1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "bkey_buf.h" 5 #include "btree_locking.h" 6 #include "btree_update.h" 7 #include "btree_update_interior.h" 8 #include "btree_write_buffer.h" 9 #include "error.h" 10 #include "extents.h" 11 #include "journal.h" 12 #include "journal_io.h" 13 #include "journal_reclaim.h" 14 15 #include <linux/prefetch.h> 16 #include <linux/sort.h> 17 18 static int bch2_btree_write_buffer_journal_flush(struct journal *, 19 struct journal_entry_pin *, u64); 20 21 static int bch2_journal_keys_to_write_buffer(struct bch_fs *, struct journal_buf *); 22 23 static inline bool __wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r) 24 { 25 return (cmp_int(l->hi, r->hi) ?: 26 cmp_int(l->mi, r->mi) ?: 27 cmp_int(l->lo, r->lo)) >= 0; 28 } 29 30 static inline bool wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r) 31 { 32 #ifdef CONFIG_X86_64 33 int cmp; 34 35 asm("mov (%[l]), %%rax;" 36 "sub (%[r]), %%rax;" 37 "mov 8(%[l]), %%rax;" 38 "sbb 8(%[r]), %%rax;" 39 "mov 16(%[l]), %%rax;" 40 "sbb 16(%[r]), %%rax;" 41 : "=@ccae" (cmp) 42 : [l] "r" (l), [r] "r" (r) 43 : "rax", "cc"); 44 45 EBUG_ON(cmp != __wb_key_ref_cmp(l, r)); 46 return cmp; 47 #else 48 return __wb_key_ref_cmp(l, r); 49 #endif 50 } 51 52 static int wb_key_seq_cmp(const void *_l, const void *_r) 53 { 54 const struct btree_write_buffered_key *l = _l; 55 const struct btree_write_buffered_key *r = _r; 56 57 return cmp_int(l->journal_seq, r->journal_seq); 58 } 59 60 /* Compare excluding idx, the low 24 bits: */ 61 static inline bool wb_key_eq(const void *_l, const void *_r) 62 { 63 const struct wb_key_ref *l = _l; 64 const struct wb_key_ref *r = _r; 65 66 return !((l->hi ^ r->hi)| 67 (l->mi ^ r->mi)| 68 ((l->lo >> 24) ^ (r->lo >> 24))); 69 } 70 71 static noinline void wb_sort(struct wb_key_ref *base, size_t num) 72 { 73 size_t n = num, a = num / 2; 74 75 if (!a) /* num < 2 || size == 0 */ 76 return; 77 78 for (;;) { 79 size_t b, c, d; 80 81 if (a) /* Building heap: sift down --a */ 82 --a; 83 else if (--n) /* Sorting: Extract root to --n */ 84 swap(base[0], base[n]); 85 else /* Sort complete */ 86 break; 87 88 /* 89 * Sift element at "a" down into heap. This is the 90 * "bottom-up" variant, which significantly reduces 91 * calls to cmp_func(): we find the sift-down path all 92 * the way to the leaves (one compare per level), then 93 * backtrack to find where to insert the target element. 94 * 95 * Because elements tend to sift down close to the leaves, 96 * this uses fewer compares than doing two per level 97 * on the way down. (A bit more than half as many on 98 * average, 3/4 worst-case.) 99 */ 100 for (b = a; c = 2*b + 1, (d = c + 1) < n;) 101 b = wb_key_ref_cmp(base + c, base + d) ? c : d; 102 if (d == n) /* Special case last leaf with no sibling */ 103 b = c; 104 105 /* Now backtrack from "b" to the correct location for "a" */ 106 while (b != a && wb_key_ref_cmp(base + a, base + b)) 107 b = (b - 1) / 2; 108 c = b; /* Where "a" belongs */ 109 while (b != a) { /* Shift it into place */ 110 b = (b - 1) / 2; 111 swap(base[b], base[c]); 112 } 113 } 114 } 115 116 static noinline int wb_flush_one_slowpath(struct btree_trans *trans, 117 struct btree_iter *iter, 118 struct btree_write_buffered_key *wb) 119 { 120 struct btree_path *path = btree_iter_path(trans, iter); 121 122 bch2_btree_node_unlock_write(trans, path, path->l[0].b); 123 124 trans->journal_res.seq = wb->journal_seq; 125 126 return bch2_trans_update(trans, iter, &wb->k, 127 BTREE_UPDATE_internal_snapshot_node) ?: 128 bch2_trans_commit(trans, NULL, NULL, 129 BCH_TRANS_COMMIT_no_enospc| 130 BCH_TRANS_COMMIT_no_check_rw| 131 BCH_TRANS_COMMIT_no_journal_res| 132 BCH_TRANS_COMMIT_journal_reclaim); 133 } 134 135 static inline int wb_flush_one(struct btree_trans *trans, struct btree_iter *iter, 136 struct btree_write_buffered_key *wb, 137 bool *write_locked, size_t *fast) 138 { 139 struct btree_path *path; 140 int ret; 141 142 EBUG_ON(!wb->journal_seq); 143 EBUG_ON(!trans->c->btree_write_buffer.flushing.pin.seq); 144 EBUG_ON(trans->c->btree_write_buffer.flushing.pin.seq > wb->journal_seq); 145 146 ret = bch2_btree_iter_traverse(iter); 147 if (ret) 148 return ret; 149 150 /* 151 * We can't clone a path that has write locks: unshare it now, before 152 * set_pos and traverse(): 153 */ 154 if (btree_iter_path(trans, iter)->ref > 1) 155 iter->path = __bch2_btree_path_make_mut(trans, iter->path, true, _THIS_IP_); 156 157 path = btree_iter_path(trans, iter); 158 159 if (!*write_locked) { 160 ret = bch2_btree_node_lock_write(trans, path, &path->l[0].b->c); 161 if (ret) 162 return ret; 163 164 bch2_btree_node_prep_for_write(trans, path, path->l[0].b); 165 *write_locked = true; 166 } 167 168 if (unlikely(!bch2_btree_node_insert_fits(path->l[0].b, wb->k.k.u64s))) { 169 *write_locked = false; 170 return wb_flush_one_slowpath(trans, iter, wb); 171 } 172 173 bch2_btree_insert_key_leaf(trans, path, &wb->k, wb->journal_seq); 174 (*fast)++; 175 return 0; 176 } 177 178 /* 179 * Update a btree with a write buffered key using the journal seq of the 180 * original write buffer insert. 181 * 182 * It is not safe to rejournal the key once it has been inserted into the write 183 * buffer because that may break recovery ordering. For example, the key may 184 * have already been modified in the active write buffer in a seq that comes 185 * before the current transaction. If we were to journal this key again and 186 * crash, recovery would process updates in the wrong order. 187 */ 188 static int 189 btree_write_buffered_insert(struct btree_trans *trans, 190 struct btree_write_buffered_key *wb) 191 { 192 struct btree_iter iter; 193 int ret; 194 195 bch2_trans_iter_init(trans, &iter, wb->btree, bkey_start_pos(&wb->k.k), 196 BTREE_ITER_cached|BTREE_ITER_intent); 197 198 trans->journal_res.seq = wb->journal_seq; 199 200 ret = bch2_btree_iter_traverse(&iter) ?: 201 bch2_trans_update(trans, &iter, &wb->k, 202 BTREE_UPDATE_internal_snapshot_node); 203 bch2_trans_iter_exit(trans, &iter); 204 return ret; 205 } 206 207 static void move_keys_from_inc_to_flushing(struct btree_write_buffer *wb) 208 { 209 struct bch_fs *c = container_of(wb, struct bch_fs, btree_write_buffer); 210 struct journal *j = &c->journal; 211 212 if (!wb->inc.keys.nr) 213 return; 214 215 bch2_journal_pin_add(j, wb->inc.keys.data[0].journal_seq, &wb->flushing.pin, 216 bch2_btree_write_buffer_journal_flush); 217 218 darray_resize(&wb->flushing.keys, min_t(size_t, 1U << 20, wb->flushing.keys.nr + wb->inc.keys.nr)); 219 darray_resize(&wb->sorted, wb->flushing.keys.size); 220 221 if (!wb->flushing.keys.nr && wb->sorted.size >= wb->inc.keys.nr) { 222 swap(wb->flushing.keys, wb->inc.keys); 223 goto out; 224 } 225 226 size_t nr = min(darray_room(wb->flushing.keys), 227 wb->sorted.size - wb->flushing.keys.nr); 228 nr = min(nr, wb->inc.keys.nr); 229 230 memcpy(&darray_top(wb->flushing.keys), 231 wb->inc.keys.data, 232 sizeof(wb->inc.keys.data[0]) * nr); 233 234 memmove(wb->inc.keys.data, 235 wb->inc.keys.data + nr, 236 sizeof(wb->inc.keys.data[0]) * (wb->inc.keys.nr - nr)); 237 238 wb->flushing.keys.nr += nr; 239 wb->inc.keys.nr -= nr; 240 out: 241 if (!wb->inc.keys.nr) 242 bch2_journal_pin_drop(j, &wb->inc.pin); 243 else 244 bch2_journal_pin_update(j, wb->inc.keys.data[0].journal_seq, &wb->inc.pin, 245 bch2_btree_write_buffer_journal_flush); 246 247 if (j->watermark) { 248 spin_lock(&j->lock); 249 bch2_journal_set_watermark(j); 250 spin_unlock(&j->lock); 251 } 252 253 BUG_ON(wb->sorted.size < wb->flushing.keys.nr); 254 } 255 256 static int bch2_btree_write_buffer_flush_locked(struct btree_trans *trans) 257 { 258 struct bch_fs *c = trans->c; 259 struct journal *j = &c->journal; 260 struct btree_write_buffer *wb = &c->btree_write_buffer; 261 struct btree_iter iter = { NULL }; 262 size_t skipped = 0, fast = 0, slowpath = 0; 263 bool write_locked = false; 264 int ret = 0; 265 266 bch2_trans_unlock(trans); 267 bch2_trans_begin(trans); 268 269 mutex_lock(&wb->inc.lock); 270 move_keys_from_inc_to_flushing(wb); 271 mutex_unlock(&wb->inc.lock); 272 273 for (size_t i = 0; i < wb->flushing.keys.nr; i++) { 274 wb->sorted.data[i].idx = i; 275 wb->sorted.data[i].btree = wb->flushing.keys.data[i].btree; 276 memcpy(&wb->sorted.data[i].pos, &wb->flushing.keys.data[i].k.k.p, sizeof(struct bpos)); 277 } 278 wb->sorted.nr = wb->flushing.keys.nr; 279 280 /* 281 * We first sort so that we can detect and skip redundant updates, and 282 * then we attempt to flush in sorted btree order, as this is most 283 * efficient. 284 * 285 * However, since we're not flushing in the order they appear in the 286 * journal we won't be able to drop our journal pin until everything is 287 * flushed - which means this could deadlock the journal if we weren't 288 * passing BCH_TRANS_COMMIT_journal_reclaim. This causes the update to fail 289 * if it would block taking a journal reservation. 290 * 291 * If that happens, simply skip the key so we can optimistically insert 292 * as many keys as possible in the fast path. 293 */ 294 wb_sort(wb->sorted.data, wb->sorted.nr); 295 296 darray_for_each(wb->sorted, i) { 297 struct btree_write_buffered_key *k = &wb->flushing.keys.data[i->idx]; 298 299 for (struct wb_key_ref *n = i + 1; n < min(i + 4, &darray_top(wb->sorted)); n++) 300 prefetch(&wb->flushing.keys.data[n->idx]); 301 302 BUG_ON(!k->journal_seq); 303 304 if (i + 1 < &darray_top(wb->sorted) && 305 wb_key_eq(i, i + 1)) { 306 struct btree_write_buffered_key *n = &wb->flushing.keys.data[i[1].idx]; 307 308 skipped++; 309 n->journal_seq = min_t(u64, n->journal_seq, k->journal_seq); 310 k->journal_seq = 0; 311 continue; 312 } 313 314 if (write_locked) { 315 struct btree_path *path = btree_iter_path(trans, &iter); 316 317 if (path->btree_id != i->btree || 318 bpos_gt(k->k.k.p, path->l[0].b->key.k.p)) { 319 bch2_btree_node_unlock_write(trans, path, path->l[0].b); 320 write_locked = false; 321 322 ret = lockrestart_do(trans, 323 bch2_btree_iter_traverse(&iter) ?: 324 bch2_foreground_maybe_merge(trans, iter.path, 0, 325 BCH_WATERMARK_reclaim| 326 BCH_TRANS_COMMIT_journal_reclaim| 327 BCH_TRANS_COMMIT_no_check_rw| 328 BCH_TRANS_COMMIT_no_enospc)); 329 if (ret) 330 goto err; 331 } 332 } 333 334 if (!iter.path || iter.btree_id != k->btree) { 335 bch2_trans_iter_exit(trans, &iter); 336 bch2_trans_iter_init(trans, &iter, k->btree, k->k.k.p, 337 BTREE_ITER_intent|BTREE_ITER_all_snapshots); 338 } 339 340 bch2_btree_iter_set_pos(&iter, k->k.k.p); 341 btree_iter_path(trans, &iter)->preserve = false; 342 343 do { 344 if (race_fault()) { 345 ret = -BCH_ERR_journal_reclaim_would_deadlock; 346 break; 347 } 348 349 ret = wb_flush_one(trans, &iter, k, &write_locked, &fast); 350 if (!write_locked) 351 bch2_trans_begin(trans); 352 } while (bch2_err_matches(ret, BCH_ERR_transaction_restart)); 353 354 if (!ret) { 355 k->journal_seq = 0; 356 } else if (ret == -BCH_ERR_journal_reclaim_would_deadlock) { 357 slowpath++; 358 ret = 0; 359 } else 360 break; 361 } 362 363 if (write_locked) { 364 struct btree_path *path = btree_iter_path(trans, &iter); 365 bch2_btree_node_unlock_write(trans, path, path->l[0].b); 366 } 367 bch2_trans_iter_exit(trans, &iter); 368 369 if (ret) 370 goto err; 371 372 if (slowpath) { 373 /* 374 * Flush in the order they were present in the journal, so that 375 * we can release journal pins: 376 * The fastpath zapped the seq of keys that were successfully flushed so 377 * we can skip those here. 378 */ 379 trace_and_count(c, write_buffer_flush_slowpath, trans, slowpath, wb->flushing.keys.nr); 380 381 sort(wb->flushing.keys.data, 382 wb->flushing.keys.nr, 383 sizeof(wb->flushing.keys.data[0]), 384 wb_key_seq_cmp, NULL); 385 386 darray_for_each(wb->flushing.keys, i) { 387 if (!i->journal_seq) 388 continue; 389 390 bch2_journal_pin_update(j, i->journal_seq, &wb->flushing.pin, 391 bch2_btree_write_buffer_journal_flush); 392 393 bch2_trans_begin(trans); 394 395 ret = commit_do(trans, NULL, NULL, 396 BCH_WATERMARK_reclaim| 397 BCH_TRANS_COMMIT_journal_reclaim| 398 BCH_TRANS_COMMIT_no_check_rw| 399 BCH_TRANS_COMMIT_no_enospc| 400 BCH_TRANS_COMMIT_no_journal_res , 401 btree_write_buffered_insert(trans, i)); 402 if (ret) 403 goto err; 404 } 405 } 406 err: 407 bch2_fs_fatal_err_on(ret, c, "%s", bch2_err_str(ret)); 408 trace_write_buffer_flush(trans, wb->flushing.keys.nr, skipped, fast, 0); 409 bch2_journal_pin_drop(j, &wb->flushing.pin); 410 wb->flushing.keys.nr = 0; 411 return ret; 412 } 413 414 static int fetch_wb_keys_from_journal(struct bch_fs *c, u64 seq) 415 { 416 struct journal *j = &c->journal; 417 struct journal_buf *buf; 418 int ret = 0; 419 420 while (!ret && (buf = bch2_next_write_buffer_flush_journal_buf(j, seq))) { 421 ret = bch2_journal_keys_to_write_buffer(c, buf); 422 mutex_unlock(&j->buf_lock); 423 } 424 425 return ret; 426 } 427 428 static int btree_write_buffer_flush_seq(struct btree_trans *trans, u64 seq) 429 { 430 struct bch_fs *c = trans->c; 431 struct btree_write_buffer *wb = &c->btree_write_buffer; 432 int ret = 0, fetch_from_journal_err; 433 434 do { 435 bch2_trans_unlock(trans); 436 437 fetch_from_journal_err = fetch_wb_keys_from_journal(c, seq); 438 439 /* 440 * On memory allocation failure, bch2_btree_write_buffer_flush_locked() 441 * is not guaranteed to empty wb->inc: 442 */ 443 mutex_lock(&wb->flushing.lock); 444 ret = bch2_btree_write_buffer_flush_locked(trans); 445 mutex_unlock(&wb->flushing.lock); 446 } while (!ret && 447 (fetch_from_journal_err || 448 (wb->inc.pin.seq && wb->inc.pin.seq <= seq) || 449 (wb->flushing.pin.seq && wb->flushing.pin.seq <= seq))); 450 451 return ret; 452 } 453 454 static int bch2_btree_write_buffer_journal_flush(struct journal *j, 455 struct journal_entry_pin *_pin, u64 seq) 456 { 457 struct bch_fs *c = container_of(j, struct bch_fs, journal); 458 459 return bch2_trans_run(c, btree_write_buffer_flush_seq(trans, seq)); 460 } 461 462 int bch2_btree_write_buffer_flush_sync(struct btree_trans *trans) 463 { 464 struct bch_fs *c = trans->c; 465 466 trace_and_count(c, write_buffer_flush_sync, trans, _RET_IP_); 467 468 return btree_write_buffer_flush_seq(trans, journal_cur_seq(&c->journal)); 469 } 470 471 int bch2_btree_write_buffer_flush_nocheck_rw(struct btree_trans *trans) 472 { 473 struct bch_fs *c = trans->c; 474 struct btree_write_buffer *wb = &c->btree_write_buffer; 475 int ret = 0; 476 477 if (mutex_trylock(&wb->flushing.lock)) { 478 ret = bch2_btree_write_buffer_flush_locked(trans); 479 mutex_unlock(&wb->flushing.lock); 480 } 481 482 return ret; 483 } 484 485 int bch2_btree_write_buffer_tryflush(struct btree_trans *trans) 486 { 487 struct bch_fs *c = trans->c; 488 489 if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer)) 490 return -BCH_ERR_erofs_no_writes; 491 492 int ret = bch2_btree_write_buffer_flush_nocheck_rw(trans); 493 bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer); 494 return ret; 495 } 496 497 /** 498 * In check and repair code, when checking references to write buffer btrees we 499 * need to issue a flush before we have a definitive error: this issues a flush 500 * if this is a key we haven't yet checked. 501 */ 502 int bch2_btree_write_buffer_maybe_flush(struct btree_trans *trans, 503 struct bkey_s_c referring_k, 504 struct bkey_buf *last_flushed) 505 { 506 struct bch_fs *c = trans->c; 507 struct bkey_buf tmp; 508 int ret = 0; 509 510 bch2_bkey_buf_init(&tmp); 511 512 if (!bkey_and_val_eq(referring_k, bkey_i_to_s_c(last_flushed->k))) { 513 bch2_bkey_buf_reassemble(&tmp, c, referring_k); 514 515 if (bkey_is_btree_ptr(referring_k.k)) { 516 bch2_trans_unlock(trans); 517 bch2_btree_interior_updates_flush(c); 518 } 519 520 ret = bch2_btree_write_buffer_flush_sync(trans); 521 if (ret) 522 goto err; 523 524 bch2_bkey_buf_copy(last_flushed, c, tmp.k); 525 ret = -BCH_ERR_transaction_restart_write_buffer_flush; 526 } 527 err: 528 bch2_bkey_buf_exit(&tmp, c); 529 return ret; 530 } 531 532 static void bch2_btree_write_buffer_flush_work(struct work_struct *work) 533 { 534 struct bch_fs *c = container_of(work, struct bch_fs, btree_write_buffer.flush_work); 535 struct btree_write_buffer *wb = &c->btree_write_buffer; 536 int ret; 537 538 mutex_lock(&wb->flushing.lock); 539 do { 540 ret = bch2_trans_run(c, bch2_btree_write_buffer_flush_locked(trans)); 541 } while (!ret && bch2_btree_write_buffer_should_flush(c)); 542 mutex_unlock(&wb->flushing.lock); 543 544 bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer); 545 } 546 547 int bch2_journal_key_to_wb_slowpath(struct bch_fs *c, 548 struct journal_keys_to_wb *dst, 549 enum btree_id btree, struct bkey_i *k) 550 { 551 struct btree_write_buffer *wb = &c->btree_write_buffer; 552 int ret; 553 retry: 554 ret = darray_make_room_gfp(&dst->wb->keys, 1, GFP_KERNEL); 555 if (!ret && dst->wb == &wb->flushing) 556 ret = darray_resize(&wb->sorted, wb->flushing.keys.size); 557 558 if (unlikely(ret)) { 559 if (dst->wb == &c->btree_write_buffer.flushing) { 560 mutex_unlock(&dst->wb->lock); 561 dst->wb = &c->btree_write_buffer.inc; 562 bch2_journal_pin_add(&c->journal, dst->seq, &dst->wb->pin, 563 bch2_btree_write_buffer_journal_flush); 564 goto retry; 565 } 566 567 return ret; 568 } 569 570 dst->room = darray_room(dst->wb->keys); 571 if (dst->wb == &wb->flushing) 572 dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr); 573 BUG_ON(!dst->room); 574 BUG_ON(!dst->seq); 575 576 struct btree_write_buffered_key *wb_k = &darray_top(dst->wb->keys); 577 wb_k->journal_seq = dst->seq; 578 wb_k->btree = btree; 579 bkey_copy(&wb_k->k, k); 580 dst->wb->keys.nr++; 581 dst->room--; 582 return 0; 583 } 584 585 void bch2_journal_keys_to_write_buffer_start(struct bch_fs *c, struct journal_keys_to_wb *dst, u64 seq) 586 { 587 struct btree_write_buffer *wb = &c->btree_write_buffer; 588 589 if (mutex_trylock(&wb->flushing.lock)) { 590 mutex_lock(&wb->inc.lock); 591 move_keys_from_inc_to_flushing(wb); 592 593 /* 594 * Attempt to skip wb->inc, and add keys directly to 595 * wb->flushing, saving us a copy later: 596 */ 597 598 if (!wb->inc.keys.nr) { 599 dst->wb = &wb->flushing; 600 } else { 601 mutex_unlock(&wb->flushing.lock); 602 dst->wb = &wb->inc; 603 } 604 } else { 605 mutex_lock(&wb->inc.lock); 606 dst->wb = &wb->inc; 607 } 608 609 dst->room = darray_room(dst->wb->keys); 610 if (dst->wb == &wb->flushing) 611 dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr); 612 dst->seq = seq; 613 614 bch2_journal_pin_add(&c->journal, seq, &dst->wb->pin, 615 bch2_btree_write_buffer_journal_flush); 616 } 617 618 void bch2_journal_keys_to_write_buffer_end(struct bch_fs *c, struct journal_keys_to_wb *dst) 619 { 620 struct btree_write_buffer *wb = &c->btree_write_buffer; 621 622 if (!dst->wb->keys.nr) 623 bch2_journal_pin_drop(&c->journal, &dst->wb->pin); 624 625 if (bch2_btree_write_buffer_should_flush(c) && 626 __bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer) && 627 !queue_work(system_unbound_wq, &c->btree_write_buffer.flush_work)) 628 bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer); 629 630 if (dst->wb == &wb->flushing) 631 mutex_unlock(&wb->flushing.lock); 632 mutex_unlock(&wb->inc.lock); 633 } 634 635 static int bch2_journal_keys_to_write_buffer(struct bch_fs *c, struct journal_buf *buf) 636 { 637 struct journal_keys_to_wb dst; 638 int ret = 0; 639 640 bch2_journal_keys_to_write_buffer_start(c, &dst, le64_to_cpu(buf->data->seq)); 641 642 for_each_jset_entry_type(entry, buf->data, BCH_JSET_ENTRY_write_buffer_keys) { 643 jset_entry_for_each_key(entry, k) { 644 ret = bch2_journal_key_to_wb(c, &dst, entry->btree_id, k); 645 if (ret) 646 goto out; 647 } 648 649 entry->type = BCH_JSET_ENTRY_btree_keys; 650 } 651 652 spin_lock(&c->journal.lock); 653 buf->need_flush_to_write_buffer = false; 654 spin_unlock(&c->journal.lock); 655 out: 656 bch2_journal_keys_to_write_buffer_end(c, &dst); 657 return ret; 658 } 659 660 static int wb_keys_resize(struct btree_write_buffer_keys *wb, size_t new_size) 661 { 662 if (wb->keys.size >= new_size) 663 return 0; 664 665 if (!mutex_trylock(&wb->lock)) 666 return -EINTR; 667 668 int ret = darray_resize(&wb->keys, new_size); 669 mutex_unlock(&wb->lock); 670 return ret; 671 } 672 673 int bch2_btree_write_buffer_resize(struct bch_fs *c, size_t new_size) 674 { 675 struct btree_write_buffer *wb = &c->btree_write_buffer; 676 677 return wb_keys_resize(&wb->flushing, new_size) ?: 678 wb_keys_resize(&wb->inc, new_size); 679 } 680 681 void bch2_fs_btree_write_buffer_exit(struct bch_fs *c) 682 { 683 struct btree_write_buffer *wb = &c->btree_write_buffer; 684 685 BUG_ON((wb->inc.keys.nr || wb->flushing.keys.nr) && 686 !bch2_journal_error(&c->journal)); 687 688 darray_exit(&wb->sorted); 689 darray_exit(&wb->flushing.keys); 690 darray_exit(&wb->inc.keys); 691 } 692 693 int bch2_fs_btree_write_buffer_init(struct bch_fs *c) 694 { 695 struct btree_write_buffer *wb = &c->btree_write_buffer; 696 697 mutex_init(&wb->inc.lock); 698 mutex_init(&wb->flushing.lock); 699 INIT_WORK(&wb->flush_work, bch2_btree_write_buffer_flush_work); 700 701 /* Will be resized by journal as needed: */ 702 unsigned initial_size = 1 << 16; 703 704 return darray_make_room(&wb->inc.keys, initial_size) ?: 705 darray_make_room(&wb->flushing.keys, initial_size) ?: 706 darray_make_room(&wb->sorted, initial_size); 707 } 708