xref: /linux/fs/bcachefs/disk_accounting.c (revision 13b25489b6f8bd73ed65f07928f7c27a481f1820)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "bcachefs.h"
4 #include "bcachefs_ioctl.h"
5 #include "btree_cache.h"
6 #include "btree_journal_iter.h"
7 #include "btree_update.h"
8 #include "btree_write_buffer.h"
9 #include "buckets.h"
10 #include "compress.h"
11 #include "disk_accounting.h"
12 #include "error.h"
13 #include "journal_io.h"
14 #include "replicas.h"
15 
16 /*
17  * Notes on disk accounting:
18  *
19  * We have two parallel sets of counters to be concerned with, and both must be
20  * kept in sync.
21  *
22  *  - Persistent/on disk accounting, stored in the accounting btree and updated
23  *    via btree write buffer updates that treat new accounting keys as deltas to
24  *    apply to existing values. But reading from a write buffer btree is
25  *    expensive, so we also have
26  *
27  *  - In memory accounting, where accounting is stored as an array of percpu
28  *    counters, indexed by an eytzinger array of disk acounting keys/bpos (which
29  *    are the same thing, excepting byte swabbing on big endian).
30  *
31  *    Cheap to read, but non persistent.
32  *
33  * Disk accounting updates are generated by transactional triggers; these run as
34  * keys enter and leave the btree, and can compare old and new versions of keys;
35  * the output of these triggers are deltas to the various counters.
36  *
37  * Disk accounting updates are done as btree write buffer updates, where the
38  * counters in the disk accounting key are deltas that will be applied to the
39  * counter in the btree when the key is flushed by the write buffer (or journal
40  * replay).
41  *
42  * To do a disk accounting update:
43  * - initialize a disk_accounting_pos, to specify which counter is being update
44  * - initialize counter deltas, as an array of 1-3 s64s
45  * - call bch2_disk_accounting_mod()
46  *
47  * This queues up the accounting update to be done at transaction commit time.
48  * Underneath, it's a normal btree write buffer update.
49  *
50  * The transaction commit path is responsible for propagating updates to the in
51  * memory counters, with bch2_accounting_mem_mod().
52  *
53  * The commit path also assigns every disk accounting update a unique version
54  * number, based on the journal sequence number and offset within that journal
55  * buffer; this is used by journal replay to determine which updates have been
56  * done.
57  *
58  * The transaction commit path also ensures that replicas entry accounting
59  * updates are properly marked in the superblock (so that we know whether we can
60  * mount without data being unavailable); it will update the superblock if
61  * bch2_accounting_mem_mod() tells it to.
62  */
63 
64 static const char * const disk_accounting_type_strs[] = {
65 #define x(t, n, ...) [n] = #t,
66 	BCH_DISK_ACCOUNTING_TYPES()
67 #undef x
68 	NULL
69 };
70 
71 static inline void accounting_key_init(struct bkey_i *k, struct disk_accounting_pos *pos,
72 				       s64 *d, unsigned nr)
73 {
74 	struct bkey_i_accounting *acc = bkey_accounting_init(k);
75 
76 	acc->k.p = disk_accounting_pos_to_bpos(pos);
77 	set_bkey_val_u64s(&acc->k, sizeof(struct bch_accounting) / sizeof(u64) + nr);
78 
79 	memcpy_u64s_small(acc->v.d, d, nr);
80 }
81 
82 int bch2_disk_accounting_mod(struct btree_trans *trans,
83 			     struct disk_accounting_pos *k,
84 			     s64 *d, unsigned nr, bool gc)
85 {
86 	/* Normalize: */
87 	switch (k->type) {
88 	case BCH_DISK_ACCOUNTING_replicas:
89 		bubble_sort(k->replicas.devs, k->replicas.nr_devs, u8_cmp);
90 		break;
91 	}
92 
93 	BUG_ON(nr > BCH_ACCOUNTING_MAX_COUNTERS);
94 
95 	struct { __BKEY_PADDED(k, BCH_ACCOUNTING_MAX_COUNTERS); } k_i;
96 
97 	accounting_key_init(&k_i.k, k, d, nr);
98 
99 	return likely(!gc)
100 		? bch2_trans_update_buffered(trans, BTREE_ID_accounting, &k_i.k)
101 		: bch2_accounting_mem_add(trans, bkey_i_to_s_c_accounting(&k_i.k), true);
102 }
103 
104 int bch2_mod_dev_cached_sectors(struct btree_trans *trans,
105 				unsigned dev, s64 sectors,
106 				bool gc)
107 {
108 	struct disk_accounting_pos acc = {
109 		.type = BCH_DISK_ACCOUNTING_replicas,
110 	};
111 
112 	bch2_replicas_entry_cached(&acc.replicas, dev);
113 
114 	return bch2_disk_accounting_mod(trans, &acc, &sectors, 1, gc);
115 }
116 
117 static inline bool is_zero(char *start, char *end)
118 {
119 	BUG_ON(start > end);
120 
121 	for (; start < end; start++)
122 		if (*start)
123 			return false;
124 	return true;
125 }
126 
127 #define field_end(p, member)	(((void *) (&p.member)) + sizeof(p.member))
128 
129 int bch2_accounting_validate(struct bch_fs *c, struct bkey_s_c k,
130 			     enum bch_validate_flags flags)
131 {
132 	struct disk_accounting_pos acc_k;
133 	bpos_to_disk_accounting_pos(&acc_k, k.k->p);
134 	void *end = &acc_k + 1;
135 	int ret = 0;
136 
137 	bkey_fsck_err_on(bversion_zero(k.k->bversion),
138 			 c, accounting_key_version_0,
139 			 "accounting key with version=0");
140 
141 	switch (acc_k.type) {
142 	case BCH_DISK_ACCOUNTING_nr_inodes:
143 		end = field_end(acc_k, nr_inodes);
144 		break;
145 	case BCH_DISK_ACCOUNTING_persistent_reserved:
146 		end = field_end(acc_k, persistent_reserved);
147 		break;
148 	case BCH_DISK_ACCOUNTING_replicas:
149 		bkey_fsck_err_on(!acc_k.replicas.nr_devs,
150 				 c, accounting_key_replicas_nr_devs_0,
151 				 "accounting key replicas entry with nr_devs=0");
152 
153 		bkey_fsck_err_on(acc_k.replicas.nr_required > acc_k.replicas.nr_devs ||
154 				 (acc_k.replicas.nr_required > 1 &&
155 				  acc_k.replicas.nr_required == acc_k.replicas.nr_devs),
156 				 c, accounting_key_replicas_nr_required_bad,
157 				 "accounting key replicas entry with bad nr_required");
158 
159 		for (unsigned i = 0; i + 1 < acc_k.replicas.nr_devs; i++)
160 			bkey_fsck_err_on(acc_k.replicas.devs[i] >= acc_k.replicas.devs[i + 1],
161 					 c, accounting_key_replicas_devs_unsorted,
162 					 "accounting key replicas entry with unsorted devs");
163 
164 		end = (void *) &acc_k.replicas + replicas_entry_bytes(&acc_k.replicas);
165 		break;
166 	case BCH_DISK_ACCOUNTING_dev_data_type:
167 		end = field_end(acc_k, dev_data_type);
168 		break;
169 	case BCH_DISK_ACCOUNTING_compression:
170 		end = field_end(acc_k, compression);
171 		break;
172 	case BCH_DISK_ACCOUNTING_snapshot:
173 		end = field_end(acc_k, snapshot);
174 		break;
175 	case BCH_DISK_ACCOUNTING_btree:
176 		end = field_end(acc_k, btree);
177 		break;
178 	case BCH_DISK_ACCOUNTING_rebalance_work:
179 		end = field_end(acc_k, rebalance_work);
180 		break;
181 	}
182 
183 	bkey_fsck_err_on(!is_zero(end, (void *) (&acc_k + 1)),
184 			 c, accounting_key_junk_at_end,
185 			 "junk at end of accounting key");
186 fsck_err:
187 	return ret;
188 }
189 
190 void bch2_accounting_key_to_text(struct printbuf *out, struct disk_accounting_pos *k)
191 {
192 	if (k->type >= BCH_DISK_ACCOUNTING_TYPE_NR) {
193 		prt_printf(out, "unknown type %u", k->type);
194 		return;
195 	}
196 
197 	prt_str(out, disk_accounting_type_strs[k->type]);
198 	prt_str(out, " ");
199 
200 	switch (k->type) {
201 	case BCH_DISK_ACCOUNTING_nr_inodes:
202 		break;
203 	case BCH_DISK_ACCOUNTING_persistent_reserved:
204 		prt_printf(out, "replicas=%u", k->persistent_reserved.nr_replicas);
205 		break;
206 	case BCH_DISK_ACCOUNTING_replicas:
207 		bch2_replicas_entry_to_text(out, &k->replicas);
208 		break;
209 	case BCH_DISK_ACCOUNTING_dev_data_type:
210 		prt_printf(out, "dev=%u data_type=", k->dev_data_type.dev);
211 		bch2_prt_data_type(out, k->dev_data_type.data_type);
212 		break;
213 	case BCH_DISK_ACCOUNTING_compression:
214 		bch2_prt_compression_type(out, k->compression.type);
215 		break;
216 	case BCH_DISK_ACCOUNTING_snapshot:
217 		prt_printf(out, "id=%u", k->snapshot.id);
218 		break;
219 	case BCH_DISK_ACCOUNTING_btree:
220 		prt_printf(out, "btree=%s", bch2_btree_id_str(k->btree.id));
221 		break;
222 	}
223 }
224 
225 void bch2_accounting_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k)
226 {
227 	struct bkey_s_c_accounting acc = bkey_s_c_to_accounting(k);
228 	struct disk_accounting_pos acc_k;
229 	bpos_to_disk_accounting_pos(&acc_k, k.k->p);
230 
231 	bch2_accounting_key_to_text(out, &acc_k);
232 
233 	for (unsigned i = 0; i < bch2_accounting_counters(k.k); i++)
234 		prt_printf(out, " %lli", acc.v->d[i]);
235 }
236 
237 void bch2_accounting_swab(struct bkey_s k)
238 {
239 	for (u64 *p = (u64 *) k.v;
240 	     p < (u64 *) bkey_val_end(k);
241 	     p++)
242 		*p = swab64(*p);
243 }
244 
245 static inline void __accounting_to_replicas(struct bch_replicas_entry_v1 *r,
246 					    struct disk_accounting_pos acc)
247 {
248 	unsafe_memcpy(r, &acc.replicas,
249 		      replicas_entry_bytes(&acc.replicas),
250 		      "variable length struct");
251 }
252 
253 static inline bool accounting_to_replicas(struct bch_replicas_entry_v1 *r, struct bpos p)
254 {
255 	struct disk_accounting_pos acc_k;
256 	bpos_to_disk_accounting_pos(&acc_k, p);
257 
258 	switch (acc_k.type) {
259 	case BCH_DISK_ACCOUNTING_replicas:
260 		__accounting_to_replicas(r, acc_k);
261 		return true;
262 	default:
263 		return false;
264 	}
265 }
266 
267 static int bch2_accounting_update_sb_one(struct bch_fs *c, struct bpos p)
268 {
269 	struct bch_replicas_padded r;
270 	return accounting_to_replicas(&r.e, p)
271 		? bch2_mark_replicas(c, &r.e)
272 		: 0;
273 }
274 
275 /*
276  * Ensure accounting keys being updated are present in the superblock, when
277  * applicable (i.e. replicas updates)
278  */
279 int bch2_accounting_update_sb(struct btree_trans *trans)
280 {
281 	for (struct jset_entry *i = trans->journal_entries;
282 	     i != (void *) ((u64 *) trans->journal_entries + trans->journal_entries_u64s);
283 	     i = vstruct_next(i))
284 		if (jset_entry_is_key(i) && i->start->k.type == KEY_TYPE_accounting) {
285 			int ret = bch2_accounting_update_sb_one(trans->c, i->start->k.p);
286 			if (ret)
287 				return ret;
288 		}
289 
290 	return 0;
291 }
292 
293 static int __bch2_accounting_mem_insert(struct bch_fs *c, struct bkey_s_c_accounting a)
294 {
295 	struct bch_accounting_mem *acc = &c->accounting;
296 
297 	/* raced with another insert, already present: */
298 	if (eytzinger0_find(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]),
299 			    accounting_pos_cmp, &a.k->p) < acc->k.nr)
300 		return 0;
301 
302 	struct accounting_mem_entry n = {
303 		.pos		= a.k->p,
304 		.bversion	= a.k->bversion,
305 		.nr_counters	= bch2_accounting_counters(a.k),
306 		.v[0]		= __alloc_percpu_gfp(n.nr_counters * sizeof(u64),
307 						     sizeof(u64), GFP_KERNEL),
308 	};
309 
310 	if (!n.v[0])
311 		goto err;
312 
313 	if (acc->gc_running) {
314 		n.v[1] = __alloc_percpu_gfp(n.nr_counters * sizeof(u64),
315 					    sizeof(u64), GFP_KERNEL);
316 		if (!n.v[1])
317 			goto err;
318 	}
319 
320 	if (darray_push(&acc->k, n))
321 		goto err;
322 
323 	eytzinger0_sort(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]),
324 			accounting_pos_cmp, NULL);
325 	return 0;
326 err:
327 	free_percpu(n.v[1]);
328 	free_percpu(n.v[0]);
329 	return -BCH_ERR_ENOMEM_disk_accounting;
330 }
331 
332 int bch2_accounting_mem_insert(struct bch_fs *c, struct bkey_s_c_accounting a,
333 			       enum bch_accounting_mode mode)
334 {
335 	struct bch_replicas_padded r;
336 
337 	if (mode != BCH_ACCOUNTING_read &&
338 	    accounting_to_replicas(&r.e, a.k->p) &&
339 	    !bch2_replicas_marked_locked(c, &r.e))
340 		return -BCH_ERR_btree_insert_need_mark_replicas;
341 
342 	percpu_up_read(&c->mark_lock);
343 	percpu_down_write(&c->mark_lock);
344 	int ret = __bch2_accounting_mem_insert(c, a);
345 	percpu_up_write(&c->mark_lock);
346 	percpu_down_read(&c->mark_lock);
347 	return ret;
348 }
349 
350 static bool accounting_mem_entry_is_zero(struct accounting_mem_entry *e)
351 {
352 	for (unsigned i = 0; i < e->nr_counters; i++)
353 		if (percpu_u64_get(e->v[0] + i) ||
354 		    (e->v[1] &&
355 		     percpu_u64_get(e->v[1] + i)))
356 			return false;
357 	return true;
358 }
359 
360 void bch2_accounting_mem_gc(struct bch_fs *c)
361 {
362 	struct bch_accounting_mem *acc = &c->accounting;
363 
364 	percpu_down_write(&c->mark_lock);
365 	struct accounting_mem_entry *dst = acc->k.data;
366 
367 	darray_for_each(acc->k, src) {
368 		if (accounting_mem_entry_is_zero(src)) {
369 			free_percpu(src->v[0]);
370 			free_percpu(src->v[1]);
371 		} else {
372 			*dst++ = *src;
373 		}
374 	}
375 
376 	acc->k.nr = dst - acc->k.data;
377 	eytzinger0_sort(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]),
378 			accounting_pos_cmp, NULL);
379 	percpu_up_write(&c->mark_lock);
380 }
381 
382 /*
383  * Read out accounting keys for replicas entries, as an array of
384  * bch_replicas_usage entries.
385  *
386  * Note: this may be deprecated/removed at smoe point in the future and replaced
387  * with something more general, it exists to support the ioctl used by the
388  * 'bcachefs fs usage' command.
389  */
390 int bch2_fs_replicas_usage_read(struct bch_fs *c, darray_char *usage)
391 {
392 	struct bch_accounting_mem *acc = &c->accounting;
393 	int ret = 0;
394 
395 	darray_init(usage);
396 
397 	percpu_down_read(&c->mark_lock);
398 	darray_for_each(acc->k, i) {
399 		struct {
400 			struct bch_replicas_usage r;
401 			u8 pad[BCH_BKEY_PTRS_MAX];
402 		} u;
403 
404 		if (!accounting_to_replicas(&u.r.r, i->pos))
405 			continue;
406 
407 		u64 sectors;
408 		bch2_accounting_mem_read_counters(acc, i - acc->k.data, &sectors, 1, false);
409 		u.r.sectors = sectors;
410 
411 		ret = darray_make_room(usage, replicas_usage_bytes(&u.r));
412 		if (ret)
413 			break;
414 
415 		memcpy(&darray_top(*usage), &u.r, replicas_usage_bytes(&u.r));
416 		usage->nr += replicas_usage_bytes(&u.r);
417 	}
418 	percpu_up_read(&c->mark_lock);
419 
420 	if (ret)
421 		darray_exit(usage);
422 	return ret;
423 }
424 
425 int bch2_fs_accounting_read(struct bch_fs *c, darray_char *out_buf, unsigned accounting_types_mask)
426 {
427 
428 	struct bch_accounting_mem *acc = &c->accounting;
429 	int ret = 0;
430 
431 	darray_init(out_buf);
432 
433 	percpu_down_read(&c->mark_lock);
434 	darray_for_each(acc->k, i) {
435 		struct disk_accounting_pos a_p;
436 		bpos_to_disk_accounting_pos(&a_p, i->pos);
437 
438 		if (!(accounting_types_mask & BIT(a_p.type)))
439 			continue;
440 
441 		ret = darray_make_room(out_buf, sizeof(struct bkey_i_accounting) +
442 				       sizeof(u64) * i->nr_counters);
443 		if (ret)
444 			break;
445 
446 		struct bkey_i_accounting *a_out =
447 			bkey_accounting_init((void *) &darray_top(*out_buf));
448 		set_bkey_val_u64s(&a_out->k, i->nr_counters);
449 		a_out->k.p = i->pos;
450 		bch2_accounting_mem_read_counters(acc, i - acc->k.data,
451 						  a_out->v.d, i->nr_counters, false);
452 
453 		if (!bch2_accounting_key_is_zero(accounting_i_to_s_c(a_out)))
454 			out_buf->nr += bkey_bytes(&a_out->k);
455 	}
456 
457 	percpu_up_read(&c->mark_lock);
458 
459 	if (ret)
460 		darray_exit(out_buf);
461 	return ret;
462 }
463 
464 void bch2_fs_accounting_to_text(struct printbuf *out, struct bch_fs *c)
465 {
466 	struct bch_accounting_mem *acc = &c->accounting;
467 
468 	percpu_down_read(&c->mark_lock);
469 	out->atomic++;
470 
471 	eytzinger0_for_each(i, acc->k.nr) {
472 		struct disk_accounting_pos acc_k;
473 		bpos_to_disk_accounting_pos(&acc_k, acc->k.data[i].pos);
474 
475 		bch2_accounting_key_to_text(out, &acc_k);
476 
477 		u64 v[BCH_ACCOUNTING_MAX_COUNTERS];
478 		bch2_accounting_mem_read_counters(acc, i, v, ARRAY_SIZE(v), false);
479 
480 		prt_str(out, ":");
481 		for (unsigned j = 0; j < acc->k.data[i].nr_counters; j++)
482 			prt_printf(out, " %llu", v[j]);
483 		prt_newline(out);
484 	}
485 
486 	--out->atomic;
487 	percpu_up_read(&c->mark_lock);
488 }
489 
490 static void bch2_accounting_free_counters(struct bch_accounting_mem *acc, bool gc)
491 {
492 	darray_for_each(acc->k, e) {
493 		free_percpu(e->v[gc]);
494 		e->v[gc] = NULL;
495 	}
496 }
497 
498 int bch2_gc_accounting_start(struct bch_fs *c)
499 {
500 	struct bch_accounting_mem *acc = &c->accounting;
501 	int ret = 0;
502 
503 	percpu_down_write(&c->mark_lock);
504 	darray_for_each(acc->k, e) {
505 		e->v[1] = __alloc_percpu_gfp(e->nr_counters * sizeof(u64),
506 					     sizeof(u64), GFP_KERNEL);
507 		if (!e->v[1]) {
508 			bch2_accounting_free_counters(acc, true);
509 			ret = -BCH_ERR_ENOMEM_disk_accounting;
510 			break;
511 		}
512 	}
513 
514 	acc->gc_running = !ret;
515 	percpu_up_write(&c->mark_lock);
516 
517 	return ret;
518 }
519 
520 int bch2_gc_accounting_done(struct bch_fs *c)
521 {
522 	struct bch_accounting_mem *acc = &c->accounting;
523 	struct btree_trans *trans = bch2_trans_get(c);
524 	struct printbuf buf = PRINTBUF;
525 	struct bpos pos = POS_MIN;
526 	int ret = 0;
527 
528 	percpu_down_write(&c->mark_lock);
529 	while (1) {
530 		unsigned idx = eytzinger0_find_ge(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]),
531 						  accounting_pos_cmp, &pos);
532 
533 		if (idx >= acc->k.nr)
534 			break;
535 
536 		struct accounting_mem_entry *e = acc->k.data + idx;
537 		pos = bpos_successor(e->pos);
538 
539 		struct disk_accounting_pos acc_k;
540 		bpos_to_disk_accounting_pos(&acc_k, e->pos);
541 
542 		if (acc_k.type >= BCH_DISK_ACCOUNTING_TYPE_NR)
543 			continue;
544 
545 		u64 src_v[BCH_ACCOUNTING_MAX_COUNTERS];
546 		u64 dst_v[BCH_ACCOUNTING_MAX_COUNTERS];
547 
548 		unsigned nr = e->nr_counters;
549 		bch2_accounting_mem_read_counters(acc, idx, dst_v, nr, false);
550 		bch2_accounting_mem_read_counters(acc, idx, src_v, nr, true);
551 
552 		if (memcmp(dst_v, src_v, nr * sizeof(u64))) {
553 			printbuf_reset(&buf);
554 			prt_str(&buf, "accounting mismatch for ");
555 			bch2_accounting_key_to_text(&buf, &acc_k);
556 
557 			prt_str(&buf, ": got");
558 			for (unsigned j = 0; j < nr; j++)
559 				prt_printf(&buf, " %llu", dst_v[j]);
560 
561 			prt_str(&buf, " should be");
562 			for (unsigned j = 0; j < nr; j++)
563 				prt_printf(&buf, " %llu", src_v[j]);
564 
565 			for (unsigned j = 0; j < nr; j++)
566 				src_v[j] -= dst_v[j];
567 
568 			if (fsck_err(trans, accounting_mismatch, "%s", buf.buf)) {
569 				percpu_up_write(&c->mark_lock);
570 				ret = commit_do(trans, NULL, NULL, 0,
571 						bch2_disk_accounting_mod(trans, &acc_k, src_v, nr, false));
572 				percpu_down_write(&c->mark_lock);
573 				if (ret)
574 					goto err;
575 
576 				if (!test_bit(BCH_FS_may_go_rw, &c->flags)) {
577 					memset(&trans->fs_usage_delta, 0, sizeof(trans->fs_usage_delta));
578 					struct { __BKEY_PADDED(k, BCH_ACCOUNTING_MAX_COUNTERS); } k_i;
579 
580 					accounting_key_init(&k_i.k, &acc_k, src_v, nr);
581 					bch2_accounting_mem_mod_locked(trans,
582 								bkey_i_to_s_c_accounting(&k_i.k),
583 								BCH_ACCOUNTING_normal);
584 
585 					preempt_disable();
586 					struct bch_fs_usage_base *dst = this_cpu_ptr(c->usage);
587 					struct bch_fs_usage_base *src = &trans->fs_usage_delta;
588 					acc_u64s((u64 *) dst, (u64 *) src, sizeof(*src) / sizeof(u64));
589 					preempt_enable();
590 				}
591 			}
592 		}
593 	}
594 err:
595 fsck_err:
596 	percpu_up_write(&c->mark_lock);
597 	printbuf_exit(&buf);
598 	bch2_trans_put(trans);
599 	bch_err_fn(c, ret);
600 	return ret;
601 }
602 
603 static int accounting_read_key(struct btree_trans *trans, struct bkey_s_c k)
604 {
605 	struct bch_fs *c = trans->c;
606 
607 	if (k.k->type != KEY_TYPE_accounting)
608 		return 0;
609 
610 	percpu_down_read(&c->mark_lock);
611 	int ret = bch2_accounting_mem_mod_locked(trans, bkey_s_c_to_accounting(k),
612 						 BCH_ACCOUNTING_read);
613 	percpu_up_read(&c->mark_lock);
614 	return ret;
615 }
616 
617 static int bch2_disk_accounting_validate_late(struct btree_trans *trans,
618 					      struct disk_accounting_pos acc,
619 					      u64 *v, unsigned nr)
620 {
621 	struct bch_fs *c = trans->c;
622 	struct printbuf buf = PRINTBUF;
623 	int ret = 0, invalid_dev = -1;
624 
625 	switch (acc.type) {
626 	case BCH_DISK_ACCOUNTING_replicas: {
627 		struct bch_replicas_padded r;
628 		__accounting_to_replicas(&r.e, acc);
629 
630 		for (unsigned i = 0; i < r.e.nr_devs; i++)
631 			if (r.e.devs[i] != BCH_SB_MEMBER_INVALID &&
632 			    !bch2_dev_exists(c, r.e.devs[i])) {
633 				invalid_dev = r.e.devs[i];
634 				goto invalid_device;
635 			}
636 
637 		/*
638 		 * All replicas entry checks except for invalid device are done
639 		 * in bch2_accounting_validate
640 		 */
641 		BUG_ON(bch2_replicas_entry_validate(&r.e, c, &buf));
642 
643 		if (fsck_err_on(!bch2_replicas_marked_locked(c, &r.e),
644 				trans, accounting_replicas_not_marked,
645 				"accounting not marked in superblock replicas\n  %s",
646 				(printbuf_reset(&buf),
647 				 bch2_accounting_key_to_text(&buf, &acc),
648 				 buf.buf))) {
649 			/*
650 			 * We're not RW yet and still single threaded, dropping
651 			 * and retaking lock is ok:
652 			 */
653 			percpu_up_write(&c->mark_lock);
654 			ret = bch2_mark_replicas(c, &r.e);
655 			if (ret)
656 				goto fsck_err;
657 			percpu_down_write(&c->mark_lock);
658 		}
659 		break;
660 	}
661 
662 	case BCH_DISK_ACCOUNTING_dev_data_type:
663 		if (!bch2_dev_exists(c, acc.dev_data_type.dev)) {
664 			invalid_dev = acc.dev_data_type.dev;
665 			goto invalid_device;
666 		}
667 		break;
668 	}
669 
670 fsck_err:
671 	printbuf_exit(&buf);
672 	return ret;
673 invalid_device:
674 	if (fsck_err(trans, accounting_to_invalid_device,
675 		     "accounting entry points to invalid device %i\n  %s",
676 		     invalid_dev,
677 		     (printbuf_reset(&buf),
678 		      bch2_accounting_key_to_text(&buf, &acc),
679 		      buf.buf))) {
680 		for (unsigned i = 0; i < nr; i++)
681 			v[i] = -v[i];
682 
683 		ret = commit_do(trans, NULL, NULL, 0,
684 				bch2_disk_accounting_mod(trans, &acc, v, nr, false)) ?:
685 			-BCH_ERR_remove_disk_accounting_entry;
686 	} else {
687 		ret = -BCH_ERR_remove_disk_accounting_entry;
688 	}
689 	goto fsck_err;
690 }
691 
692 /*
693  * At startup time, initialize the in memory accounting from the btree (and
694  * journal)
695  */
696 int bch2_accounting_read(struct bch_fs *c)
697 {
698 	struct bch_accounting_mem *acc = &c->accounting;
699 	struct btree_trans *trans = bch2_trans_get(c);
700 	struct printbuf buf = PRINTBUF;
701 
702 	int ret = for_each_btree_key(trans, iter,
703 				BTREE_ID_accounting, POS_MIN,
704 				BTREE_ITER_prefetch|BTREE_ITER_all_snapshots, k, ({
705 			struct bkey u;
706 			struct bkey_s_c k = bch2_btree_path_peek_slot_exact(btree_iter_path(trans, &iter), &u);
707 			accounting_read_key(trans, k);
708 		}));
709 	if (ret)
710 		goto err;
711 
712 	struct journal_keys *keys = &c->journal_keys;
713 	struct journal_key *dst = keys->data;
714 	move_gap(keys, keys->nr);
715 
716 	darray_for_each(*keys, i) {
717 		if (i->k->k.type == KEY_TYPE_accounting) {
718 			struct bkey_s_c k = bkey_i_to_s_c(i->k);
719 			unsigned idx = eytzinger0_find(acc->k.data, acc->k.nr,
720 						sizeof(acc->k.data[0]),
721 						accounting_pos_cmp, &k.k->p);
722 
723 			bool applied = idx < acc->k.nr &&
724 				bversion_cmp(acc->k.data[idx].bversion, k.k->bversion) >= 0;
725 
726 			if (applied)
727 				continue;
728 
729 			if (i + 1 < &darray_top(*keys) &&
730 			    i[1].k->k.type == KEY_TYPE_accounting &&
731 			    !journal_key_cmp(i, i + 1)) {
732 				WARN_ON(bversion_cmp(i[0].k->k.bversion, i[1].k->k.bversion) >= 0);
733 
734 				i[1].journal_seq = i[0].journal_seq;
735 
736 				bch2_accounting_accumulate(bkey_i_to_accounting(i[1].k),
737 							   bkey_s_c_to_accounting(k));
738 				continue;
739 			}
740 
741 			ret = accounting_read_key(trans, k);
742 			if (ret)
743 				goto err;
744 		}
745 
746 		*dst++ = *i;
747 	}
748 	keys->gap = keys->nr = dst - keys->data;
749 
750 	percpu_down_write(&c->mark_lock);
751 	unsigned i = 0;
752 	while (i < acc->k.nr) {
753 		unsigned idx = inorder_to_eytzinger0(i, acc->k.nr);
754 
755 		struct disk_accounting_pos acc_k;
756 		bpos_to_disk_accounting_pos(&acc_k, acc->k.data[idx].pos);
757 
758 		u64 v[BCH_ACCOUNTING_MAX_COUNTERS];
759 		bch2_accounting_mem_read_counters(acc, idx, v, ARRAY_SIZE(v), false);
760 
761 		/*
762 		 * If the entry counters are zeroed, it should be treated as
763 		 * nonexistent - it might point to an invalid device.
764 		 *
765 		 * Remove it, so that if it's re-added it gets re-marked in the
766 		 * superblock:
767 		 */
768 		ret = bch2_is_zero(v, sizeof(v[0]) * acc->k.data[idx].nr_counters)
769 			? -BCH_ERR_remove_disk_accounting_entry
770 			: bch2_disk_accounting_validate_late(trans, acc_k,
771 							v, acc->k.data[idx].nr_counters);
772 
773 		if (ret == -BCH_ERR_remove_disk_accounting_entry) {
774 			free_percpu(acc->k.data[idx].v[0]);
775 			free_percpu(acc->k.data[idx].v[1]);
776 			darray_remove_item(&acc->k, &acc->k.data[idx]);
777 			eytzinger0_sort(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]),
778 					accounting_pos_cmp, NULL);
779 			ret = 0;
780 			continue;
781 		}
782 
783 		if (ret)
784 			goto fsck_err;
785 		i++;
786 	}
787 
788 	preempt_disable();
789 	struct bch_fs_usage_base *usage = this_cpu_ptr(c->usage);
790 
791 	for (unsigned i = 0; i < acc->k.nr; i++) {
792 		struct disk_accounting_pos k;
793 		bpos_to_disk_accounting_pos(&k, acc->k.data[i].pos);
794 
795 		u64 v[BCH_ACCOUNTING_MAX_COUNTERS];
796 		bch2_accounting_mem_read_counters(acc, i, v, ARRAY_SIZE(v), false);
797 
798 		switch (k.type) {
799 		case BCH_DISK_ACCOUNTING_persistent_reserved:
800 			usage->reserved += v[0] * k.persistent_reserved.nr_replicas;
801 			break;
802 		case BCH_DISK_ACCOUNTING_replicas:
803 			fs_usage_data_type_to_base(usage, k.replicas.data_type, v[0]);
804 			break;
805 		case BCH_DISK_ACCOUNTING_dev_data_type:
806 			rcu_read_lock();
807 			struct bch_dev *ca = bch2_dev_rcu(c, k.dev_data_type.dev);
808 			if (ca) {
809 				struct bch_dev_usage_type __percpu *d = &ca->usage->d[k.dev_data_type.data_type];
810 				percpu_u64_set(&d->buckets,	v[0]);
811 				percpu_u64_set(&d->sectors,	v[1]);
812 				percpu_u64_set(&d->fragmented,	v[2]);
813 
814 				if (k.dev_data_type.data_type == BCH_DATA_sb ||
815 				    k.dev_data_type.data_type == BCH_DATA_journal)
816 					usage->hidden += v[0] * ca->mi.bucket_size;
817 			}
818 			rcu_read_unlock();
819 			break;
820 		}
821 	}
822 	preempt_enable();
823 fsck_err:
824 	percpu_up_write(&c->mark_lock);
825 err:
826 	printbuf_exit(&buf);
827 	bch2_trans_put(trans);
828 	bch_err_fn(c, ret);
829 	return ret;
830 }
831 
832 int bch2_dev_usage_remove(struct bch_fs *c, unsigned dev)
833 {
834 	return bch2_trans_run(c,
835 		bch2_btree_write_buffer_flush_sync(trans) ?:
836 		for_each_btree_key_commit(trans, iter, BTREE_ID_accounting, POS_MIN,
837 				BTREE_ITER_all_snapshots, k, NULL, NULL, 0, ({
838 			struct disk_accounting_pos acc;
839 			bpos_to_disk_accounting_pos(&acc, k.k->p);
840 
841 			acc.type == BCH_DISK_ACCOUNTING_dev_data_type &&
842 			acc.dev_data_type.dev == dev
843 				? bch2_btree_bit_mod_buffered(trans, BTREE_ID_accounting, k.k->p, 0)
844 				: 0;
845 		})) ?:
846 		bch2_btree_write_buffer_flush_sync(trans));
847 }
848 
849 int bch2_dev_usage_init(struct bch_dev *ca, bool gc)
850 {
851 	struct bch_fs *c = ca->fs;
852 	struct disk_accounting_pos acc = {
853 		.type = BCH_DISK_ACCOUNTING_dev_data_type,
854 		.dev_data_type.dev = ca->dev_idx,
855 		.dev_data_type.data_type = BCH_DATA_free,
856 	};
857 	u64 v[3] = { ca->mi.nbuckets - ca->mi.first_bucket, 0, 0 };
858 
859 	int ret = bch2_trans_do(c, ({
860 		bch2_disk_accounting_mod(trans, &acc, v, ARRAY_SIZE(v), gc) ?:
861 		(!gc ? bch2_trans_commit(trans, NULL, NULL, 0) : 0);
862 	}));
863 	bch_err_fn(c, ret);
864 	return ret;
865 }
866 
867 void bch2_verify_accounting_clean(struct bch_fs *c)
868 {
869 	bool mismatch = false;
870 	struct bch_fs_usage_base base = {}, base_inmem = {};
871 
872 	bch2_trans_run(c,
873 		for_each_btree_key(trans, iter,
874 				   BTREE_ID_accounting, POS_MIN,
875 				   BTREE_ITER_all_snapshots, k, ({
876 			u64 v[BCH_ACCOUNTING_MAX_COUNTERS];
877 			struct bkey_s_c_accounting a = bkey_s_c_to_accounting(k);
878 			unsigned nr = bch2_accounting_counters(k.k);
879 
880 			struct disk_accounting_pos acc_k;
881 			bpos_to_disk_accounting_pos(&acc_k, k.k->p);
882 
883 			if (acc_k.type >= BCH_DISK_ACCOUNTING_TYPE_NR)
884 				continue;
885 
886 			if (acc_k.type == BCH_DISK_ACCOUNTING_inum)
887 				continue;
888 
889 			bch2_accounting_mem_read(c, k.k->p, v, nr);
890 
891 			if (memcmp(a.v->d, v, nr * sizeof(u64))) {
892 				struct printbuf buf = PRINTBUF;
893 
894 				bch2_bkey_val_to_text(&buf, c, k);
895 				prt_str(&buf, " !=");
896 				for (unsigned j = 0; j < nr; j++)
897 					prt_printf(&buf, " %llu", v[j]);
898 
899 				pr_err("%s", buf.buf);
900 				printbuf_exit(&buf);
901 				mismatch = true;
902 			}
903 
904 			switch (acc_k.type) {
905 			case BCH_DISK_ACCOUNTING_persistent_reserved:
906 				base.reserved += acc_k.persistent_reserved.nr_replicas * a.v->d[0];
907 				break;
908 			case BCH_DISK_ACCOUNTING_replicas:
909 				fs_usage_data_type_to_base(&base, acc_k.replicas.data_type, a.v->d[0]);
910 				break;
911 			case BCH_DISK_ACCOUNTING_dev_data_type: {
912 				rcu_read_lock();
913 				struct bch_dev *ca = bch2_dev_rcu(c, acc_k.dev_data_type.dev);
914 				if (!ca) {
915 					rcu_read_unlock();
916 					continue;
917 				}
918 
919 				v[0] = percpu_u64_get(&ca->usage->d[acc_k.dev_data_type.data_type].buckets);
920 				v[1] = percpu_u64_get(&ca->usage->d[acc_k.dev_data_type.data_type].sectors);
921 				v[2] = percpu_u64_get(&ca->usage->d[acc_k.dev_data_type.data_type].fragmented);
922 				rcu_read_unlock();
923 
924 				if (memcmp(a.v->d, v, 3 * sizeof(u64))) {
925 					struct printbuf buf = PRINTBUF;
926 
927 					bch2_bkey_val_to_text(&buf, c, k);
928 					prt_str(&buf, " in mem");
929 					for (unsigned j = 0; j < nr; j++)
930 						prt_printf(&buf, " %llu", v[j]);
931 
932 					pr_err("dev accounting mismatch: %s", buf.buf);
933 					printbuf_exit(&buf);
934 					mismatch = true;
935 				}
936 			}
937 			}
938 
939 			0;
940 		})));
941 
942 	acc_u64s_percpu(&base_inmem.hidden, &c->usage->hidden, sizeof(base_inmem) / sizeof(u64));
943 
944 #define check(x)										\
945 	if (base.x != base_inmem.x) {								\
946 		pr_err("fs_usage_base.%s mismatch: %llu != %llu", #x, base.x, base_inmem.x);	\
947 		mismatch = true;								\
948 	}
949 
950 	//check(hidden);
951 	check(btree);
952 	check(data);
953 	check(cached);
954 	check(reserved);
955 	check(nr_inodes);
956 
957 	WARN_ON(mismatch);
958 }
959 
960 void bch2_accounting_gc_free(struct bch_fs *c)
961 {
962 	lockdep_assert_held(&c->mark_lock);
963 
964 	struct bch_accounting_mem *acc = &c->accounting;
965 
966 	bch2_accounting_free_counters(acc, true);
967 	acc->gc_running = false;
968 }
969 
970 void bch2_fs_accounting_exit(struct bch_fs *c)
971 {
972 	struct bch_accounting_mem *acc = &c->accounting;
973 
974 	bch2_accounting_free_counters(acc, false);
975 	darray_exit(&acc->k);
976 }
977