xref: /linux/fs/bcachefs/clock.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "bcachefs.h"
3 #include "clock.h"
4 
5 #include <linux/freezer.h>
6 #include <linux/kthread.h>
7 #include <linux/preempt.h>
8 
9 static inline bool io_timer_cmp(const void *l, const void *r, void __always_unused *args)
10 {
11 	struct io_timer **_l = (struct io_timer **)l;
12 	struct io_timer **_r = (struct io_timer **)r;
13 
14 	return (*_l)->expire < (*_r)->expire;
15 }
16 
17 static const struct min_heap_callbacks callbacks = {
18 	.less = io_timer_cmp,
19 	.swp = NULL,
20 };
21 
22 void bch2_io_timer_add(struct io_clock *clock, struct io_timer *timer)
23 {
24 	spin_lock(&clock->timer_lock);
25 
26 	if (time_after_eq64((u64) atomic64_read(&clock->now), timer->expire)) {
27 		spin_unlock(&clock->timer_lock);
28 		timer->fn(timer);
29 		return;
30 	}
31 
32 	for (size_t i = 0; i < clock->timers.nr; i++)
33 		if (clock->timers.data[i] == timer)
34 			goto out;
35 
36 	BUG_ON(!min_heap_push(&clock->timers, &timer, &callbacks, NULL));
37 out:
38 	spin_unlock(&clock->timer_lock);
39 }
40 
41 void bch2_io_timer_del(struct io_clock *clock, struct io_timer *timer)
42 {
43 	spin_lock(&clock->timer_lock);
44 
45 	for (size_t i = 0; i < clock->timers.nr; i++)
46 		if (clock->timers.data[i] == timer) {
47 			min_heap_del(&clock->timers, i, &callbacks, NULL);
48 			break;
49 		}
50 
51 	spin_unlock(&clock->timer_lock);
52 }
53 
54 struct io_clock_wait {
55 	struct io_timer		io_timer;
56 	struct timer_list	cpu_timer;
57 	struct task_struct	*task;
58 	int			expired;
59 };
60 
61 static void io_clock_wait_fn(struct io_timer *timer)
62 {
63 	struct io_clock_wait *wait = container_of(timer,
64 				struct io_clock_wait, io_timer);
65 
66 	wait->expired = 1;
67 	wake_up_process(wait->task);
68 }
69 
70 static void io_clock_cpu_timeout(struct timer_list *timer)
71 {
72 	struct io_clock_wait *wait = container_of(timer,
73 				struct io_clock_wait, cpu_timer);
74 
75 	wait->expired = 1;
76 	wake_up_process(wait->task);
77 }
78 
79 void bch2_io_clock_schedule_timeout(struct io_clock *clock, u64 until)
80 {
81 	struct io_clock_wait wait = {
82 		.io_timer.expire	= until,
83 		.io_timer.fn		= io_clock_wait_fn,
84 		.io_timer.fn2		= (void *) _RET_IP_,
85 		.task			= current,
86 	};
87 
88 	bch2_io_timer_add(clock, &wait.io_timer);
89 	schedule();
90 	bch2_io_timer_del(clock, &wait.io_timer);
91 }
92 
93 void bch2_kthread_io_clock_wait(struct io_clock *clock,
94 				u64 io_until, unsigned long cpu_timeout)
95 {
96 	bool kthread = (current->flags & PF_KTHREAD) != 0;
97 	struct io_clock_wait wait = {
98 		.io_timer.expire	= io_until,
99 		.io_timer.fn		= io_clock_wait_fn,
100 		.io_timer.fn2		= (void *) _RET_IP_,
101 		.task			= current,
102 	};
103 
104 	bch2_io_timer_add(clock, &wait.io_timer);
105 
106 	timer_setup_on_stack(&wait.cpu_timer, io_clock_cpu_timeout, 0);
107 
108 	if (cpu_timeout != MAX_SCHEDULE_TIMEOUT)
109 		mod_timer(&wait.cpu_timer, cpu_timeout + jiffies);
110 
111 	do {
112 		set_current_state(TASK_INTERRUPTIBLE);
113 		if (kthread && kthread_should_stop())
114 			break;
115 
116 		if (wait.expired)
117 			break;
118 
119 		schedule();
120 		try_to_freeze();
121 	} while (0);
122 
123 	__set_current_state(TASK_RUNNING);
124 	del_timer_sync(&wait.cpu_timer);
125 	destroy_timer_on_stack(&wait.cpu_timer);
126 	bch2_io_timer_del(clock, &wait.io_timer);
127 }
128 
129 static struct io_timer *get_expired_timer(struct io_clock *clock, u64 now)
130 {
131 	struct io_timer *ret = NULL;
132 
133 	if (clock->timers.nr &&
134 	    time_after_eq64(now, clock->timers.data[0]->expire)) {
135 		ret = *min_heap_peek(&clock->timers);
136 		min_heap_pop(&clock->timers, &callbacks, NULL);
137 	}
138 
139 	return ret;
140 }
141 
142 void __bch2_increment_clock(struct io_clock *clock, u64 sectors)
143 {
144 	struct io_timer *timer;
145 	u64 now = atomic64_add_return(sectors, &clock->now);
146 
147 	spin_lock(&clock->timer_lock);
148 	while ((timer = get_expired_timer(clock, now)))
149 		timer->fn(timer);
150 	spin_unlock(&clock->timer_lock);
151 }
152 
153 void bch2_io_timers_to_text(struct printbuf *out, struct io_clock *clock)
154 {
155 	out->atomic++;
156 	spin_lock(&clock->timer_lock);
157 	u64 now = atomic64_read(&clock->now);
158 
159 	printbuf_tabstop_push(out, 40);
160 	prt_printf(out, "current time:\t%llu\n", now);
161 
162 	for (unsigned i = 0; i < clock->timers.nr; i++)
163 		prt_printf(out, "%ps %ps:\t%llu\n",
164 		       clock->timers.data[i]->fn,
165 		       clock->timers.data[i]->fn2,
166 		       clock->timers.data[i]->expire);
167 	spin_unlock(&clock->timer_lock);
168 	--out->atomic;
169 }
170 
171 void bch2_io_clock_exit(struct io_clock *clock)
172 {
173 	free_heap(&clock->timers);
174 	free_percpu(clock->pcpu_buf);
175 }
176 
177 int bch2_io_clock_init(struct io_clock *clock)
178 {
179 	atomic64_set(&clock->now, 0);
180 	spin_lock_init(&clock->timer_lock);
181 
182 	clock->max_slop = IO_CLOCK_PCPU_SECTORS * num_possible_cpus();
183 
184 	clock->pcpu_buf = alloc_percpu(*clock->pcpu_buf);
185 	if (!clock->pcpu_buf)
186 		return -BCH_ERR_ENOMEM_io_clock_init;
187 
188 	if (!init_heap(&clock->timers, NR_IO_TIMERS, GFP_KERNEL))
189 		return -BCH_ERR_ENOMEM_io_clock_init;
190 
191 	return 0;
192 }
193