1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "bkey_buf.h" 5 #include "btree_locking.h" 6 #include "btree_update.h" 7 #include "btree_update_interior.h" 8 #include "btree_write_buffer.h" 9 #include "disk_accounting.h" 10 #include "error.h" 11 #include "extents.h" 12 #include "journal.h" 13 #include "journal_io.h" 14 #include "journal_reclaim.h" 15 16 #include <linux/prefetch.h> 17 #include <linux/sort.h> 18 19 static int bch2_btree_write_buffer_journal_flush(struct journal *, 20 struct journal_entry_pin *, u64); 21 22 static inline bool __wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r) 23 { 24 return (cmp_int(l->hi, r->hi) ?: 25 cmp_int(l->mi, r->mi) ?: 26 cmp_int(l->lo, r->lo)) >= 0; 27 } 28 29 static inline bool wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r) 30 { 31 #ifdef CONFIG_X86_64 32 int cmp; 33 34 asm("mov (%[l]), %%rax;" 35 "sub (%[r]), %%rax;" 36 "mov 8(%[l]), %%rax;" 37 "sbb 8(%[r]), %%rax;" 38 "mov 16(%[l]), %%rax;" 39 "sbb 16(%[r]), %%rax;" 40 : "=@ccae" (cmp) 41 : [l] "r" (l), [r] "r" (r) 42 : "rax", "cc"); 43 44 EBUG_ON(cmp != __wb_key_ref_cmp(l, r)); 45 return cmp; 46 #else 47 return __wb_key_ref_cmp(l, r); 48 #endif 49 } 50 51 static int wb_key_seq_cmp(const void *_l, const void *_r) 52 { 53 const struct btree_write_buffered_key *l = _l; 54 const struct btree_write_buffered_key *r = _r; 55 56 return cmp_int(l->journal_seq, r->journal_seq); 57 } 58 59 /* Compare excluding idx, the low 24 bits: */ 60 static inline bool wb_key_eq(const void *_l, const void *_r) 61 { 62 const struct wb_key_ref *l = _l; 63 const struct wb_key_ref *r = _r; 64 65 return !((l->hi ^ r->hi)| 66 (l->mi ^ r->mi)| 67 ((l->lo >> 24) ^ (r->lo >> 24))); 68 } 69 70 static noinline void wb_sort(struct wb_key_ref *base, size_t num) 71 { 72 size_t n = num, a = num / 2; 73 74 if (!a) /* num < 2 || size == 0 */ 75 return; 76 77 for (;;) { 78 size_t b, c, d; 79 80 if (a) /* Building heap: sift down --a */ 81 --a; 82 else if (--n) /* Sorting: Extract root to --n */ 83 swap(base[0], base[n]); 84 else /* Sort complete */ 85 break; 86 87 /* 88 * Sift element at "a" down into heap. This is the 89 * "bottom-up" variant, which significantly reduces 90 * calls to cmp_func(): we find the sift-down path all 91 * the way to the leaves (one compare per level), then 92 * backtrack to find where to insert the target element. 93 * 94 * Because elements tend to sift down close to the leaves, 95 * this uses fewer compares than doing two per level 96 * on the way down. (A bit more than half as many on 97 * average, 3/4 worst-case.) 98 */ 99 for (b = a; c = 2*b + 1, (d = c + 1) < n;) 100 b = wb_key_ref_cmp(base + c, base + d) ? c : d; 101 if (d == n) /* Special case last leaf with no sibling */ 102 b = c; 103 104 /* Now backtrack from "b" to the correct location for "a" */ 105 while (b != a && wb_key_ref_cmp(base + a, base + b)) 106 b = (b - 1) / 2; 107 c = b; /* Where "a" belongs */ 108 while (b != a) { /* Shift it into place */ 109 b = (b - 1) / 2; 110 swap(base[b], base[c]); 111 } 112 } 113 } 114 115 static noinline int wb_flush_one_slowpath(struct btree_trans *trans, 116 struct btree_iter *iter, 117 struct btree_write_buffered_key *wb) 118 { 119 struct btree_path *path = btree_iter_path(trans, iter); 120 121 bch2_btree_node_unlock_write(trans, path, path->l[0].b); 122 123 trans->journal_res.seq = wb->journal_seq; 124 125 return bch2_trans_update(trans, iter, &wb->k, 126 BTREE_UPDATE_internal_snapshot_node) ?: 127 bch2_trans_commit(trans, NULL, NULL, 128 BCH_TRANS_COMMIT_no_enospc| 129 BCH_TRANS_COMMIT_no_check_rw| 130 BCH_TRANS_COMMIT_no_journal_res| 131 BCH_TRANS_COMMIT_journal_reclaim); 132 } 133 134 static inline int wb_flush_one(struct btree_trans *trans, struct btree_iter *iter, 135 struct btree_write_buffered_key *wb, 136 bool *write_locked, 137 bool *accounting_accumulated, 138 size_t *fast) 139 { 140 struct btree_path *path; 141 int ret; 142 143 EBUG_ON(!wb->journal_seq); 144 EBUG_ON(!trans->c->btree_write_buffer.flushing.pin.seq); 145 EBUG_ON(trans->c->btree_write_buffer.flushing.pin.seq > wb->journal_seq); 146 147 ret = bch2_btree_iter_traverse(iter); 148 if (ret) 149 return ret; 150 151 if (!*accounting_accumulated && wb->k.k.type == KEY_TYPE_accounting) { 152 struct bkey u; 153 struct bkey_s_c k = bch2_btree_path_peek_slot_exact(btree_iter_path(trans, iter), &u); 154 155 if (k.k->type == KEY_TYPE_accounting) 156 bch2_accounting_accumulate(bkey_i_to_accounting(&wb->k), 157 bkey_s_c_to_accounting(k)); 158 } 159 *accounting_accumulated = true; 160 161 /* 162 * We can't clone a path that has write locks: unshare it now, before 163 * set_pos and traverse(): 164 */ 165 if (btree_iter_path(trans, iter)->ref > 1) 166 iter->path = __bch2_btree_path_make_mut(trans, iter->path, true, _THIS_IP_); 167 168 path = btree_iter_path(trans, iter); 169 170 if (!*write_locked) { 171 ret = bch2_btree_node_lock_write(trans, path, &path->l[0].b->c); 172 if (ret) 173 return ret; 174 175 bch2_btree_node_prep_for_write(trans, path, path->l[0].b); 176 *write_locked = true; 177 } 178 179 if (unlikely(!bch2_btree_node_insert_fits(path->l[0].b, wb->k.k.u64s))) { 180 *write_locked = false; 181 return wb_flush_one_slowpath(trans, iter, wb); 182 } 183 184 bch2_btree_insert_key_leaf(trans, path, &wb->k, wb->journal_seq); 185 (*fast)++; 186 return 0; 187 } 188 189 /* 190 * Update a btree with a write buffered key using the journal seq of the 191 * original write buffer insert. 192 * 193 * It is not safe to rejournal the key once it has been inserted into the write 194 * buffer because that may break recovery ordering. For example, the key may 195 * have already been modified in the active write buffer in a seq that comes 196 * before the current transaction. If we were to journal this key again and 197 * crash, recovery would process updates in the wrong order. 198 */ 199 static int 200 btree_write_buffered_insert(struct btree_trans *trans, 201 struct btree_write_buffered_key *wb) 202 { 203 struct btree_iter iter; 204 int ret; 205 206 bch2_trans_iter_init(trans, &iter, wb->btree, bkey_start_pos(&wb->k.k), 207 BTREE_ITER_cached|BTREE_ITER_intent); 208 209 trans->journal_res.seq = wb->journal_seq; 210 211 ret = bch2_btree_iter_traverse(&iter) ?: 212 bch2_trans_update(trans, &iter, &wb->k, 213 BTREE_UPDATE_internal_snapshot_node); 214 bch2_trans_iter_exit(trans, &iter); 215 return ret; 216 } 217 218 static void move_keys_from_inc_to_flushing(struct btree_write_buffer *wb) 219 { 220 struct bch_fs *c = container_of(wb, struct bch_fs, btree_write_buffer); 221 struct journal *j = &c->journal; 222 223 if (!wb->inc.keys.nr) 224 return; 225 226 bch2_journal_pin_add(j, wb->inc.keys.data[0].journal_seq, &wb->flushing.pin, 227 bch2_btree_write_buffer_journal_flush); 228 229 darray_resize(&wb->flushing.keys, min_t(size_t, 1U << 20, wb->flushing.keys.nr + wb->inc.keys.nr)); 230 darray_resize(&wb->sorted, wb->flushing.keys.size); 231 232 if (!wb->flushing.keys.nr && wb->sorted.size >= wb->inc.keys.nr) { 233 swap(wb->flushing.keys, wb->inc.keys); 234 goto out; 235 } 236 237 size_t nr = min(darray_room(wb->flushing.keys), 238 wb->sorted.size - wb->flushing.keys.nr); 239 nr = min(nr, wb->inc.keys.nr); 240 241 memcpy(&darray_top(wb->flushing.keys), 242 wb->inc.keys.data, 243 sizeof(wb->inc.keys.data[0]) * nr); 244 245 memmove(wb->inc.keys.data, 246 wb->inc.keys.data + nr, 247 sizeof(wb->inc.keys.data[0]) * (wb->inc.keys.nr - nr)); 248 249 wb->flushing.keys.nr += nr; 250 wb->inc.keys.nr -= nr; 251 out: 252 if (!wb->inc.keys.nr) 253 bch2_journal_pin_drop(j, &wb->inc.pin); 254 else 255 bch2_journal_pin_update(j, wb->inc.keys.data[0].journal_seq, &wb->inc.pin, 256 bch2_btree_write_buffer_journal_flush); 257 258 if (j->watermark) { 259 spin_lock(&j->lock); 260 bch2_journal_set_watermark(j); 261 spin_unlock(&j->lock); 262 } 263 264 BUG_ON(wb->sorted.size < wb->flushing.keys.nr); 265 } 266 267 static int bch2_btree_write_buffer_flush_locked(struct btree_trans *trans) 268 { 269 struct bch_fs *c = trans->c; 270 struct journal *j = &c->journal; 271 struct btree_write_buffer *wb = &c->btree_write_buffer; 272 struct btree_iter iter = { NULL }; 273 size_t overwritten = 0, fast = 0, slowpath = 0, could_not_insert = 0; 274 bool write_locked = false; 275 bool accounting_replay_done = test_bit(BCH_FS_accounting_replay_done, &c->flags); 276 int ret = 0; 277 278 ret = bch2_journal_error(&c->journal); 279 if (ret) 280 return ret; 281 282 bch2_trans_unlock(trans); 283 bch2_trans_begin(trans); 284 285 mutex_lock(&wb->inc.lock); 286 move_keys_from_inc_to_flushing(wb); 287 mutex_unlock(&wb->inc.lock); 288 289 for (size_t i = 0; i < wb->flushing.keys.nr; i++) { 290 wb->sorted.data[i].idx = i; 291 wb->sorted.data[i].btree = wb->flushing.keys.data[i].btree; 292 memcpy(&wb->sorted.data[i].pos, &wb->flushing.keys.data[i].k.k.p, sizeof(struct bpos)); 293 } 294 wb->sorted.nr = wb->flushing.keys.nr; 295 296 /* 297 * We first sort so that we can detect and skip redundant updates, and 298 * then we attempt to flush in sorted btree order, as this is most 299 * efficient. 300 * 301 * However, since we're not flushing in the order they appear in the 302 * journal we won't be able to drop our journal pin until everything is 303 * flushed - which means this could deadlock the journal if we weren't 304 * passing BCH_TRANS_COMMIT_journal_reclaim. This causes the update to fail 305 * if it would block taking a journal reservation. 306 * 307 * If that happens, simply skip the key so we can optimistically insert 308 * as many keys as possible in the fast path. 309 */ 310 wb_sort(wb->sorted.data, wb->sorted.nr); 311 312 darray_for_each(wb->sorted, i) { 313 struct btree_write_buffered_key *k = &wb->flushing.keys.data[i->idx]; 314 315 BUG_ON(!btree_type_uses_write_buffer(k->btree)); 316 317 for (struct wb_key_ref *n = i + 1; n < min(i + 4, &darray_top(wb->sorted)); n++) 318 prefetch(&wb->flushing.keys.data[n->idx]); 319 320 BUG_ON(!k->journal_seq); 321 322 if (!accounting_replay_done && 323 k->k.k.type == KEY_TYPE_accounting) { 324 slowpath++; 325 continue; 326 } 327 328 if (i + 1 < &darray_top(wb->sorted) && 329 wb_key_eq(i, i + 1)) { 330 struct btree_write_buffered_key *n = &wb->flushing.keys.data[i[1].idx]; 331 332 if (k->k.k.type == KEY_TYPE_accounting && 333 n->k.k.type == KEY_TYPE_accounting) 334 bch2_accounting_accumulate(bkey_i_to_accounting(&n->k), 335 bkey_i_to_s_c_accounting(&k->k)); 336 337 overwritten++; 338 n->journal_seq = min_t(u64, n->journal_seq, k->journal_seq); 339 k->journal_seq = 0; 340 continue; 341 } 342 343 if (write_locked) { 344 struct btree_path *path = btree_iter_path(trans, &iter); 345 346 if (path->btree_id != i->btree || 347 bpos_gt(k->k.k.p, path->l[0].b->key.k.p)) { 348 bch2_btree_node_unlock_write(trans, path, path->l[0].b); 349 write_locked = false; 350 351 ret = lockrestart_do(trans, 352 bch2_btree_iter_traverse(&iter) ?: 353 bch2_foreground_maybe_merge(trans, iter.path, 0, 354 BCH_WATERMARK_reclaim| 355 BCH_TRANS_COMMIT_journal_reclaim| 356 BCH_TRANS_COMMIT_no_check_rw| 357 BCH_TRANS_COMMIT_no_enospc)); 358 if (ret) 359 goto err; 360 } 361 } 362 363 if (!iter.path || iter.btree_id != k->btree) { 364 bch2_trans_iter_exit(trans, &iter); 365 bch2_trans_iter_init(trans, &iter, k->btree, k->k.k.p, 366 BTREE_ITER_intent|BTREE_ITER_all_snapshots); 367 } 368 369 bch2_btree_iter_set_pos(&iter, k->k.k.p); 370 btree_iter_path(trans, &iter)->preserve = false; 371 372 bool accounting_accumulated = false; 373 do { 374 if (race_fault()) { 375 ret = -BCH_ERR_journal_reclaim_would_deadlock; 376 break; 377 } 378 379 ret = wb_flush_one(trans, &iter, k, &write_locked, 380 &accounting_accumulated, &fast); 381 if (!write_locked) 382 bch2_trans_begin(trans); 383 } while (bch2_err_matches(ret, BCH_ERR_transaction_restart)); 384 385 if (!ret) { 386 k->journal_seq = 0; 387 } else if (ret == -BCH_ERR_journal_reclaim_would_deadlock) { 388 slowpath++; 389 ret = 0; 390 } else 391 break; 392 } 393 394 if (write_locked) { 395 struct btree_path *path = btree_iter_path(trans, &iter); 396 bch2_btree_node_unlock_write(trans, path, path->l[0].b); 397 } 398 bch2_trans_iter_exit(trans, &iter); 399 400 if (ret) 401 goto err; 402 403 if (slowpath) { 404 /* 405 * Flush in the order they were present in the journal, so that 406 * we can release journal pins: 407 * The fastpath zapped the seq of keys that were successfully flushed so 408 * we can skip those here. 409 */ 410 trace_and_count(c, write_buffer_flush_slowpath, trans, slowpath, wb->flushing.keys.nr); 411 412 sort(wb->flushing.keys.data, 413 wb->flushing.keys.nr, 414 sizeof(wb->flushing.keys.data[0]), 415 wb_key_seq_cmp, NULL); 416 417 darray_for_each(wb->flushing.keys, i) { 418 if (!i->journal_seq) 419 continue; 420 421 if (!accounting_replay_done && 422 i->k.k.type == KEY_TYPE_accounting) { 423 could_not_insert++; 424 continue; 425 } 426 427 if (!could_not_insert) 428 bch2_journal_pin_update(j, i->journal_seq, &wb->flushing.pin, 429 bch2_btree_write_buffer_journal_flush); 430 431 bch2_trans_begin(trans); 432 433 ret = commit_do(trans, NULL, NULL, 434 BCH_WATERMARK_reclaim| 435 BCH_TRANS_COMMIT_journal_reclaim| 436 BCH_TRANS_COMMIT_no_check_rw| 437 BCH_TRANS_COMMIT_no_enospc| 438 BCH_TRANS_COMMIT_no_journal_res , 439 btree_write_buffered_insert(trans, i)); 440 if (ret) 441 goto err; 442 443 i->journal_seq = 0; 444 } 445 446 /* 447 * If journal replay hasn't finished with accounting keys we 448 * can't flush accounting keys at all - condense them and leave 449 * them for next time. 450 * 451 * Q: Can the write buffer overflow? 452 * A Shouldn't be any actual risk. It's just new accounting 453 * updates that the write buffer can't flush, and those are only 454 * going to be generated by interior btree node updates as 455 * journal replay has to split/rewrite nodes to make room for 456 * its updates. 457 * 458 * And for those new acounting updates, updates to the same 459 * counters get accumulated as they're flushed from the journal 460 * to the write buffer - see the patch for eytzingcer tree 461 * accumulated. So we could only overflow if the number of 462 * distinct counters touched somehow was very large. 463 */ 464 if (could_not_insert) { 465 struct btree_write_buffered_key *dst = wb->flushing.keys.data; 466 467 darray_for_each(wb->flushing.keys, i) 468 if (i->journal_seq) 469 *dst++ = *i; 470 wb->flushing.keys.nr = dst - wb->flushing.keys.data; 471 } 472 } 473 err: 474 if (ret || !could_not_insert) { 475 bch2_journal_pin_drop(j, &wb->flushing.pin); 476 wb->flushing.keys.nr = 0; 477 } 478 479 bch2_fs_fatal_err_on(ret, c, "%s", bch2_err_str(ret)); 480 trace_write_buffer_flush(trans, wb->flushing.keys.nr, overwritten, fast, 0); 481 return ret; 482 } 483 484 static int bch2_journal_keys_to_write_buffer(struct bch_fs *c, struct journal_buf *buf) 485 { 486 struct journal_keys_to_wb dst; 487 int ret = 0; 488 489 bch2_journal_keys_to_write_buffer_start(c, &dst, le64_to_cpu(buf->data->seq)); 490 491 for_each_jset_entry_type(entry, buf->data, BCH_JSET_ENTRY_write_buffer_keys) { 492 jset_entry_for_each_key(entry, k) { 493 ret = bch2_journal_key_to_wb(c, &dst, entry->btree_id, k); 494 if (ret) 495 goto out; 496 } 497 498 entry->type = BCH_JSET_ENTRY_btree_keys; 499 } 500 out: 501 ret = bch2_journal_keys_to_write_buffer_end(c, &dst) ?: ret; 502 return ret; 503 } 504 505 static int fetch_wb_keys_from_journal(struct bch_fs *c, u64 max_seq) 506 { 507 struct journal *j = &c->journal; 508 struct journal_buf *buf; 509 bool blocked; 510 int ret = 0; 511 512 while (!ret && (buf = bch2_next_write_buffer_flush_journal_buf(j, max_seq, &blocked))) { 513 ret = bch2_journal_keys_to_write_buffer(c, buf); 514 515 if (!blocked && !ret) { 516 spin_lock(&j->lock); 517 buf->need_flush_to_write_buffer = false; 518 spin_unlock(&j->lock); 519 } 520 521 mutex_unlock(&j->buf_lock); 522 523 if (blocked) { 524 bch2_journal_unblock(j); 525 break; 526 } 527 } 528 529 return ret; 530 } 531 532 static int btree_write_buffer_flush_seq(struct btree_trans *trans, u64 max_seq, 533 bool *did_work) 534 { 535 struct bch_fs *c = trans->c; 536 struct btree_write_buffer *wb = &c->btree_write_buffer; 537 int ret = 0, fetch_from_journal_err; 538 539 do { 540 bch2_trans_unlock(trans); 541 542 fetch_from_journal_err = fetch_wb_keys_from_journal(c, max_seq); 543 544 *did_work |= wb->inc.keys.nr || wb->flushing.keys.nr; 545 546 /* 547 * On memory allocation failure, bch2_btree_write_buffer_flush_locked() 548 * is not guaranteed to empty wb->inc: 549 */ 550 mutex_lock(&wb->flushing.lock); 551 ret = bch2_btree_write_buffer_flush_locked(trans); 552 mutex_unlock(&wb->flushing.lock); 553 } while (!ret && 554 (fetch_from_journal_err || 555 (wb->inc.pin.seq && wb->inc.pin.seq <= max_seq) || 556 (wb->flushing.pin.seq && wb->flushing.pin.seq <= max_seq))); 557 558 return ret; 559 } 560 561 static int bch2_btree_write_buffer_journal_flush(struct journal *j, 562 struct journal_entry_pin *_pin, u64 seq) 563 { 564 struct bch_fs *c = container_of(j, struct bch_fs, journal); 565 bool did_work = false; 566 567 return bch2_trans_run(c, btree_write_buffer_flush_seq(trans, seq, &did_work)); 568 } 569 570 int bch2_btree_write_buffer_flush_sync(struct btree_trans *trans) 571 { 572 struct bch_fs *c = trans->c; 573 bool did_work = false; 574 575 trace_and_count(c, write_buffer_flush_sync, trans, _RET_IP_); 576 577 return btree_write_buffer_flush_seq(trans, journal_cur_seq(&c->journal), &did_work); 578 } 579 580 /* 581 * The write buffer requires flushing when going RO: keys in the journal for the 582 * write buffer don't have a journal pin yet 583 */ 584 bool bch2_btree_write_buffer_flush_going_ro(struct bch_fs *c) 585 { 586 if (bch2_journal_error(&c->journal)) 587 return false; 588 589 bool did_work = false; 590 bch2_trans_run(c, btree_write_buffer_flush_seq(trans, 591 journal_cur_seq(&c->journal), &did_work)); 592 return did_work; 593 } 594 595 int bch2_btree_write_buffer_flush_nocheck_rw(struct btree_trans *trans) 596 { 597 struct bch_fs *c = trans->c; 598 struct btree_write_buffer *wb = &c->btree_write_buffer; 599 int ret = 0; 600 601 if (mutex_trylock(&wb->flushing.lock)) { 602 ret = bch2_btree_write_buffer_flush_locked(trans); 603 mutex_unlock(&wb->flushing.lock); 604 } 605 606 return ret; 607 } 608 609 int bch2_btree_write_buffer_tryflush(struct btree_trans *trans) 610 { 611 struct bch_fs *c = trans->c; 612 613 if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer)) 614 return -BCH_ERR_erofs_no_writes; 615 616 int ret = bch2_btree_write_buffer_flush_nocheck_rw(trans); 617 bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer); 618 return ret; 619 } 620 621 /* 622 * In check and repair code, when checking references to write buffer btrees we 623 * need to issue a flush before we have a definitive error: this issues a flush 624 * if this is a key we haven't yet checked. 625 */ 626 int bch2_btree_write_buffer_maybe_flush(struct btree_trans *trans, 627 struct bkey_s_c referring_k, 628 struct bkey_buf *last_flushed) 629 { 630 struct bch_fs *c = trans->c; 631 struct bkey_buf tmp; 632 int ret = 0; 633 634 bch2_bkey_buf_init(&tmp); 635 636 if (!bkey_and_val_eq(referring_k, bkey_i_to_s_c(last_flushed->k))) { 637 if (trace_write_buffer_maybe_flush_enabled()) { 638 struct printbuf buf = PRINTBUF; 639 640 bch2_bkey_val_to_text(&buf, c, referring_k); 641 trace_write_buffer_maybe_flush(trans, _RET_IP_, buf.buf); 642 printbuf_exit(&buf); 643 } 644 645 bch2_bkey_buf_reassemble(&tmp, c, referring_k); 646 647 if (bkey_is_btree_ptr(referring_k.k)) { 648 bch2_trans_unlock(trans); 649 bch2_btree_interior_updates_flush(c); 650 } 651 652 ret = bch2_btree_write_buffer_flush_sync(trans); 653 if (ret) 654 goto err; 655 656 bch2_bkey_buf_copy(last_flushed, c, tmp.k); 657 ret = -BCH_ERR_transaction_restart_write_buffer_flush; 658 } 659 err: 660 bch2_bkey_buf_exit(&tmp, c); 661 return ret; 662 } 663 664 static void bch2_btree_write_buffer_flush_work(struct work_struct *work) 665 { 666 struct bch_fs *c = container_of(work, struct bch_fs, btree_write_buffer.flush_work); 667 struct btree_write_buffer *wb = &c->btree_write_buffer; 668 int ret; 669 670 mutex_lock(&wb->flushing.lock); 671 do { 672 ret = bch2_trans_run(c, bch2_btree_write_buffer_flush_locked(trans)); 673 } while (!ret && bch2_btree_write_buffer_should_flush(c)); 674 mutex_unlock(&wb->flushing.lock); 675 676 bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer); 677 } 678 679 static void wb_accounting_sort(struct btree_write_buffer *wb) 680 { 681 eytzinger0_sort(wb->accounting.data, wb->accounting.nr, 682 sizeof(wb->accounting.data[0]), 683 wb_key_cmp, NULL); 684 } 685 686 int bch2_accounting_key_to_wb_slowpath(struct bch_fs *c, enum btree_id btree, 687 struct bkey_i_accounting *k) 688 { 689 struct btree_write_buffer *wb = &c->btree_write_buffer; 690 struct btree_write_buffered_key new = { .btree = btree }; 691 692 bkey_copy(&new.k, &k->k_i); 693 694 int ret = darray_push(&wb->accounting, new); 695 if (ret) 696 return ret; 697 698 wb_accounting_sort(wb); 699 return 0; 700 } 701 702 int bch2_journal_key_to_wb_slowpath(struct bch_fs *c, 703 struct journal_keys_to_wb *dst, 704 enum btree_id btree, struct bkey_i *k) 705 { 706 struct btree_write_buffer *wb = &c->btree_write_buffer; 707 int ret; 708 retry: 709 ret = darray_make_room_gfp(&dst->wb->keys, 1, GFP_KERNEL); 710 if (!ret && dst->wb == &wb->flushing) 711 ret = darray_resize(&wb->sorted, wb->flushing.keys.size); 712 713 if (unlikely(ret)) { 714 if (dst->wb == &c->btree_write_buffer.flushing) { 715 mutex_unlock(&dst->wb->lock); 716 dst->wb = &c->btree_write_buffer.inc; 717 bch2_journal_pin_add(&c->journal, dst->seq, &dst->wb->pin, 718 bch2_btree_write_buffer_journal_flush); 719 goto retry; 720 } 721 722 return ret; 723 } 724 725 dst->room = darray_room(dst->wb->keys); 726 if (dst->wb == &wb->flushing) 727 dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr); 728 BUG_ON(!dst->room); 729 BUG_ON(!dst->seq); 730 731 struct btree_write_buffered_key *wb_k = &darray_top(dst->wb->keys); 732 wb_k->journal_seq = dst->seq; 733 wb_k->btree = btree; 734 bkey_copy(&wb_k->k, k); 735 dst->wb->keys.nr++; 736 dst->room--; 737 return 0; 738 } 739 740 void bch2_journal_keys_to_write_buffer_start(struct bch_fs *c, struct journal_keys_to_wb *dst, u64 seq) 741 { 742 struct btree_write_buffer *wb = &c->btree_write_buffer; 743 744 if (mutex_trylock(&wb->flushing.lock)) { 745 mutex_lock(&wb->inc.lock); 746 move_keys_from_inc_to_flushing(wb); 747 748 /* 749 * Attempt to skip wb->inc, and add keys directly to 750 * wb->flushing, saving us a copy later: 751 */ 752 753 if (!wb->inc.keys.nr) { 754 dst->wb = &wb->flushing; 755 } else { 756 mutex_unlock(&wb->flushing.lock); 757 dst->wb = &wb->inc; 758 } 759 } else { 760 mutex_lock(&wb->inc.lock); 761 dst->wb = &wb->inc; 762 } 763 764 dst->room = darray_room(dst->wb->keys); 765 if (dst->wb == &wb->flushing) 766 dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr); 767 dst->seq = seq; 768 769 bch2_journal_pin_add(&c->journal, seq, &dst->wb->pin, 770 bch2_btree_write_buffer_journal_flush); 771 772 darray_for_each(wb->accounting, i) 773 memset(&i->k.v, 0, bkey_val_bytes(&i->k.k)); 774 } 775 776 int bch2_journal_keys_to_write_buffer_end(struct bch_fs *c, struct journal_keys_to_wb *dst) 777 { 778 struct btree_write_buffer *wb = &c->btree_write_buffer; 779 unsigned live_accounting_keys = 0; 780 int ret = 0; 781 782 darray_for_each(wb->accounting, i) 783 if (!bch2_accounting_key_is_zero(bkey_i_to_s_c_accounting(&i->k))) { 784 i->journal_seq = dst->seq; 785 live_accounting_keys++; 786 ret = __bch2_journal_key_to_wb(c, dst, i->btree, &i->k); 787 if (ret) 788 break; 789 } 790 791 if (live_accounting_keys * 2 < wb->accounting.nr) { 792 struct btree_write_buffered_key *dst = wb->accounting.data; 793 794 darray_for_each(wb->accounting, src) 795 if (!bch2_accounting_key_is_zero(bkey_i_to_s_c_accounting(&src->k))) 796 *dst++ = *src; 797 wb->accounting.nr = dst - wb->accounting.data; 798 wb_accounting_sort(wb); 799 } 800 801 if (!dst->wb->keys.nr) 802 bch2_journal_pin_drop(&c->journal, &dst->wb->pin); 803 804 if (bch2_btree_write_buffer_should_flush(c) && 805 __bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer) && 806 !queue_work(system_unbound_wq, &c->btree_write_buffer.flush_work)) 807 bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer); 808 809 if (dst->wb == &wb->flushing) 810 mutex_unlock(&wb->flushing.lock); 811 mutex_unlock(&wb->inc.lock); 812 813 return ret; 814 } 815 816 static int wb_keys_resize(struct btree_write_buffer_keys *wb, size_t new_size) 817 { 818 if (wb->keys.size >= new_size) 819 return 0; 820 821 if (!mutex_trylock(&wb->lock)) 822 return -EINTR; 823 824 int ret = darray_resize(&wb->keys, new_size); 825 mutex_unlock(&wb->lock); 826 return ret; 827 } 828 829 int bch2_btree_write_buffer_resize(struct bch_fs *c, size_t new_size) 830 { 831 struct btree_write_buffer *wb = &c->btree_write_buffer; 832 833 return wb_keys_resize(&wb->flushing, new_size) ?: 834 wb_keys_resize(&wb->inc, new_size); 835 } 836 837 void bch2_fs_btree_write_buffer_exit(struct bch_fs *c) 838 { 839 struct btree_write_buffer *wb = &c->btree_write_buffer; 840 841 BUG_ON((wb->inc.keys.nr || wb->flushing.keys.nr) && 842 !bch2_journal_error(&c->journal)); 843 844 darray_exit(&wb->accounting); 845 darray_exit(&wb->sorted); 846 darray_exit(&wb->flushing.keys); 847 darray_exit(&wb->inc.keys); 848 } 849 850 int bch2_fs_btree_write_buffer_init(struct bch_fs *c) 851 { 852 struct btree_write_buffer *wb = &c->btree_write_buffer; 853 854 mutex_init(&wb->inc.lock); 855 mutex_init(&wb->flushing.lock); 856 INIT_WORK(&wb->flush_work, bch2_btree_write_buffer_flush_work); 857 858 /* Will be resized by journal as needed: */ 859 unsigned initial_size = 1 << 16; 860 861 return darray_make_room(&wb->inc.keys, initial_size) ?: 862 darray_make_room(&wb->flushing.keys, initial_size) ?: 863 darray_make_room(&wb->sorted, initial_size); 864 } 865