xref: /linux/fs/bcachefs/checksum.c (revision 24168c5e6dfbdd5b414f048f47f75d64533296ca)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "bcachefs.h"
3 #include "checksum.h"
4 #include "errcode.h"
5 #include "super.h"
6 #include "super-io.h"
7 
8 #include <linux/crc32c.h>
9 #include <linux/crypto.h>
10 #include <linux/xxhash.h>
11 #include <linux/key.h>
12 #include <linux/random.h>
13 #include <linux/scatterlist.h>
14 #include <crypto/algapi.h>
15 #include <crypto/chacha.h>
16 #include <crypto/hash.h>
17 #include <crypto/poly1305.h>
18 #include <crypto/skcipher.h>
19 #include <keys/user-type.h>
20 
21 /*
22  * bch2_checksum state is an abstraction of the checksum state calculated over different pages.
23  * it features page merging without having the checksum algorithm lose its state.
24  * for native checksum aglorithms (like crc), a default seed value will do.
25  * for hash-like algorithms, a state needs to be stored
26  */
27 
28 struct bch2_checksum_state {
29 	union {
30 		u64 seed;
31 		struct xxh64_state h64state;
32 	};
33 	unsigned int type;
34 };
35 
36 static void bch2_checksum_init(struct bch2_checksum_state *state)
37 {
38 	switch (state->type) {
39 	case BCH_CSUM_none:
40 	case BCH_CSUM_crc32c:
41 	case BCH_CSUM_crc64:
42 		state->seed = 0;
43 		break;
44 	case BCH_CSUM_crc32c_nonzero:
45 		state->seed = U32_MAX;
46 		break;
47 	case BCH_CSUM_crc64_nonzero:
48 		state->seed = U64_MAX;
49 		break;
50 	case BCH_CSUM_xxhash:
51 		xxh64_reset(&state->h64state, 0);
52 		break;
53 	default:
54 		BUG();
55 	}
56 }
57 
58 static u64 bch2_checksum_final(const struct bch2_checksum_state *state)
59 {
60 	switch (state->type) {
61 	case BCH_CSUM_none:
62 	case BCH_CSUM_crc32c:
63 	case BCH_CSUM_crc64:
64 		return state->seed;
65 	case BCH_CSUM_crc32c_nonzero:
66 		return state->seed ^ U32_MAX;
67 	case BCH_CSUM_crc64_nonzero:
68 		return state->seed ^ U64_MAX;
69 	case BCH_CSUM_xxhash:
70 		return xxh64_digest(&state->h64state);
71 	default:
72 		BUG();
73 	}
74 }
75 
76 static void bch2_checksum_update(struct bch2_checksum_state *state, const void *data, size_t len)
77 {
78 	switch (state->type) {
79 	case BCH_CSUM_none:
80 		return;
81 	case BCH_CSUM_crc32c_nonzero:
82 	case BCH_CSUM_crc32c:
83 		state->seed = crc32c(state->seed, data, len);
84 		break;
85 	case BCH_CSUM_crc64_nonzero:
86 	case BCH_CSUM_crc64:
87 		state->seed = crc64_be(state->seed, data, len);
88 		break;
89 	case BCH_CSUM_xxhash:
90 		xxh64_update(&state->h64state, data, len);
91 		break;
92 	default:
93 		BUG();
94 	}
95 }
96 
97 static inline int do_encrypt_sg(struct crypto_sync_skcipher *tfm,
98 				struct nonce nonce,
99 				struct scatterlist *sg, size_t len)
100 {
101 	SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
102 	int ret;
103 
104 	skcipher_request_set_sync_tfm(req, tfm);
105 	skcipher_request_set_callback(req, 0, NULL, NULL);
106 	skcipher_request_set_crypt(req, sg, sg, len, nonce.d);
107 
108 	ret = crypto_skcipher_encrypt(req);
109 	if (ret)
110 		pr_err("got error %i from crypto_skcipher_encrypt()", ret);
111 
112 	return ret;
113 }
114 
115 static inline int do_encrypt(struct crypto_sync_skcipher *tfm,
116 			      struct nonce nonce,
117 			      void *buf, size_t len)
118 {
119 	if (!is_vmalloc_addr(buf)) {
120 		struct scatterlist sg;
121 
122 		sg_init_table(&sg, 1);
123 		sg_set_page(&sg,
124 			    is_vmalloc_addr(buf)
125 			    ? vmalloc_to_page(buf)
126 			    : virt_to_page(buf),
127 			    len, offset_in_page(buf));
128 		return do_encrypt_sg(tfm, nonce, &sg, len);
129 	} else {
130 		unsigned pages = buf_pages(buf, len);
131 		struct scatterlist *sg;
132 		size_t orig_len = len;
133 		int ret, i;
134 
135 		sg = kmalloc_array(pages, sizeof(*sg), GFP_KERNEL);
136 		if (!sg)
137 			return -BCH_ERR_ENOMEM_do_encrypt;
138 
139 		sg_init_table(sg, pages);
140 
141 		for (i = 0; i < pages; i++) {
142 			unsigned offset = offset_in_page(buf);
143 			unsigned pg_len = min_t(size_t, len, PAGE_SIZE - offset);
144 
145 			sg_set_page(sg + i, vmalloc_to_page(buf), pg_len, offset);
146 			buf += pg_len;
147 			len -= pg_len;
148 		}
149 
150 		ret = do_encrypt_sg(tfm, nonce, sg, orig_len);
151 		kfree(sg);
152 		return ret;
153 	}
154 }
155 
156 int bch2_chacha_encrypt_key(struct bch_key *key, struct nonce nonce,
157 			    void *buf, size_t len)
158 {
159 	struct crypto_sync_skcipher *chacha20 =
160 		crypto_alloc_sync_skcipher("chacha20", 0, 0);
161 	int ret;
162 
163 	ret = PTR_ERR_OR_ZERO(chacha20);
164 	if (ret) {
165 		pr_err("error requesting chacha20 cipher: %s", bch2_err_str(ret));
166 		return ret;
167 	}
168 
169 	ret = crypto_skcipher_setkey(&chacha20->base,
170 				     (void *) key, sizeof(*key));
171 	if (ret) {
172 		pr_err("error from crypto_skcipher_setkey(): %s", bch2_err_str(ret));
173 		goto err;
174 	}
175 
176 	ret = do_encrypt(chacha20, nonce, buf, len);
177 err:
178 	crypto_free_sync_skcipher(chacha20);
179 	return ret;
180 }
181 
182 static int gen_poly_key(struct bch_fs *c, struct shash_desc *desc,
183 			struct nonce nonce)
184 {
185 	u8 key[POLY1305_KEY_SIZE];
186 	int ret;
187 
188 	nonce.d[3] ^= BCH_NONCE_POLY;
189 
190 	memset(key, 0, sizeof(key));
191 	ret = do_encrypt(c->chacha20, nonce, key, sizeof(key));
192 	if (ret)
193 		return ret;
194 
195 	desc->tfm = c->poly1305;
196 	crypto_shash_init(desc);
197 	crypto_shash_update(desc, key, sizeof(key));
198 	return 0;
199 }
200 
201 struct bch_csum bch2_checksum(struct bch_fs *c, unsigned type,
202 			      struct nonce nonce, const void *data, size_t len)
203 {
204 	switch (type) {
205 	case BCH_CSUM_none:
206 	case BCH_CSUM_crc32c_nonzero:
207 	case BCH_CSUM_crc64_nonzero:
208 	case BCH_CSUM_crc32c:
209 	case BCH_CSUM_xxhash:
210 	case BCH_CSUM_crc64: {
211 		struct bch2_checksum_state state;
212 
213 		state.type = type;
214 
215 		bch2_checksum_init(&state);
216 		bch2_checksum_update(&state, data, len);
217 
218 		return (struct bch_csum) { .lo = cpu_to_le64(bch2_checksum_final(&state)) };
219 	}
220 
221 	case BCH_CSUM_chacha20_poly1305_80:
222 	case BCH_CSUM_chacha20_poly1305_128: {
223 		SHASH_DESC_ON_STACK(desc, c->poly1305);
224 		u8 digest[POLY1305_DIGEST_SIZE];
225 		struct bch_csum ret = { 0 };
226 
227 		gen_poly_key(c, desc, nonce);
228 
229 		crypto_shash_update(desc, data, len);
230 		crypto_shash_final(desc, digest);
231 
232 		memcpy(&ret, digest, bch_crc_bytes[type]);
233 		return ret;
234 	}
235 	default:
236 		return (struct bch_csum) {};
237 	}
238 }
239 
240 int bch2_encrypt(struct bch_fs *c, unsigned type,
241 		  struct nonce nonce, void *data, size_t len)
242 {
243 	if (!bch2_csum_type_is_encryption(type))
244 		return 0;
245 
246 	return do_encrypt(c->chacha20, nonce, data, len);
247 }
248 
249 static struct bch_csum __bch2_checksum_bio(struct bch_fs *c, unsigned type,
250 					   struct nonce nonce, struct bio *bio,
251 					   struct bvec_iter *iter)
252 {
253 	struct bio_vec bv;
254 
255 	switch (type) {
256 	case BCH_CSUM_none:
257 		return (struct bch_csum) { 0 };
258 	case BCH_CSUM_crc32c_nonzero:
259 	case BCH_CSUM_crc64_nonzero:
260 	case BCH_CSUM_crc32c:
261 	case BCH_CSUM_xxhash:
262 	case BCH_CSUM_crc64: {
263 		struct bch2_checksum_state state;
264 
265 		state.type = type;
266 		bch2_checksum_init(&state);
267 
268 #ifdef CONFIG_HIGHMEM
269 		__bio_for_each_segment(bv, bio, *iter, *iter) {
270 			void *p = kmap_local_page(bv.bv_page) + bv.bv_offset;
271 
272 			bch2_checksum_update(&state, p, bv.bv_len);
273 			kunmap_local(p);
274 		}
275 #else
276 		__bio_for_each_bvec(bv, bio, *iter, *iter)
277 			bch2_checksum_update(&state, page_address(bv.bv_page) + bv.bv_offset,
278 				bv.bv_len);
279 #endif
280 		return (struct bch_csum) { .lo = cpu_to_le64(bch2_checksum_final(&state)) };
281 	}
282 
283 	case BCH_CSUM_chacha20_poly1305_80:
284 	case BCH_CSUM_chacha20_poly1305_128: {
285 		SHASH_DESC_ON_STACK(desc, c->poly1305);
286 		u8 digest[POLY1305_DIGEST_SIZE];
287 		struct bch_csum ret = { 0 };
288 
289 		gen_poly_key(c, desc, nonce);
290 
291 #ifdef CONFIG_HIGHMEM
292 		__bio_for_each_segment(bv, bio, *iter, *iter) {
293 			void *p = kmap_local_page(bv.bv_page) + bv.bv_offset;
294 
295 			crypto_shash_update(desc, p, bv.bv_len);
296 			kunmap_local(p);
297 		}
298 #else
299 		__bio_for_each_bvec(bv, bio, *iter, *iter)
300 			crypto_shash_update(desc,
301 				page_address(bv.bv_page) + bv.bv_offset,
302 				bv.bv_len);
303 #endif
304 		crypto_shash_final(desc, digest);
305 
306 		memcpy(&ret, digest, bch_crc_bytes[type]);
307 		return ret;
308 	}
309 	default:
310 		return (struct bch_csum) {};
311 	}
312 }
313 
314 struct bch_csum bch2_checksum_bio(struct bch_fs *c, unsigned type,
315 				  struct nonce nonce, struct bio *bio)
316 {
317 	struct bvec_iter iter = bio->bi_iter;
318 
319 	return __bch2_checksum_bio(c, type, nonce, bio, &iter);
320 }
321 
322 int __bch2_encrypt_bio(struct bch_fs *c, unsigned type,
323 		     struct nonce nonce, struct bio *bio)
324 {
325 	struct bio_vec bv;
326 	struct bvec_iter iter;
327 	struct scatterlist sgl[16], *sg = sgl;
328 	size_t bytes = 0;
329 	int ret = 0;
330 
331 	if (!bch2_csum_type_is_encryption(type))
332 		return 0;
333 
334 	sg_init_table(sgl, ARRAY_SIZE(sgl));
335 
336 	bio_for_each_segment(bv, bio, iter) {
337 		if (sg == sgl + ARRAY_SIZE(sgl)) {
338 			sg_mark_end(sg - 1);
339 
340 			ret = do_encrypt_sg(c->chacha20, nonce, sgl, bytes);
341 			if (ret)
342 				return ret;
343 
344 			nonce = nonce_add(nonce, bytes);
345 			bytes = 0;
346 
347 			sg_init_table(sgl, ARRAY_SIZE(sgl));
348 			sg = sgl;
349 		}
350 
351 		sg_set_page(sg++, bv.bv_page, bv.bv_len, bv.bv_offset);
352 		bytes += bv.bv_len;
353 	}
354 
355 	if (sg != sgl) {
356 		sg_mark_end(sg - 1);
357 		return do_encrypt_sg(c->chacha20, nonce, sgl, bytes);
358 	}
359 
360 	return ret;
361 }
362 
363 struct bch_csum bch2_checksum_merge(unsigned type, struct bch_csum a,
364 				    struct bch_csum b, size_t b_len)
365 {
366 	struct bch2_checksum_state state;
367 
368 	state.type = type;
369 	bch2_checksum_init(&state);
370 	state.seed = le64_to_cpu(a.lo);
371 
372 	BUG_ON(!bch2_checksum_mergeable(type));
373 
374 	while (b_len) {
375 		unsigned page_len = min_t(unsigned, b_len, PAGE_SIZE);
376 
377 		bch2_checksum_update(&state,
378 				page_address(ZERO_PAGE(0)), page_len);
379 		b_len -= page_len;
380 	}
381 	a.lo = cpu_to_le64(bch2_checksum_final(&state));
382 	a.lo ^= b.lo;
383 	a.hi ^= b.hi;
384 	return a;
385 }
386 
387 int bch2_rechecksum_bio(struct bch_fs *c, struct bio *bio,
388 			struct bversion version,
389 			struct bch_extent_crc_unpacked crc_old,
390 			struct bch_extent_crc_unpacked *crc_a,
391 			struct bch_extent_crc_unpacked *crc_b,
392 			unsigned len_a, unsigned len_b,
393 			unsigned new_csum_type)
394 {
395 	struct bvec_iter iter = bio->bi_iter;
396 	struct nonce nonce = extent_nonce(version, crc_old);
397 	struct bch_csum merged = { 0 };
398 	struct crc_split {
399 		struct bch_extent_crc_unpacked	*crc;
400 		unsigned			len;
401 		unsigned			csum_type;
402 		struct bch_csum			csum;
403 	} splits[3] = {
404 		{ crc_a, len_a, new_csum_type, { 0 }},
405 		{ crc_b, len_b, new_csum_type, { 0 } },
406 		{ NULL,	 bio_sectors(bio) - len_a - len_b, new_csum_type, { 0 } },
407 	}, *i;
408 	bool mergeable = crc_old.csum_type == new_csum_type &&
409 		bch2_checksum_mergeable(new_csum_type);
410 	unsigned crc_nonce = crc_old.nonce;
411 
412 	BUG_ON(len_a + len_b > bio_sectors(bio));
413 	BUG_ON(crc_old.uncompressed_size != bio_sectors(bio));
414 	BUG_ON(crc_is_compressed(crc_old));
415 	BUG_ON(bch2_csum_type_is_encryption(crc_old.csum_type) !=
416 	       bch2_csum_type_is_encryption(new_csum_type));
417 
418 	for (i = splits; i < splits + ARRAY_SIZE(splits); i++) {
419 		iter.bi_size = i->len << 9;
420 		if (mergeable || i->crc)
421 			i->csum = __bch2_checksum_bio(c, i->csum_type,
422 						      nonce, bio, &iter);
423 		else
424 			bio_advance_iter(bio, &iter, i->len << 9);
425 		nonce = nonce_add(nonce, i->len << 9);
426 	}
427 
428 	if (mergeable)
429 		for (i = splits; i < splits + ARRAY_SIZE(splits); i++)
430 			merged = bch2_checksum_merge(new_csum_type, merged,
431 						     i->csum, i->len << 9);
432 	else
433 		merged = bch2_checksum_bio(c, crc_old.csum_type,
434 				extent_nonce(version, crc_old), bio);
435 
436 	if (bch2_crc_cmp(merged, crc_old.csum) && !c->opts.no_data_io) {
437 		struct printbuf buf = PRINTBUF;
438 		prt_printf(&buf, "checksum error in %s() (memory corruption or bug?)\n"
439 			   "expected %0llx:%0llx got %0llx:%0llx (old type ",
440 			   __func__,
441 			   crc_old.csum.hi,
442 			   crc_old.csum.lo,
443 			   merged.hi,
444 			   merged.lo);
445 		bch2_prt_csum_type(&buf, crc_old.csum_type);
446 		prt_str(&buf, " new type ");
447 		bch2_prt_csum_type(&buf, new_csum_type);
448 		prt_str(&buf, ")");
449 		bch_err(c, "%s", buf.buf);
450 		printbuf_exit(&buf);
451 		return -EIO;
452 	}
453 
454 	for (i = splits; i < splits + ARRAY_SIZE(splits); i++) {
455 		if (i->crc)
456 			*i->crc = (struct bch_extent_crc_unpacked) {
457 				.csum_type		= i->csum_type,
458 				.compression_type	= crc_old.compression_type,
459 				.compressed_size	= i->len,
460 				.uncompressed_size	= i->len,
461 				.offset			= 0,
462 				.live_size		= i->len,
463 				.nonce			= crc_nonce,
464 				.csum			= i->csum,
465 			};
466 
467 		if (bch2_csum_type_is_encryption(new_csum_type))
468 			crc_nonce += i->len;
469 	}
470 
471 	return 0;
472 }
473 
474 /* BCH_SB_FIELD_crypt: */
475 
476 static int bch2_sb_crypt_validate(struct bch_sb *sb, struct bch_sb_field *f,
477 				  enum bch_validate_flags flags, struct printbuf *err)
478 {
479 	struct bch_sb_field_crypt *crypt = field_to_type(f, crypt);
480 
481 	if (vstruct_bytes(&crypt->field) < sizeof(*crypt)) {
482 		prt_printf(err, "wrong size (got %zu should be %zu)",
483 		       vstruct_bytes(&crypt->field), sizeof(*crypt));
484 		return -BCH_ERR_invalid_sb_crypt;
485 	}
486 
487 	if (BCH_CRYPT_KDF_TYPE(crypt)) {
488 		prt_printf(err, "bad kdf type %llu", BCH_CRYPT_KDF_TYPE(crypt));
489 		return -BCH_ERR_invalid_sb_crypt;
490 	}
491 
492 	return 0;
493 }
494 
495 static void bch2_sb_crypt_to_text(struct printbuf *out, struct bch_sb *sb,
496 				  struct bch_sb_field *f)
497 {
498 	struct bch_sb_field_crypt *crypt = field_to_type(f, crypt);
499 
500 	prt_printf(out, "KFD:               %llu\n", BCH_CRYPT_KDF_TYPE(crypt));
501 	prt_printf(out, "scrypt n:          %llu\n", BCH_KDF_SCRYPT_N(crypt));
502 	prt_printf(out, "scrypt r:          %llu\n", BCH_KDF_SCRYPT_R(crypt));
503 	prt_printf(out, "scrypt p:          %llu\n", BCH_KDF_SCRYPT_P(crypt));
504 }
505 
506 const struct bch_sb_field_ops bch_sb_field_ops_crypt = {
507 	.validate	= bch2_sb_crypt_validate,
508 	.to_text	= bch2_sb_crypt_to_text,
509 };
510 
511 #ifdef __KERNEL__
512 static int __bch2_request_key(char *key_description, struct bch_key *key)
513 {
514 	struct key *keyring_key;
515 	const struct user_key_payload *ukp;
516 	int ret;
517 
518 	keyring_key = request_key(&key_type_user, key_description, NULL);
519 	if (IS_ERR(keyring_key))
520 		return PTR_ERR(keyring_key);
521 
522 	down_read(&keyring_key->sem);
523 	ukp = dereference_key_locked(keyring_key);
524 	if (ukp->datalen == sizeof(*key)) {
525 		memcpy(key, ukp->data, ukp->datalen);
526 		ret = 0;
527 	} else {
528 		ret = -EINVAL;
529 	}
530 	up_read(&keyring_key->sem);
531 	key_put(keyring_key);
532 
533 	return ret;
534 }
535 #else
536 #include <keyutils.h>
537 
538 static int __bch2_request_key(char *key_description, struct bch_key *key)
539 {
540 	key_serial_t key_id;
541 
542 	key_id = request_key("user", key_description, NULL,
543 			     KEY_SPEC_SESSION_KEYRING);
544 	if (key_id >= 0)
545 		goto got_key;
546 
547 	key_id = request_key("user", key_description, NULL,
548 			     KEY_SPEC_USER_KEYRING);
549 	if (key_id >= 0)
550 		goto got_key;
551 
552 	key_id = request_key("user", key_description, NULL,
553 			     KEY_SPEC_USER_SESSION_KEYRING);
554 	if (key_id >= 0)
555 		goto got_key;
556 
557 	return -errno;
558 got_key:
559 
560 	if (keyctl_read(key_id, (void *) key, sizeof(*key)) != sizeof(*key))
561 		return -1;
562 
563 	return 0;
564 }
565 
566 #include "crypto.h"
567 #endif
568 
569 int bch2_request_key(struct bch_sb *sb, struct bch_key *key)
570 {
571 	struct printbuf key_description = PRINTBUF;
572 	int ret;
573 
574 	prt_printf(&key_description, "bcachefs:");
575 	pr_uuid(&key_description, sb->user_uuid.b);
576 
577 	ret = __bch2_request_key(key_description.buf, key);
578 	printbuf_exit(&key_description);
579 
580 #ifndef __KERNEL__
581 	if (ret) {
582 		char *passphrase = read_passphrase("Enter passphrase: ");
583 		struct bch_encrypted_key sb_key;
584 
585 		bch2_passphrase_check(sb, passphrase,
586 				      key, &sb_key);
587 		ret = 0;
588 	}
589 #endif
590 
591 	/* stash with memfd, pass memfd fd to mount */
592 
593 	return ret;
594 }
595 
596 #ifndef __KERNEL__
597 int bch2_revoke_key(struct bch_sb *sb)
598 {
599 	key_serial_t key_id;
600 	struct printbuf key_description = PRINTBUF;
601 
602 	prt_printf(&key_description, "bcachefs:");
603 	pr_uuid(&key_description, sb->user_uuid.b);
604 
605 	key_id = request_key("user", key_description.buf, NULL, KEY_SPEC_USER_KEYRING);
606 	printbuf_exit(&key_description);
607 	if (key_id < 0)
608 		return errno;
609 
610 	keyctl_revoke(key_id);
611 
612 	return 0;
613 }
614 #endif
615 
616 int bch2_decrypt_sb_key(struct bch_fs *c,
617 			struct bch_sb_field_crypt *crypt,
618 			struct bch_key *key)
619 {
620 	struct bch_encrypted_key sb_key = crypt->key;
621 	struct bch_key user_key;
622 	int ret = 0;
623 
624 	/* is key encrypted? */
625 	if (!bch2_key_is_encrypted(&sb_key))
626 		goto out;
627 
628 	ret = bch2_request_key(c->disk_sb.sb, &user_key);
629 	if (ret) {
630 		bch_err(c, "error requesting encryption key: %s", bch2_err_str(ret));
631 		goto err;
632 	}
633 
634 	/* decrypt real key: */
635 	ret = bch2_chacha_encrypt_key(&user_key, bch2_sb_key_nonce(c),
636 				      &sb_key, sizeof(sb_key));
637 	if (ret)
638 		goto err;
639 
640 	if (bch2_key_is_encrypted(&sb_key)) {
641 		bch_err(c, "incorrect encryption key");
642 		ret = -EINVAL;
643 		goto err;
644 	}
645 out:
646 	*key = sb_key.key;
647 err:
648 	memzero_explicit(&sb_key, sizeof(sb_key));
649 	memzero_explicit(&user_key, sizeof(user_key));
650 	return ret;
651 }
652 
653 static int bch2_alloc_ciphers(struct bch_fs *c)
654 {
655 	if (c->chacha20)
656 		return 0;
657 
658 	struct crypto_sync_skcipher *chacha20 = crypto_alloc_sync_skcipher("chacha20", 0, 0);
659 	int ret = PTR_ERR_OR_ZERO(chacha20);
660 	if (ret) {
661 		bch_err(c, "error requesting chacha20 module: %s", bch2_err_str(ret));
662 		return ret;
663 	}
664 
665 	struct crypto_shash *poly1305 = crypto_alloc_shash("poly1305", 0, 0);
666 	ret = PTR_ERR_OR_ZERO(poly1305);
667 	if (ret) {
668 		bch_err(c, "error requesting poly1305 module: %s", bch2_err_str(ret));
669 		crypto_free_sync_skcipher(chacha20);
670 		return ret;
671 	}
672 
673 	c->chacha20	= chacha20;
674 	c->poly1305	= poly1305;
675 	return 0;
676 }
677 
678 int bch2_disable_encryption(struct bch_fs *c)
679 {
680 	struct bch_sb_field_crypt *crypt;
681 	struct bch_key key;
682 	int ret = -EINVAL;
683 
684 	mutex_lock(&c->sb_lock);
685 
686 	crypt = bch2_sb_field_get(c->disk_sb.sb, crypt);
687 	if (!crypt)
688 		goto out;
689 
690 	/* is key encrypted? */
691 	ret = 0;
692 	if (bch2_key_is_encrypted(&crypt->key))
693 		goto out;
694 
695 	ret = bch2_decrypt_sb_key(c, crypt, &key);
696 	if (ret)
697 		goto out;
698 
699 	crypt->key.magic	= cpu_to_le64(BCH_KEY_MAGIC);
700 	crypt->key.key		= key;
701 
702 	SET_BCH_SB_ENCRYPTION_TYPE(c->disk_sb.sb, 0);
703 	bch2_write_super(c);
704 out:
705 	mutex_unlock(&c->sb_lock);
706 
707 	return ret;
708 }
709 
710 int bch2_enable_encryption(struct bch_fs *c, bool keyed)
711 {
712 	struct bch_encrypted_key key;
713 	struct bch_key user_key;
714 	struct bch_sb_field_crypt *crypt;
715 	int ret = -EINVAL;
716 
717 	mutex_lock(&c->sb_lock);
718 
719 	/* Do we already have an encryption key? */
720 	if (bch2_sb_field_get(c->disk_sb.sb, crypt))
721 		goto err;
722 
723 	ret = bch2_alloc_ciphers(c);
724 	if (ret)
725 		goto err;
726 
727 	key.magic = cpu_to_le64(BCH_KEY_MAGIC);
728 	get_random_bytes(&key.key, sizeof(key.key));
729 
730 	if (keyed) {
731 		ret = bch2_request_key(c->disk_sb.sb, &user_key);
732 		if (ret) {
733 			bch_err(c, "error requesting encryption key: %s", bch2_err_str(ret));
734 			goto err;
735 		}
736 
737 		ret = bch2_chacha_encrypt_key(&user_key, bch2_sb_key_nonce(c),
738 					      &key, sizeof(key));
739 		if (ret)
740 			goto err;
741 	}
742 
743 	ret = crypto_skcipher_setkey(&c->chacha20->base,
744 			(void *) &key.key, sizeof(key.key));
745 	if (ret)
746 		goto err;
747 
748 	crypt = bch2_sb_field_resize(&c->disk_sb, crypt,
749 				     sizeof(*crypt) / sizeof(u64));
750 	if (!crypt) {
751 		ret = -BCH_ERR_ENOSPC_sb_crypt;
752 		goto err;
753 	}
754 
755 	crypt->key = key;
756 
757 	/* write superblock */
758 	SET_BCH_SB_ENCRYPTION_TYPE(c->disk_sb.sb, 1);
759 	bch2_write_super(c);
760 err:
761 	mutex_unlock(&c->sb_lock);
762 	memzero_explicit(&user_key, sizeof(user_key));
763 	memzero_explicit(&key, sizeof(key));
764 	return ret;
765 }
766 
767 void bch2_fs_encryption_exit(struct bch_fs *c)
768 {
769 	if (c->poly1305)
770 		crypto_free_shash(c->poly1305);
771 	if (c->chacha20)
772 		crypto_free_sync_skcipher(c->chacha20);
773 	if (c->sha256)
774 		crypto_free_shash(c->sha256);
775 }
776 
777 int bch2_fs_encryption_init(struct bch_fs *c)
778 {
779 	struct bch_sb_field_crypt *crypt;
780 	struct bch_key key;
781 	int ret = 0;
782 
783 	c->sha256 = crypto_alloc_shash("sha256", 0, 0);
784 	ret = PTR_ERR_OR_ZERO(c->sha256);
785 	if (ret) {
786 		c->sha256 = NULL;
787 		bch_err(c, "error requesting sha256 module: %s", bch2_err_str(ret));
788 		goto out;
789 	}
790 
791 	crypt = bch2_sb_field_get(c->disk_sb.sb, crypt);
792 	if (!crypt)
793 		goto out;
794 
795 	ret = bch2_alloc_ciphers(c);
796 	if (ret)
797 		goto out;
798 
799 	ret = bch2_decrypt_sb_key(c, crypt, &key);
800 	if (ret)
801 		goto out;
802 
803 	ret = crypto_skcipher_setkey(&c->chacha20->base,
804 			(void *) &key.key, sizeof(key.key));
805 	if (ret)
806 		goto out;
807 out:
808 	memzero_explicit(&key, sizeof(key));
809 	return ret;
810 }
811