1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "bkey_buf.h"
5 #include "bkey_methods.h"
6 #include "btree_update.h"
7 #include "extents.h"
8 #include "dirent.h"
9 #include "fs.h"
10 #include "keylist.h"
11 #include "str_hash.h"
12 #include "subvolume.h"
13
14 #include <linux/dcache.h>
15
bch2_dirent_name_bytes(struct bkey_s_c_dirent d)16 static unsigned bch2_dirent_name_bytes(struct bkey_s_c_dirent d)
17 {
18 if (bkey_val_bytes(d.k) < offsetof(struct bch_dirent, d_name))
19 return 0;
20
21 unsigned bkey_u64s = bkey_val_u64s(d.k);
22 unsigned bkey_bytes = bkey_u64s * sizeof(u64);
23 u64 last_u64 = ((u64*)d.v)[bkey_u64s - 1];
24 #if CPU_BIG_ENDIAN
25 unsigned trailing_nuls = last_u64 ? __builtin_ctzll(last_u64) / 8 : 64 / 8;
26 #else
27 unsigned trailing_nuls = last_u64 ? __builtin_clzll(last_u64) / 8 : 64 / 8;
28 #endif
29
30 return bkey_bytes -
31 offsetof(struct bch_dirent, d_name) -
32 trailing_nuls;
33 }
34
bch2_dirent_get_name(struct bkey_s_c_dirent d)35 struct qstr bch2_dirent_get_name(struct bkey_s_c_dirent d)
36 {
37 return (struct qstr) QSTR_INIT(d.v->d_name, bch2_dirent_name_bytes(d));
38 }
39
bch2_dirent_hash(const struct bch_hash_info * info,const struct qstr * name)40 static u64 bch2_dirent_hash(const struct bch_hash_info *info,
41 const struct qstr *name)
42 {
43 struct bch_str_hash_ctx ctx;
44
45 bch2_str_hash_init(&ctx, info);
46 bch2_str_hash_update(&ctx, info, name->name, name->len);
47
48 /* [0,2) reserved for dots */
49 return max_t(u64, bch2_str_hash_end(&ctx, info), 2);
50 }
51
dirent_hash_key(const struct bch_hash_info * info,const void * key)52 static u64 dirent_hash_key(const struct bch_hash_info *info, const void *key)
53 {
54 return bch2_dirent_hash(info, key);
55 }
56
dirent_hash_bkey(const struct bch_hash_info * info,struct bkey_s_c k)57 static u64 dirent_hash_bkey(const struct bch_hash_info *info, struct bkey_s_c k)
58 {
59 struct bkey_s_c_dirent d = bkey_s_c_to_dirent(k);
60 struct qstr name = bch2_dirent_get_name(d);
61
62 return bch2_dirent_hash(info, &name);
63 }
64
dirent_cmp_key(struct bkey_s_c _l,const void * _r)65 static bool dirent_cmp_key(struct bkey_s_c _l, const void *_r)
66 {
67 struct bkey_s_c_dirent l = bkey_s_c_to_dirent(_l);
68 const struct qstr l_name = bch2_dirent_get_name(l);
69 const struct qstr *r_name = _r;
70
71 return !qstr_eq(l_name, *r_name);
72 }
73
dirent_cmp_bkey(struct bkey_s_c _l,struct bkey_s_c _r)74 static bool dirent_cmp_bkey(struct bkey_s_c _l, struct bkey_s_c _r)
75 {
76 struct bkey_s_c_dirent l = bkey_s_c_to_dirent(_l);
77 struct bkey_s_c_dirent r = bkey_s_c_to_dirent(_r);
78 const struct qstr l_name = bch2_dirent_get_name(l);
79 const struct qstr r_name = bch2_dirent_get_name(r);
80
81 return !qstr_eq(l_name, r_name);
82 }
83
dirent_is_visible(subvol_inum inum,struct bkey_s_c k)84 static bool dirent_is_visible(subvol_inum inum, struct bkey_s_c k)
85 {
86 struct bkey_s_c_dirent d = bkey_s_c_to_dirent(k);
87
88 if (d.v->d_type == DT_SUBVOL)
89 return le32_to_cpu(d.v->d_parent_subvol) == inum.subvol;
90 return true;
91 }
92
93 const struct bch_hash_desc bch2_dirent_hash_desc = {
94 .btree_id = BTREE_ID_dirents,
95 .key_type = KEY_TYPE_dirent,
96 .hash_key = dirent_hash_key,
97 .hash_bkey = dirent_hash_bkey,
98 .cmp_key = dirent_cmp_key,
99 .cmp_bkey = dirent_cmp_bkey,
100 .is_visible = dirent_is_visible,
101 };
102
bch2_dirent_validate(struct bch_fs * c,struct bkey_s_c k,enum bch_validate_flags flags)103 int bch2_dirent_validate(struct bch_fs *c, struct bkey_s_c k,
104 enum bch_validate_flags flags)
105 {
106 struct bkey_s_c_dirent d = bkey_s_c_to_dirent(k);
107 struct qstr d_name = bch2_dirent_get_name(d);
108 int ret = 0;
109
110 bkey_fsck_err_on(!d_name.len,
111 c, dirent_empty_name,
112 "empty name");
113
114 bkey_fsck_err_on(bkey_val_u64s(k.k) > dirent_val_u64s(d_name.len),
115 c, dirent_val_too_big,
116 "value too big (%zu > %u)",
117 bkey_val_u64s(k.k), dirent_val_u64s(d_name.len));
118
119 /*
120 * Check new keys don't exceed the max length
121 * (older keys may be larger.)
122 */
123 bkey_fsck_err_on((flags & BCH_VALIDATE_commit) && d_name.len > BCH_NAME_MAX,
124 c, dirent_name_too_long,
125 "dirent name too big (%u > %u)",
126 d_name.len, BCH_NAME_MAX);
127
128 bkey_fsck_err_on(d_name.len != strnlen(d_name.name, d_name.len),
129 c, dirent_name_embedded_nul,
130 "dirent has stray data after name's NUL");
131
132 bkey_fsck_err_on((d_name.len == 1 && !memcmp(d_name.name, ".", 1)) ||
133 (d_name.len == 2 && !memcmp(d_name.name, "..", 2)),
134 c, dirent_name_dot_or_dotdot,
135 "invalid name");
136
137 bkey_fsck_err_on(memchr(d_name.name, '/', d_name.len),
138 c, dirent_name_has_slash,
139 "name with /");
140
141 bkey_fsck_err_on(d.v->d_type != DT_SUBVOL &&
142 le64_to_cpu(d.v->d_inum) == d.k->p.inode,
143 c, dirent_to_itself,
144 "dirent points to own directory");
145 fsck_err:
146 return ret;
147 }
148
bch2_dirent_to_text(struct printbuf * out,struct bch_fs * c,struct bkey_s_c k)149 void bch2_dirent_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k)
150 {
151 struct bkey_s_c_dirent d = bkey_s_c_to_dirent(k);
152 struct qstr d_name = bch2_dirent_get_name(d);
153
154 prt_printf(out, "%.*s -> ", d_name.len, d_name.name);
155
156 if (d.v->d_type != DT_SUBVOL)
157 prt_printf(out, "%llu", le64_to_cpu(d.v->d_inum));
158 else
159 prt_printf(out, "%u -> %u",
160 le32_to_cpu(d.v->d_parent_subvol),
161 le32_to_cpu(d.v->d_child_subvol));
162
163 prt_printf(out, " type %s", bch2_d_type_str(d.v->d_type));
164 }
165
dirent_create_key(struct btree_trans * trans,subvol_inum dir,u8 type,const struct qstr * name,u64 dst)166 static struct bkey_i_dirent *dirent_create_key(struct btree_trans *trans,
167 subvol_inum dir, u8 type,
168 const struct qstr *name, u64 dst)
169 {
170 struct bkey_i_dirent *dirent;
171 unsigned u64s = BKEY_U64s + dirent_val_u64s(name->len);
172
173 if (name->len > BCH_NAME_MAX)
174 return ERR_PTR(-ENAMETOOLONG);
175
176 BUG_ON(u64s > U8_MAX);
177
178 dirent = bch2_trans_kmalloc(trans, u64s * sizeof(u64));
179 if (IS_ERR(dirent))
180 return dirent;
181
182 bkey_dirent_init(&dirent->k_i);
183 dirent->k.u64s = u64s;
184
185 if (type != DT_SUBVOL) {
186 dirent->v.d_inum = cpu_to_le64(dst);
187 } else {
188 dirent->v.d_parent_subvol = cpu_to_le32(dir.subvol);
189 dirent->v.d_child_subvol = cpu_to_le32(dst);
190 }
191
192 dirent->v.d_type = type;
193
194 memcpy(dirent->v.d_name, name->name, name->len);
195 memset(dirent->v.d_name + name->len, 0,
196 bkey_val_bytes(&dirent->k) -
197 offsetof(struct bch_dirent, d_name) -
198 name->len);
199
200 EBUG_ON(bch2_dirent_name_bytes(dirent_i_to_s_c(dirent)) != name->len);
201
202 return dirent;
203 }
204
bch2_dirent_create_snapshot(struct btree_trans * trans,u32 dir_subvol,u64 dir,u32 snapshot,const struct bch_hash_info * hash_info,u8 type,const struct qstr * name,u64 dst_inum,u64 * dir_offset,enum btree_iter_update_trigger_flags flags)205 int bch2_dirent_create_snapshot(struct btree_trans *trans,
206 u32 dir_subvol, u64 dir, u32 snapshot,
207 const struct bch_hash_info *hash_info,
208 u8 type, const struct qstr *name, u64 dst_inum,
209 u64 *dir_offset,
210 enum btree_iter_update_trigger_flags flags)
211 {
212 subvol_inum dir_inum = { .subvol = dir_subvol, .inum = dir };
213 struct bkey_i_dirent *dirent;
214 int ret;
215
216 dirent = dirent_create_key(trans, dir_inum, type, name, dst_inum);
217 ret = PTR_ERR_OR_ZERO(dirent);
218 if (ret)
219 return ret;
220
221 dirent->k.p.inode = dir;
222 dirent->k.p.snapshot = snapshot;
223
224 ret = bch2_hash_set_in_snapshot(trans, bch2_dirent_hash_desc, hash_info,
225 dir_inum, snapshot, &dirent->k_i,
226 flags|BTREE_UPDATE_internal_snapshot_node);
227 *dir_offset = dirent->k.p.offset;
228
229 return ret;
230 }
231
bch2_dirent_create(struct btree_trans * trans,subvol_inum dir,const struct bch_hash_info * hash_info,u8 type,const struct qstr * name,u64 dst_inum,u64 * dir_offset,enum btree_iter_update_trigger_flags flags)232 int bch2_dirent_create(struct btree_trans *trans, subvol_inum dir,
233 const struct bch_hash_info *hash_info,
234 u8 type, const struct qstr *name, u64 dst_inum,
235 u64 *dir_offset,
236 enum btree_iter_update_trigger_flags flags)
237 {
238 struct bkey_i_dirent *dirent;
239 int ret;
240
241 dirent = dirent_create_key(trans, dir, type, name, dst_inum);
242 ret = PTR_ERR_OR_ZERO(dirent);
243 if (ret)
244 return ret;
245
246 ret = bch2_hash_set(trans, bch2_dirent_hash_desc, hash_info,
247 dir, &dirent->k_i, flags);
248 *dir_offset = dirent->k.p.offset;
249
250 return ret;
251 }
252
bch2_dirent_read_target(struct btree_trans * trans,subvol_inum dir,struct bkey_s_c_dirent d,subvol_inum * target)253 int bch2_dirent_read_target(struct btree_trans *trans, subvol_inum dir,
254 struct bkey_s_c_dirent d, subvol_inum *target)
255 {
256 struct bch_subvolume s;
257 int ret = 0;
258
259 if (d.v->d_type == DT_SUBVOL &&
260 le32_to_cpu(d.v->d_parent_subvol) != dir.subvol)
261 return 1;
262
263 if (likely(d.v->d_type != DT_SUBVOL)) {
264 target->subvol = dir.subvol;
265 target->inum = le64_to_cpu(d.v->d_inum);
266 } else {
267 target->subvol = le32_to_cpu(d.v->d_child_subvol);
268
269 ret = bch2_subvolume_get(trans, target->subvol, true, BTREE_ITER_cached, &s);
270
271 target->inum = le64_to_cpu(s.inode);
272 }
273
274 return ret;
275 }
276
bch2_dirent_rename(struct btree_trans * trans,subvol_inum src_dir,struct bch_hash_info * src_hash,subvol_inum dst_dir,struct bch_hash_info * dst_hash,const struct qstr * src_name,subvol_inum * src_inum,u64 * src_offset,const struct qstr * dst_name,subvol_inum * dst_inum,u64 * dst_offset,enum bch_rename_mode mode)277 int bch2_dirent_rename(struct btree_trans *trans,
278 subvol_inum src_dir, struct bch_hash_info *src_hash,
279 subvol_inum dst_dir, struct bch_hash_info *dst_hash,
280 const struct qstr *src_name, subvol_inum *src_inum, u64 *src_offset,
281 const struct qstr *dst_name, subvol_inum *dst_inum, u64 *dst_offset,
282 enum bch_rename_mode mode)
283 {
284 struct btree_iter src_iter = { NULL };
285 struct btree_iter dst_iter = { NULL };
286 struct bkey_s_c old_src, old_dst = bkey_s_c_null;
287 struct bkey_i_dirent *new_src = NULL, *new_dst = NULL;
288 struct bpos dst_pos =
289 POS(dst_dir.inum, bch2_dirent_hash(dst_hash, dst_name));
290 unsigned src_update_flags = 0;
291 bool delete_src, delete_dst;
292 int ret = 0;
293
294 memset(src_inum, 0, sizeof(*src_inum));
295 memset(dst_inum, 0, sizeof(*dst_inum));
296
297 /* Lookup src: */
298 old_src = bch2_hash_lookup(trans, &src_iter, bch2_dirent_hash_desc,
299 src_hash, src_dir, src_name,
300 BTREE_ITER_intent);
301 ret = bkey_err(old_src);
302 if (ret)
303 goto out;
304
305 ret = bch2_dirent_read_target(trans, src_dir,
306 bkey_s_c_to_dirent(old_src), src_inum);
307 if (ret)
308 goto out;
309
310 /* Lookup dst: */
311 if (mode == BCH_RENAME) {
312 /*
313 * Note that we're _not_ checking if the target already exists -
314 * we're relying on the VFS to do that check for us for
315 * correctness:
316 */
317 ret = bch2_hash_hole(trans, &dst_iter, bch2_dirent_hash_desc,
318 dst_hash, dst_dir, dst_name);
319 if (ret)
320 goto out;
321 } else {
322 old_dst = bch2_hash_lookup(trans, &dst_iter, bch2_dirent_hash_desc,
323 dst_hash, dst_dir, dst_name,
324 BTREE_ITER_intent);
325 ret = bkey_err(old_dst);
326 if (ret)
327 goto out;
328
329 ret = bch2_dirent_read_target(trans, dst_dir,
330 bkey_s_c_to_dirent(old_dst), dst_inum);
331 if (ret)
332 goto out;
333 }
334
335 if (mode != BCH_RENAME_EXCHANGE)
336 *src_offset = dst_iter.pos.offset;
337
338 /* Create new dst key: */
339 new_dst = dirent_create_key(trans, dst_dir, 0, dst_name, 0);
340 ret = PTR_ERR_OR_ZERO(new_dst);
341 if (ret)
342 goto out;
343
344 dirent_copy_target(new_dst, bkey_s_c_to_dirent(old_src));
345 new_dst->k.p = dst_iter.pos;
346
347 /* Create new src key: */
348 if (mode == BCH_RENAME_EXCHANGE) {
349 new_src = dirent_create_key(trans, src_dir, 0, src_name, 0);
350 ret = PTR_ERR_OR_ZERO(new_src);
351 if (ret)
352 goto out;
353
354 dirent_copy_target(new_src, bkey_s_c_to_dirent(old_dst));
355 new_src->k.p = src_iter.pos;
356 } else {
357 new_src = bch2_trans_kmalloc(trans, sizeof(struct bkey_i));
358 ret = PTR_ERR_OR_ZERO(new_src);
359 if (ret)
360 goto out;
361
362 bkey_init(&new_src->k);
363 new_src->k.p = src_iter.pos;
364
365 if (bkey_le(dst_pos, src_iter.pos) &&
366 bkey_lt(src_iter.pos, dst_iter.pos)) {
367 /*
368 * We have a hash collision for the new dst key,
369 * and new_src - the key we're deleting - is between
370 * new_dst's hashed slot and the slot we're going to be
371 * inserting it into - oops. This will break the hash
372 * table if we don't deal with it:
373 */
374 if (mode == BCH_RENAME) {
375 /*
376 * If we're not overwriting, we can just insert
377 * new_dst at the src position:
378 */
379 new_src = new_dst;
380 new_src->k.p = src_iter.pos;
381 goto out_set_src;
382 } else {
383 /* If we're overwriting, we can't insert new_dst
384 * at a different slot because it has to
385 * overwrite old_dst - just make sure to use a
386 * whiteout when deleting src:
387 */
388 new_src->k.type = KEY_TYPE_hash_whiteout;
389 }
390 } else {
391 /* Check if we need a whiteout to delete src: */
392 ret = bch2_hash_needs_whiteout(trans, bch2_dirent_hash_desc,
393 src_hash, &src_iter);
394 if (ret < 0)
395 goto out;
396
397 if (ret)
398 new_src->k.type = KEY_TYPE_hash_whiteout;
399 }
400 }
401
402 if (new_dst->v.d_type == DT_SUBVOL)
403 new_dst->v.d_parent_subvol = cpu_to_le32(dst_dir.subvol);
404
405 if ((mode == BCH_RENAME_EXCHANGE) &&
406 new_src->v.d_type == DT_SUBVOL)
407 new_src->v.d_parent_subvol = cpu_to_le32(src_dir.subvol);
408
409 ret = bch2_trans_update(trans, &dst_iter, &new_dst->k_i, 0);
410 if (ret)
411 goto out;
412 out_set_src:
413 /*
414 * If we're deleting a subvolume we need to really delete the dirent,
415 * not just emit a whiteout in the current snapshot - there can only be
416 * single dirent that points to a given subvolume.
417 *
418 * IOW, we don't maintain multiple versions in different snapshots of
419 * dirents that point to subvolumes - dirents that point to subvolumes
420 * are only visible in one particular subvolume so it's not necessary,
421 * and it would be particularly confusing for fsck to have to deal with.
422 */
423 delete_src = bkey_s_c_to_dirent(old_src).v->d_type == DT_SUBVOL &&
424 new_src->k.p.snapshot != old_src.k->p.snapshot;
425
426 delete_dst = old_dst.k &&
427 bkey_s_c_to_dirent(old_dst).v->d_type == DT_SUBVOL &&
428 new_dst->k.p.snapshot != old_dst.k->p.snapshot;
429
430 if (!delete_src || !bkey_deleted(&new_src->k)) {
431 ret = bch2_trans_update(trans, &src_iter, &new_src->k_i, src_update_flags);
432 if (ret)
433 goto out;
434 }
435
436 if (delete_src) {
437 bch2_btree_iter_set_snapshot(&src_iter, old_src.k->p.snapshot);
438 ret = bch2_btree_iter_traverse(&src_iter) ?:
439 bch2_btree_delete_at(trans, &src_iter, BTREE_UPDATE_internal_snapshot_node);
440 if (ret)
441 goto out;
442 }
443
444 if (delete_dst) {
445 bch2_btree_iter_set_snapshot(&dst_iter, old_dst.k->p.snapshot);
446 ret = bch2_btree_iter_traverse(&dst_iter) ?:
447 bch2_btree_delete_at(trans, &dst_iter, BTREE_UPDATE_internal_snapshot_node);
448 if (ret)
449 goto out;
450 }
451
452 if (mode == BCH_RENAME_EXCHANGE)
453 *src_offset = new_src->k.p.offset;
454 *dst_offset = new_dst->k.p.offset;
455 out:
456 bch2_trans_iter_exit(trans, &src_iter);
457 bch2_trans_iter_exit(trans, &dst_iter);
458 return ret;
459 }
460
bch2_dirent_lookup_trans(struct btree_trans * trans,struct btree_iter * iter,subvol_inum dir,const struct bch_hash_info * hash_info,const struct qstr * name,subvol_inum * inum,unsigned flags)461 int bch2_dirent_lookup_trans(struct btree_trans *trans,
462 struct btree_iter *iter,
463 subvol_inum dir,
464 const struct bch_hash_info *hash_info,
465 const struct qstr *name, subvol_inum *inum,
466 unsigned flags)
467 {
468 struct bkey_s_c k = bch2_hash_lookup(trans, iter, bch2_dirent_hash_desc,
469 hash_info, dir, name, flags);
470 int ret = bkey_err(k);
471 if (ret)
472 goto err;
473
474 ret = bch2_dirent_read_target(trans, dir, bkey_s_c_to_dirent(k), inum);
475 if (ret > 0)
476 ret = -ENOENT;
477 err:
478 if (ret)
479 bch2_trans_iter_exit(trans, iter);
480 return ret;
481 }
482
bch2_dirent_lookup(struct bch_fs * c,subvol_inum dir,const struct bch_hash_info * hash_info,const struct qstr * name,subvol_inum * inum)483 u64 bch2_dirent_lookup(struct bch_fs *c, subvol_inum dir,
484 const struct bch_hash_info *hash_info,
485 const struct qstr *name, subvol_inum *inum)
486 {
487 struct btree_trans *trans = bch2_trans_get(c);
488 struct btree_iter iter = { NULL };
489
490 int ret = lockrestart_do(trans,
491 bch2_dirent_lookup_trans(trans, &iter, dir, hash_info, name, inum, 0));
492 bch2_trans_iter_exit(trans, &iter);
493 bch2_trans_put(trans);
494 return ret;
495 }
496
bch2_empty_dir_snapshot(struct btree_trans * trans,u64 dir,u32 subvol,u32 snapshot)497 int bch2_empty_dir_snapshot(struct btree_trans *trans, u64 dir, u32 subvol, u32 snapshot)
498 {
499 struct btree_iter iter;
500 struct bkey_s_c k;
501 int ret;
502
503 for_each_btree_key_upto_norestart(trans, iter, BTREE_ID_dirents,
504 SPOS(dir, 0, snapshot),
505 POS(dir, U64_MAX), 0, k, ret)
506 if (k.k->type == KEY_TYPE_dirent) {
507 struct bkey_s_c_dirent d = bkey_s_c_to_dirent(k);
508 if (d.v->d_type == DT_SUBVOL && le32_to_cpu(d.v->d_parent_subvol) != subvol)
509 continue;
510 ret = -BCH_ERR_ENOTEMPTY_dir_not_empty;
511 break;
512 }
513 bch2_trans_iter_exit(trans, &iter);
514
515 return ret;
516 }
517
bch2_empty_dir_trans(struct btree_trans * trans,subvol_inum dir)518 int bch2_empty_dir_trans(struct btree_trans *trans, subvol_inum dir)
519 {
520 u32 snapshot;
521
522 return bch2_subvolume_get_snapshot(trans, dir.subvol, &snapshot) ?:
523 bch2_empty_dir_snapshot(trans, dir.inum, dir.subvol, snapshot);
524 }
525
bch2_dir_emit(struct dir_context * ctx,struct bkey_s_c_dirent d,subvol_inum target)526 static int bch2_dir_emit(struct dir_context *ctx, struct bkey_s_c_dirent d, subvol_inum target)
527 {
528 struct qstr name = bch2_dirent_get_name(d);
529 /*
530 * Although not required by the kernel code, updating ctx->pos is needed
531 * for the bcachefs FUSE driver. Without this update, the FUSE
532 * implementation will be stuck in an infinite loop when reading
533 * directories (via the bcachefs_fuse_readdir callback).
534 * In kernel space, ctx->pos is updated by the VFS code.
535 */
536 ctx->pos = d.k->p.offset;
537 bool ret = dir_emit(ctx, name.name,
538 name.len,
539 target.inum,
540 vfs_d_type(d.v->d_type));
541 if (ret)
542 ctx->pos = d.k->p.offset + 1;
543 return ret;
544 }
545
bch2_readdir(struct bch_fs * c,subvol_inum inum,struct dir_context * ctx)546 int bch2_readdir(struct bch_fs *c, subvol_inum inum, struct dir_context *ctx)
547 {
548 struct bkey_buf sk;
549 bch2_bkey_buf_init(&sk);
550
551 int ret = bch2_trans_run(c,
552 for_each_btree_key_in_subvolume_upto(trans, iter, BTREE_ID_dirents,
553 POS(inum.inum, ctx->pos),
554 POS(inum.inum, U64_MAX),
555 inum.subvol, 0, k, ({
556 if (k.k->type != KEY_TYPE_dirent)
557 continue;
558
559 /* dir_emit() can fault and block: */
560 bch2_bkey_buf_reassemble(&sk, c, k);
561 struct bkey_s_c_dirent dirent = bkey_i_to_s_c_dirent(sk.k);
562
563 subvol_inum target;
564 int ret2 = bch2_dirent_read_target(trans, inum, dirent, &target);
565 if (ret2 > 0)
566 continue;
567
568 ret2 ?: drop_locks_do(trans, bch2_dir_emit(ctx, dirent, target));
569 })));
570
571 bch2_bkey_buf_exit(&sk, c);
572
573 return ret < 0 ? ret : 0;
574 }
575