ACCOUNTING_MAX_COUNTERS]; 717 bch2_accounting_mem_read_counters(acc, i, v, ARRAY_SIZE(v), false); 718 719 switch (k.type) { 720 case BCH_DISK_ACCOUNTING_persistent_reserved: 721 usage->reserved += v[0] * k.persistent_reserved.nr_replicas; 722 break; 723 case BCH_DISK_ACCOUNTING_replicas: 724 fs_usage_data_type_to_base(usage, k.replicas.data_type, v[0]); 725 break; 726 case BCH_DISK_ACCOUNTING_dev_data_type: 727 rcu_read_lock(); 728 struct bch_dev *ca = bch2_dev_rcu(c, k.dev_data_type.dev); 729 if (ca) { 730 struct bch_dev_usage_type __percpu *d = &ca->usage->d[k.dev_data_type.data_type]; 731 percpu_u64_set(&d->buckets, v[0]); 732 percpu_u64_set(&d->sectors, v[1]); 733 percpu_u64_set(&d->fragmented, v[2]); 734 735 if (k.dev_data_type.data_type == BCH_DATA_sb || 736 k.dev_data_type.data_type == BCH_DATA_journal) 737 usage->hidden += v[0] * ca->mi.bucket_size; 738 } 739 rcu_read_unlock(); 740 break; 741 } 742 } 743 preempt_enable(); 744 fsck_err: 745 percpu_up_read(&c->mark_lock); 746 err: 747 printbuf_exit(&buf); 748 bch2_trans_put(trans); 749 bch_err_fn(c, ret); 750 return ret; 751 } 752 753 int bch2_dev_usage_remove(struct bch_fs *c, unsigned dev) 754 { 755 return bch2_trans_run(c, 756 bch2_btree_write_buffer_flush_sync(trans) ?: 757 for_each_btree_key_commit(trans, iter, BTREE_ID_accounting, POS_MIN, 758 BTREE_ITER_all_snapshots, k, NULL, NULL, 0, ({ 759 struct disk_accounting_pos acc; 760 bpos_to_disk_accounting_pos(&acc, k.k->p); 761 762 acc.type == BCH_DISK_ACCOUNTING_dev_data_type && 763 acc.dev_data_type.dev == dev 764 ? bch2_btree_bit_mod_buffered(trans, BTREE_ID_accounting, k.k->p, 0) 765 : 0; 766 })) ?: 767 bch2_btree_write_buffer_flush_sync(trans)); 768 } 769 770 int bch2_dev_usage_init(struct bch_dev *ca, bool gc) 771 { 772 struct bch_fs *c = ca->fs; 773 struct disk_accounting_pos acc = { 774 .type = BCH_DISK_ACCOUNTING_dev_data_type, 775 .dev_data_type.dev = ca->dev_idx, 776 .dev_data_type.data_type = BCH_DATA_free, 777 }; 778 u64 v[3] = { ca->mi.nbuckets - ca->mi.first_bucket, 0, 0 }; 779 780 int ret = bch2_trans_do(c, NULL, NULL, 0, 781 bch2_disk_accounting_mod(trans, &acc, v, ARRAY_SIZE(v), gc)); 782 bch_err_fn(c, ret); 783 return ret; 784 } 785 786 void bch2_verify_accounting_clean(struct bch_fs *c) 787 { 788 bool mismatch = false; 789 struct bch_fs_usage_base base = {}, base_inmem = {}; 790 791 bch2_trans_run(c, 792 for_each_btree_key(trans, iter, 793 BTREE_ID_accounting, POS_MIN, 794 BTREE_ITER_all_snapshots, k, ({ 795 u64 v[BCH_ACCOUNTING_MAX_COUNTERS]; 796 struct bkey_s_c_accounting a = bkey_s_c_to_accounting(k); 797 unsigned nr = bch2_accounting_counters(k.k); 798 799 struct disk_accounting_pos acc_k; 800 bpos_to_disk_accounting_pos(&acc_k, k.k->p); 801 802 if (acc_k.type >= BCH_DISK_ACCOUNTING_TYPE_NR) 803 continue; 804 805 if (acc_k.type == BCH_DISK_ACCOUNTING_inum) 806 continue; 807 808 bch2_accounting_mem_read(c, k.k->p, v, nr); 809 810 if (memcmp(a.v->d, v, nr * sizeof(u64))) { 811 struct printbuf buf = PRINTBUF; 812 813 bch2_bkey_val_to_text(&buf, c, k); 814 prt_str(&buf, " !="); 815 for (unsigned j = 0; j < nr; j++) 816 prt_printf(&buf, " %llu", v[j]); 817 818 pr_err("%s", buf.buf); 819 printbuf_exit(&buf); 820 mismatch = true; 821 } 822 823 switch (acc_k.type) { 824 case BCH_DISK_ACCOUNTING_persistent_reserved: 825 base.reserved += acc_k.persistent_reserved.nr_replicas * a.v->d[0]; 826 break; 827 case BCH_DISK_ACCOUNTING_replicas: 828 fs_usage_data_type_to_base(&base, acc_k.replicas.data_type, a.v->d[0]); 829 break; 830 case BCH_DISK_ACCOUNTING_dev_data_type: { 831 rcu_read_lock(); 832 struct bch_dev *ca = bch2_dev_rcu(c, acc_k.dev_data_type.dev); 833 if (!ca) { 834 rcu_read_unlock(); 835 continue; 836 } 837 838 v[0] = percpu_u64_get(&ca->usage->d[acc_k.dev_data_type.data_type].buckets); 839 v[1] = percpu_u64_get(&ca->usage->d[acc_k.dev_data_type.data_type].sectors); 840 v[2] = percpu_u64_get(&ca->usage->d[acc_k.dev_data_type.data_type].fragmented); 841 rcu_read_unlock(); 842 843 if (memcmp(a.v->d, v, 3 * sizeof(u64))) { 844 struct printbuf buf = PRINTBUF; 845 846 bch2_bkey_val_to_text(&buf, c, k); 847 prt_str(&buf, " in mem"); 848 for (unsigned j = 0; j < nr; j++) 849 prt_printf(&buf, " %llu", v[j]); 850 851 pr_err("dev accounting mismatch: %s", buf.buf); 852 printbuf_exit(&buf); 853 mismatch = true; 854 } 855 } 856 } 857 858 0; 859 }))); 860 861 acc_u64s_percpu(&base_inmem.hidden, &c->usage->hidden, sizeof(base_inmem) / sizeof(u64)); 862 863 #define check(x) \ 864 if (base.x != base_inmem.x) { \ 865 pr_err("fs_usage_base.%s mismatch: %llu != %llu", #x, base.x, base_inmem.x); \ 866 mismatch = true; \ 867 } 868 869 //check(hidden); 870 check(btree); 871 check(data); 872 check(cached); 873 check(reserved); 874 check(nr_inodes); 875 876 WARN_ON(mismatch); 877 } 878 879 void bch2_accounting_gc_free(struct bch_fs *c) 880 { 881 lockdep_assert_held(&c->mark_lock); 882 883 struct bch_accounting_mem *acc = &c->accounting; 884 885 bch2_accounting_free_counters(acc, true); 886 acc->gc_running = false; 887 } 888 889 void bch2_fs_accounting_exit(struct bch_fs *c) 890 { 891 struct bch_accounting_mem *acc = &c->accounting; 892 893 bch2_accounting_free_counters(acc, false); 894 darray_exit(&acc->k); 895 } 896