1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "bcachefs_ioctl.h" 5 #include "btree_cache.h" 6 #include "btree_journal_iter.h" 7 #include "btree_update.h" 8 #include "btree_write_buffer.h" 9 #include "buckets.h" 10 #include "compress.h" 11 #include "disk_accounting.h" 12 #include "error.h" 13 #include "journal_io.h" 14 #include "replicas.h" 15 16 /* 17 * Notes on disk accounting: 18 * 19 * We have two parallel sets of counters to be concerned with, and both must be 20 * kept in sync. 21 * 22 * - Persistent/on disk accounting, stored in the accounting btree and updated 23 * via btree write buffer updates that treat new accounting keys as deltas to 24 * apply to existing values. But reading from a write buffer btree is 25 * expensive, so we also have 26 * 27 * - In memory accounting, where accounting is stored as an array of percpu 28 * counters, indexed by an eytzinger array of disk acounting keys/bpos (which 29 * are the same thing, excepting byte swabbing on big endian). 30 * 31 * Cheap to read, but non persistent. 32 * 33 * Disk accounting updates are generated by transactional triggers; these run as 34 * keys enter and leave the btree, and can compare old and new versions of keys; 35 * the output of these triggers are deltas to the various counters. 36 * 37 * Disk accounting updates are done as btree write buffer updates, where the 38 * counters in the disk accounting key are deltas that will be applied to the 39 * counter in the btree when the key is flushed by the write buffer (or journal 40 * replay). 41 * 42 * To do a disk accounting update: 43 * - initialize a disk_accounting_pos, to specify which counter is being update 44 * - initialize counter deltas, as an array of 1-3 s64s 45 * - call bch2_disk_accounting_mod() 46 * 47 * This queues up the accounting update to be done at transaction commit time. 48 * Underneath, it's a normal btree write buffer update. 49 * 50 * The transaction commit path is responsible for propagating updates to the in 51 * memory counters, with bch2_accounting_mem_mod(). 52 * 53 * The commit path also assigns every disk accounting update a unique version 54 * number, based on the journal sequence number and offset within that journal 55 * buffer; this is used by journal replay to determine which updates have been 56 * done. 57 * 58 * The transaction commit path also ensures that replicas entry accounting 59 * updates are properly marked in the superblock (so that we know whether we can 60 * mount without data being unavailable); it will update the superblock if 61 * bch2_accounting_mem_mod() tells it to. 62 */ 63 64 static const char * const disk_accounting_type_strs[] = { 65 #define x(t, n, ...) [n] = #t, 66 BCH_DISK_ACCOUNTING_TYPES() 67 #undef x 68 NULL 69 }; 70 71 static inline void accounting_key_init(struct bkey_i *k, struct disk_accounting_pos *pos, 72 s64 *d, unsigned nr) 73 { 74 struct bkey_i_accounting *acc = bkey_accounting_init(k); 75 76 acc->k.p = disk_accounting_pos_to_bpos(pos); 77 set_bkey_val_u64s(&acc->k, sizeof(struct bch_accounting) / sizeof(u64) + nr); 78 79 memcpy_u64s_small(acc->v.d, d, nr); 80 } 81 82 int bch2_disk_accounting_mod(struct btree_trans *trans, 83 struct disk_accounting_pos *k, 84 s64 *d, unsigned nr, bool gc) 85 { 86 /* Normalize: */ 87 switch (k->type) { 88 case BCH_DISK_ACCOUNTING_replicas: 89 bubble_sort(k->replicas.devs, k->replicas.nr_devs, u8_cmp); 90 break; 91 } 92 93 BUG_ON(nr > BCH_ACCOUNTING_MAX_COUNTERS); 94 95 struct { __BKEY_PADDED(k, BCH_ACCOUNTING_MAX_COUNTERS); } k_i; 96 97 accounting_key_init(&k_i.k, k, d, nr); 98 99 return likely(!gc) 100 ? bch2_trans_update_buffered(trans, BTREE_ID_accounting, &k_i.k) 101 : bch2_accounting_mem_add(trans, bkey_i_to_s_c_accounting(&k_i.k), true); 102 } 103 104 int bch2_mod_dev_cached_sectors(struct btree_trans *trans, 105 unsigned dev, s64 sectors, 106 bool gc) 107 { 108 struct disk_accounting_pos acc = { 109 .type = BCH_DISK_ACCOUNTING_replicas, 110 }; 111 112 bch2_replicas_entry_cached(&acc.replicas, dev); 113 114 return bch2_disk_accounting_mod(trans, &acc, §ors, 1, gc); 115 } 116 117 static inline bool is_zero(char *start, char *end) 118 { 119 BUG_ON(start > end); 120 121 for (; start < end; start++) 122 if (*start) 123 return false; 124 return true; 125 } 126 127 #define field_end(p, member) (((void *) (&p.member)) + sizeof(p.member)) 128 129 int bch2_accounting_invalid(struct bch_fs *c, struct bkey_s_c k, 130 enum bch_validate_flags flags, 131 struct printbuf *err) 132 { 133 struct disk_accounting_pos acc_k; 134 bpos_to_disk_accounting_pos(&acc_k, k.k->p); 135 void *end = &acc_k + 1; 136 int ret = 0; 137 138 switch (acc_k.type) { 139 case BCH_DISK_ACCOUNTING_nr_inodes: 140 end = field_end(acc_k, nr_inodes); 141 break; 142 case BCH_DISK_ACCOUNTING_persistent_reserved: 143 end = field_end(acc_k, persistent_reserved); 144 break; 145 case BCH_DISK_ACCOUNTING_replicas: 146 bkey_fsck_err_on(!acc_k.replicas.nr_devs, 147 c, err, accounting_key_replicas_nr_devs_0, 148 "accounting key replicas entry with nr_devs=0"); 149 150 bkey_fsck_err_on(acc_k.replicas.nr_required > acc_k.replicas.nr_devs || 151 (acc_k.replicas.nr_required > 1 && 152 acc_k.replicas.nr_required == acc_k.replicas.nr_devs), 153 c, err, accounting_key_replicas_nr_required_bad, 154 "accounting key replicas entry with bad nr_required"); 155 156 for (unsigned i = 0; i + 1 < acc_k.replicas.nr_devs; i++) 157 bkey_fsck_err_on(acc_k.replicas.devs[i] > acc_k.replicas.devs[i + 1], 158 c, err, accounting_key_replicas_devs_unsorted, 159 "accounting key replicas entry with unsorted devs"); 160 161 end = (void *) &acc_k.replicas + replicas_entry_bytes(&acc_k.replicas); 162 break; 163 case BCH_DISK_ACCOUNTING_dev_data_type: 164 end = field_end(acc_k, dev_data_type); 165 break; 166 case BCH_DISK_ACCOUNTING_compression: 167 end = field_end(acc_k, compression); 168 break; 169 case BCH_DISK_ACCOUNTING_snapshot: 170 end = field_end(acc_k, snapshot); 171 break; 172 case BCH_DISK_ACCOUNTING_btree: 173 end = field_end(acc_k, btree); 174 break; 175 case BCH_DISK_ACCOUNTING_rebalance_work: 176 end = field_end(acc_k, rebalance_work); 177 break; 178 } 179 180 bkey_fsck_err_on(!is_zero(end, (void *) (&acc_k + 1)), 181 c, err, accounting_key_junk_at_end, 182 "junk at end of accounting key"); 183 fsck_err: 184 return ret; 185 } 186 187 void bch2_accounting_key_to_text(struct printbuf *out, struct disk_accounting_pos *k) 188 { 189 if (k->type >= BCH_DISK_ACCOUNTING_TYPE_NR) { 190 prt_printf(out, "unknown type %u", k->type); 191 return; 192 } 193 194 prt_str(out, disk_accounting_type_strs[k->type]); 195 prt_str(out, " "); 196 197 switch (k->type) { 198 case BCH_DISK_ACCOUNTING_nr_inodes: 199 break; 200 case BCH_DISK_ACCOUNTING_persistent_reserved: 201 prt_printf(out, "replicas=%u", k->persistent_reserved.nr_replicas); 202 break; 203 case BCH_DISK_ACCOUNTING_replicas: 204 bch2_replicas_entry_to_text(out, &k->replicas); 205 break; 206 case BCH_DISK_ACCOUNTING_dev_data_type: 207 prt_printf(out, "dev=%u data_type=", k->dev_data_type.dev); 208 bch2_prt_data_type(out, k->dev_data_type.data_type); 209 break; 210 case BCH_DISK_ACCOUNTING_compression: 211 bch2_prt_compression_type(out, k->compression.type); 212 break; 213 case BCH_DISK_ACCOUNTING_snapshot: 214 prt_printf(out, "id=%u", k->snapshot.id); 215 break; 216 case BCH_DISK_ACCOUNTING_btree: 217 prt_printf(out, "btree=%s", bch2_btree_id_str(k->btree.id)); 218 break; 219 } 220 } 221 222 void bch2_accounting_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k) 223 { 224 struct bkey_s_c_accounting acc = bkey_s_c_to_accounting(k); 225 struct disk_accounting_pos acc_k; 226 bpos_to_disk_accounting_pos(&acc_k, k.k->p); 227 228 bch2_accounting_key_to_text(out, &acc_k); 229 230 for (unsigned i = 0; i < bch2_accounting_counters(k.k); i++) 231 prt_printf(out, " %lli", acc.v->d[i]); 232 } 233 234 void bch2_accounting_swab(struct bkey_s k) 235 { 236 for (u64 *p = (u64 *) k.v; 237 p < (u64 *) bkey_val_end(k); 238 p++) 239 *p = swab64(*p); 240 } 241 242 static inline bool accounting_to_replicas(struct bch_replicas_entry_v1 *r, struct bpos p) 243 { 244 struct disk_accounting_pos acc_k; 245 bpos_to_disk_accounting_pos(&acc_k, p); 246 247 switch (acc_k.type) { 248 case BCH_DISK_ACCOUNTING_replicas: 249 unsafe_memcpy(r, &acc_k.replicas, 250 replicas_entry_bytes(&acc_k.replicas), 251 "variable length struct"); 252 return true; 253 default: 254 return false; 255 } 256 } 257 258 static int bch2_accounting_update_sb_one(struct bch_fs *c, struct bpos p) 259 { 260 struct bch_replicas_padded r; 261 return accounting_to_replicas(&r.e, p) 262 ? bch2_mark_replicas(c, &r.e) 263 : 0; 264 } 265 266 /* 267 * Ensure accounting keys being updated are present in the superblock, when 268 * applicable (i.e. replicas updates) 269 */ 270 int bch2_accounting_update_sb(struct btree_trans *trans) 271 { 272 for (struct jset_entry *i = trans->journal_entries; 273 i != (void *) ((u64 *) trans->journal_entries + trans->journal_entries_u64s); 274 i = vstruct_next(i)) 275 if (jset_entry_is_key(i) && i->start->k.type == KEY_TYPE_accounting) { 276 int ret = bch2_accounting_update_sb_one(trans->c, i->start->k.p); 277 if (ret) 278 return ret; 279 } 280 281 return 0; 282 } 283 284 static int __bch2_accounting_mem_insert(struct bch_fs *c, struct bkey_s_c_accounting a) 285 { 286 struct bch_accounting_mem *acc = &c->accounting; 287 288 /* raced with another insert, already present: */ 289 if (eytzinger0_find(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]), 290 accounting_pos_cmp, &a.k->p) < acc->k.nr) 291 return 0; 292 293 struct accounting_mem_entry n = { 294 .pos = a.k->p, 295 .version = a.k->version, 296 .nr_counters = bch2_accounting_counters(a.k), 297 .v[0] = __alloc_percpu_gfp(n.nr_counters * sizeof(u64), 298 sizeof(u64), GFP_KERNEL), 299 }; 300 301 if (!n.v[0]) 302 goto err; 303 304 if (acc->gc_running) { 305 n.v[1] = __alloc_percpu_gfp(n.nr_counters * sizeof(u64), 306 sizeof(u64), GFP_KERNEL); 307 if (!n.v[1]) 308 goto err; 309 } 310 311 if (darray_push(&acc->k, n)) 312 goto err; 313 314 eytzinger0_sort(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]), 315 accounting_pos_cmp, NULL); 316 return 0; 317 err: 318 free_percpu(n.v[1]); 319 free_percpu(n.v[0]); 320 return -BCH_ERR_ENOMEM_disk_accounting; 321 } 322 323 int bch2_accounting_mem_insert(struct bch_fs *c, struct bkey_s_c_accounting a, bool gc) 324 { 325 struct bch_replicas_padded r; 326 327 if (accounting_to_replicas(&r.e, a.k->p) && 328 !bch2_replicas_marked_locked(c, &r.e)) 329 return -BCH_ERR_btree_insert_need_mark_replicas; 330 331 percpu_up_read(&c->mark_lock); 332 percpu_down_write(&c->mark_lock); 333 int ret = __bch2_accounting_mem_insert(c, a); 334 percpu_up_write(&c->mark_lock); 335 percpu_down_read(&c->mark_lock); 336 return ret; 337 } 338 339 static bool accounting_mem_entry_is_zero(struct accounting_mem_entry *e) 340 { 341 for (unsigned i = 0; i < e->nr_counters; i++) 342 if (percpu_u64_get(e->v[0] + i) || 343 (e->v[1] && 344 percpu_u64_get(e->v[1] + i))) 345 return false; 346 return true; 347 } 348 349 void bch2_accounting_mem_gc(struct bch_fs *c) 350 { 351 struct bch_accounting_mem *acc = &c->accounting; 352 353 percpu_down_write(&c->mark_lock); 354 struct accounting_mem_entry *dst = acc->k.data; 355 356 darray_for_each(acc->k, src) { 357 if (accounting_mem_entry_is_zero(src)) { 358 free_percpu(src->v[0]); 359 free_percpu(src->v[1]); 360 } else { 361 *dst++ = *src; 362 } 363 } 364 365 acc->k.nr = dst - acc->k.data; 366 eytzinger0_sort(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]), 367 accounting_pos_cmp, NULL); 368 percpu_up_write(&c->mark_lock); 369 } 370 371 /* 372 * Read out accounting keys for replicas entries, as an array of 373 * bch_replicas_usage entries. 374 * 375 * Note: this may be deprecated/removed at smoe point in the future and replaced 376 * with something more general, it exists to support the ioctl used by the 377 * 'bcachefs fs usage' command. 378 */ 379 int bch2_fs_replicas_usage_read(struct bch_fs *c, darray_char *usage) 380 { 381 struct bch_accounting_mem *acc = &c->accounting; 382 int ret = 0; 383 384 darray_init(usage); 385 386 percpu_down_read(&c->mark_lock); 387 darray_for_each(acc->k, i) { 388 struct { 389 struct bch_replicas_usage r; 390 u8 pad[BCH_BKEY_PTRS_MAX]; 391 } u; 392 393 if (!accounting_to_replicas(&u.r.r, i->pos)) 394 continue; 395 396 u64 sectors; 397 bch2_accounting_mem_read_counters(acc, i - acc->k.data, §ors, 1, false); 398 u.r.sectors = sectors; 399 400 ret = darray_make_room(usage, replicas_usage_bytes(&u.r)); 401 if (ret) 402 break; 403 404 memcpy(&darray_top(*usage), &u.r, replicas_usage_bytes(&u.r)); 405 usage->nr += replicas_usage_bytes(&u.r); 406 } 407 percpu_up_read(&c->mark_lock); 408 409 if (ret) 410 darray_exit(usage); 411 return ret; 412 } 413 414 int bch2_fs_accounting_read(struct bch_fs *c, darray_char *out_buf, unsigned accounting_types_mask) 415 { 416 417 struct bch_accounting_mem *acc = &c->accounting; 418 int ret = 0; 419 420 darray_init(out_buf); 421 422 percpu_down_read(&c->mark_lock); 423 darray_for_each(acc->k, i) { 424 struct disk_accounting_pos a_p; 425 bpos_to_disk_accounting_pos(&a_p, i->pos); 426 427 if (!(accounting_types_mask & BIT(a_p.type))) 428 continue; 429 430 ret = darray_make_room(out_buf, sizeof(struct bkey_i_accounting) + 431 sizeof(u64) * i->nr_counters); 432 if (ret) 433 break; 434 435 struct bkey_i_accounting *a_out = 436 bkey_accounting_init((void *) &darray_top(*out_buf)); 437 set_bkey_val_u64s(&a_out->k, i->nr_counters); 438 a_out->k.p = i->pos; 439 bch2_accounting_mem_read_counters(acc, i - acc->k.data, 440 a_out->v.d, i->nr_counters, false); 441 442 if (!bch2_accounting_key_is_zero(accounting_i_to_s_c(a_out))) 443 out_buf->nr += bkey_bytes(&a_out->k); 444 } 445 446 percpu_up_read(&c->mark_lock); 447 448 if (ret) 449 darray_exit(out_buf); 450 return ret; 451 } 452 453 void bch2_fs_accounting_to_text(struct printbuf *out, struct bch_fs *c) 454 { 455 struct bch_accounting_mem *acc = &c->accounting; 456 457 percpu_down_read(&c->mark_lock); 458 out->atomic++; 459 460 eytzinger0_for_each(i, acc->k.nr) { 461 struct disk_accounting_pos acc_k; 462 bpos_to_disk_accounting_pos(&acc_k, acc->k.data[i].pos); 463 464 bch2_accounting_key_to_text(out, &acc_k); 465 466 u64 v[BCH_ACCOUNTING_MAX_COUNTERS]; 467 bch2_accounting_mem_read_counters(acc, i, v, ARRAY_SIZE(v), false); 468 469 prt_str(out, ":"); 470 for (unsigned j = 0; j < acc->k.data[i].nr_counters; j++) 471 prt_printf(out, " %llu", v[j]); 472 prt_newline(out); 473 } 474 475 --out->atomic; 476 percpu_up_read(&c->mark_lock); 477 } 478 479 static void bch2_accounting_free_counters(struct bch_accounting_mem *acc, bool gc) 480 { 481 darray_for_each(acc->k, e) { 482 free_percpu(e->v[gc]); 483 e->v[gc] = NULL; 484 } 485 } 486 487 int bch2_gc_accounting_start(struct bch_fs *c) 488 { 489 struct bch_accounting_mem *acc = &c->accounting; 490 int ret = 0; 491 492 percpu_down_write(&c->mark_lock); 493 darray_for_each(acc->k, e) { 494 e->v[1] = __alloc_percpu_gfp(e->nr_counters * sizeof(u64), 495 sizeof(u64), GFP_KERNEL); 496 if (!e->v[1]) { 497 bch2_accounting_free_counters(acc, true); 498 ret = -BCH_ERR_ENOMEM_disk_accounting; 499 break; 500 } 501 } 502 503 acc->gc_running = !ret; 504 percpu_up_write(&c->mark_lock); 505 506 return ret; 507 } 508 509 int bch2_gc_accounting_done(struct bch_fs *c) 510 { 511 struct bch_accounting_mem *acc = &c->accounting; 512 struct btree_trans *trans = bch2_trans_get(c); 513 struct printbuf buf = PRINTBUF; 514 struct bpos pos = POS_MIN; 515 int ret = 0; 516 517 percpu_down_write(&c->mark_lock); 518 while (1) { 519 unsigned idx = eytzinger0_find_ge(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]), 520 accounting_pos_cmp, &pos); 521 522 if (idx >= acc->k.nr) 523 break; 524 525 struct accounting_mem_entry *e = acc->k.data + idx; 526 pos = bpos_successor(e->pos); 527 528 struct disk_accounting_pos acc_k; 529 bpos_to_disk_accounting_pos(&acc_k, e->pos); 530 531 u64 src_v[BCH_ACCOUNTING_MAX_COUNTERS]; 532 u64 dst_v[BCH_ACCOUNTING_MAX_COUNTERS]; 533 534 unsigned nr = e->nr_counters; 535 bch2_accounting_mem_read_counters(acc, idx, dst_v, nr, false); 536 bch2_accounting_mem_read_counters(acc, idx, src_v, nr, true); 537 538 if (memcmp(dst_v, src_v, nr * sizeof(u64))) { 539 printbuf_reset(&buf); 540 prt_str(&buf, "accounting mismatch for "); 541 bch2_accounting_key_to_text(&buf, &acc_k); 542 543 prt_str(&buf, ": got"); 544 for (unsigned j = 0; j < nr; j++) 545 prt_printf(&buf, " %llu", dst_v[j]); 546 547 prt_str(&buf, " should be"); 548 for (unsigned j = 0; j < nr; j++) 549 prt_printf(&buf, " %llu", src_v[j]); 550 551 for (unsigned j = 0; j < nr; j++) 552 src_v[j] -= dst_v[j]; 553 554 if (fsck_err(trans, accounting_mismatch, "%s", buf.buf)) { 555 percpu_up_write(&c->mark_lock); 556 ret = commit_do(trans, NULL, NULL, 0, 557 bch2_disk_accounting_mod(trans, &acc_k, src_v, nr, false)); 558 percpu_down_write(&c->mark_lock); 559 if (ret) 560 goto err; 561 562 if (!test_bit(BCH_FS_may_go_rw, &c->flags)) { 563 memset(&trans->fs_usage_delta, 0, sizeof(trans->fs_usage_delta)); 564 struct { __BKEY_PADDED(k, BCH_ACCOUNTING_MAX_COUNTERS); } k_i; 565 566 accounting_key_init(&k_i.k, &acc_k, src_v, nr); 567 bch2_accounting_mem_mod_locked(trans, bkey_i_to_s_c_accounting(&k_i.k), false); 568 569 preempt_disable(); 570 struct bch_fs_usage_base *dst = this_cpu_ptr(c->usage); 571 struct bch_fs_usage_base *src = &trans->fs_usage_delta; 572 acc_u64s((u64 *) dst, (u64 *) src, sizeof(*src) / sizeof(u64)); 573 preempt_enable(); 574 } 575 } 576 } 577 } 578 err: 579 fsck_err: 580 percpu_up_write(&c->mark_lock); 581 printbuf_exit(&buf); 582 bch2_trans_put(trans); 583 bch_err_fn(c, ret); 584 return ret; 585 } 586 587 static int accounting_read_key(struct btree_trans *trans, struct bkey_s_c k) 588 { 589 struct bch_fs *c = trans->c; 590 struct printbuf buf = PRINTBUF; 591 592 if (k.k->type != KEY_TYPE_accounting) 593 return 0; 594 595 percpu_down_read(&c->mark_lock); 596 int ret = __bch2_accounting_mem_mod(c, bkey_s_c_to_accounting(k), false); 597 percpu_up_read(&c->mark_lock); 598 599 if (bch2_accounting_key_is_zero(bkey_s_c_to_accounting(k)) && 600 ret == -BCH_ERR_btree_insert_need_mark_replicas) 601 ret = 0; 602 603 struct disk_accounting_pos acc; 604 bpos_to_disk_accounting_pos(&acc, k.k->p); 605 606 if (fsck_err_on(ret == -BCH_ERR_btree_insert_need_mark_replicas, 607 trans, accounting_replicas_not_marked, 608 "accounting not marked in superblock replicas\n %s", 609 (bch2_accounting_key_to_text(&buf, &acc), 610 buf.buf))) 611 ret = bch2_accounting_update_sb_one(c, k.k->p); 612 fsck_err: 613 printbuf_exit(&buf); 614 return ret; 615 } 616 617 /* 618 * At startup time, initialize the in memory accounting from the btree (and 619 * journal) 620 */ 621 int bch2_accounting_read(struct bch_fs *c) 622 { 623 struct bch_accounting_mem *acc = &c->accounting; 624 struct btree_trans *trans = bch2_trans_get(c); 625 626 int ret = for_each_btree_key(trans, iter, 627 BTREE_ID_accounting, POS_MIN, 628 BTREE_ITER_prefetch|BTREE_ITER_all_snapshots, k, ({ 629 struct bkey u; 630 struct bkey_s_c k = bch2_btree_path_peek_slot_exact(btree_iter_path(trans, &iter), &u); 631 accounting_read_key(trans, k); 632 })); 633 if (ret) 634 goto err; 635 636 struct journal_keys *keys = &c->journal_keys; 637 struct journal_key *dst = keys->data; 638 move_gap(keys, keys->nr); 639 640 darray_for_each(*keys, i) { 641 if (i->k->k.type == KEY_TYPE_accounting) { 642 struct bkey_s_c k = bkey_i_to_s_c(i->k); 643 unsigned idx = eytzinger0_find(acc->k.data, acc->k.nr, 644 sizeof(acc->k.data[0]), 645 accounting_pos_cmp, &k.k->p); 646 647 bool applied = idx < acc->k.nr && 648 bversion_cmp(acc->k.data[idx].version, k.k->version) >= 0; 649 650 if (applied) 651 continue; 652 653 if (i + 1 < &darray_top(*keys) && 654 i[1].k->k.type == KEY_TYPE_accounting && 655 !journal_key_cmp(i, i + 1)) { 656 BUG_ON(bversion_cmp(i[0].k->k.version, i[1].k->k.version) >= 0); 657 658 i[1].journal_seq = i[0].journal_seq; 659 660 bch2_accounting_accumulate(bkey_i_to_accounting(i[1].k), 661 bkey_s_c_to_accounting(k)); 662 continue; 663 } 664 665 ret = accounting_read_key(trans, k); 666 if (ret) 667 goto err; 668 } 669 670 *dst++ = *i; 671 } 672 keys->gap = keys->nr = dst - keys->data; 673 674 percpu_down_read(&c->mark_lock); 675 preempt_disable(); 676 struct bch_fs_usage_base *usage = this_cpu_ptr(c->usage); 677 678 for (unsigned i = 0; i < acc->k.nr; i++) { 679 struct disk_accounting_pos k; 680 bpos_to_disk_accounting_pos(&k, acc->k.data[i].pos); 681 682 u64 v[BCH_ACCOUNTING_MAX_COUNTERS]; 683 bch2_accounting_mem_read_counters(acc, i, v, ARRAY_SIZE(v), false); 684 685 switch (k.type) { 686 case BCH_DISK_ACCOUNTING_persistent_reserved: 687 usage->reserved += v[0] * k.persistent_reserved.nr_replicas; 688 break; 689 case BCH_DISK_ACCOUNTING_replicas: 690 fs_usage_data_type_to_base(usage, k.replicas.data_type, v[0]); 691 break; 692 case BCH_DISK_ACCOUNTING_dev_data_type: 693 rcu_read_lock(); 694 struct bch_dev *ca = bch2_dev_rcu(c, k.dev_data_type.dev); 695 if (ca) { 696 struct bch_dev_usage_type __percpu *d = &ca->usage->d[k.dev_data_type.data_type]; 697 percpu_u64_set(&d->buckets, v[0]); 698 percpu_u64_set(&d->sectors, v[1]); 699 percpu_u64_set(&d->fragmented, v[2]); 700 701 if (k.dev_data_type.data_type == BCH_DATA_sb || 702 k.dev_data_type.data_type == BCH_DATA_journal) 703 usage->hidden += v[0] * ca->mi.bucket_size; 704 } 705 rcu_read_unlock(); 706 break; 707 } 708 } 709 preempt_enable(); 710 percpu_up_read(&c->mark_lock); 711 err: 712 bch2_trans_put(trans); 713 bch_err_fn(c, ret); 714 return ret; 715 } 716 717 int bch2_dev_usage_remove(struct bch_fs *c, unsigned dev) 718 { 719 return bch2_trans_run(c, 720 bch2_btree_write_buffer_flush_sync(trans) ?: 721 for_each_btree_key_commit(trans, iter, BTREE_ID_accounting, POS_MIN, 722 BTREE_ITER_all_snapshots, k, NULL, NULL, 0, ({ 723 struct disk_accounting_pos acc; 724 bpos_to_disk_accounting_pos(&acc, k.k->p); 725 726 acc.type == BCH_DISK_ACCOUNTING_dev_data_type && 727 acc.dev_data_type.dev == dev 728 ? bch2_btree_bit_mod_buffered(trans, BTREE_ID_accounting, k.k->p, 0) 729 : 0; 730 })) ?: 731 bch2_btree_write_buffer_flush_sync(trans)); 732 } 733 734 int bch2_dev_usage_init(struct bch_dev *ca, bool gc) 735 { 736 struct bch_fs *c = ca->fs; 737 struct disk_accounting_pos acc = { 738 .type = BCH_DISK_ACCOUNTING_dev_data_type, 739 .dev_data_type.dev = ca->dev_idx, 740 .dev_data_type.data_type = BCH_DATA_free, 741 }; 742 u64 v[3] = { ca->mi.nbuckets - ca->mi.first_bucket, 0, 0 }; 743 744 int ret = bch2_trans_do(c, NULL, NULL, 0, 745 bch2_disk_accounting_mod(trans, &acc, v, ARRAY_SIZE(v), gc)); 746 bch_err_fn(c, ret); 747 return ret; 748 } 749 750 void bch2_verify_accounting_clean(struct bch_fs *c) 751 { 752 bool mismatch = false; 753 struct bch_fs_usage_base base = {}, base_inmem = {}; 754 755 bch2_trans_run(c, 756 for_each_btree_key(trans, iter, 757 BTREE_ID_accounting, POS_MIN, 758 BTREE_ITER_all_snapshots, k, ({ 759 u64 v[BCH_ACCOUNTING_MAX_COUNTERS]; 760 struct bkey_s_c_accounting a = bkey_s_c_to_accounting(k); 761 unsigned nr = bch2_accounting_counters(k.k); 762 763 bch2_accounting_mem_read(c, k.k->p, v, nr); 764 765 if (memcmp(a.v->d, v, nr * sizeof(u64))) { 766 struct printbuf buf = PRINTBUF; 767 768 bch2_bkey_val_to_text(&buf, c, k); 769 prt_str(&buf, " !="); 770 for (unsigned j = 0; j < nr; j++) 771 prt_printf(&buf, " %llu", v[j]); 772 773 pr_err("%s", buf.buf); 774 printbuf_exit(&buf); 775 mismatch = true; 776 } 777 778 struct disk_accounting_pos acc_k; 779 bpos_to_disk_accounting_pos(&acc_k, a.k->p); 780 781 switch (acc_k.type) { 782 case BCH_DISK_ACCOUNTING_persistent_reserved: 783 base.reserved += acc_k.persistent_reserved.nr_replicas * a.v->d[0]; 784 break; 785 case BCH_DISK_ACCOUNTING_replicas: 786 fs_usage_data_type_to_base(&base, acc_k.replicas.data_type, a.v->d[0]); 787 break; 788 case BCH_DISK_ACCOUNTING_dev_data_type: { 789 rcu_read_lock(); 790 struct bch_dev *ca = bch2_dev_rcu(c, acc_k.dev_data_type.dev); 791 if (!ca) { 792 rcu_read_unlock(); 793 continue; 794 } 795 796 v[0] = percpu_u64_get(&ca->usage->d[acc_k.dev_data_type.data_type].buckets); 797 v[1] = percpu_u64_get(&ca->usage->d[acc_k.dev_data_type.data_type].sectors); 798 v[2] = percpu_u64_get(&ca->usage->d[acc_k.dev_data_type.data_type].fragmented); 799 rcu_read_unlock(); 800 801 if (memcmp(a.v->d, v, 3 * sizeof(u64))) { 802 struct printbuf buf = PRINTBUF; 803 804 bch2_bkey_val_to_text(&buf, c, k); 805 prt_str(&buf, " in mem"); 806 for (unsigned j = 0; j < nr; j++) 807 prt_printf(&buf, " %llu", v[j]); 808 809 pr_err("dev accounting mismatch: %s", buf.buf); 810 printbuf_exit(&buf); 811 mismatch = true; 812 } 813 } 814 } 815 816 0; 817 }))); 818 819 acc_u64s_percpu(&base_inmem.hidden, &c->usage->hidden, sizeof(base_inmem) / sizeof(u64)); 820 821 #define check(x) \ 822 if (base.x != base_inmem.x) { \ 823 pr_err("fs_usage_base.%s mismatch: %llu != %llu", #x, base.x, base_inmem.x); \ 824 mismatch = true; \ 825 } 826 827 //check(hidden); 828 check(btree); 829 check(data); 830 check(cached); 831 check(reserved); 832 check(nr_inodes); 833 834 WARN_ON(mismatch); 835 } 836 837 void bch2_accounting_gc_free(struct bch_fs *c) 838 { 839 lockdep_assert_held(&c->mark_lock); 840 841 struct bch_accounting_mem *acc = &c->accounting; 842 843 bch2_accounting_free_counters(acc, true); 844 acc->gc_running = false; 845 } 846 847 void bch2_fs_accounting_exit(struct bch_fs *c) 848 { 849 struct bch_accounting_mem *acc = &c->accounting; 850 851 bch2_accounting_free_counters(acc, false); 852 darray_exit(&acc->k); 853 } 854