xref: /linux/fs/bcachefs/btree_write_buffer.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "bcachefs.h"
4 #include "btree_locking.h"
5 #include "btree_update.h"
6 #include "btree_update_interior.h"
7 #include "btree_write_buffer.h"
8 #include "error.h"
9 #include "journal.h"
10 #include "journal_io.h"
11 #include "journal_reclaim.h"
12 
13 #include <linux/prefetch.h>
14 
15 static int bch2_btree_write_buffer_journal_flush(struct journal *,
16 				struct journal_entry_pin *, u64);
17 
18 static int bch2_journal_keys_to_write_buffer(struct bch_fs *, struct journal_buf *);
19 
20 static inline bool __wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r)
21 {
22 	return (cmp_int(l->hi, r->hi) ?:
23 		cmp_int(l->mi, r->mi) ?:
24 		cmp_int(l->lo, r->lo)) >= 0;
25 }
26 
27 static inline bool wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r)
28 {
29 #ifdef CONFIG_X86_64
30 	int cmp;
31 
32 	asm("mov   (%[l]), %%rax;"
33 	    "sub   (%[r]), %%rax;"
34 	    "mov  8(%[l]), %%rax;"
35 	    "sbb  8(%[r]), %%rax;"
36 	    "mov 16(%[l]), %%rax;"
37 	    "sbb 16(%[r]), %%rax;"
38 	    : "=@ccae" (cmp)
39 	    : [l] "r" (l), [r] "r" (r)
40 	    : "rax", "cc");
41 
42 	EBUG_ON(cmp != __wb_key_ref_cmp(l, r));
43 	return cmp;
44 #else
45 	return __wb_key_ref_cmp(l, r);
46 #endif
47 }
48 
49 /* Compare excluding idx, the low 24 bits: */
50 static inline bool wb_key_eq(const void *_l, const void *_r)
51 {
52 	const struct wb_key_ref *l = _l;
53 	const struct wb_key_ref *r = _r;
54 
55 	return !((l->hi ^ r->hi)|
56 		 (l->mi ^ r->mi)|
57 		 ((l->lo >> 24) ^ (r->lo >> 24)));
58 }
59 
60 static noinline void wb_sort(struct wb_key_ref *base, size_t num)
61 {
62 	size_t n = num, a = num / 2;
63 
64 	if (!a)		/* num < 2 || size == 0 */
65 		return;
66 
67 	for (;;) {
68 		size_t b, c, d;
69 
70 		if (a)			/* Building heap: sift down --a */
71 			--a;
72 		else if (--n)		/* Sorting: Extract root to --n */
73 			swap(base[0], base[n]);
74 		else			/* Sort complete */
75 			break;
76 
77 		/*
78 		 * Sift element at "a" down into heap.  This is the
79 		 * "bottom-up" variant, which significantly reduces
80 		 * calls to cmp_func(): we find the sift-down path all
81 		 * the way to the leaves (one compare per level), then
82 		 * backtrack to find where to insert the target element.
83 		 *
84 		 * Because elements tend to sift down close to the leaves,
85 		 * this uses fewer compares than doing two per level
86 		 * on the way down.  (A bit more than half as many on
87 		 * average, 3/4 worst-case.)
88 		 */
89 		for (b = a; c = 2*b + 1, (d = c + 1) < n;)
90 			b = wb_key_ref_cmp(base + c, base + d) ? c : d;
91 		if (d == n)		/* Special case last leaf with no sibling */
92 			b = c;
93 
94 		/* Now backtrack from "b" to the correct location for "a" */
95 		while (b != a && wb_key_ref_cmp(base + a, base + b))
96 			b = (b - 1) / 2;
97 		c = b;			/* Where "a" belongs */
98 		while (b != a) {	/* Shift it into place */
99 			b = (b - 1) / 2;
100 			swap(base[b], base[c]);
101 		}
102 	}
103 }
104 
105 static noinline int wb_flush_one_slowpath(struct btree_trans *trans,
106 					  struct btree_iter *iter,
107 					  struct btree_write_buffered_key *wb)
108 {
109 	struct btree_path *path = btree_iter_path(trans, iter);
110 
111 	bch2_btree_node_unlock_write(trans, path, path->l[0].b);
112 
113 	trans->journal_res.seq = wb->journal_seq;
114 
115 	return bch2_trans_update(trans, iter, &wb->k,
116 				 BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE) ?:
117 		bch2_trans_commit(trans, NULL, NULL,
118 				  BCH_TRANS_COMMIT_no_enospc|
119 				  BCH_TRANS_COMMIT_no_check_rw|
120 				  BCH_TRANS_COMMIT_no_journal_res|
121 				  BCH_TRANS_COMMIT_journal_reclaim);
122 }
123 
124 static inline int wb_flush_one(struct btree_trans *trans, struct btree_iter *iter,
125 			       struct btree_write_buffered_key *wb,
126 			       bool *write_locked, size_t *fast)
127 {
128 	struct btree_path *path;
129 	int ret;
130 
131 	EBUG_ON(!wb->journal_seq);
132 	EBUG_ON(!trans->c->btree_write_buffer.flushing.pin.seq);
133 	EBUG_ON(trans->c->btree_write_buffer.flushing.pin.seq > wb->journal_seq);
134 
135 	ret = bch2_btree_iter_traverse(iter);
136 	if (ret)
137 		return ret;
138 
139 	/*
140 	 * We can't clone a path that has write locks: unshare it now, before
141 	 * set_pos and traverse():
142 	 */
143 	if (btree_iter_path(trans, iter)->ref > 1)
144 		iter->path = __bch2_btree_path_make_mut(trans, iter->path, true, _THIS_IP_);
145 
146 	path = btree_iter_path(trans, iter);
147 
148 	if (!*write_locked) {
149 		ret = bch2_btree_node_lock_write(trans, path, &path->l[0].b->c);
150 		if (ret)
151 			return ret;
152 
153 		bch2_btree_node_prep_for_write(trans, path, path->l[0].b);
154 		*write_locked = true;
155 	}
156 
157 	if (unlikely(!bch2_btree_node_insert_fits(path->l[0].b, wb->k.k.u64s))) {
158 		*write_locked = false;
159 		return wb_flush_one_slowpath(trans, iter, wb);
160 	}
161 
162 	bch2_btree_insert_key_leaf(trans, path, &wb->k, wb->journal_seq);
163 	(*fast)++;
164 	return 0;
165 }
166 
167 /*
168  * Update a btree with a write buffered key using the journal seq of the
169  * original write buffer insert.
170  *
171  * It is not safe to rejournal the key once it has been inserted into the write
172  * buffer because that may break recovery ordering. For example, the key may
173  * have already been modified in the active write buffer in a seq that comes
174  * before the current transaction. If we were to journal this key again and
175  * crash, recovery would process updates in the wrong order.
176  */
177 static int
178 btree_write_buffered_insert(struct btree_trans *trans,
179 			  struct btree_write_buffered_key *wb)
180 {
181 	struct btree_iter iter;
182 	int ret;
183 
184 	bch2_trans_iter_init(trans, &iter, wb->btree, bkey_start_pos(&wb->k.k),
185 			     BTREE_ITER_CACHED|BTREE_ITER_INTENT);
186 
187 	trans->journal_res.seq = wb->journal_seq;
188 
189 	ret   = bch2_btree_iter_traverse(&iter) ?:
190 		bch2_trans_update(trans, &iter, &wb->k,
191 				  BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE);
192 	bch2_trans_iter_exit(trans, &iter);
193 	return ret;
194 }
195 
196 static void move_keys_from_inc_to_flushing(struct btree_write_buffer *wb)
197 {
198 	struct bch_fs *c = container_of(wb, struct bch_fs, btree_write_buffer);
199 	struct journal *j = &c->journal;
200 
201 	if (!wb->inc.keys.nr)
202 		return;
203 
204 	bch2_journal_pin_add(j, wb->inc.keys.data[0].journal_seq, &wb->flushing.pin,
205 			     bch2_btree_write_buffer_journal_flush);
206 
207 	darray_resize(&wb->flushing.keys, min_t(size_t, 1U << 20, wb->flushing.keys.nr + wb->inc.keys.nr));
208 	darray_resize(&wb->sorted, wb->flushing.keys.size);
209 
210 	if (!wb->flushing.keys.nr && wb->sorted.size >= wb->inc.keys.nr) {
211 		swap(wb->flushing.keys, wb->inc.keys);
212 		goto out;
213 	}
214 
215 	size_t nr = min(darray_room(wb->flushing.keys),
216 			wb->sorted.size - wb->flushing.keys.nr);
217 	nr = min(nr, wb->inc.keys.nr);
218 
219 	memcpy(&darray_top(wb->flushing.keys),
220 	       wb->inc.keys.data,
221 	       sizeof(wb->inc.keys.data[0]) * nr);
222 
223 	memmove(wb->inc.keys.data,
224 		wb->inc.keys.data + nr,
225 	       sizeof(wb->inc.keys.data[0]) * (wb->inc.keys.nr - nr));
226 
227 	wb->flushing.keys.nr	+= nr;
228 	wb->inc.keys.nr		-= nr;
229 out:
230 	if (!wb->inc.keys.nr)
231 		bch2_journal_pin_drop(j, &wb->inc.pin);
232 	else
233 		bch2_journal_pin_update(j, wb->inc.keys.data[0].journal_seq, &wb->inc.pin,
234 					bch2_btree_write_buffer_journal_flush);
235 
236 	if (j->watermark) {
237 		spin_lock(&j->lock);
238 		bch2_journal_set_watermark(j);
239 		spin_unlock(&j->lock);
240 	}
241 
242 	BUG_ON(wb->sorted.size < wb->flushing.keys.nr);
243 }
244 
245 static int bch2_btree_write_buffer_flush_locked(struct btree_trans *trans)
246 {
247 	struct bch_fs *c = trans->c;
248 	struct journal *j = &c->journal;
249 	struct btree_write_buffer *wb = &c->btree_write_buffer;
250 	struct btree_iter iter = { NULL };
251 	size_t skipped = 0, fast = 0, slowpath = 0;
252 	bool write_locked = false;
253 	int ret = 0;
254 
255 	bch2_trans_unlock(trans);
256 	bch2_trans_begin(trans);
257 
258 	mutex_lock(&wb->inc.lock);
259 	move_keys_from_inc_to_flushing(wb);
260 	mutex_unlock(&wb->inc.lock);
261 
262 	for (size_t i = 0; i < wb->flushing.keys.nr; i++) {
263 		wb->sorted.data[i].idx = i;
264 		wb->sorted.data[i].btree = wb->flushing.keys.data[i].btree;
265 		memcpy(&wb->sorted.data[i].pos, &wb->flushing.keys.data[i].k.k.p, sizeof(struct bpos));
266 	}
267 	wb->sorted.nr = wb->flushing.keys.nr;
268 
269 	/*
270 	 * We first sort so that we can detect and skip redundant updates, and
271 	 * then we attempt to flush in sorted btree order, as this is most
272 	 * efficient.
273 	 *
274 	 * However, since we're not flushing in the order they appear in the
275 	 * journal we won't be able to drop our journal pin until everything is
276 	 * flushed - which means this could deadlock the journal if we weren't
277 	 * passing BCH_TRANS_COMMIT_journal_reclaim. This causes the update to fail
278 	 * if it would block taking a journal reservation.
279 	 *
280 	 * If that happens, simply skip the key so we can optimistically insert
281 	 * as many keys as possible in the fast path.
282 	 */
283 	wb_sort(wb->sorted.data, wb->sorted.nr);
284 
285 	darray_for_each(wb->sorted, i) {
286 		struct btree_write_buffered_key *k = &wb->flushing.keys.data[i->idx];
287 
288 		for (struct wb_key_ref *n = i + 1; n < min(i + 4, &darray_top(wb->sorted)); n++)
289 			prefetch(&wb->flushing.keys.data[n->idx]);
290 
291 		BUG_ON(!k->journal_seq);
292 
293 		if (i + 1 < &darray_top(wb->sorted) &&
294 		    wb_key_eq(i, i + 1)) {
295 			struct btree_write_buffered_key *n = &wb->flushing.keys.data[i[1].idx];
296 
297 			skipped++;
298 			n->journal_seq = min_t(u64, n->journal_seq, k->journal_seq);
299 			k->journal_seq = 0;
300 			continue;
301 		}
302 
303 		if (write_locked) {
304 			struct btree_path *path = btree_iter_path(trans, &iter);
305 
306 			if (path->btree_id != i->btree ||
307 			    bpos_gt(k->k.k.p, path->l[0].b->key.k.p)) {
308 				bch2_btree_node_unlock_write(trans, path, path->l[0].b);
309 				write_locked = false;
310 			}
311 		}
312 
313 		if (!iter.path || iter.btree_id != k->btree) {
314 			bch2_trans_iter_exit(trans, &iter);
315 			bch2_trans_iter_init(trans, &iter, k->btree, k->k.k.p,
316 					     BTREE_ITER_INTENT|BTREE_ITER_ALL_SNAPSHOTS);
317 		}
318 
319 		bch2_btree_iter_set_pos(&iter, k->k.k.p);
320 		btree_iter_path(trans, &iter)->preserve = false;
321 
322 		do {
323 			if (race_fault()) {
324 				ret = -BCH_ERR_journal_reclaim_would_deadlock;
325 				break;
326 			}
327 
328 			ret = wb_flush_one(trans, &iter, k, &write_locked, &fast);
329 			if (!write_locked)
330 				bch2_trans_begin(trans);
331 		} while (bch2_err_matches(ret, BCH_ERR_transaction_restart));
332 
333 		if (!ret) {
334 			k->journal_seq = 0;
335 		} else if (ret == -BCH_ERR_journal_reclaim_would_deadlock) {
336 			slowpath++;
337 			ret = 0;
338 		} else
339 			break;
340 	}
341 
342 	if (write_locked) {
343 		struct btree_path *path = btree_iter_path(trans, &iter);
344 		bch2_btree_node_unlock_write(trans, path, path->l[0].b);
345 	}
346 	bch2_trans_iter_exit(trans, &iter);
347 
348 	if (ret)
349 		goto err;
350 
351 	if (slowpath) {
352 		/*
353 		 * Flush in the order they were present in the journal, so that
354 		 * we can release journal pins:
355 		 * The fastpath zapped the seq of keys that were successfully flushed so
356 		 * we can skip those here.
357 		 */
358 		trace_and_count(c, write_buffer_flush_slowpath, trans, slowpath, wb->flushing.keys.nr);
359 
360 		darray_for_each(wb->flushing.keys, i) {
361 			if (!i->journal_seq)
362 				continue;
363 
364 			bch2_journal_pin_update(j, i->journal_seq, &wb->flushing.pin,
365 						bch2_btree_write_buffer_journal_flush);
366 
367 			bch2_trans_begin(trans);
368 
369 			ret = commit_do(trans, NULL, NULL,
370 					BCH_WATERMARK_reclaim|
371 					BCH_TRANS_COMMIT_no_check_rw|
372 					BCH_TRANS_COMMIT_no_enospc|
373 					BCH_TRANS_COMMIT_no_journal_res|
374 					BCH_TRANS_COMMIT_journal_reclaim,
375 					btree_write_buffered_insert(trans, i));
376 			if (ret)
377 				goto err;
378 		}
379 	}
380 err:
381 	bch2_fs_fatal_err_on(ret, c, "%s", bch2_err_str(ret));
382 	trace_write_buffer_flush(trans, wb->flushing.keys.nr, skipped, fast, 0);
383 	bch2_journal_pin_drop(j, &wb->flushing.pin);
384 	wb->flushing.keys.nr = 0;
385 	return ret;
386 }
387 
388 static int fetch_wb_keys_from_journal(struct bch_fs *c, u64 seq)
389 {
390 	struct journal *j = &c->journal;
391 	struct journal_buf *buf;
392 	int ret = 0;
393 
394 	while (!ret && (buf = bch2_next_write_buffer_flush_journal_buf(j, seq))) {
395 		ret = bch2_journal_keys_to_write_buffer(c, buf);
396 		mutex_unlock(&j->buf_lock);
397 	}
398 
399 	return ret;
400 }
401 
402 static int btree_write_buffer_flush_seq(struct btree_trans *trans, u64 seq)
403 {
404 	struct bch_fs *c = trans->c;
405 	struct btree_write_buffer *wb = &c->btree_write_buffer;
406 	int ret = 0, fetch_from_journal_err;
407 
408 	do {
409 		bch2_trans_unlock(trans);
410 
411 		fetch_from_journal_err = fetch_wb_keys_from_journal(c, seq);
412 
413 		/*
414 		 * On memory allocation failure, bch2_btree_write_buffer_flush_locked()
415 		 * is not guaranteed to empty wb->inc:
416 		 */
417 		mutex_lock(&wb->flushing.lock);
418 		ret = bch2_btree_write_buffer_flush_locked(trans);
419 		mutex_unlock(&wb->flushing.lock);
420 	} while (!ret &&
421 		 (fetch_from_journal_err ||
422 		  (wb->inc.pin.seq && wb->inc.pin.seq <= seq) ||
423 		  (wb->flushing.pin.seq && wb->flushing.pin.seq <= seq)));
424 
425 	return ret;
426 }
427 
428 static int bch2_btree_write_buffer_journal_flush(struct journal *j,
429 				struct journal_entry_pin *_pin, u64 seq)
430 {
431 	struct bch_fs *c = container_of(j, struct bch_fs, journal);
432 
433 	return bch2_trans_run(c, btree_write_buffer_flush_seq(trans, seq));
434 }
435 
436 int bch2_btree_write_buffer_flush_sync(struct btree_trans *trans)
437 {
438 	struct bch_fs *c = trans->c;
439 
440 	trace_and_count(c, write_buffer_flush_sync, trans, _RET_IP_);
441 
442 	return btree_write_buffer_flush_seq(trans, journal_cur_seq(&c->journal));
443 }
444 
445 int bch2_btree_write_buffer_flush_nocheck_rw(struct btree_trans *trans)
446 {
447 	struct bch_fs *c = trans->c;
448 	struct btree_write_buffer *wb = &c->btree_write_buffer;
449 	int ret = 0;
450 
451 	if (mutex_trylock(&wb->flushing.lock)) {
452 		ret = bch2_btree_write_buffer_flush_locked(trans);
453 		mutex_unlock(&wb->flushing.lock);
454 	}
455 
456 	return ret;
457 }
458 
459 int bch2_btree_write_buffer_tryflush(struct btree_trans *trans)
460 {
461 	struct bch_fs *c = trans->c;
462 
463 	if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer))
464 		return -BCH_ERR_erofs_no_writes;
465 
466 	int ret = bch2_btree_write_buffer_flush_nocheck_rw(trans);
467 	bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
468 	return ret;
469 }
470 
471 static void bch2_btree_write_buffer_flush_work(struct work_struct *work)
472 {
473 	struct bch_fs *c = container_of(work, struct bch_fs, btree_write_buffer.flush_work);
474 	struct btree_write_buffer *wb = &c->btree_write_buffer;
475 	int ret;
476 
477 	mutex_lock(&wb->flushing.lock);
478 	do {
479 		ret = bch2_trans_run(c, bch2_btree_write_buffer_flush_locked(trans));
480 	} while (!ret && bch2_btree_write_buffer_should_flush(c));
481 	mutex_unlock(&wb->flushing.lock);
482 
483 	bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
484 }
485 
486 int bch2_journal_key_to_wb_slowpath(struct bch_fs *c,
487 			     struct journal_keys_to_wb *dst,
488 			     enum btree_id btree, struct bkey_i *k)
489 {
490 	struct btree_write_buffer *wb = &c->btree_write_buffer;
491 	int ret;
492 retry:
493 	ret = darray_make_room_gfp(&dst->wb->keys, 1, GFP_KERNEL);
494 	if (!ret && dst->wb == &wb->flushing)
495 		ret = darray_resize(&wb->sorted, wb->flushing.keys.size);
496 
497 	if (unlikely(ret)) {
498 		if (dst->wb == &c->btree_write_buffer.flushing) {
499 			mutex_unlock(&dst->wb->lock);
500 			dst->wb = &c->btree_write_buffer.inc;
501 			bch2_journal_pin_add(&c->journal, dst->seq, &dst->wb->pin,
502 					     bch2_btree_write_buffer_journal_flush);
503 			goto retry;
504 		}
505 
506 		return ret;
507 	}
508 
509 	dst->room = darray_room(dst->wb->keys);
510 	if (dst->wb == &wb->flushing)
511 		dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr);
512 	BUG_ON(!dst->room);
513 	BUG_ON(!dst->seq);
514 
515 	struct btree_write_buffered_key *wb_k = &darray_top(dst->wb->keys);
516 	wb_k->journal_seq	= dst->seq;
517 	wb_k->btree		= btree;
518 	bkey_copy(&wb_k->k, k);
519 	dst->wb->keys.nr++;
520 	dst->room--;
521 	return 0;
522 }
523 
524 void bch2_journal_keys_to_write_buffer_start(struct bch_fs *c, struct journal_keys_to_wb *dst, u64 seq)
525 {
526 	struct btree_write_buffer *wb = &c->btree_write_buffer;
527 
528 	if (mutex_trylock(&wb->flushing.lock)) {
529 		mutex_lock(&wb->inc.lock);
530 		move_keys_from_inc_to_flushing(wb);
531 
532 		/*
533 		 * Attempt to skip wb->inc, and add keys directly to
534 		 * wb->flushing, saving us a copy later:
535 		 */
536 
537 		if (!wb->inc.keys.nr) {
538 			dst->wb = &wb->flushing;
539 		} else {
540 			mutex_unlock(&wb->flushing.lock);
541 			dst->wb = &wb->inc;
542 		}
543 	} else {
544 		mutex_lock(&wb->inc.lock);
545 		dst->wb = &wb->inc;
546 	}
547 
548 	dst->room = darray_room(dst->wb->keys);
549 	if (dst->wb == &wb->flushing)
550 		dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr);
551 	dst->seq = seq;
552 
553 	bch2_journal_pin_add(&c->journal, seq, &dst->wb->pin,
554 			     bch2_btree_write_buffer_journal_flush);
555 }
556 
557 void bch2_journal_keys_to_write_buffer_end(struct bch_fs *c, struct journal_keys_to_wb *dst)
558 {
559 	struct btree_write_buffer *wb = &c->btree_write_buffer;
560 
561 	if (!dst->wb->keys.nr)
562 		bch2_journal_pin_drop(&c->journal, &dst->wb->pin);
563 
564 	if (bch2_btree_write_buffer_should_flush(c) &&
565 	    __bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer) &&
566 	    !queue_work(system_unbound_wq, &c->btree_write_buffer.flush_work))
567 		bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
568 
569 	if (dst->wb == &wb->flushing)
570 		mutex_unlock(&wb->flushing.lock);
571 	mutex_unlock(&wb->inc.lock);
572 }
573 
574 static int bch2_journal_keys_to_write_buffer(struct bch_fs *c, struct journal_buf *buf)
575 {
576 	struct journal_keys_to_wb dst;
577 	int ret = 0;
578 
579 	bch2_journal_keys_to_write_buffer_start(c, &dst, le64_to_cpu(buf->data->seq));
580 
581 	for_each_jset_entry_type(entry, buf->data, BCH_JSET_ENTRY_write_buffer_keys) {
582 		jset_entry_for_each_key(entry, k) {
583 			ret = bch2_journal_key_to_wb(c, &dst, entry->btree_id, k);
584 			if (ret)
585 				goto out;
586 		}
587 
588 		entry->type = BCH_JSET_ENTRY_btree_keys;
589 	}
590 
591 	spin_lock(&c->journal.lock);
592 	buf->need_flush_to_write_buffer = false;
593 	spin_unlock(&c->journal.lock);
594 out:
595 	bch2_journal_keys_to_write_buffer_end(c, &dst);
596 	return ret;
597 }
598 
599 static int wb_keys_resize(struct btree_write_buffer_keys *wb, size_t new_size)
600 {
601 	if (wb->keys.size >= new_size)
602 		return 0;
603 
604 	if (!mutex_trylock(&wb->lock))
605 		return -EINTR;
606 
607 	int ret = darray_resize(&wb->keys, new_size);
608 	mutex_unlock(&wb->lock);
609 	return ret;
610 }
611 
612 int bch2_btree_write_buffer_resize(struct bch_fs *c, size_t new_size)
613 {
614 	struct btree_write_buffer *wb = &c->btree_write_buffer;
615 
616 	return wb_keys_resize(&wb->flushing, new_size) ?:
617 		wb_keys_resize(&wb->inc, new_size);
618 }
619 
620 void bch2_fs_btree_write_buffer_exit(struct bch_fs *c)
621 {
622 	struct btree_write_buffer *wb = &c->btree_write_buffer;
623 
624 	BUG_ON((wb->inc.keys.nr || wb->flushing.keys.nr) &&
625 	       !bch2_journal_error(&c->journal));
626 
627 	darray_exit(&wb->sorted);
628 	darray_exit(&wb->flushing.keys);
629 	darray_exit(&wb->inc.keys);
630 }
631 
632 int bch2_fs_btree_write_buffer_init(struct bch_fs *c)
633 {
634 	struct btree_write_buffer *wb = &c->btree_write_buffer;
635 
636 	mutex_init(&wb->inc.lock);
637 	mutex_init(&wb->flushing.lock);
638 	INIT_WORK(&wb->flush_work, bch2_btree_write_buffer_flush_work);
639 
640 	/* Will be resized by journal as needed: */
641 	unsigned initial_size = 1 << 16;
642 
643 	return  darray_make_room(&wb->inc.keys, initial_size) ?:
644 		darray_make_room(&wb->flushing.keys, initial_size) ?:
645 		darray_make_room(&wb->sorted, initial_size);
646 }
647